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Nestor is a toolkit for using Natural Language Processing (NLP) with efficient user-interaction to perform structured
data extraction with minimal annotation time-cost.
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CHAPTER

ONE

INTRODUCTION

1.1 Purpose

This application was designed to help manufacturers “tag” their maintenance work-order data according to the methods
being researched by the Knowledge Extraction and Applications project at the NIST Engineering Laboratory. The goal
of this application is to give understanding to data sets that previously were too unstructured or filled with jargon to
analyze. The current build is in very early alpha, so please be patient in using this application. If you have any
questions, please do not hesitate to contact us (see Who are we?. )

1.1.1 Why?

There is often a large amount of maintenance data already available for use in Smart Manufacturing systems, but
in a currently-unusable form: service tickets and maintenance work orders (MWOs). Nestor is a toolkit for using
Natural Language Processing (NLP) with efficient user-interaction to perform structured data extraction with minimal
annotation time-cost.

1.1.2 Features

• Ranks concepts to be annotated by importance, to save you time

• Suggests term unification by similarity, for you to quickly review

• Basic concept relationships builder, to assist assembling problem code and taxonomy definitions

• Strucutred data output as tags, whether in readable (comma-sep) or computation-friendly (sparse-mat) form.

1.1.3 What’s Inside?

Documentation is contained in the /docs subdirectory, and are hosted as webpages and PDF available at readthedocs.io
.

Current:

• Tagging Tool: Human-in-the-loop Annotation Interface (pyqt)

• Unstructured data processing toolkit (sklearn-style)

• Vizualization tools for tagged MWOs-style data (under development)

Planned/underway:

• KPI creation and visualization suite

3
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• Machine-assisted functional taxonomy generation

• Quantitative skill assement and training suggestion engine

• Graph Database creation assistance and query tool

1.1.4 Pre-requisites

This package was built as compatible with Anaconda python distribution. See our default requirements file for a
complete list of major dependencies, along with the requirements to run our experimental dashboard or to compile our
documentation locally

1.2 Who are we?

This toolkit is a part of the Knowledge Extraction and Application for Smart Manufacturing (KEA) project, within the
Systems Integration Division at NIST.

1.2.1 Points of Contact

• Michael Brundage Principal Investigator

• Thurston Sexton Nestor Technical Lead

1.2.2 Contributors:

Name GitHub Handle
Thurston Sexton @tbsexton
Sascha Moccozet @saschaMoccozet
Michael Brundage @MichaelPBrundage
Madhusudanan N. @msngit
Emily Hastings @emhastings
Lela Bones @lelatbones

1.2.3 Why KEA?

The KEA project seeks to better frame data collection and transformation systems within smart manufacturing as
collaborations between human experts and the machines they partner with, to more efficiently utilize the digital and
human resources available to manufacturers. Kea (nestor notabilis) on the other hand, are the world’s only alpine
parrots, finding their home on the southern Island of NZ. Known for their intelligence and ability to solve puzzles
through the use of tools, they will often work together to reach their goals, which is especially important in their harsh,
mountainous habitat.

Further reading: [SBHM17][SSB17]
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CHAPTER

TWO

GETTING STARTED

2.1 License/Terms-of-Use

2.1.1 Software Disclaimer / Release

This software was developed by employees of the National Institute of Standards and Technology (NIST), an agency
of the Federal Government and is provided to you as a public service. Pursuant to title 15 United States Code Section
105, works of NIST employees are not subject to copyright protection within the United States.

The software is provided by NIST “AS IS.” NIST MAKES NO WARRANTY OF ANY KIND, EXPRESS, IMPLIED
OR STATUTORY, INCLUDING, WITHOUT LIMITATION, THE IMPLIED WARRANTY OF MERCHANTABIL-
ITY, FITNESS FOR A PARTICULAR PURPOSE, NON-INFRINGEMENT AND DATA ACCURACY. NIST does
not warrant or make any representations regarding the use of the software or the results thereof, including but not
limited to the correctness, accuracy, reliability or usefulness of the software.

To the extent that NIST rights in countries other than the United States, you are hereby granted the non-exclusive
irrevocable and unconditional right to print, publish, prepare derivative works and distribute the NIST software, in any
medium, or authorize others to do so on your behalf, on a royalty-free basis throughout the World.

You may improve, modify, and create derivative works of the software or any portion of the software, and you may
copy and distribute such modifications or works. Modified works should carry a notice stating that you changed the
software and should note the date and nature of any such change.

You are solely responsible for determining the appropriateness of using and distributing the software and you assume
all risks associated with its use, including but not limited to the risks and costs of program errors, compliance with
applicable laws, damage to or loss of data, programs or equipment, and the unavailability or interruption of operation.
This software is not intended to be used in any situation where a failure could cause risk of injury or damage to
property.

Please provide appropriate acknowledgments of NIST’s creation of the software in any copies or derivative works of
this software.

2.1.2 3rd-Party Endorsement Disclaimer

The use of any products described in this toolkit does not imply recommendation or endorsement by the National
Institute of Standards and Technology, nor does it imply that products are necessarily the best available for the purpose.
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2.2 Installation

2.2.1 Standalone Executable

Starting with v0.3, standalone executables are available for windows, linux, and mac. This feature is new and very
much in beta. Meant to be a temporary solution for those not needing access to the underlying Nestor API, it will
eventually be replaced by more portable, web-app solutions.

Note that nestor-dash and nestor-gui command line scripts will not be installed, and therefore
unavailable! Only the interface normally accessible via nestor-gui is bundled as an executable at this
time.

At the link above, select a distribution (Linux 5.0 x86_64 or greater, tested on Ubuntu 18.10; Windows 10 or greater;
OSx v?? or greater), which downloads a zipped folder containing dependencies and the program itself. Extract the
folder to any directory and run the Nestor file to start tagging!

On Windows, you will see a Nestor.exe; on Linux you must ensure the Nestor script file is exe-
cutable, and can be run in the terminal via ./<path-to-file>/Nestor

2.2.2 Python-based Install

If you want to use the Nestor API to access NLP/plotting functions, along with access to the (beta) nestor-dash
analysis webtool, you will need to install Nestor as a python library. This will assume a basic level of familiarity with
python and terminal usage.

System Requirements

The installation can be done using either the automatic pip method (recommended) or by downloading the installation
and completing it manually. To install Nestor, your computer must at least have the following configured:

• Operating system: Windows 10, Mac OS, or Ubuntu Linux

• A working installation of Python 3. If you do not have Python installation, an easy way to install it is using the
Anaconda distribution of Python.

• The Comma Separated Value (csv) file that contains your raw data must be in UTF-8 encoding to be compatible
with the tagging tool. Your computer has tools to help you save your csv as utf-8.

• If you decide to use a conda environment (recommended), ensure pip is installed in the environment itself to
prevent references to the top-level pip installation

Nestor Installation using PyPI (Recommended)

This is the recommended way of installing Nestor since it is minimal. To install,

• Open a terminal, and type in pip install nist-nestor. The installation will then proceed automatically
and will install the graphical user interface (GUI) for the Nestor Tagging Tool.

• Optionally, you can install additional dependencies for the Nestor Dashboard using the [dash] options flag,
as: pip install nist-nestor[dash]

• The developer releases (unstable!) can be installed directly from the github master branch, if you have git
installed: pip install git+https://github.com/usnistgov/nestor.git

6 Chapter 2. Getting Started
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Nestor installation using local archive

This step is necessary only if you did not install using the above method (using PyPI), or if you wish to edit code
locally while still gaining access to the command-line scripts.

1. Download a .zip file of the entire nestor repository from Github.

2. Extract the files to a directory, preferably with write access, and navigate a terminal to the folder where the files
have been extracted to (the folder will have the file setup.py in it).

3. Install nestor using the command pip install -e . (note the “.”) ..

(Optional Step) Type in pip install -e .[dash] to install the Nestor Dashboard with de-
pendencies.

2.3 Loading/Saving Data

Nestor comes with multiple options for loading your data, depending on if this is the first time you are tagging a dataset
or you are returning for a follow up session.

New in v0.3: you are now able to create projects, which persist and can be exported/imported/shared. You will find all
projects inside your home folder, in ~/.nestor-tmp (/home/<username> on unix-based sytems, <root>/
Users/<username> for Windows)

2.3.1 New Project

If this is the first time tagging a specific file (new project):

1. You can create a new project under “File” -> “New Project”

• Here, Nestor requires a “Project Name” and to load the .csv of the file you want to tag.

• Optional entries include a description of the project, the author of the tagging, and naming both the 1-gram
and N-gram filenames.

2. Select the (presumably natural-laguage) columns you want to tag using Nestor.

3. (Optional) Map columns from the csv to a database schema as defined in this paper. This is detailed more in
SECTION?

• Please note, you may map columns from your csv to this schema, which allows other plotting/analysis tools
to access them (e.g. nestor-dash) while not selecting them to be tagged (they remain unchecked).

2.3.2 Persistence

Nestor has a number of ways to persist your work and make it portable:

Disk Location

Nestor version 0.3 allows you to create projects. You will find all projects inside .nestor-tmp, found under a folder named after the chosen project name given at creation.
Inside each folder, you will find:

• The application configuration file, config.yaml. This file contains information used by the application during
the tagging process.

• The csv file you chose to tag.

2.3. Loading/Saving Data 7
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• The single token vocabulary file

• The multiple token vocabulary file

By default (if not changed at the time of project creation) the filenames for the vocab files are respectively
vocab1g.csv and vocabNg.csv.

Import/Export

Nestor allows a user to export an entire project, located under “File” -> “Export Project”, saving it as a portable .zip
or .tar file, which can be easily shared among different users of Nestor.

If you are returning to tag a previously tagged dataset, you can either “Open Project,” found in .nestor-tmp, or
“Import Project” from a .zip or .tar archive in another location.

You can additionally make use of previous work, such as other projects, by importing from vocabulary sheets that were
saved from previous tagging sessions. This option is available under the “Auto-populate>From CSV” toolbar drop
down menu. The user can select either single word or Multi-Word vocabulary, and select a compatible csv vocabulary,
accordingly. Un-annotated words in the current project that are defined in the selected CSV will be updated with the
annotations within.

Research mode

If you decide to use the research mode, a new project folder will be added to .nestor-tmp. In this case, additional
folders will be added inside the project folder. These folders will be named after your chosen criteria. For example, if
you choose inside the research mode to save your project according to percentage of tokens tagged, then a new folder
named percentage will appear in your project folder. This percentage folder will contain a version of your vocab files
at a certain percentage.

2.4 Using the Nestor GUI

2.4.1 Settings

This window helps to set various parameters that control how Nestor behaves during the process of tagging. It can be
accessed at any time during the tagging process by going to Python -> Preferences on a Mac. Similar settings can be
found for Windows and Linux machines too. (If you are a first time user, or do not really want to change the default
settings, it is perfectly fine to leave these settings as they are).

Special Replace

Number of words listed

This setting controls the number of word tokens from your data, that are displayed for tagging. For example, you
might be interested in tagging only the top 1000 words from your data. The ordering is decided based on a measure of
importance called the *tf-idf* score.

Similarity for ticked words

Recall that Nestor shows you a list of similar words (and check boxes) for each word that you are tagging. You can
control which words you want to be ticked by default, when you are tagging. This is done by changing the setting for
how similar are the tagged word and the word in the list, for the similar word to be ticked by default.

8 Chapter 2. Getting Started
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Threshold for List of Similar Words

2.4.2 Single Word Tagging

The Single word analysis tab of Nestor allows the user to classify and tag individual words. Likewise, the
Multi word analysis tab will allow classification and tagging of two word phrases.

Word annotation Overview

Present on these tabs are several boxes, which let you interface with concepts found in your data, and assist you in
annotating them First is the Word annotation” box, which has four columns:

• words: Also called “tokens”. Single words are presented in order of importance with respect to the user-loaded
data.

• classification: The user’s classification, or “tag-type”, are stored here

• tag: This column will display the given “alias” (cannonical representation) defined for the given word/token

• note: This column stores any relevant notes from picking a given alias or classification.

Similar Words

The “Similar words from csv” box will present similar words to the highlighted selection in the “Words” column.
These suggestions are taken directly from the user-loaded data. The slider on the bottom of this box can be adjusted
to view more or less words, with decreasing similarity score further down the list. The user can select the words that
should share a cannonical representation (alias) checking the checkbox.

For example, the user might highlight “replace” and decide that the “repalce” suggestion should refer to
the same tag, by checking the box. Note - all selected words will receive the same alias, classification,
and notes.

If the user hovers over the word in this column, a box will appear and display examples that contain the word from the
loaded data

User-Input

The “Tag current word” box contains three different fields:

• Preferred Alias: The user can input a preferred alias for the selected word any checked similar words.

• Classification: The user can select the classification for the selected word and checked similar words.
The user has five options for classifications in v0.3

– Item

– Problem

– Solution

– Ambiguous (Unknown)

– Irrelevant (Stop-Word)

Ambiguous words will commonly arise in cases where surrounding words are needed to know the “right”
classification. These can then be classified in the Multi word analysis tab.

2.4. Using the Nestor GUI 9
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• Notes (if necessary): The user can type notes for a specific word and checked similar words here. The “Overall
Progress” at the bottom of the app will track how much progress is completed while the user has annotated words
in the single word analysis tab. The next word button allows the user to navigate between different words when
annotated.

2.4.3 Multi Word Tagging

The Multi word analysis tab allows the user to classify two word phrases. There are the same four boxes in the Word
Annotation window of nestor as the Single word analysis tab, with a few changes.

Special options

The “Word Composition” box (replaces “Similar words”) provides the user with the information on each constituent
token comprising the two word phrase.

For example “Replace Hydraulic” will give the user all of the previously stored information for both
“Replace” and “Hydraulic” tokens.

The “Tag current words” tab has added/changed the following options from before, as well, to capture meanings for
the bi-gram as a whole:

• Classification: There are two new options to account for:

– Problem Item

– Solution Item

The “Overall Progress” at the bottom of the this tab will track how much progresshas been made specifically on
annotated words in the Multi word analysis tab.

Auto-classification

The user can choose auto-populate the classification column on the multi-word tab using the “Auto-
populate>Multi word from Single word vocabulary” toolbar drop down menu. This applies a set of logic rules to
guess what classification a particular multi-word should receive, based on its constituents.

Note: auto-populated classifications must still be verified by the user. This is done upon entering/keeping
the alias annotation. Only then will it be counted as “complete”

Nestor v0.3 provides the user with predefined rules based on auto population.

• Problem + Item = Problem Item

• Solution + Item = Solution Item

• Item + Item = Item

• Problem + Solution = Irrelevant

Additionally, Nestor will suggest a default alias for word1+word2, namely, word1_word2.

2.4.4 Reporting and Data Transfer

After a sufficient time spent annotating concepts from your corpus, you might like to know what coverage your
annotation has on the detected information within. Nestor provides some metrics and functions on the Report tab,
both for exporting your hard work and giving you visual feedback on just how far you’ve come.

First, you will need to process the data using your annotations!

10 Chapter 2. Getting Started
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Always start by pressing the UPDATE TAG EXTRACTION button.

Exporting

Nestor parses through the original text and unifies detected words into the tags you have now created. This is done in
two ways: human-readable (CSV) and binary file store (HDFS)

• create new CSV: a new csv, containing your mapped column headers and new headers for each type of tag,
will be exported. Each work-order will now have a list of tags of each type in its corresponding cell. Tags not
annotated explicitly will be ommitted.

• create a HDFS (binary): This is a rapid-access filestore (*.h5), excellent for powering visualizations or analysis
in other toolkits. Three keys represent three automatically created tables containing your annotated data:

– df: columns from original dataset whose csv headers have been mapped

– tags: binary tag-occurrence matrix for each tag-document pair

– rels PI/SI-document pair occurrence matrix.

The binary file is a requirement to utilize the (beta) nestor-dash functionality. You can use the dashboard by
uploading your .h5 file to the dashboard, provided you have marked at least one column as being a .name type (e.g.
machine.name is “Asset ID”, technician.name is Technician, etc.)

Progress Report

The bottom half of this window contains various metrics for annotation rates in a table, along with a histogram that
shows a distribution of “completion” over all entries in your corpus. This is the completion-fraction distribution, where
“1.0” means all extracted tokens in a work-order have a valid user-given tag and classification, while “0.0” means that
none of them are annotated.

2.5 Using the Nestor Dashboard (Under Development!)

This tutorial discusses the usage of the Nestor Dashboard. The Dashboard is intended to provide simple, yet insightful
views into the data contained in Maintenance Work Orders (MWOs). It is a set of visualizations that are pivoted
around various maintenance aspects, such as by machine, technician, problem, and so on. It derives its information
from the raw MWOs themselves, as well as the tagged knowledge that is output from the NIST Nestor Tagging Tool.
The Nestor Dashboard is visualised on a browser for ease of navigation and to remove dependencies on operating
systems or other installed software.

2.5.1 Starting the Dashboard Server

1. Open a terminal window

Linux Ctrl + Alt + T

Windows Windows + R -> Type ‘cmd’

Mac + Space -> Type ‘Terminal’

2. Launch the Dashboard Server by typing in nestor-dash

2.5. Using the Nestor Dashboard (Under Development!) 11
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3. This starts up a server for the visualization. Note that the address of the server is output on the terminal window.
In this case, it is seen on the last line as‘‘http://127.0.0.1:5000/‘‘. Copy this address.

12 Chapter 2. Getting Started
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4. Open a web browser, and Paste the address from the previous step. The application called Nestor Visual
Dashboard should start up and you will see the initial welcome screen.

2.5. Using the Nestor Dashboard (Under Development!) 13
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2.5.2 Uploading Data Files

Note: For the current version of the dashboard, visualization is limited to datasets containing “Machine Name” and
“Maintenance Technician” entries. Ensure these have been labeled for export in the tagging tool!

1. To immediately start visualizing your data, you need to upload a .csv or .h5 file that was output from the NIST
Nestor Tagging Tool. To do so, click on the Upload File button. This brings up the page to upload a .csv or .h5
file. Click on Choose File and select a file. In this case, the file MWOs_anon.h5 is selected.

After the upload is complete, the Dashboard shows the list of currently uploaded files.

14 Chapter 2. Getting Started
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2.5.3 Viewing Visualizations on Nestor Dashboard

1. Now click on Nestor Dashboard at the top left corner. It brings up the overview page for all visualizations.
Currently, there are 3 types incorporated. These are, - Bar Graph - Node-Link Diagram - Flow Diagram

2. Bar Chart: This helps to quickly visualize the relative counts of various factors. For example, in this dataset,
the various Solutions (S), Problems (P) and Items (I) can be seen for Machines. It is seen here that for the

2.5. Using the Nestor Dashboard (Under Development!) 15
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machine B2, replaced is the most frequent solution and alarm is the most frequent problem. Similarly, turret is
the major item of concern.

To derive insights about other machines, click on the drop-down on the right side.

Also, you can vary the amount of data being displayed by changing the n_thres slider.

16 Chapter 2. Getting Started
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Instead of viewing all Solutions, Problems and Items in a sorted manner, it is also possible to group them individually.

It is also possible to view the bar chart for various technicians instead of machines by using the dropdown.

2.5. Using the Nestor Dashboard (Under Development!) 17
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The raw data that these visualizations derive from, are also available.

3. Node-Link Diagram: The second type of visualization is the Node-Link diagram. It helps show the connections
and the strength of the connections between various items, problems and solutions, as a Graph.

18 Chapter 2. Getting Started
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As with the other visualizations, it is easy to switch between Technicians, Machines, and control the thresholds for
visualization. There are values that can be controlled for both the nodes themselves and the strengths of the links
between them.

2.5. Using the Nestor Dashboard (Under Development!) 19



Nestor Documentation, Release 0.3

4. Flow Diagram: The Sankey Flow Diagram is another kind of visualization that helps to see the category-wise
connections. Simultaneously, it is also possible to see the severity of the category itself, such as a solution action
or the item involved. The strength of the relations are proportional to the width of the line connecting the entities
at either end.

20 Chapter 2. Getting Started
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The weighting methods for the flow diagram can be varied between cosine and count based weights.

2.5. Using the Nestor Dashboard (Under Development!) 21
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THREE

EXAMPLES

3.1 Showcase

Key features of the nestor toolkit, illustrated.

in progress

3.2 Case Studies

Longer-form, more complete examples of analysis completed for specific datasets.

3.2.1 Manufacturing Maintenance Case Study

Say we have a large amount of historical maintenance work-order (MWO) data stored up, but we don’t quite know
what to do with it yet. This case study will walk through the initial parsing of the MWO natural-language data from the
technicians, to some preliminary analysis of machines, and finally visualization of potential failure modes maintenance
request types. Hopefully it will give you a good idea of how Nestor can assist you in analyzing the rich, existing data
in your MWO’s, and how easy it can be to correlate it to other fields you might be recording.

The primary workflow for Nestor in this case study (when used as a python library) is:

1. Import data, determining

• what columns contain useful (well-defined) categories

• what columns contain natural language to be tagged with the Nestor UI

• what columns could be used for date-stamping/time-series analysis

2. Perform any cleaning necessary on categorical and time-series data.

• This is not necessarily within the scope of Nestor, but:

• Python+Pandas makes it fairly straight forward

• and compatible with the Nestor output tags!

3. Tag natural language data using Nestor/NestorUI

• Nestor can give you initial statistics about your data, immediately, but:

• Nestor is built as a human-in-the-loop tool, meaning that

• you will be a crucial part of the process, and Nestor makes implementing your annotation lightning-fast.

4. Import the tags created by Nestor, and perform analyses

23
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• Nestor UI is designed to create a vocabulary file, quickly mapping discovered concepts to clean tags.

• we’ve also built several tools to help you perform initial analyses on the tags (with more to come!)

We’ll start by loading up some common packages and setting our plotting style (for consistency):

[1]: from pathlib import Path
import numpy as np
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
%matplotlib inline

/home/tbsexton/anaconda3/lib/python3.6/importlib/_bootstrap.py:219: RuntimeWarning:
→˓numpy.dtype size changed, may indicate binary incompatibility. Expected 96, got 88
return f(*args, **kwds)

/home/tbsexton/anaconda3/lib/python3.6/importlib/_bootstrap.py:219: RuntimeWarning:
→˓numpy.dtype size changed, may indicate binary incompatibility. Expected 96, got 88
return f(*args, **kwds)

[2]: def set_style():
# This sets reasonable defaults for font size for a figure that will go in a paper
sns.set_context("paper")
# Set the font to be serif, rather than sans
sns.set(font='serif')
# Make the background white, and specify the specific font family
sns.set_style("white", {

"font.family": "serif",
"font.serif": ["Times", "Palatino", "serif"]

})
set_style()

For the interactive plots we’ll need Holoviews, with the Bokeh backend:

Data Preparation

Import Data

Nestor will be parsing through the NLP data soon, but first we need to determine what else might be useful for us. In
this case study, we’ll be using the recorded machine number, the date the MWO was recieved, technician names, and
of course, the written descriptions left by our technicians.

In this particular case, we’ll be focusing primarily on the (anonymized) machine types A and B.

[3]: data_dir = Path('../..')/'data'/'sme_data'
df = pd.read_csv(data_dir/'MWOs_anon.csv')

df.date_received = pd.to_datetime(df.date_received)
print(f'There are {df.shape[0]} MWO\'s in this dataset')

There are 3438 MWO’s in this dataset

[4]: # example data:
df.loc[df.mach.str.contains('A\d|B\d', na=False),

['mach', 'date_received', 'issue', 'info', 'tech']].head(10)

[4]: mach date_received issue \
0 A5 2015-01-14 No power

(continues on next page)

24 Chapter 3. Examples



Nestor Documentation, Release 0.3

(continued from previous page)

2 A18 2015-02-27 Check / Charge Accumulators
3 A23 2015-02-27 Hyd leak at saw atachment
4 A24 2015-02-27 CS1008 setup change over / from ARC1004
5 A27 2015-02-27 Gears on saw attachment tight and grinding per...
6 A33 2015-02-27 Check and charge Accumulators
7 A8 2015-02-27 St# 14 milling spindle repairs
8 B2 2015-02-27 Hydraulic leak
9 B3 2015-02-27 Turrets leaking A & B
10 B5 2015-02-27 Spindle carrier not indexing / Over Feed

info \
0 Replaced pin in pendant and powered machine -P...
2 Where OK
3 Replaced seal in saw attachment but still leak...
4 Completed / Threading unit rewired
5 Replaced saw attachment with rebuilt unit / Re...
6 Checked and charged
7 Reapired
8 Replaced ruptured hydraulic line Side B
9 Turrets removed and cleaned of chhips
10 NaN

tech
0 angie_henderson, michele_williams
2 nathan_maldonado
3 michele_williams
4 ethan_adams, michele_williams
5 michele_williams
6 cristian_santos
7 michele_williams
8 gina_moore, dylan_miller
9 nathan_maldonado
10 gina_moore, dylan_miller

Starting Nestor

The first thing we can do is collect, combine, and cleanse our NLP data, to get a better idea of what it looks like going
into Nestor. To do this, let’s import the main text mining module in Nestor, nestor.keyword, which helps us with
keyword definition and extraction.

The NLPSelect object is a transformer in the style of scikit-learn, which will take in defined names for
columns containing our original NLP data, and transform that data with it’s .transform() method.

[5]: from nestor import keyword as kex
# merge and cleanse NLP-containing columns of the data
nlp_select = kex.NLPSelect(columns = ['issue', 'info'])
raw_text = nlp_select.transform(df)

/home/tbsexton/anaconda3/lib/python3.6/importlib/_bootstrap.py:219: RuntimeWarning:
→˓numpy.dtype size changed, may indicate binary incompatibility. Expected 96, got 88
return f(*args, **kwds)

/home/tbsexton/anaconda3/lib/python3.6/importlib/_bootstrap.py:219: RuntimeWarning:
→˓numpy.dtype size changed, may indicate binary incompatibility. Expected 96, got 88
return f(*args, **kwds)
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Let’s see what the most common MWO’s in our data look like, without the punctuation or filler-words to get in the
way:

[6]: raw_text.value_counts()[:10]

[6]: base cleaning requested completed 15
broken bar feeder chain repaired 14
base needs to be cleaned completed 7
broken feeder chain repaired 5
chip conveyor jam cleared 5
bar feeder chain broken repaired 5
bar loader chain broken repaired 5
base clean completed 3
replace leaking dresser control valve replaced 3
workzone light inop 3
dtype: int64

Interesting. We see a number of repetitive base-cleaning requests being entered in identically, along with some requests
to fix a broken chain on the bar-feeder. However, there’s alarmingly verbatim repeats, and we see a lot of overlap even
in the top 10 there. This is where Nestor comes in.

Similar to the above, we can make a TokenExtractor object that will perform statistical analysis on our corpus of
MWO’s, and return the concepts it deems “most important”. There’s a lot in here, but essentially we will get an output
of the most important concepts (as tokens) in our data. We do this with the scikit-learn TfIdfVectorizer tool
(which transforms our text into a bag-of-words vector model), along with some added features, like a method to score
and rank individual concepts.

Let’s see what tokens/concepts are most important:

[7]: tex = kex.TokenExtractor()
toks = tex.fit_transform(raw_text) # bag of words matrix.

print('Token\t\tScore')
for i in range(10):

print(f'{tex.vocab_[i]:<8}\t{tex.scores_[i]:.2e}')

Token Score
replaced 1.86e-02
broken 9.68e-03
st 9.51e-03
unit 8.41e-03
inop 7.27e-03
motor 7.21e-03
spindle 7.17e-03
leak 6.88e-03
repaired 6.75e-03
valve 6.74e-03

These are small scores, but they’re normalized to add to 1:

[8]: tex.scores_.sum()

[8]: 1.0

Note that the current default is to limit the number of extracted concepts to the top 5000 (can be modified in the
TokenExtractor kwargs, but in practice should be more than sufficient.
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Nestor UI and Tags

[9]: vocab_fname = data_dir/'vocab.csv'
vocab = kex.generate_vocabulary_df(tex, filename=vocab_fname)
tags_df = kex.tag_extractor(tex, raw_text, vocab_df=vocab)

attempting to initialize with pre-existing vocab
intialized successfully!
saved locally!
intialized successfully!

HBox(children=(IntProgress(value=0, description='Category Loop', max=6), HTML(value='
→˓')))

HBox(children=(IntProgress(value=0, description='I token loop', max=149), HTML(value='
→˓')))

HBox(children=(IntProgress(value=0, description='NA token loop', max=2835),
→˓HTML(value='')))

HBox(children=(IntProgress(value=0, description='P token loop', max=26), HTML(value='
→˓')))

HBox(children=(IntProgress(value=0, description='S token loop', max=27), HTML(value='
→˓')))

HBox(children=(IntProgress(value=0, description='U token loop', max=86), HTML(value='
→˓')))

HBox(children=(IntProgress(value=0, description='X token loop', max=4), HTML(value='
→˓')))

[10]: tags_read = kex._get_readable_tag_df(tags_df)
tags_read.join(df[['issue', 'info', 'tech']]).head(4)

[10]: I NA \
0 machine, cable, pin, pendant possible, powered
1 part repaired, tech, harness, smartscope
2 accumulator
3 hydraulic, saw, attachment, marcel_l reapirs, pending

P S U X issue \
0 short replaced power No power
1 broken order Smartscope harness broken
2 check, charge, ok Check / Charge Accumulators
3 leak replaced seal Hyd leak at saw atachment

info \
0 Replaced pin in pendant and powered machine -P...
1 Parts ordered / Tech repaired
2 Where OK
3 Replaced seal in saw attachment but still leak...

tech
0 angie_henderson, michele_williams
1 gina_moore, tech
2 nathan_maldonado
3 michele_williams
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[11]: # how many instances of each keyword class are there?
print('named entities: ')
print('I\tItem\nP\tProblem\nS\tSolution\nR\tRedundant')
print('U\tUnknown\nX\tStop Word')
print('tagged tokens: ', vocab[vocab.NE!=''].NE.notna().sum())
print('total tags: ', vocab.groupby("NE").nunique().alias.sum())
vocab.groupby("NE").nunique()

named entities:
I Item
P Problem
S Solution
R Redundant
U Unknown
X Stop Word
tagged tokens: 518
total tags: 294

[11]: NE alias notes score
NE

1 2 1 2485
I 1 149 8 280
P 1 26 1 63
S 1 27 1 57
U 1 86 6 113
X 1 4 1 4

[12]: # tag-completeness of work-orders?
tag_pct, tag_comp, tag_empt = kex.get_tag_completeness(tags_df)

nbins = int(np.percentile(tags_df.sum(axis=1), 90))
print(f'Docs have at most {nbins} tokens (90th percentile)')

sns.distplot(tag_pct.dropna(), bins=nbins, kde_kws={'cut':0})
plt.xlim(0.1, 1.0)
plt.xlabel('precision (PPV)')

Tag completeness: 0.72 +/- 0.19
Complete Docs: 514, or 14.95%
Empty Docs: 20, or 0.58%
Docs have at most 13 tokens (90th percentile)

/home/tbsexton/anaconda3/lib/python3.6/site-packages/scipy/stats/stats.py:1713:
→˓FutureWarning: Using a non-tuple sequence for multidimensional indexing is
→˓deprecated; use `arr[tuple(seq)]` instead of `arr[seq]`. In the future this will be
→˓interpreted as an array index, `arr[np.array(seq)]`, which will result either in an
→˓error or a different result.
return np.add.reduce(sorted[indexer] * weights, axis=axis) / sumval

[12]: Text(0.5,0,'precision (PPV)')
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Context Expansion (simplified)

Nestor now has a convenience function for generating 1- and 2-gram tokens, and extracting “good” tags from your
MWO’s once given the 1- and 2-gram vocabulary files generated by the nestor-gui application. This makes our
life easier, though the functionality is planned to be deprecated and replaced by a more robust pipelining tool fashined
after the Scikit-Learn Pipeline model.

[13]: vocab = pd.read_csv(vocab_fname, index_col=0)
vocab2 = pd.read_csv(data_dir/'2g_vocab.csv', index_col=0)

tag_df, tag_relation, NA_df = kex.ngram_keyword_pipe(raw_text, vocab, vocab2)

calculating the extracted tags and statistics...

ONE GRAMS...
intialized successfully!

HBox(children=(IntProgress(value=0, description='Category Loop', max=6), HTML(value='
→˓')))

HBox(children=(IntProgress(value=0, description='I token loop', max=149), HTML(value='
→˓')))

HBox(children=(IntProgress(value=0, description='NA token loop', max=2835),
→˓HTML(value='')))

HBox(children=(IntProgress(value=0, description='P token loop', max=26), HTML(value='
→˓')))

HBox(children=(IntProgress(value=0, description='S token loop', max=27), HTML(value='
→˓')))

HBox(children=(IntProgress(value=0, description='U token loop', max=86), HTML(value='
→˓')))

HBox(children=(IntProgress(value=0, description='X token loop', max=4), HTML(value='
→˓')))

found bug! None

(continues on next page)
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TWO GRAMS...
intialized successfully!

HBox(children=(IntProgress(value=0, description='Category Loop', max=8), HTML(value='
→˓')))

HBox(children=(IntProgress(value=0, description='I token loop', max=625), HTML(value='
→˓')))

HBox(children=(IntProgress(value=0, description='NA token loop', max=1833),
→˓HTML(value='')))

HBox(children=(IntProgress(value=0, description='P token loop', max=28), HTML(value='
→˓')))

HBox(children=(IntProgress(value=0, description='P I token loop', max=408),
→˓HTML(value='')))

HBox(children=(IntProgress(value=0, description='S token loop', max=26), HTML(value='
→˓')))

HBox(children=(IntProgress(value=0, description='S I token loop', max=427),
→˓HTML(value='')))

HBox(children=(IntProgress(value=0, description='U token loop', max=1466), HTML(value=
→˓'')))

HBox(children=(IntProgress(value=0, description='X token loop', max=187), HTML(value='
→˓')))

We can also get a version of the tags that is human-readable, much like the tool in nestor-gui. Though less useful
for plotting/data-analysis, this is great for a sanity check, or for users that prefer visual tools like Excel.

[14]: all_tags = pd.concat([tag_df, tag_relation])
tags_read = kex._get_readable_tag_df(all_tags)
tags_read.head(10)

[14]: I P P I \
0 cable, machine, pendant, pin short
1 part broken
2 accumulator
3 attachment, hydraulic, marcel_l, saw, saw atta... leak
4 thread, thread unit, unit
5 alex_b, attachment, gear, saw, saw attachment,...
6 accumulator
7 mill, spindle, station
8 hydraulic, hydraulic line, line leak, rupture
9 turret leak

S S I U
0 replaced power
1 order
2 charge, check, ok
3 replaced seal
4 setup change
5 rebuild, remove, replaced
6 charge, check
7 repair 14

(continues on next page)
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8 replaced
9 clean, remove

Measuring Machine Performance

The first thing we might want to do is determine which assets are problematic. Nestor outputs tags, which need to be
matched to other “things of interest,” whether that’s technicians, assets, time-stamps, etc. Obviously not every dataset
will have every type of data, so not all of these analyses will be possible in every case (a good overview of what key
performance indicators are possible with what data-type can be found here).

Since we have dates and assets associated with each MWO, let’s try to estimate the failure inter-arrival times for
machines by type and ID.

Failure Inter-arrival Times, by Machine

Ordered by total occurences (i.e. “distribution certainty”)

• Time between occurences of broken tag.

• low → bad

• e.g. A34, B19, and A14 all seem rather low

What could be the central problems with these machines? While we’re at it, let’s use the wonderful library Lifelines to
calculate the Survival functions of our different machine types. We can again use tags to approximate relevant data we
otherwise would not have had: censoring of observations is not obvious, but we can guess that replacements (without
broken) generally indicate a machine was swapped before full breakdown/end-of-life.

[18]: import warnings
warnings.simplefilter(action='ignore')

# make sure Pandas knows our column is a proper Datetime.
idx_col = pd.DatetimeIndex(df.date_received)

# match the A and B machines, checking if they were "broken"
h_or_i = (df

.mach

.str

.match(r'^[AB][0-9]*$')

.fillna(False)
)
is_broke = (tag_df.P['broken']>0)
cond = h_or_i & is_broke
sample_tag = tag_df.loc[cond,tag_df.loc[cond].sum()>1]
sample_tag.columns = (sample_tag

.columns

.droplevel(0)
)

# Add tags back to original data
sample_tag = pd.concat([sample_tag, df.mach[cond]], axis=1)
sample_tag['date'] = idx_col[cond]
sample_tag.loc[:,'mach_type'] = sample_tag.mach.str[0]

# Time between failure, BY MACHINE, for entire dataset.

(continues on next page)
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sample_tag['tbf'] = (sample_tag
.sort_values(['mach','date'])
.groupby('mach')['date']
.diff()

)
sample_tag.loc[:,'tbf'] = sample_tag.tbf/pd.Timedelta(days=1) # normalize time to
→˓days

# keep relevant data
samps = sample_tag[['mach_type', 'tbf', 'mach']].dropna()
order = (samps

.mach

.value_counts()

.index
) # from most to least no. of examples

# Box-and-whisker plot for TBF
import matplotlib.gridspec as gridspec
# plt.figure(figsize=(5,10))
fig = plt.figure(tight_layout=True, figsize=(12,8))
gs = gridspec.GridSpec(2, 2)
ax1 = fig.add_subplot(gs[:,0])
sns.boxplot(data=samps, y='mach', x='tbf',

hue='mach_type', orient='h',
order=order[:20], notch=False,

ax = ax1)
plt.xlabel('days');
plt.title('Time Between Failure ("broken")')
ax1.set(xlim=(0,250));
sns.despine(ax=ax1, left=True, trim=True)

#### Lifelines Survival Analysis ####
from lifelines import WeibullFitter, ExponentialFitter, KaplanMeierFitter

def mask_to_ETraw(df_clean, mask, fill_null=1.):
"""Need to make Events and Times for lifelines model
"""
filter_df = df_clean.loc[mask]
g = filter_df.sort_values('date_received').groupby('mach')
T = g['date_received'].transform(pd.Series.diff)/pd.Timedelta(days=1)

# assume censored when parts replaced (changeout)
E = (~(tag_df.S['replaced']>0)).astype(int)[mask]
T_defined = (T>0.)&T.notna()
return T[T_defined], E[T_defined]

ax3 = fig.add_subplot(gs[-1,-1])
ax2 = fig.add_subplot(gs[0,-1], sharex=ax3)

T, E = mask_to_ETraw(df, cond)
kmf = KaplanMeierFitter()
kmf.fit(T, event_observed=E, label='Machine K-M')
kmf.plot(show_censors=True, censor_styles={'marker':'|'}, ax=ax2, color='xkcd:gray')
ax2.set(xlim=(0,250), ylabel=r'$S(t)$', title='Kaplan-Meier Survival Function');
sns.despine(ax=ax2, bottom=True, trim=True)

(continues on next page)
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i_ = df.mach.str.match(r'^[B][0-9]*$').fillna(False)
T, E = mask_to_ETraw(df, i_&is_broke)
kmf.fit(T, event_observed=E, label='B-type K-M')
kmf.plot(show_censors=True, censor_styles={'marker':'|'}, ax=ax3)

h_ = df.mach.str.match(r'^[A][0-9]*$').fillna(False)
T, E = mask_to_ETraw(df, h_&is_broke)
kmf.fit(T, event_observed=E, label='A-type K-M')
kmf.plot(show_censors=True, censor_styles={'marker':'|'}, ax=ax3)

ax3.set(xlim=(0,250), ylabel=r'$S(t)$', xlabel='days');
sns.despine(ax=ax3, trim=True)

<Figure size 360x720 with 0 Axes>

Markers ( | ) indicate a censored observation, interpreted as a maintenance event with no replacements (no ‘replaced’
tag occurrence).

• where “problems” aren’t listed, issue is generally routine maintenance.

• Assumption: Problem and Solution tags are almost entirely independent sets.

• We get a precise list of what isn’t known for free. . . the “Unknowns”.
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Top Tag occurences, by Machine

Now that we’ve narrowed our focus, we can start to figure out 1. what is happening most often for each machine 2.
what things are correlated when the happen 3. what the “flow” of diagnosis–>solution is for the machines.

[19]: from nestor.tagplots import color_opts
machs = ['A34', 'B19', 'A14']
def machine_tags(name, n_reps):

ismach = df['mach'].str.contains(name, case =False).fillna(False)
return tag_df.loc[ismach,(tag_df.loc[ismach,:].sum()>=n_reps).values]

f, ax = plt.subplots(ncols=3, figsize=(15, 5))

for n, mach in enumerate(machs):
mach_df = machine_tags(mach, 6).sum().sort_values()
mach_df.plot(kind='barh', color=[color_opts[i] for i in mach_df.index.get_level_

→˓values(0)], ax=ax[n])
ax[n].set_title(mach)
sns.despine(ax=ax[n], left=True)

plt.tight_layout()

• A34 issues with motor, unit, brush

• B19 alarms and/or sensors, potentially coolant-related

• A14 wide array of issues, including operator (!?)

[18]: import holoviews as hv
hv.extension('bokeh')
%opts Graph [width=600 height=400]

Data type cannot be displayed: application/javascript, application/vnd.holoviews_load.v0+json

Data type cannot be displayed: application/javascript, application/vnd.holoviews_load.v0+json

[37]: %%output size=150 backend='bokeh' filename='machs'
%%opts Graph (edge_line_width=1.5, edge_alpha=.3)
%%opts Overlay [width=400 legend_position='top_right' show_legend=True] Layout
→˓[tabs=True]
from nestor.tagplots import tag_relation_net

(continues on next page)
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import networkx as nx
kws = {

'pct_thres':50,
'similarity':'cosine',
'layout_kws':{'prog':'neatopusher'},
'padding':dict(x=(-1.05, 1.05), y=(-1.05, 1.05)),

}

layout = hv.Layout([tag_relation_net(machine_tags("A34", 2), name='A34',**kws),
tag_relation_net(machine_tags("B19", 2), name='B19',**kws),
tag_relation_net(machine_tags("A14", 2), name='A14',**kws)
])

layout

[37]: :Layout
.A34.I :Overlay

.A34.I :Graph [source,target] (weight)

.A34.II :Labels [x,y] (tag)
.B19.I :Overlay

.B19.I :Graph [source,target] (weight)

.B19.II :Labels [x,y] (tag)
.A14.I :Overlay

.A14.I :Graph [source,target] (weight)

.A14.II :Labels [x,y] (tag)

Measuring Technician Performance

[20]:
is_base_cleaner = df.tech.str.contains('margaret_hawkins_dds').fillna(False)
print('Margaret\'s Top MWO\'s')
df['issue'][is_base_cleaner].value_counts()

Margaret’s Top MWO’s

[20]: Base cleaning requested 14
Base needs to be cleaned 8
Clean base 4
Base clean 3
Base cleaning req 2
Cooling unit faults 2
Base required cleaning 2
Base cleaning 2
Base cleaning -caused fire 1
Chips in base obstructin coolant flow to pump 1
Shipping cart has worn wheels 1
Base clean request before setup 1
Repair paper filter system 1
Base cleaning Requested 1
Base full 1
Base needs to be cleaned -Opers overfilling and spilling on floor 1
Clean base to install SS chip catcher 1
Parts receiver prox cable shorting sensor 1
Clean base -coolant sticky 1
Hydraulic contamination 1
Drain and clean tank -Do not refill 1

(continues on next page)
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Base cleaning 1
Base cleaning requested -Oil lines clogging 1
Coolant tank needs to be cleaned 1
Clean out Sinico 1
Base has hydraulic fluid -Drain/Clean 1
Coolant base needs to be cleaned 1
Base and coolant tank cleaning requested 1
Oil site glass leaking on to floor 1
Name: issue, dtype: int64

[21]: # df['Description'][df['Tech Full Name'].str.contains('Lyle Cookson').fillna(False)]

def person_tags(name, n_reps):
# techs = kex.token_to_alias(kex.NLPSelect().transform(df.tech.to_frame()), tech_
→˓dict)

isguy = df.tech.str.contains(name).fillna(False)

return tag_df.loc[isguy,(tag_df.loc[isguy,:].sum()>=n_reps).values]

people = ['margaret_hawkins_dds',
'nathan_maldonado',
'angie_henderson',

]
marg_df = person_tags(people[0], 5).sum().sort_values()

plt.figure(figsize=(5,5))
marg_df.plot(kind='barh', color=[color_opts[i] for i in marg_df.index.get_level_
→˓values(0)])
sns.despine(left=True)
plt.title('Margaret');

Threshold to tags happening >=5x - we can quickly gauge the number of Margaret’s total “base cleanings” as 45-50 -
Say we want to compare with other, more “typical” technicians. . .

→ small problem. . .
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[22]:
f, ax = plt.subplots(ncols=3, figsize=(15, 5))
thres = [5, 20, 20]
for n, mach in enumerate(people):

mach_df = person_tags(mach, thres[n]).sum().sort_values()
# mach_df = mach_df[mach_df>=5]

mach_df.plot(kind='barh', color=[color_opts[i] for i in mach_df.index.get_level_
→˓values(0)], ax=ax[n])

ax[n].set_title(mach.split(' ')[0])
sns.despine(ax=ax[n], left=True)

plt.tight_layout()

That’s very difficult to read. We could go back to our node-link, but because there is some directionality in how the
technician addresses an MWO; namely, Problems+Items –> Solutions+Items. We can again approximate the trends
that reflect this idea with tags, this time using a Sankey (or Alluvial) Diagram.

[23]: %%output size=80 backend='bokeh' filename='techs'
%%opts Graph (edge_line_width=1.5, edge_alpha=.7)
%%opts Layout [tabs=True]

kws = {
'kind': 'sankey',
'similarity': 'count',

}

layout = hv.Layout([
tag_relation_net(person_tags('nathan_maldonado', 25), name='Nathan',**kws),
tag_relation_net(person_tags('angie_henderson', 25), name='Angie',**kws),
tag_relation_net(person_tags('margaret_hawkins_dds', 2), name='Margaret',**kws),
tag_relation_net(person_tags("tommy_walter", 2), name='Tommy',**kws),
tag_relation_net(person_tags("gabrielle_davis", 2), name='Gabrielle',**kws),
tag_relation_net(person_tags("cristian_santos", 2), name='Cristian',**kws)

])#.cols(1)
layout

[23]: :Layout
.Nathan.I :Sankey [source,target] (weight)
.Angie.I :Sankey [source,target] (weight)
.Margaret.I :Sankey [source,target] (weight)
.Tommy.I :Sankey [source,target] (weight)
.Gabrielle.I :Sankey [source,target] (weight)
.Cristian.I :Sankey [source,target] (weight)
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3.2.2 Survival Analysis

Mining Excavator dataset case study

[1]: from pathlib import Path
import numpy as np
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
%matplotlib inline

import nestor
from nestor import keyword as kex
import nestor.datasets as dat
def set_style():

# This sets reasonable defaults for font size for a figure that will go in a paper
sns.set_context("paper")

# Set the font to be serif, rather than sans
sns.set(font='serif')

# Make the background white, and specify the specific font family
sns.set_style("white", {

"font.family": "serif",
"font.serif": ["Times", "Palatino", "serif"]

})
set_style()

/home/tbsexton/anaconda3/envs/nestor-dev/lib/python3.6/importlib/_bootstrap.py:219:
→˓RuntimeWarning: numpy.dtype size changed, may indicate binary incompatibility.
→˓Expected 96, got 88
return f(*args, **kwds)

/home/tbsexton/anaconda3/envs/nestor-dev/lib/python3.6/importlib/_bootstrap.py:219:
→˓RuntimeWarning: numpy.dtype size changed, may indicate binary incompatibility.
→˓Expected 96, got 88
return f(*args, **kwds)

[2]: df = dat.load_excavators()
df.head().style

[2]: <pandas.io.formats.style.Styler at 0x7f5961c03668>

Knowledge Extraction

Import vocabulary from tagging tool

[3]: # merge and cleanse NLP-containing columns of the data
nlp_select = kex.NLPSelect(columns = ['OriginalShorttext'])
raw_text = nlp_select.transform(df)

[4]: tex = kex.TokenExtractor()
toks = tex.fit_transform(raw_text)

#Import vocabulary

(continues on next page)
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vocab_path = Path('.')/'support'/'mine_vocab_1g.csv'
vocab = kex.generate_vocabulary_df(tex, init=vocab_path)
tag_df = kex.tag_extractor(tex, raw_text, vocab_df=vocab)

relation_df = tag_df.loc[:, ['P I', 'S I']]
tags_read = kex._get_readable_tag_df(tag_df)
tag_df = tag_df.loc[:, ['I', 'P', 'S', 'U', 'X', 'NA']]

intialized successfully!
intialized successfully!

HBox(children=(IntProgress(value=0, description='Category Loop', max=6), HTML(value='
→˓')))

HBox(children=(IntProgress(value=0, description='I token loop', max=317), HTML(value='
→˓')))

HBox(children=(IntProgress(value=0, description='NA token loop', max=860), HTML(value=
→˓'')))

HBox(children=(IntProgress(value=0, description='P token loop', max=53), HTML(value='
→˓')))

HBox(children=(IntProgress(value=0, description='S token loop', max=42), HTML(value='
→˓')))

HBox(children=(IntProgress(value=0, description='U token loop', max=68), HTML(value='
→˓')))

HBox(children=(IntProgress(value=0, description='X token loop', max=9), HTML(value='
→˓')))

Quality of Extracted Keywords

[5]: nbins = int(np.percentile(tag_df.sum(axis=1), 90))
print(f'Docs have at most {nbins} tokens (90th percentile)')

Docs have at most 5 tokens (90th percentile)

[6]: tags_read.join(df[['OriginalShorttext']]).sample(10)

[6]: I NA P S U X \
5033 engine, light, bay changeout
3813 text, bolts broken
2436 line, steel, mcv reseal
1963 hyd error repair temp
2020 pump, hyd, valve 1main reseal relief
2105 hose, control, mcv replace
4884 right_hand, camera working
3896 horn, bracket fit, 2nd mounting make
5009 light, rear, counterweight replace
2996 lube fault

OriginalShorttext
5033 Eng bay lights u/s changeout
3813 broken bolts TEXT

(continues on next page)
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2436 Reseal MCV Steel lines
1963 REPAIR HYDRAULIC TEMP ERROR
2020 reseal#1main hyd. pump relief valve.
2105 REPLACE MCV CONTROL HOSE.
4884 RH CAMERA NOT WORKING
3896 Fit up 2nd horn & make mounting bracket
5009 Replace rear counterweight lights x 2
2996 lube fault

[7]: # how many instances of each keyword class are there?
print('named entities: ')
print('I\tItem\nP\tProblem\nS\tSolution')
print('U\tUnknown\nX\tStop Word')
print('total tokens: ', vocab.NE.notna().sum())
print('total tags: ', vocab.groupby("NE").nunique().alias.sum())
vocab.groupby("NE").nunique()

named entities:
I Item
P Problem
S Solution
U Unknown
X Stop Word
total tokens: 1767
total tags: 492

[7]: NE alias notes score
NE

1 3 2 766
I 1 317 19 585
P 1 53 6 119
S 1 42 2 95
U 1 68 57 92
X 1 9 1 9

Effectiveness of Tags

The entire goal, in some sense, is for us to remove low-occurence, unimportant information from our data, and form
concept conglomerates that allow more useful statistical inferences to be made. Tags from nestor-gui, as the next
plot shows, have no instances of 1x-occurrence concepts, compared to several thousand in the raw-tokens (this is by
design, of course). Additionally, high occurence concepts that might have had misspellings or synonyms drastically
inprove their average occurence rate.

[8]:
cts = (tex._model.transform(raw_text)>0.).astype(int).toarray().sum(axis=0)
# cts2 = (tex3._model.transform(replaced_text2)>0.).astype(int).toarray().sum(axis=0)

sns.distplot(cts,
# np.concatenate((cts, cts2)),

bins=np.logspace(0,3,10),
# bins=np.linspace(0,1500,10),

norm_hist=False,
kde=False,
label='Token Freqencies',
hist_kws={'color':'grey'})

(continues on next page)
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# cts
sns.distplot(tag_df[['I', 'P', 'S']].sum(),

bins=np.logspace(0,3,10),
# bins=np.linspace(0,1500,10),

norm_hist=False,
kde=False,
label='Tag Freqencies',
hist_kws={'hatch':'///', 'color':'dodgerblue'})

plt.yscale('log')
plt.xscale('log')
tag_df.sum().shape, cts.shape
plt.legend()
plt.xlabel('Tag/Token Frequencies')
plt.ylabel('# Instances')
sns.despine()
plt.savefig('toks_v_tags.png', dpi=300)

[9]: # tag-completeness of work-orders?
tag_pct, tag_comp, tag_empt = kex.get_tag_completeness(tag_df)

# with sns.axes_style('ticks') as style:
sns.distplot(tag_pct.dropna(),

kde=False, bins=nbins,
kde_kws={'cut':0})

plt.xlim(0.1, 1.0)
plt.xlabel('precision (PPV)')

Tag completeness: 0.94 +/- 0.13
Complete Docs: 4444, or 81.02%
Empty Docs: 48, or 0.88%

[9]: Text(0.5,0,'precision (PPV)')
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Convergence over time, using nestor-gui

As part of the comparison study, an expert used nestor-gui for approximately 60min annotating 1-grams, followed
by 20min focusing on 2-grams. Work was saved every 10 min, so we would like to see how the above plot was arrived
at as the tokens were classified.

[10]: study_fname = Path('.')/'support'/'vocab_study_results.csv'
study_df = pd.read_csv(study_fname, index_col=0)
study_long = pd.melt(study_df, var_name="time", value_name='PPV').dropna()
study_long['time_val'] = study_long.time.str.replace('min','').astype(float)

sns.set(style="white", rc={"axes.facecolor": (0, 0, 0, 0)}, context='paper')
pal = sns.cubehelix_palette(6, rot=-.25, light=.7)
g = sns.FacetGrid(study_long, col="time", hue="time", aspect=.8, height=2,
→˓palette=pal, col_wrap=3)
g.map(sns.distplot, "PPV", kde=False, bins=nbins, vertical=True,

hist_kws=dict(alpha=1., histtype='stepfilled', edgecolor='w', lw=2))
g.map(plt.axvline, x=0, lw=1.4, clip_on=False, color='k')

# Define and use a simple function to label the plot in axes coordinates
def label(x, color, label):

ax = plt.gca()
ax.text(.2, 0, label, fontweight="bold", color=color,

ha="left", va="center", transform=ax.transAxes)
g.map(label, "PPV")

# Remove axes details that don't play well with overlap
g.set_titles("")
g.set( xticks=[], xlabel='')
g.set_axis_labels(y_var='PPV')
g.despine(bottom=True, left=True)
plt.tight_layout()
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Survival Analysis

Rules-Based

From Hodkeiwiz et al, a rule-based method was used to estimate failure times for SA. Let’s see their data:

[9]:
df_clean = dat.load_excavators(cleaned=True)

df_clean['SuspSugg'] = pd.to_numeric(df_clean['SuspSugg'], errors='coerce')
df_clean.dropna(subset=['RunningTime', 'SuspSugg'], inplace=True)

df_clean.shape

[9]: (5288, 17)

[10]: df_clean.sort_values('BscStartDate').head(10)

[10]: BscStartDate Asset OriginalShorttext PMType \
8 2001-07-19 B REPLACE LIP PM01
1820 2001-09-01 B OIL LEAK L/H TRACK TENSIONER. PM01
1821 2001-09-04 B BAD SOS METAL IN OIL PM01
5253 2001-09-05 B REPLACE AIRCONDITIONER BELTS PM01
3701 2001-09-05 B REPLACE CLAMPS ON CLAM PIPES PM01
1167 2001-09-05 B REPLACE RHS FAN BELT TENSIONER PULLEY PM01
1168 2001-09-11 B replace fan belt PM01
644 2001-09-15 B replace heads on lhs eng PM01
4583 2001-09-26 B REPAIR CABIN DOOR FALLING OFF. PM01
9 2001-10-01 B rebuild lip #3 PM01

Cost RunningTime MajorSystem Part \
8 1251.52 7.0 Bucket NaN
1820 0.00 3.0 Hydraulic System Track
1821 0.00 3.0 Hydraulic System Slew Gearbox
5253 0.00 23.0 NaN Air Conditioning
3701 0.00 28.0 NaN Mount

(continues on next page)
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1167 82.09 0.0 NaN Fan
1168 0.00 6.0 NaN Fan
644 0.00 33.0 Engine NaN
4583 0.00 27.0 NaN Drivers Cabin
9 0.00 74.0 Bucket NaN

Action Variant FM Location Comments \
8 Replace 2V NaN NaN NaN
1820 Minor Maint 18 Leak Left NaN
1821 NaN NaN Contamination NaN NaN
5253 Replace 2V NaN NaN NaN
3701 Replace 2V NaN NaN NaN
1167 Minor Maint_Replace 2V NaN Right NaN
1168 Replace 2V NaN NaN NaN
644 Replace 2V NaN Left NaN
4583 Repair 1 NaN NaN NaN
9 Repair 5 NaN NaN NaN

FuncLocation SuspSugg \
8 Bucket 0.0
1820 Power Train - Transmission 0.0
1821 Sprocket/Drive Compartment Right 0.0
5253 Air Conditioning System 0.0
3701 Oil - Hydraulic 0.0
1167 +Cooling System 0.0
1168 +Cooling System 0.0
644 Engine Left Cylinder Heads 0.0
4583 Operators Cabin 0.0
9 Bucket Clam (Lip) 0.0

Rule Unnamed: 16
8 Rule_1_3_78_383_384 NaN
1820 Rule_1_3_52_289_347_425_500 NaN
1821 Rule_1_3_52_303_409 NaN
5253 Rule_1_3_224_227_383_384 NaN
3701 Rule_1_3_92_181_383_384 NaN
1167 Rule_1_3_125_347_383_384_509 NaN
1168 Rule_1_3_125_383_384 NaN
644 Rule_1_3_25_383_384_499 NaN
4583 Rule_1_3_251_284_357 NaN
9 Rule_1_3_78_362 NaN

We once again turn to the library Lifelines as the work-horse for finding the Survival function.

[11]: from lifelines import WeibullFitter, ExponentialFitter, KaplanMeierFitter
mask = (df_clean.MajorSystem =='Bucket')
# mask=df_clean.index
def mask_to_ETclean(df_clean, mask, fill_null=1.):

filter_df = df_clean.loc[mask]
g = filter_df.sort_values('BscStartDate').groupby('Asset')
T = g['BscStartDate'].transform(pd.Series.diff).dt.days

# T.loc[(T<=0.)|(T.isna())] = fill_null
E = (~filter_df['SuspSugg'].astype(bool)).astype(int)
return T.loc[~((T<=0.)|(T.isna()))], E.loc[~((T<=0.)|(T.isna()))]

T, E = mask_to_ETclean(df_clean, mask)
wf = WeibullFitter()

(continues on next page)
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wf.fit(T, E, label='Rule-Based Weibull')
print('{:.3f}'.format(wf.lambda_), '{:.3f}'.format(wf.rho_))
# wf.print_summary()
wf.hazard_.plot()
plt.title('weibull hazard function')
plt.xlim(0,110)

wf.survival_function_.plot()
plt.xlim(0,110)
plt.title('weibull survival function')
print(f'transform: ={wf.rho_:.2f}\t={1/wf.lambda_:.2f}')
# wf._compute_standard_errors()
to_bounds = lambda row:'±'.join([f'{i:.2g}' for i in row])
wf.summary.iloc[:,:2].apply(to_bounds, 1)

0.060 0.833
transform: =0.83 =16.73

[11]: lambda_ 0.06±0.0033
rho_ 0.83±0.026
dtype: object

3.2. Case Studies 45



Nestor Documentation, Release 0.3

Tag Based Comparison

We estimate the occurence of failures with tag occurrences.

[ ]: import math

def to_precision(x,p):
"""
returns a string representation of x formatted with a precision of p

Based on the webkit javascript implementation taken from here:
https://code.google.com/p/webkit-mirror/source/browse/JavaScriptCore/kjs/number_

→˓object.cpp
"""

x = float(x)

if x == 0.:
return "0." + "0"*(p-1)

out = []

if x < 0:
out.append("-")
x = -x

e = int(math.log10(x))
tens = math.pow(10, e - p + 1)
n = math.floor(x/tens)

if n < math.pow(10, p - 1):
e = e -1
tens = math.pow(10, e - p+1)
n = math.floor(x / tens)

(continues on next page)
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if abs((n + 1.) * tens - x) <= abs(n * tens -x):
n = n + 1

if n >= math.pow(10,p):
n = n / 10.
e = e + 1

m = "%.*g" % (p, n)

if e < -2 or e >= p:
out.append(m[0])
if p > 1:

out.append(".")
out.extend(m[1:p])

out.append('e')
if e > 0:

out.append("+")
out.append(str(e))

elif e == (p -1):
out.append(m)

elif e >= 0:
out.append(m[:e+1])
if e+1 < len(m):

out.append(".")
out.extend(m[e+1:])

else:
out.append("0.")
out.extend(["0"]*-(e+1))
out.append(m)

return "".join(out)

[12]: def query_experiment(name, df, df_clean, rule, tag, multi_tag, prnt=False):

def mask_to_ETclean(df_clean, mask, fill_null=1.):
filter_df = df_clean.loc[mask]
g = filter_df.sort_values('BscStartDate').groupby('Asset')
T = g['BscStartDate'].transform(pd.Series.diff).dt.days
E = (~filter_df['SuspSugg'].astype(bool)).astype(int)
return T.loc[~((T<=0.)|(T.isna()))], E.loc[~((T<=0.)|(T.isna()))]

def mask_to_ETraw(df_clean, mask, fill_null=1.):
filter_df = df_clean.loc[mask]
g = filter_df.sort_values('BscStartDate').groupby('Asset')
T = g['BscStartDate'].transform(pd.Series.diff).dt.days
T_defined = (T>0.)|T.notna()
T = T[T_defined]
# assume censored when parts replaced (changeout)
E = (~(tag_df.S.changeout>0)).astype(int)[mask]
E = E[T_defined]
return T.loc[~((T<=0.)|(T.isna()))], E.loc[~((T<=0.)|(T.isna()))]

experiment = {
'rules-based': {

'query': rule,
'func': mask_to_ETclean,

(continues on next page)
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'mask': (df_clean.MajorSystem == rule),
'data': df_clean

},
'single-tag': {

'query': tag,
'func': mask_to_ETraw,
'mask': tag_df.I[tag].sum(axis=1)>0,
'data': df

},
'multi-tag': {

'query': multi_tag,
'func': mask_to_ETraw,
'mask': tag_df.I[multi_tag].sum(axis=1)>0,
'data': df

}
}
results = {

('query', 'text/tag'): [],
# ('Weibull Params', r'$\lambda$'): [],

('Weibull Params', r'$\beta$'): [],
('Weibull Params', '$\eta$'): [],
('MTTF', 'Weib.'): [],
('MTTF', 'K-M'): []
}

idx = []

for key, info in experiment.items():
idx += [key]
results[('query','text/tag')] += [info['query']]
if prnt:

print('{}: {}'.format(key, info['query']))
info['T'], info['E'] = info['func'](info['data'], info['mask'])
wf = WeibullFitter()
wf.fit(info['T'], info['E'], label=f'{key} weibull')

to_bounds = lambda row:'$\pm$'.join([to_precision(row[0],2),
to_precision(row[1],1)])

params = wf.summary.T.iloc[:2]
params['eta_'] = [1/params.lambda_['coef'], # err. propagation

(params.lambda_['se(coef)']/params.lambda_['coef']**2)]
params = params.T.apply(to_bounds, 1)

results[('Weibull Params', r'$\eta$')] += [params['eta_']]
results[('Weibull Params', r'$\beta$')] += [params['rho_']]
if prnt:

print('\tWeibull Params:\n',
'\t\t = {}\t'.format(params['eta_']),
' = {}'.format(params['rho_']))

kmf = KaplanMeierFitter()
kmf.fit(info["T"], event_observed=info['E'], label=f'{key} kaplan-meier')
results[('MTTF','Weib.')] += [to_precision(wf.median_,3)]
results[('MTTF','K-M')] += [to_precision(kmf.median_,3)]
if prnt:

print(f'\tMTTF: \n\t\tWeib \t'+to_precision(wf.median_,3)+\
'\n\t\tKM \t'+to_precision(kmf.median_,3))

(continues on next page)
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info['kmf'] = kmf
info['wf'] = wf

return experiment, pd.DataFrame(results, index=pd.Index(idx, name=name))

[14]: bucket_exp, bucket_res = query_experiment('Bucket', df, df_clean,
'Bucket',
['bucket'],
['bucket', 'tooth', 'lip', 'pin']);

[15]: tags = ['hyd', 'hose', 'pump', 'compressor']
hyd_exp, hyd_res = query_experiment('Hydraulic System', df, df_clean,

'Hydraulic System',
['hyd'],
tags)

[16]: eng_exp, eng_res = query_experiment('Engine', df, df_clean,
'Engine',
['engine'],
['engine', 'filter', 'fan'])

[17]: frames = [bucket_res, hyd_res, eng_res]
res = pd.concat(frames, keys = [i.index.name for i in frames],

names=['Major System', 'method'])
res

[17]: query Weibull Params \
text/tag $\beta$

Major System method
Bucket rules-based Bucket 0.83$\pm$0.03

single-tag [bucket] 0.83$\pm$0.03
multi-tag [bucket, tooth, lip, pin] 0.82$\pm$0.02

Hydraulic System rules-based Hydraulic System 0.86$\pm$0.02
single-tag [hyd] 0.89$\pm$0.04
multi-tag [hyd, hose, pump, compressor] 0.89$\pm$0.02

Engine rules-based Engine 0.81$\pm$0.02
single-tag [engine] 0.79$\pm$0.03
multi-tag [engine, filter, fan] 0.81$\pm$0.02

MTTF
$\eta$ Weib. K-M

Major System method
Bucket rules-based 17$\pm$0.9 10.8 9.00

single-tag 27$\pm$2 17.1 15.0
multi-tag 16$\pm$0.9 10.5 9.00

Hydraulic System rules-based 14$\pm$0.6 9.07 8.00
single-tag 36$\pm$3 24.1 25.0
multi-tag 15$\pm$0.7 9.74 9.00

Engine rules-based 17$\pm$1 10.8 9.00
single-tag 19$\pm$1 11.8 10.0
multi-tag 15$\pm$0.8 9.31 8.00

[18]:
exp = [bucket_exp, eng_exp, hyd_exp]
f,axes = plt.subplots(nrows=3, figsize=(5,10))

(continues on next page)
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for n, ax in enumerate(axes):
exp[n]['rules-based']['kmf'].plot(ax=ax, color='dodgerblue')
exp[n]['multi-tag']['kmf'].plot(ax=ax, color='xkcd:rust', ls=':')
exp[n]['single-tag']['kmf'].plot(ax=ax, color='xkcd:rust')

ax.set_xlim(0,110)
ax.set_ylim(0,1)
ax.set_title(r"$S(t)$"+f" of {res.index.levels[0][n]}")
sns.despine()

plt.tight_layout()
f.savefig('bkt_KMsurvival.png')

/home/tbsexton/anaconda3/lib/python3.6/site-packages/matplotlib/cbook/__init__.
→˓py:2446: UserWarning: Saw kwargs [’c’, ’color’] which are all aliases for ’color’.
→˓Kept value from ’color’
seen=seen, canon=canonical, used=seen[-1]))

/home/tbsexton/anaconda3/lib/python3.6/site-packages/matplotlib/cbook/__init__.
→˓py:2446: UserWarning: Saw kwargs [’c’, ’color’] which are all aliases for ’color’.
→˓Kept value from ’color’
seen=seen, canon=canonical, used=seen[-1]))

/home/tbsexton/anaconda3/lib/python3.6/site-packages/matplotlib/cbook/__init__.
→˓py:2446: UserWarning: Saw kwargs [’c’, ’color’] which are all aliases for ’color’.
→˓Kept value from ’color’
seen=seen, canon=canonical, used=seen[-1]))

/home/tbsexton/anaconda3/lib/python3.6/site-packages/matplotlib/cbook/__init__.
→˓py:2446: UserWarning: Saw kwargs [’c’, ’color’] which are all aliases for ’color’.
→˓Kept value from ’color’
seen=seen, canon=canonical, used=seen[-1]))

/home/tbsexton/anaconda3/lib/python3.6/site-packages/matplotlib/cbook/__init__.
→˓py:2446: UserWarning: Saw kwargs [’c’, ’color’] which are all aliases for ’color’.
→˓Kept value from ’color’
seen=seen, canon=canonical, used=seen[-1]))

/home/tbsexton/anaconda3/lib/python3.6/site-packages/matplotlib/cbook/__init__.
→˓py:2446: UserWarning: Saw kwargs [’c’, ’color’] which are all aliases for ’color’.
→˓Kept value from ’color’
seen=seen, canon=canonical, used=seen[-1]))

/home/tbsexton/anaconda3/lib/python3.6/site-packages/matplotlib/cbook/__init__.
→˓py:2446: UserWarning: Saw kwargs [’c’, ’color’] which are all aliases for ’color’.
→˓Kept value from ’color’
seen=seen, canon=canonical, used=seen[-1]))

/home/tbsexton/anaconda3/lib/python3.6/site-packages/matplotlib/cbook/__init__.
→˓py:2446: UserWarning: Saw kwargs [’c’, ’color’] which are all aliases for ’color’.
→˓Kept value from ’color’
seen=seen, canon=canonical, used=seen[-1]))

/home/tbsexton/anaconda3/lib/python3.6/site-packages/matplotlib/cbook/__init__.
→˓py:2446: UserWarning: Saw kwargs [’c’, ’color’] which are all aliases for ’color’.
→˓Kept value from ’color’
seen=seen, canon=canonical, used=seen[-1]))
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This next one give you an idea of the differences better. using a log-transform. the tags under-estimate death rates
a little in the 80-130 day range, probably because there’s a failure mode not captured by the [bucket, lip, tooth] tags
(because it’s rare).

[20]: f,axes = plt.subplots(nrows=3, figsize=(5,10))
for n, ax in enumerate(axes):

exp[n]['rules-based']['kmf'].plot_loglogs(ax=ax, c='dodgerblue')

(continues on next page)
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(continued from previous page)

exp[n]['single-tag']['kmf'].plot_loglogs(ax=ax, c='xkcd:rust', ls=':')
exp[n]['multi-tag']['kmf'].plot_loglogs(ax=ax, c='xkcd:rust')
if n != 2:

ax.legend_.remove()
# ax.set_xlim(0,110)
# ax.set_ylim(0,1)

ax.set_title(r"$\log(-\log(S(t)))$"+f" of {res.index.levels[0][n]}")
sns.despine()

plt.tight_layout()
f.savefig('bkt_logKMsurvival.png', dpi=300)
# kmf.plot_loglogs()
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[ ]:

[1]: from pathlib import Path
import numpy as np
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt

(continues on next page)
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%matplotlib inline

[2]: def set_style():
# This sets reasonable defaults for font size for a figure that will go in a paper
sns.set_context("paper")
# Set the font to be serif, rather than sans
sns.set(font='serif')
# Make the background white, and specify the specific font family
sns.set_style("white", {

"font.family": "serif",
"font.serif": ["Times", "Palatino", "serif"]

})
set_style()

3.2.3 HVAC Maintenance Case Study

Import Data

[3]: import nestor.keyword as kex
data_dir = Path('../..')/'data'/'hvac_data'
df = pd.read_csv(data_dir/'hvac_data.csv')
# really important things we know, a priori
special_replace={'action taken': '',

' -': '; ',
'- ': '; ',
'too hot': 'too_hot',
'to hot': 'too_hot',
'too cold': 'too_cold',
'to cold': 'too_cold'}

nlp_select = kex.NLPSelect(columns = ['DESCRIPTION', 'LONG_DESCRIPTION'], special_
→˓replace=special_replace)
raw_text = nlp_select.transform(df)

/home/tbsexton/anaconda3/envs/nestor-dev/lib/python3.6/site-packages/IPython/core/
→˓interactiveshell.py:3020: DtypeWarning: Columns (29,30,40,106,172,196,217,227) have
→˓mixed types. Specify dtype option on import or set low_memory=False.
interactivity=interactivity, compiler=compiler, result=result)

Build Vocab

[4]:
tex = kex.TokenExtractor()
toks = tex.fit_transform(raw_text)
print(tex.vocab_)

[’room’ ’poc’ ’stat’ ... ’llines’ ’pictures’ ’logged’]

[5]: vocab_fname = data_dir/'vocab.csv'
# vocab_fname = data_dir/'mine_vocab_app.csv'

(continues on next page)
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# vocab = tex.annotation_assistant(filename = vocab_fname)
vocab = kex.generate_vocabulary_df(tex, init = vocab_fname)

intialized successfully!

Extract Keywords

[6]: tag_df = kex.tag_extractor(tex, raw_text, vocab_df=vocab)
tags_read = kex._get_readable_tag_df(tag_df)

intialized successfully!

HBox(children=(IntProgress(value=0, description='Category Loop', max=6,
→˓style=ProgressStyle(description_width=...

HBox(children=(IntProgress(value=0, description='I token loop', max=45,
→˓style=ProgressStyle(description_width=...

HBox(children=(IntProgress(value=0, description='NA token loop', max=4668,
→˓style=ProgressStyle(description_wid...

HBox(children=(IntProgress(value=0, description='P token loop', max=7,
→˓style=ProgressStyle(description_width='...

HBox(children=(IntProgress(value=0, description='S token loop', max=16,
→˓style=ProgressStyle(description_width=...

HBox(children=(IntProgress(value=0, description='U token loop', max=14,
→˓style=ProgressStyle(description_width=...

HBox(children=(IntProgress(value=0, description='X token loop', max=3,
→˓style=ProgressStyle(description_width='...

[7]: tags_read.head(5)

[7]: I NA P \
0 pm, order, site, aml, charge
1 time pm, cover, order, aml, charge, charged
2 point_of_contact, thermostat ed
3 point_of_contact, thermostat ed
4 thermostat

S U X
0 complete
1 need
2 replace, adjust, reset, repair freeze
3 adjust, reset, repair, restart freeze
4 adjust, reset, repair freeze

[8]:
# vocab = pd.read_csv(data_dir/'app_vocab_mike.csv', index_col=0)
# how many instances of each keyword class are there?
print('named entities: ')
print('I\tItem\nP\tProblem\nS\tSolution\nR\tRedundant')
print('U\tUnknown\nX\tStop Word')

(continues on next page)
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print('total tokens: ', vocab.NE.notna().sum())
print('total tags: ', vocab.groupby("NE").nunique().alias.sum())
vocab.groupby("NE").nunique()

named entities:
I Item
P Problem
S Solution
R Redundant
U Unknown
X Stop Word
total tokens: 5000
total tags: 86

[8]: NE alias notes score
NE

1 1 1 4650
I 1 45 5 204
P 1 7 2 26
S 1 16 3 70
U 1 14 8 26
X 1 3 2 6

[9]: # tag-completeness of work-orders?
tag_pct, tag_comp, tag_empt = kex.get_tag_completeness(tag_df)

nbins = int(np.percentile(tag_df.sum(axis=1), 90))
print(f'Docs have at most {nbins} tokens (90th percentile)')

sns.distplot(tag_pct.dropna(), bins=nbins, kde_kws={'cut':0})
plt.xlim(0.1, 1.0)
plt.xlabel('precision (PPV)')

Tag completeness: 0.60 +/- 0.19
Complete Docs: 254, or 1.50%
Empty Docs: 126, or 0.74%
Docs have at most 20 tokens (90th percentile)

[9]: Text(0.5, 0, 'precision (PPV)')
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Measuring Machine Performance

[10]: import nestor.tagplots as tagplt
samp = ['air_conditioning_unit','fan', 'valve', 'leak', 'too_hot', 'too_cold']
cond = (tag_df.P.alarm==1)
sample_tag = tag_df.loc[:,(slice(None), samp)]
sample_tag.columns = sample_tag.columns.droplevel(0)

idx_col = pd.DatetimeIndex(df.REPORTDATE)
sample_tag = sample_tag.set_index(idx_col[:])
sample_tag = sample_tag[ sample_tag.index.year.isin([2009, 2010, 2016])]

tagplt.tagcalendarplot(sample_tag,
how='sum', fig_kws={'figsize':(13,8)});

plt.suptitle('Tag Occurence')

[10]: Text(0.5, 0.98, 'Tag Occurence')
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Monthly “too-hot” and “too-cold” requests, over time

[18]: import holoviews as hv
import geoviews as gv
hv.extension('bokeh')

Data type cannot be displayed: application/javascript, application/vnd.holoviews_load.v0+json

Data type cannot be displayed: application/javascript, application/vnd.holoviews_load.v0+json

[146]: %%output size=200
temp_curve_spec = {
# 'Spread':{'plot':{'width':300, 'height':80},
# 'style':dict(line_color=None, alpha=.4, color=hv.Cycle(['#fe420f', '
→˓#06b1c4']))},

'Curve':{'plot':{'width':300, 'height':80}},
'Curve.TooHot':{'style':dict(color='#fe420f')},
'Curve.TooCold':{'style':dict(color='#06b1c4')},
'NdOverlay': {'plot':dict(title='Requests')}

}
# 'Scatter':{'style':dict( size=5, color=hv.Cycle(['#fe420f', '#06b1c4']))}

# hv.Cycle(['#fe420f', '#06b1c4'])

samp = ['too_cold', 'too_hot']

(continues on next page)
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sample_tag = tag_df.loc[:,(slice(None), samp)]
sample_tag.columns = sample_tag.columns.droplevel(0)

sample_tag = sample_tag.set_index(idx_col).sort_index()

# resamp = '30D'
resamp = '1W'
meas = sample_tag[pd.datetime(2009,9,1):pd.datetime(2012,3,1)].resample(resamp).sum()
meas['date'] = meas.index
# roll = sample_tag.rolling('10D').mean()
# mean = sample_tag.rolling('1D').mean().resample(resamp).sum()
# err = sample_tag.rolling('1D').std().resample(resamp).sum()

# temp_curves = hv.Overlay([
# # hv.Spread((mean.index, mean.too_hot, err.too_hot)),
# # hv.Spread((mean.index, mean.too_cold, err.too_cold)),
# hv.Curve((meas.index, meas.too_hot)),
# hv.Curve((meas.index, meas.too_cold)),
# # hv.Scatter((meas.index, meas.too_hot), label='too_hot'),
# # hv.Scatter((meas.index, meas.too_cold), label='too_cold')
# ])

# table = hv.Table(meas, ['too_hot', 'too_cold'], 'date')
temp_curves = hv.NdOverlay({

'too_cold':hv.Curve(meas,'date', 'too_cold', group='Requests', name='TooCold'),
'too_hot':hv.Curve(meas, 'date','too_hot', group='Requests', name='TooHot'),

}).opts(temp_curve_spec)
# temp_curves.select().opts(temp_curve_spec)#*hv.VLine(times[5])
# hv.Curve(table)

# temp_curves.select(date=(pd.datetime(2010,1,1),pd.datetime(2012,1,1)))
# temp_curves.select(too_hot=(meas.too_hot.quantile(.25),meas.too_hot.quantile(.75)))

# meas[pd.datetime(2010,1,1):pd.datetime(2012,1,1)]
temp_curves

[146]: :NdOverlay [Element]
:Curve [date] (too_hot)

[147]: pd.datetime(2010, 1, 1)

[147]: datetime.datetime(2010, 1, 1, 0, 0)

[148]: import geopandas as gpd
nist_df = gpd.read_file(str(data_dir/'nist_map.geojson')).set_index('bldg',
→˓drop=False)
nist_df.index = nist_df.index.astype(str)
samp = ['too_cold', 'too_hot']
sample_tag = tag_df.loc[:,(slice(None), samp)]
sample_tag.columns = sample_tag.columns.droplevel(0)

bldg_col = df.LOCATION.str.split('-').str[0].astype('category')
sample_tag = pd.concat([sample_tag, bldg_col], axis=1)
sample_tag = sample_tag.set_index(idx_col).sort_index()
sample_tag.rename({'LOCATION':'bldg'}, axis='columns', inplace=True)

times = sample_tag.loc['2010-1-1':'2012-1-1'].resample('1QS').sum().index

(continues on next page)
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# pd.concat([sample_tag.loc[times[0]:times[1]].groupby('bldg').sum(), nist_df],
→˓axis=1).dropna()

def get_bldg_temp(n):
data = gpd.GeoDataFrame(pd.concat([sample_tag.loc[times[n]:times[n+1]].groupby(

→˓'bldg').sum(),
nist_df],

axis=1).dropna())
data['Temperature Index'] = np.tanh((data['too_cold'].sum()+data['too_hot'].

→˓sum())/20)*\
(data['too_cold'] - data['too_hot'])
return data

# np.tanh((data['too_cold'].sum()+data['too_hot'].sum())/20)*\
get_bldg_temp(1).head()

[148]: too_hot too_cold bldg \
bldg
101 34 14 101.0
202 4 2 202.0
203 0 0 203.0
205 0 0 205.0
215 0 0 215.0

geometry Temperature Index
bldg
101 POLYGON ((-77.2163987159729 39.13512015465694,... -20.0
202 POLYGON ((-77.22025036811827 39.13047428646352... -2.0
203 POLYGON ((-77.22077608108521 39.13020796677279... 0.0
205 POLYGON ((-77.21850156784058 39.1223198699503,... 0.0
215 POLYGON ((-77.21671521663666 39.1316623096919,... 0.0

[149]: from bokeh.palettes import Viridis10, Category10_6, RdBu10
from bokeh.models.mappers import LinearColorMapper
RdBu10.reverse()
padding = dict(x=(-77.223, -77.214), y=(39.13, 39.14))
extents = (-77.223, 39.129, -77.214, 39.1385)

bldg_dict, vlines = {}, {}
for n, time in enumerate(times[:-1]):

mapped = gv.Polygons(get_bldg_temp(n),
vdims=['Temperature Index', 'bldg', 'too_hot', 'too_cold'],
extents = extents)

mapped = mapped.redim.range(**padding)
vlines[time] = hv.VLine(time).opts(style={'color':'black'})
bldg_dict[time] = mapped

text = hv.Overlay([gv.Text(i.centroid.x-.0002,
i.centroid.y-.00015,
str(name)) for name,i in get_bldg_temp(0).geometry.

→˓iteritems()])

[150]: %%output size=200 filename='nist_hvac_map'
%%opts Polygons [height=350 width=300, tools=['hover'] colorbar=False ] (cmap='RdBu')
%%opts VLine (alpha=.5)

(continues on next page)
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import warnings
warnings.simplefilter(action='ignore', category=FutureWarning)

(hv.HoloMap(bldg_dict, 'Time')*text +\
hv.HoloMap(vlines, 'Time')*\
temp_curves.opts(temp_curve_spec)).cols(1)

# hv.Bounds()

[150]: :Layout
.HoloMap.I :HoloMap [Time]

:Overlay
.Polygons.I :Polygons [Longitude,Latitude] (Temperature Index,bldg,too_

→˓hot,too_cold)
.Text.I :Text [x,y]
.Text.II :Text [x,y]
.Text.III :Text [x,y]
.Text.IV :Text [x,y]
.Text.V :Text [x,y]
.Text.VI :Text [x,y]
.Text.VII :Text [x,y]
.Text.VIII :Text [x,y]
.Text.IX :Text [x,y]
.Text.X :Text [x,y]
.Text.XI :Text [x,y]
.Text.XII :Text [x,y]
.Text.XIII :Text [x,y]
.Text.XIV :Text [x,y]
.Text.XV :Text [x,y]
.Text.XVI :Text [x,y]
.Text.XVII :Text [x,y]
.Text.XVIII :Text [x,y]
.Text.XIX :Text [x,y]
.Text.XX :Text [x,y]
.Text.XXI :Text [x,y]
.Text.XXII :Text [x,y]
.Text.XXIII :Text [x,y]
.Text.XXIV :Text [x,y]
.Text.XXV :Text [x,y]
.Text.XXVI :Text [x,y]
.Text.XXVII :Text [x,y]
.Text.XXVIII :Text [x,y]
.Text.XXIX :Text [x,y]
.Text.XXX :Text [x,y]

.Requests.I :HoloMap [Time]
:Overlay

.VLine.I :VLine [x,y]

.Requests.I :NdOverlay [Element]
:Curve [date] (too_hot)

[ ]:
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CHAPTER

FOUR

ADVANCED USE

These features/applications are intended for contributors or collaborators, comfortable dealing with bugs/incomplete
projects.

4.1 Research Mode

4.1.1 Setup

• If you have not already done so, install the Nestor app according to the instructions.

• If you have not used Nestor before, read these instructions and get familiar with the tool.

4.1.2 Study Task

1. Launch Nestor. Select “Research Mode -> New Project” in the top menu bar.

#. Check each of the four checkboxes in the “How do you want the tool to save your changes?” section. In the author
field, enter your name or a nickname to differentiate your data from the other study participants. Click “OK.” #.

Use the “Single Word Analysis” tab to tag for approximately 30 minutes:

1. Select the word

2. Select similar words

#. Create an alias #.

Choose a classification

At this stage you may take a break if desired before proceeding to the next step.

1. Select “Auto-populate” in the top menu and select “Multi-Word from Single Word Vocabulary”

2. Select the “Multi word analysis” tab and tag for approximately 30 minutes:

1. Check the auto populated words (they will have classifications already selected in the classification col-
umn)

1. Check if the classification is correct

2. Check if the alias is correct

3. If yes, hit next word. If no, modify as necessary.

2. Once auto populated words are checked, move on to other words and create classification and aliases

3. Go to “Report” tab and hit “Update Tag Extraction”
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4. Select “Create new csv” and save

TODO Share file
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CHAPTER

FIVE

NESTOR PACKAGE

Quantifying tacit knowledge investigatory analysis

Nestor is a toolkit for using Natural Language Processing (NLP) with efficient user-interaction to perform structured
data extraction with minimal annotation time-cost.

5.1 Subpackages

5.1.1 nestor.datasets package

load_excavators(cleaned=False)
Helper function to load excavator toy dataset.

Hodkiewicz, M., and Ho, M. (2016) “Cleaning historical maintenance work order data for reliability analysis”
in Journal of Quality in Maintenance Engineering, Vol 22 (2), pp. 146-163.

Parameters cleaned (bool (default=False)) – whether to return the original dataset (False) or the
dataset with keyword extraction rules applied (True), as described in Hodkiewicz and Ho (2016)

Returns

pandas.DataFrame –

BscStartDate : initialization of MWO

Asset : which excavator this MWO concerns (A, B, C, D, E)

OriginalShorttext : natural language description of the MWO

PMType : repair (PM01) or replacement (PM02)

Cost : MWO expense (AUD)

5.2 Submodules

5.2.1 nestor.keyword module

author: Thurston Sexton

class NLPSelect(columns=0, special_replace=None)
Bases: nestor.keyword.Transformer

Extract specified natural language columns from a pd.DataFrame, and combine into a single series.
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Parameters columns (int, or list of int or str.) – corresponding columns in X to extract, clean, and
merge

get_params(self, deep=True)

transform(self, X, y=None)

class TokenExtractor(**tfidf_kwargs)
Bases: sklearn.base.TransformerMixin

A wrapper for the sklearn TfidfVectorizer class, with utilities for ranking by total tf-idf score, and getting a list
of vocabulary.

Parameters

• tfidf_kwargs (arguments to pass to sklearn’s TfidfVectorizer)

• Valid options modified here (see sklearn docs for more options) are –

input [string {‘filename’, ‘file’, ‘content’}, default=’content’] If ‘filename’, the sequence
passed as an argument to fit is expected to be a list of filenames that need reading to fetch
the raw content to analyze.

If ‘file’, the sequence items must have a ‘read’ method (file-like object) that is called to
fetch the bytes in memory.

Otherwise the input is expected to be the sequence strings or bytes items are expected to
be analyzed directly.

ngram_range [tuple (min_n, max_n), default=(1,1)] The lower and upper boundary of the
range of n-values for different n-grams to be extracted. All values of n such that min_n
<= n <= max_n will be used.

stop_words [string {‘english’} (default), list, or None] If a string, it is passed to
_check_stop_list and the appropriate stop list is returned. ‘english’ is currently the only
supported string value.

If a list, that list is assumed to contain stop words, all of which will be removed from the
resulting tokens. Only applies if analyzer == 'word'.

If None, no stop words will be used. max_df can be set to a value in the range [0.7, 1.0)
to automatically detect and filter stop words based on intra corpus document frequency of
terms.

max_features [int or None, default=5000] If not None, build a vocabulary that only con-
sider the top max_features ordered by term frequency across the corpus.

This parameter is ignored if vocabulary is not None.

smooth_idf [boolean, default=False] Smooth idf weights by adding one to document fre-
quencies, as if an extra document was seen containing every term in the collection exactly
once. Prevents zero divisions.

sublinear_tf [boolean, default=True] Apply sublinear tf scaling, i.e. replace tf with 1 +
log(tf).

fit(self, X, y=None)

fit_transform(self, X, y=None, **fit_params)
Fit to data, then transform it.

Fits transformer to X and y with optional parameters fit_params and returns a transformed version of X.

Parameters
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• X (numpy array of shape [n_samples, n_features]) – Training set.

• y (numpy array of shape [n_samples]) – Target values.

Returns X_new (numpy array of shape [n_samples, n_features_new]) – Transformed array.

ranks_
Retrieve the rank of each token, for sorting. Uses summed scoring over the TF-IDF for each token, so that:
𝑆𝑡 =MWO TF-IDF𝑡

Returns ranks (numpy.array)

scores_
Returns actual scores of tokens, for progress-tracking (unit-normalized)

Returns numpy.array

transform(self, dask_documents, copy=True)

vocab_
ordered list of tokens, rank-ordered by summed-tf-idf (see ranks_())

Returns extracted_toks (numpy.array)

generate_vocabulary_df(transformer, filename=None, init=None)
Helper method to create a formatted pandas.DataFrame and/or a .csv containing the to-
ken–tag/alias–classification relationship. Formatted as jargon/slang tokens, the Named Entity classifications,
preferred labels, notes, and tf-idf summed scores:

tokens | NE | alias | notes | scores

This is intended to be filled out in excel or using the Tagging Tool.

Parameters

• transformer (object TokenExtractor) – the (TRAINED) token extractor used to generate
the ranked list of vocab.

• filename (str, optional) – the file location to read/write a csv containing a formatted vocab-
ulary list

• init (str or pd.Dataframe, optional) – file location of csv or dataframe of existing vocab list
to read and update token classification values from

Returns vocab (pd.Dataframe) – the correctly formatted vocabulary list for token:NE, alias match-
ing

get_tag_completeness(tag_df)

Parameters tag_df (pd.DataFrame) – heirarchical-column df containing

tag_extractor(transformer, raw_text, vocab_df=None, readable=False)
Wrapper for the TokenExtractor to streamline the generation of tags from text. Determines the documents in
<raw_text> that contain each of the tags in <vocab>, using a TokenExtractor transformer object (i.e. the tfidf
vocabulary).

As implemented, this function expects an existing transformer object, though in the future this will be changed
to a class-like functionality (e.g. sklearn’s AdaBoostClassifier, etc) which wraps a transformer into a new one.

Parameters

• transformer (object KeywordExtractor) – instantiated, can be pre-trained

• raw_text (pd.Series) – contains jargon/slang-filled raw text to be tagged
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• vocab_df (pd.DataFrame, optional) – An existing vocabulary dataframe or .csv filename,
expected in the format of kex.generate_vocabulary_df().

• readable (bool, default False) – whether to return readable, categorized, comma-sep str
format (takes longer)

Returns

• pd.DataFrame, extracted tags for each document, whether binary indicator (default)

• or in readable, categorized, comma-sep str format (readable=True, takes longer)

token_to_alias(raw_text, vocab)
Replaces known tokens with their “tag” form, i.e. the alias’ in some known vocabulary list

Parameters

• raw_text (pd.Series) – contains text with known jargon, slang, etc

• vocab (pd.DataFrame) – contains alias’ keyed on known slang, jargon, etc.

Returns pd.Series – new text, with all slang/jargon replaced with unified representations

ngram_automatch(voc1, voc2, NE_types=None, NE_map_rules=None)
Experimental method to auto-match tag combinations into higher-level concepts, for user-suggestion. Used in
nestor.ui

5.2.2 nestor.tagplots module

author: Thurston Sexton

class TagPlot(data_file, cat_specifier=’name’, topn=10)
Bases: object

Central holder for holoviews dynamic-maps, to be served as a Bokeh App.

filter_tags(self, obj_type, obj_name, n_thres=20)
apply filter to binary tag matrix (tag_df) :Parameters: * obj_type (passed to filter_type_name)

• obj_name (passed to filter_type_name)

• n_thres (only return nodes in the top n_thres percentile)

Returns pd.DataFrame, filtered binary tax matrix

filter_type_name(self, obj_type, obj_name)
build a mask to filter data on :Parameters: * obj_type (class of object to filter on)

• obj_name (sub-class/instance to filter on)

Returns pd.Series, mask for filtering df, tag_df.

hv_bars(self, obj_type)
Generates a hv.DynamicMap with a bars/frequency representation of filtered tags. :Parameters: obj_type
(class of object to show)

Returns hv.DynamicMap

hv_flow(self, obj_type)
Generates a hv.DynamicMap with a Sankey/flow representation of filtered tags. :Parameters: obj_type
(class of object to show)

Returns hv.DynamicMap
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hv_nodelink(self, obj_type)
Generates a hv.DynamicMap with a nodelink representation of filtered tags. :Parameters: obj_type (class
of object to show)

Returns hv.DynamicMap

tag_relation_net(tag_df, name=None, kind=’coocc’, layout=<function fruchterman_reingold_layout
at 0x7fb176dae400>, layout_kws=None, padding=None, **node_adj_kws)

Explore tag relationships by create a Holoviews Graph Element. Nodes are tags (colored by classification), and
edges occur only when those tags happen together.

Parameters

• tag_df (pandas.DataFrame) – standard Nestor tag occurrence matrix. Multi-column with
top-level containing tag classifications (named-entity NE) and 2nd level containing tags.
Each row corresponds to a single event (MWO), with binary indicators (1-occurs, 0-does
not).

• name (str) – what to name this tag relation element. Creates a Holoviews group “name”.

• kind (str) –

coocc : co-occurrence graph, where tags are connected if they occur in the same MWO,
above the value calculated for pct_thres. Connects all types together.

sankey : Directed “flow” graph, currently implemented with a (P) -> (I) -> (S) structure.
Will require dag=True. Alters default to similarity=count

• layout (object (function), optional) – must take a graph object as input and output 2D co-
ordinates for node locations (e.g. all networkx.layout functions). Defaults to networkx.
spring_layout

• layout_kws (dict, optional) – options to pass to networkx layout functions

• padding (dict, optional) –

contains “x” and “y” specifications for boundaries. Defaults: {'x':(-0.05, 1.
05), 'y':(-0.05, 1.05)}

Only valid if kind is ‘coocc’.

• node_adj_kws –

keyword arguments for nestor.tagtrees.tag_df_network. Valid options are
similarity : ‘cosine’ (default) or ‘count’ dag : bool, default=’False’, (True if
kind='sankey') pct_thres : : int or None

If int, between [0,100]. The lower percentile at which to threshold edges/adjacency.

Returns graph (holoviews.Holomap or holoviews.Graph element, pending sankey or cooccurrence
input.)

tagcalendarplot(tag_df, how=’sum’, yearlabels=True, yearascending=True, yearlabel_kws=None, sub-
plot_kws=None, gridspec_kws=None, fig_kws=None, **kwargs)

Plot a timeseries of (binary) tag occurrences as a calendar heatmap over weeks in the year. any columns passed
will be explicitly plotted as rows, with each week in the year as a column. By default, occurences are summed,
not averaged, but this aggregation over weeks may be any valid option for the pandas.Dataframe.agg() method.

This function will separate out multiple years within the data as multiple calendars. The plotting has been
heavily modified/altered/normalized, but the original version appeared here:

adapted from: ‘Martijn Vermaat’ 14 Feb 2016 ‘martijn@vermaat.name’ ‘https://github.com/martijnvermaat/
calmap’
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Parameters

• tag_df (pandas.DataFrame) – standard Nestor tag occurrence matrix. Multi-column with
top-level containing tag classifications (named-entity NE) and 2nd level containing tags.
Each row corresponds to a single event (MWO), with binary indicators (1-occurs, 0-does
not).

• how (string) – Method for resampling data by day. If None, assume data is already sampled
by day and don’t resample. Otherwise, this is passed to Pandas Series.resample.

• yearlabels (bool) – Whether or not to draw the year for each subplot.

• yearascending (bool) – Sort the calendar in ascending or descending order.

• yearlabel_kws (dict) – Keyword arguments passed to the matplotlib set_ylabel call which
is used to draw the year for each subplot.

• subplot_kws (dict) – Keyword arguments passed to the matplotlib add_subplot call used to
create each subplot.

• gridspec_kws (dict) – Keyword arguments passed to the matplotlib GridSpec constructor
used to create the grid the subplots are placed on.

• fig_kws (dict) – Keyword arguments passed to the matplotlib figure call.

• kwargs (other keyword arguments) – All other keyword arguments are passed to yearplot.

Returns fig, axes (matplotlib Figure and Axes) – Tuple where fig is the matplotlib Figure object
axes is an array of matplotlib Axes objects with the calendar heatmaps, one per year.

tagyearplot(tag_df, year=None, how=’sum’, vmin=None, vmax=None, cmap=’Reds’, linewidth=1, line-
color=None, monthlabels=[’Jan’, ’Feb’, ’Mar’, ’Apr’, ’May’, ’Jun’, ’Jul’, ’Aug’, ’Sep’, ’Oct’,
’Nov’, ’Dec’], monthticks=True, ax=None, **kwargs)

Plot a timeseries of (binary) tag occurrences as a calendar heatmap over weeks in the year. any columns passed
will be explicitly plotted as rows, with each week in the year as a column. By default, occurences are summed,
not averaged, but this aggregation over weeks may be any valid option for the pandas.Dataframe.agg() method.

adapted from: ‘Martijn Vermaat’ 14 Feb 2016 ‘martijn@vermaat.name’ ‘https://github.com/martijnvermaat/
calmap’

Parameters

• tag_df (pandas.DataFrame) – standard Nestor tag occurrence matrix. Multi-column with
top-level containing tag classifications (named-entity NE) and 2nd level containing tags.
Each row corresponds to a single event (MWO), with binary indicators (1-occurs, 0-does
not).

• year (integer) – Only data indexed by this year will be plotted. If None, the first year for
which there is data will be plotted.

• how (string) – Method for resampling data by day. If None, assume data is already sampled
by day and don’t resample. Otherwise, this is passed to Pandas Series.resample.

• vmin, vmax (floats) – Values to anchor the colormap. If None, min and max are used after
resampling data by day.

• cmap (matplotlib colormap name or object) – The mapping from data values to color space.

• linewidth (float) – Width of the lines that will divide each day.

• linecolor (color) – Color of the lines that will divide each day. If None, the axes background
color is used, or ‘white’ if it is transparent.

• monthlabels (list) – Strings to use as labels for months, must be of length 12.
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• monthticks (list or int or bool) – If True, label all months. If False, don’t label months. If
a list, only label months with these indices. If an integer, label every n month.

• ax (matplotlib Axes) – Axes in which to draw the plot, otherwise use the currently-active
Axes.

• kwargs (other keyword arguments) – All other keyword arguments are passed to matplotlib
ax.pcolormesh.

Returns ax (matplotlib Axes) – Axes object with the calendar heatmap.

5.2.3 nestor.tagtrees module

__author__ = “Thurston Sexton”

get_onehot(df, col, topn=700)
DEPRECATED!

get_relevant(df, col, topn=20)
DEPRECATED!

Parameters

• df (a dataframe containing columns of tag assignments (comma-sep, str))

• col (which column to extract)

• topn (how many of the top most frequent tags to return)

Returns list of (tag,count,numpy.array) tuples

heymann_taxonomy(dist_mat, cent_prog=’pr’, tau=0.0005, dynamic=False, dotfile=None, ver-
bose=False)

Parameters

• dist_mat (pandas.DataFrame) – contains similarity matrix, indexed and named by tags

• cent_prog (str) – algorithm to use in calculating node centrality

pr: PageRank eig: eigencentrality btw: betweenness cls: closeness

• tau (float) – similarity threshold for retaining a node

• dynamic (bool) – whether to re-calculate centrality after popping every tag

• write_dot (str or None) – file location, where to save a .dot, if any.

• verbose (bool) – print some stuff

node_adj_mat(tag_df, similarity=’cosine’, dag=False, pct_thres=None)
Calculate the similarity of tags, in the form of a similarity kernel. Used as input to graph/network methods.

Parameters

• tag_df (pandas.DataFrame) – standard Nestor tag occurrence matrix. Multi-column with
top-level containing tag classifications (named-entity NE) and 2nd level containing tags.
Each row corresponds to a single event (MWO), with binary indicators (1-occurs, 0-does
not).

• similarity (str) – cosine: cosine similarity (from sklearn.metrix.pairwise) count:
count (the number of co-occurrences of each tag-tag pair)
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• dag (bool) – default adj_mat will be accross all nodes. This option will return a directed,
acyclic graph (DAG), useful for things like Sankey Diagrams. Current implementation re-
turns (P) -> (I) -> (S) structure (deletes others).

• pct_thres (int or None) – If int, between [0,100]. The lower percentile at which to threshold
edges/adjacency.

Returns pandas.DataFrame, containing adjacency measures for each tag-tag (row-column) occur-
rence

tag_df_network(tag_df, **node_adj_kws)
Starting from a multi-column binary tag-occurrence pandas.Dataframe (such as output by the Nestor UI and
the nestor.keyword.tag_extractor() method, create a networkx graph, along with a node_info and edge_info
dataframe for plotting convenience (e.g. in nestor.tagplots)

Parameters

• tag_df (pandas.DataFrame) – standard Nestor tag occurrence matrix. Multi-column with
top-level containing tag classifications (named-entity NE) and 2nd level containing tags.
Each row corresponds to a single event (MWO), with binary indicators (1-occurs, 0-does
not).

• node_adj_kws

tag_network(adj_mat, column_lvl=0)
Takes in an adjacency matrix (pandas.DataFrame, assumes multi-col/row) and returns a networkx Graph object
with those nodes/edge weights.

genindex modindex search
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