

Welcome to nestly’s documentation!

nestly is a small package designed to ease running software with
combinatorial choices of parameters. It can easily do so for “cartesian
products” of parameter choices, but can do much more– arbitrary
“backwards-looking” dependencies can be used.

To find out more, check out the the Examples.

Contents:

	Examples
	Comparing two algorithms

	Building Nests

	SCons integration

	nestly Package
	nestly Package

	core Module

	scons Module

	Subpackages

	Command line tools
	nestrun

	nestagg

	SCons integration
	Constructing an SConsWrap

	Adding levels

	Adding targets

	Adding aggregates

	Calling commands from SCons

	Project Modules
	nestly Package

	Changes
	0.6.1

	0.6.0

	0.5.0

	0.4.0

	0.3.0

	0.2.0

Indices and tables

	Index

	Module Index

	Search Page

Examples

	Comparing two algorithms
	Making the nest

	Running the algorithm

	Aggregating results

	Building Nests
	Basic Nest

	Meal

	SCons integration

Comparing two algorithms

This is a realistic example of using nestly to examine the performance of two algorithms. Source code to run it is available in examples/adcl/.

We will use the min_adcl_tree subcommand of the rppr tool from the
pplacer suite, available from http://matsen.fhcrc.org/pplacer.

This tool chooses k representative leaves from a phylogenetic tree [http://matsen.fhcrc.org/general/2012/05/31/adcl-paper.html].
There are two implementations: the Full algorithm solves the problem
exactly, while the PAM algorithm uses a variation on the partitioning
among medoids [http://en.wikipedia.org/wiki/K-medoids] heuristic to find a solution.

We’d like to compare the two algorithms on a variety of trees, using different values for k.

Making the nest

Setting up the comparison is demonstrated in 00make_nest.py, which builds
up combinations of (algorithm, tree, k):

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47

	#!/usr/bin/env python

This example compares runtimes of two implementations of
an algorithm to minimize the average distance to the closest leaf
(Matsen et. al., accepted to Systematic Biology).
#
To run it, you'll need the `rppr` binary on your path, distributed as part of
the pplacer suite. Source code, or binaries for OS X and 64-bit Linux are
available from http://matsen.fhcrc.org/pplacer/.
#
The `rppr min_adcl_tree` subcommand takes a tree, an algorithm name, and
the number of leaves to keep.
#
We wish to explore the runtime, over each tree, for various leaf counts.

import glob
from os.path import abspath

from nestly import Nest, stripext

The `trees` directory contains 5 trees, each with 1000 leaves.
We want to run each algorithm on all of them.
trees = [abspath(f) for f in glob.glob('trees/*.tre')]

n = Nest()

We'll try both algorithms
n.add('algorithm', ['full', 'pam'])
For every tree
n.add('tree', trees, label_func=stripext)

Store the number of leaves - always 1000 here
n.add('n_leaves', [1000], create_dir=False)

Now we vary the number of leaves to keep (k)
Sample between 1 and the total number of leaves.
def k(c):
 n_leaves = c['n_leaves']
 return range(1, n_leaves, n_leaves // 10)

Add `k` to the nest.
This will call k with each combination of (algorithm, tree, n_leaves).
Each value returned will be used as a possible value for `k`
n.add('k', k)

Build the nest:
n.build('runs')

Running that:

$./00make_nest.py

Creates a new directory, runs.

Within this directory are subdirectories for each algorithm:

runs/full
runs/pam

Each of these contains a directory for each tree used:

$ ls runs/pam
random001 random002 random003 random004 random005

Within each of these subdirectories are directories for each choice of k.

$ ls runs/pam/random001
1 101 201 301 401 501 601 701 801 901

These directories are leaves. There is a JSON [http://www.json.org] file in each, containing the choices made. For example,
runs/full/random003/401/control.json contains:

{
 "algorithm": "full",
 "tree": "/home/cmccoy/development/nestly/examples/adcl/trees/random003.tre",
 "n_leaves": 1000,
 "k": 401
}

Running the algorithm

The nestrun command-line tool allows you to run a command for each combination of parameters in a nest.
It allows you to substitute parameters chosen by surrounding them in curly brackets, e.g. {algorithm}.

To see how long, and how much memory each run uses, we’ll use the short shell script time_rppr.sh:

	1
2
3
4
5
6

	#!/bin/sh

export TIME='elapsed,maxmem,exitstatus\n%e,%M,%x'

/usr/bin/time -o time.csv \
 rppr min_adcl_tree --algorithm {algorithm} --leaves {k} {tree}

Note the placeholders for the parameters to be provided at runtime: k, tree, and algorithm.

Running a script like time_rppr.sh on every experiment within a nest in parallel is facilitated by the nestrun script distributed with nestly:

$ nestrun -j 4 --template-file time_rppr.sh -d runs

(this will take awhile)

This command runs the shell script time_rppr.sh for each parameter choice, substituting the appropriate parameters.
The -j 4 flag indicates that 4 processors should be used.

Aggregating results

Now we have a little CSV file in each leaf directory, containing the running time:

|----------+--------+-------------|
| elapsed | maxmem | exitstatus |
|----------+--------+-------------|
| 17.78 | 471648 | 0 |
|----------+--------+-------------|

To analyze these en-masse, we need to combine them and add information about the parameters used to generate them. The nestagg script does just this.

$ nestagg delim -d runs -o results.csv time.csv -k algorithm,k,tree

Where -d runs indicates the directory containing program runs; -o
results.csv specifies where to write the output; time.csv gives the name
of the file in each leaf directory, and -k algorithm,k,tree lists the
parameters to add to each row of the CSV files.

Looking at results.csv:

|----------+---------+------------+-----------+---------------------------------------+------|
| elapsed | maxmem | exitstatus | algorithm | tree | k |
|----------+---------+------------+-----------+---------------------------------------+------|
17.04	941328	0	full	.../examples/adcl/trees/random001.tre	1
20.86	944336	0	full	.../examples/adcl/trees/random001.tre	101
31.75	944320	0	full	.../examples/adcl/trees/random001.tre	201
39.34	980048	0	full	.../examples/adcl/trees/random001.tre	301
37.84	1118960	0	full	.../examples/adcl/trees/random001.tre	401
42.15	1382000	0	full	.../examples/adcl/trees/random001.tre	501
etc

Now we have something we can look at!

[image: _images/adcl_plot_result.png]
So: PAM is faster for large k, and always has lower maximum memory use.

(generated by examples/adcl/03analyze.R)

Building Nests

Basic Nest

From examples/basic_nest/make_nest.py, this is a simple, combinatorial
example.

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44

	#!/usr/bin/env python

import glob
import math
import os
import os.path
from nestly import Nest

wd = os.getcwd()
input_dir = os.path.join(wd, 'inputs')

nest = Nest()

Simplest case: Levels are added with a name and an iterable
nest.add('strategy', ('exhaustive', 'approximate'))

Sometimes it's useful to add multiple keys to the nest in one operation, e.g.
for grouping related data.
This can be done by passing an iterable of dictionaries to the `Nest.add` call,
each containing at least the named key, along with the `update=True` flag.
#
Here, 'run_count' is the named key, and will be used to create a directory in the nest,
and the value of 'power' will be added to each control dictionary as well.
nest.add('run_count', [{'run_count': 10**i, 'power': i}
 for i in range(3)], update=True)

label_func can be used to generate a meaningful name. Here, it strips the all
but the file name from the file path
nest.add('input_file', glob.glob(os.path.join(input_dir, 'file*')),
 label_func=os.path.basename)

Items can be added that don't generate directories
nest.add('base_dir', [os.getcwd()], create_dir=False)

Any function taking one argument (control dictionary) and returning an
iterable may also be used.
This one just takes the logarithm of 'run_count'.
Since the function only returns a single result, we don't create a new directory.
def log_run_count(c):
 run_count = c['run_count']
 return [math.log(run_count, 10)]
nest.add('run_count_log', log_run_count, create_dir=False)

nest.build('runs')

This example is then run with the ../examples/basic_nest/run_example.sh script.

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19

	#!/bin/sh

set -e
set -u
set -x

Build a nested directory structure
./make_nest.py

Let's look at a sample control file:
cat runs/approximate/1/file1/control.json

Run `echo.sh` using every control.json under the `runs` directory, 2
processes at a time
nestrun --processes 2 --template-file echo.sh -d runs

Merge the CSV files named '{strategy}.csv' (where strategy value is taken
from the control file)
nestagg delim '{strategy}.csv' -d runs -o aggregated.csv

echo.sh is just the simple script that runs nestrun and aggregates the
results into an aggregate.csv file:

	1
2
3
4
5
6
7

	#!/bin/sh
#
Echo the value of two fake output variables: var1, which is always 13, and
var2, which is 10 times the run_count.

echo "var1,var2
13,{run_count}0" > "{strategy}.csv"

Meal

This is a bit more complicated, with lookups on previous values of the
control dictionary:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

	#!/usr/bin/env python

import glob
import os
import os.path

from nestly import Nest, stripext

wd = os.getcwd()
startersdir = os.path.join(wd, "starters")
winedir = os.path.join(wd, "wine")
mainsdir = os.path.join(wd, "mains")

nest = Nest()

bn = os.path.basename

Start by mirroring the two directory levels in startersdir, and name those
directories "ethnicity" and "dietary".
nest.add('ethnicity', glob.glob(os.path.join(startersdir, '*')),
 label_func=bn)
In the `dietary` key, the anonymous function `lambda ...` chooses as values
names of directories the current `ethnicity` directory
nest.add('dietary', lambda c: glob.glob(os.path.join(c['ethnicity'], '*')),
 label_func=bn)

Now get all of the starters.
nest.add('starter', lambda c: glob.glob(os.path.join(c['dietary'], '*')),
 label_func=stripext)
Then get the corresponding mains.
nest.add('main', lambda c: [os.path.join(mainsdir, bn(c['ethnicity']) + "_stirfry.txt")],
 label_func=stripext)

Take only the tasty wines.
nest.add('wine', glob.glob(os.path.join(winedir, '*.tasty')),
 label_func=stripext)
The wineglasses should be chosen by the wine choice, but we don't want to
make a directory for those.
nest.add('wineglass', lambda c: [stripext(c['wine']) + ' wine glasses'],
 create_dir=False)

nest.build('runs')

SCons integration

This SConstruct file is an example of using nestly with the SCons build
system:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102

	# -*- python -*-
#
This example takes every file in the inputs directory and performs the
following operations:
* cuts out a column range from every line in the file; either 1-5 or 3-40
* optionally filters out every line that has an "o" or "O"
* runs wc on every such file
* aggregate these together using the prep_tab.sh script
#
Assuming that SCons is installed, you should be able to run this example by
typing `scons` in this directory. That should build a series of things in the
`build` directory. Because this is a build system, deleting a file or directory
in the build directory and then running scons will simply rerun the needed parts.

from os.path import join
import os

from nestly.scons import SConsWrap
from nestly import Nest

env = Environment()

Passing an argument to `alias_environment` allows building targets based on nest
key.
For example, the `counts` files described below can be built by invoking
`scons counts`
nest = SConsWrap(Nest(), 'build', alias_environment=env)

Add our aggregate targets, initializing collections that will get populated
downstream. At the end of the pipeline, we will operate on these collections.
The `add_argument` takes a key which will be the key used for accessing the
collection. The `list` argument specifies that the collection will be a list.
nest.add_aggregate('count_agg', list)
nest.add_aggregate('cut_agg', list)

Add a nest level with the name 'input_file' that takes the files in the inputs
directory as its nestable list. Make its label function just the basename.
nest.add('input_file', [join('inputs', f) for f in os.listdir('inputs')],
 label_func=os.path.basename)

This nest level determines the column range we will cut out of the file.
nest.add('cut_range', ['1-5', '3-40'])

This adds a nest item with the name 'cut' and makes an SCons target out of
the result.
@nest.add_target()
def cut(outdir, c):
 cut, = Command(join(outdir, 'cut'),
 c['input_file'],
 'cut -c {0[cut_range]} <$SOURCE >$TARGET'.format(c))
 # Here we add this cut file to the all_cut aggregator before returning
 c['cut_agg'].append(cut)
 return cut

This nest level determines whether we remove the lines with o's.
nest.add('o_choice', ['remove_o', 'leave_o'])

@nest.add_target()
def o_choice(outdir, c):
 # If we leave the o lines, then we don't have to do anything.
 if c['o_choice'] == 'leave_o':
 return c['cut']
 # If we want to remove the o lines, then we have to make an SCons Command
 # that does so with sed.
 return Command(join(outdir, 'o_removed'),
 c['cut'],
 'sed "/[oO]/d" <$SOURCE >$TARGET')[0]

Add a target for the word counts.
@nest.add_target()
def counts(outdir, c):
 counts, = Command(join(outdir, 'counts'),
 c['o_choice'],
 'wc <$SOURCE >$TARGET')
 # Add the resulting file to the count_agg collection
 c['count_agg'].append(counts)
 return counts

Add a control dictionary with chosen values to each leaf directory
nest.add_controls(env)

Before operating on our aggregate collections, we return back to the original
nest level in which the aggregates were created by using the `pop` function to
remove all of the later nest levels from the nest state, leaving only the
collections.
nest.pop('input_file')

Now, back at the initial nest level, we can operate on the populated aggregate
collections. First, the counts:
@nest.add_target()
def all_counts(outdir, c):
 return Command(join(outdir, 'all_counts.tab'),
 c['count_agg'],
 './prep_tab.sh $SOURCES | column -t >$TARGET')

Then the cuts:
@nest.add_target()
def all_cut(outdir, c):
 return Command(join(outdir, 'all_cut.txt'),
 c['cut_agg'],
 'cat $SOURCES >$TARGET')

nestly Package

nestly Package

nestly is a collection of functions designed to make running software with
combinatorial choices of parameters easier.

core Module

Core functions for building nests.

	
class nestly.core.Nest(control_name='control.json', indent=2, fail_on_clash=False, warn_on_clash=True, base_dict=None, include_outdir=True)

	Bases: object

Nests are used to build nested parameter selections, culminating in a
directory structure representing choices made, and a JSON dictionary with
all selections.

Build parameter combinations with Nest.add(), then create a nested
directory structure with Nest.build().

	Parameters:	
	control_name – Name JSON file to be created in each leaf

	indent – Indentation level in json file

	fail_on_clash – Error if a nest level attempts to overwrite a
previous value

	warn_on_clash – Print a warning if a nest level attempts ot overwrite
a previous value

	base_dict – Base dictionary to start all control dictionaries from
(default: {})

	include_outdir – If true, include an OUTDIR key in every control
indicating the directory this control would be written to.

	
add(name, nestable, create_dir=True, update=False, label_func=<type 'str'>, template_subs=False)

	Add a level to the nest

	Parameters:	
	name (string) – Name of the level. Forms the key in the output
dictionary.

	nestable – Either an iterable object containing values, _or_ a
function which takes a single argument (the control dictionary)
and returns an iterable object containing values

	create_dir (boolean) – Should a directory level be created for this
nestable?

	update (boolean) – Should the control dictionary be updated with
the results of each value returned by the nestable? Only valid for
dictionary results; useful for updating multiple values. At a
minimum, a key-value pair corresponding to name must be
returned.

	label_func – Function to be called to convert each value to a
directory label.

	template_subs (boolean) – Should the strings in / returned by
nestable be treated as templates? If true, str.format is called
with the current values of the control dictionary.

	
build(root='runs')

	Build a nested directory structure, starting in root

	Parameters:	root – Root directory for structure

	
iter(root=None)

	Create an iterator of (directory, control_dict) tuples for all valid
parameter choices in this Nest.

	Parameters:	root – Root directory

	Return type:	Generator of (directory, control_dictionary) tuples.

	
nestly.core.control_iter(base_dir, control_name='control.json')

	Generate the names of all control files under base_dir

	
nestly.core.nest_map(control_iter, map_fn)

	Apply map_fn to the directories defined by control_iter

For each control file in control_iter, map_fn is called with the directory
and control file contents as arguments.

Example:

>>> list(nest_map(['run1/control.json', 'run2/control.json'],
... lambda d, c: c['run_id']))
[1, 2]

	Parameters:	
	control_iter – Iterable of paths to JSON control files

	map_fn (function) – Function to run for each control file. It should
accept two arguments: the directory of the control file and the
json-decoded contents of the control file.

	Returns:	A generator of the results of applying map_fn to elements in
control_iter

	
nestly.core.stripext(path)

	Return the basename, minus extension, of a path.

	Parameters:	path (string) – Path to file

scons Module

SCons integration for nestly.

	
class nestly.scons.SConsEncoder(skipkeys=False, ensure_ascii=True, check_circular=True, allow_nan=True, sort_keys=False, indent=None, separators=None, encoding='utf-8', default=None)

	Bases: json.encoder.JSONEncoder

JSON Encoder which handles SCons objects.

	
default(obj)

	

	
class nestly.scons.SConsWrap(nest, dest_dir='.', alias_environment=None)

	Bases: object

A Nest wrapper to add SCons integration.

This class wraps a Nest in order to provide
methods which are useful for using nestly with SCons.

A Nest passed to SConsWrap must have been created with
include_outdir=True, which is the default.

	Parameters:	
	nest – A Nest object to wrap

	dest_dir – The base directory for all output directories.

	alias_environment – An optional SCons Environment object.
If present, targets added via SConsWrap.add_target() will include
an alias using the nest key.

	
add(name, nestable, **kw)

	Adds a level to the nesting and creates a checkpoint that can be
reverted to later for aggregation by calling SConsWrap.pop().

	Parameters:	
	name – Identifier for the nest level

	nestable – A nestable object - see
Nest.add().

	kw – Additional parameters to pass to
Nest.add().

	
add_aggregate(name, data_fac)

	Add an aggregate target to this nest.

Since nests added after the aggregate can access the construct returned
by the factory function value, it can be mutated to provide additional
values for use when the decorated function is called.

To do something with the aggregates, you must SConsWrap.pop()
nest levels created between addition of the aggregate and then can add
any normal targets you would like which take advantage of the targets
added to the data structure.

	Parameters:	
	name – Name for the target in the nest

	data_fac – a nullary factory function which will be called
immediately for each of the current control dictionaries and stored
in each dictionary with the given name as in
SConsWrap.add_target().

	
add_controls(env, target_name='control', file_name='control.json', encoder_cls=<class 'nestly.scons.SConsEncoder'>)

	Adds a target to build a control file at each of the current leaves.

	Parameters:	
	env – SCons Environment object

	target_name – Name for target in nest

	file_name – Name for output file.

	
add_nest(name=None, **kw)

	A simple decorator which wraps nestly.core.Nest.add().

	
add_target(name=None)

	Add an SCons target to this nest.

The function decorated will be immediately called with each of the
output directories and current control dictionaries. Each result will
be added to the respective control dictionary for later nests to
access.

	Parameters:	name – Name for the target in the name (default: function name).

	
add_target_with_env(environment, name=None)

	Add an SCons target to this nest, with an SCons Environment

The function decorated will be immediately called with three arguments:

	environment: A clone of the SCons environment, with variables
populated for all values in the control dictionary, plus a variable
OUTDIR.

	outdir: The output directory

	control: The control dictionary

Each result will be added to the respective control dictionary for
later nests to access.

Differs from SConsWrap.add_target() only by the addition of the
Environment clone.

	
pop(name=None)

	Reverts to the nest stage just before the corresponding call of
SConsWrap.add_aggregate(). However, any aggregate collections
which have been worked on will still be accessible, and can be called
operated on together after calling this method. If no name is passed,
will revert to the last nest level.

	Parameters:	name – Name of the nest level to pop.

	
nestly.scons.name_targets(func)

	Wrap a function such that returning 'a', 'b', 'c', [1, 2, 3] transforms
the value into dict(a=1, b=2, c=3).

This is useful in the case where the last parameter is an SCons command.

Subpackages

	scripts Package
	nestrun Module

	nestagg Module

scripts Package

nestrun Module

nestrun.py - run commands based on control dictionaries.

	
class nestly.scripts.nestrun.NestlyProcess(command, working_dir, popen, log_name='log.txt')

	Bases: object

Metadata about a process run

	
complete(return_code)

	Mark the process as complete with provided return_code

	
log_tail(nlines=10)

	Return the last nlines lines of the log file

	
running_time

	

	
terminate()

	

	
nestly.scripts.nestrun.extant_file(x)

	‘Type’ for argparse - checks that file exists but does not open.

	
nestly.scripts.nestrun.invoke(max_procs, data, json_files)

	

	
nestly.scripts.nestrun.main()

	

	
nestly.scripts.nestrun.parse_arguments()

	Grab options and json files.

	
nestly.scripts.nestrun.sigint_handler(nlocal, write_this_summary, running_procs, signum, frame)

	

	
nestly.scripts.nestrun.sigterm_handler(nlocal, signum, frame)

	

	
nestly.scripts.nestrun.sigusr1_handler(running_procs, signum, frame)

	

	
nestly.scripts.nestrun.template_subs_file(in_file, out_fobj, d)

	Substitute template arguments in in_file from variables in d, write the
result to out_fobj.

	
nestly.scripts.nestrun.worker(data, json_file)

	Handle parameter substitution and execute command as child process.

	
nestly.scripts.nestrun.write_summary(all_procs, summary_file)

	Write a summary of all run processes to summary_file in tab-delimited
format.

nestagg Module

Aggregate results of nestly runs.

	
nestly.scripts.nestagg.comma_separated_values(s)

	

	
nestly.scripts.nestagg.delim(arguments)

	Execute delim action.

	Parameters:	arguments – Parsed command line arguments from main()

	
nestly.scripts.nestagg.main(args=['-T', '-b', 'epub', '-d', '_build/doctrees-epub', '-D', 'language=en', '.', '_build/epub'])

	Command-line interface for nestagg

	
nestly.scripts.nestagg.warn(message)

	

Command line tools

nestrun

nestrun takes a command template and a list of control.json files with variables to
substitute. Substitution is performed using the Python built-in
str.format method. See the Python Formatter documentation [http://docs.python.org/library/string.html#formatstrings] for details on syntax,
and examples/jsonrun/do_nestrun.sh for an example.

Signals

nestrun also handles some signals by default.

	
SIGTERM

	This tells nestrun to stop spawning jobs. All jobs that were already
spawned will continue running.

	
SIGINT

	This tells nestrun to terminate if received twice. On the first
SIGTERM, nestrun will emit a warning message; on the second, it will
terminate all jobs and then itself.

	
SIGUSR1

	This tells nestrun to immediately write a list of all currently-running
processes and their working directories to stderr, then flush stderr.

Help

usage: nestrun.py [-h] [-j N] [--template 'template text'] [--stop-on-error]
 [--template-file FILE] [--save-cmd-file SAVECMD_FILE]
 [--log-file LOG_FILE | --no-log] [--dry-run]
 [--summary-file SUMMARY_FILE] [-d DIR]
 [control_files [control_files ...]]

nestrun - substitute values into a template and run commands in parallel.

optional arguments:
 -h, --help show this help message and exit
 -j N, --processes N, --local N
 Run a maximum of N processes in parallel locally
 (default: 2)
 --template 'template text'
 Command-execution template, e.g. bash {infile}. By
 default, nestrun executes the templatefile.
 --stop-on-error Terminate remaining processes if any process returns
 non-zero exit status (default: False)
 --template-file FILE Command-execution template file path.
 --save-cmd-file SAVECMD_FILE
 Name of the file that will contain the command that
 was executed.
 --log-file LOG_FILE Name of the file that will contain output of the
 executed command.
 --no-log Don't create a log file
 --dry-run Dry run mode, does not execute commands.
 --summary-file SUMMARY_FILE
 Write a summary of the run to the specified file

Control files:
 control_files Nestly control dictionaries
 -d DIR, --directory DIR
 Run on all control files under DIR. May be used in
 place of specifying control files.

nestagg

The nestagg command provides a mechanism for combining results of multiple
runs, via a subcommand interface. Currently, the only supported action is
merging delimited files from a set of leaves, adding values from the control
dictionary on each. This is performed via nestagg delim.

Help

usage: nestagg.py delim [-h] [-k KEYS | -x EXCLUDE_KEYS] [-m {fail,warn}]
 [-d DIR] [-s SEPARATOR] [-t] [-o OUTPUT]
 file_template [control.json [control.json ...]]

positional arguments:
 file_template Template for the delimited file to read in each
 directory [e.g. '{run_id}.csv']
 control.json Control files

optional arguments:
 -h, --help show this help message and exit
 -k KEYS, --keys KEYS Comma separated list of keys from the JSON file to
 include [default: all keys]
 -x EXCLUDE_KEYS, --exclude-keys EXCLUDE_KEYS
 Comma separated list of keys from the JSON file not to
 include [default: None]
 -m {fail,warn}, --missing-action {fail,warn}
 Action to take when a file is missing [default: fail]
 -d DIR, --directory DIR
 Run on all control files under DIR. May be used in
 place of specifying control files.
 -s SEPARATOR, --separator SEPARATOR
 Separator [default: ,]
 -t, --tab Files are tab-separated
 -o OUTPUT, --output OUTPUT
 Output file [default: stdout]

SCons integration

SCons [http://scons.org/] is an excellent build tool (analogous to make). The
nestly.scons module is provided to make integrating nestly with SCons
easier. SConsWrap wraps a Nest object to provide
additional methods for adding nests. SCons is complex and is fully documented
on their website, so we do not describe it here. However, for the purposes of
this document, it suffices to know that dependencies are created when a
target function is called.

The basic idea is that when writing an SConstruct file (analogous to a
Makefile), these SConsWrap objects extend the usual nestly
functionality with build dependencies. Specifically, there are functions that
add targets to the nest. When SCons is invoked, these targets are identified
as dependencies and the needed code is run.

Typically, you will only need targets within some nest level to refer to things
either in the same nest, or in parent nests. However, it is possible to operate
on target collections which are not related in this way by using aggregate
targets.

Constructing an SConsWrap

SConsWrap objects wrap and modify a Nest object. Each Nest object
needs to have been created with include_outdir=True, which is the default.

Optionally, a destination directory can be given to the SConsWrap which
will be passed to Nest.iter():

>>> nest = SConsWrap(Nest(), dest_dir='build')

In this example, all the nests created by nest will go under the build
directory. Throughout the rest of this document, nest will refer to this
same SConsWrap instance.

Adding levels

Nest levels can still be added to the nest object:

>>> nest.add('level1', ['spam', 'eggs'])

SConsWrap also provides a convenience decorator
SConsWrap.add_nest() for adding levels which use a function as their
nestable. The following examples are exactly equivalent:

@nest.add_nest('level2', label_func=str.strip)
def level2(c):
 return [' __' + c['level1'], c['level1'] + '__ ']

def level2(c):
 return [' __' + c['level1'], c['level1'] + '__ ']
nest.add('level2', level2, label_func=str.strip)

Another advantage to using the decorator is that the name parameter is
optional; if it’s omitted, the name of the nest is taken from the name of the
function. As a result, the following example is also equivalent:

@nest.add_nest(label_func=str.strip)
def level2(c):
 return [' __' + c['level1'], c['level1'] + '__ ']

Note

add_nest() must always be called before being applied as a
decorator. @nest.add_nest is not valid; the correct usage is
@nest.add_nest() if no other parameters are specified.

Adding targets

The fundamental action of SCons integration is in adding a target to a nest.
Adding a target is very much like adding a level in that it will add a key to
the control dictionary, except that it will not add any branching to a nest.
For example, successive calls to Nest.add()
produces results like the following

>>> nest.add('level1', ['A', 'B'])
>>> nest.add('level2', ['C', 'D'])
>>> pprint.pprint([c.items() for outdir, c in nest])
[[('OUTDIR', 'A/C'), ('level1', 'A'), ('level2', 'C')],
 [('OUTDIR', 'A/D'), ('level1', 'A'), ('level2', 'D')],
 [('OUTDIR', 'B/C'), ('level1', 'B'), ('level2', 'C')],
 [('OUTDIR', 'B/D'), ('level1', 'B'), ('level2', 'D')]]

A crude illustration of how level1 and level2 relate:

C .---- - -
A .----------o level2
| D '---- - -
o----o level1
| C .---- - -
B '----------o level2
D '---- - -

Calling add_target(), however, produces slightly different
results:

>>> nest.add('level1', ['A', 'B'])
>>> @nest.add_target()
... def target1(outdir, c):
... return 't-{0[level1]}'.format(c)
...
>>> pprint.pprint([c.items() for outdir, c in nest])
[[('OUTDIR', 'A'), ('level1', 'A'), ('target1', 't-A')],
 [('OUTDIR', 'B'), ('level1', 'B'), ('target1', 't-B')]]

And a similar illustration of how level1 and target1 relate:

t-A
A .----------o------ - -
o----o level1 target1
B '----------o------ - -
t-B

add_target() does not increase the total number of control
dictionaries from 2; it only updates each existing control dictionary to add
the target1 key. This is effectively the same as calling
add() (or add_nest()) with a function
and returning an iterable of one item:

>>> nest.add('level1', ['A', 'B'])
>>> @nest.add_nest()
... def target1(c):
... return ['t-{0[level1]}'.format(c)]
...
>>> pprint.pprint([c.items() for outdir, c in nest])
[[('OUTDIR', 'A/t-A'), ('level1', 'A'), ('target1', 't-A')],
 [('OUTDIR', 'B/t-B'), ('level1', 'B'), ('target1', 't-B')]]

Astute readers might have noticed the key difference between the two: functions
decorated with add_target() have an additional parameter,
outdir. This allows targets to be built into the correct place in the
directory hierarchy.

The other notable difference is that the function decorated by
add_target() will be called exactly once with each control
dictionary. A function added with add() may be called
more than once with equal control dictionaries.

Like add_nest(), add_target() must always be
called, and optionally takes the name of the target as the first parameter. No
other parameters are accepted.

Adding aggregates

As mentioned in the introduction, often you only need targets within a given nest level to depend on things in the same nest level or parental nest levels.
To get around this restriction, you can utilize nestly’s aggregate functionality.

Adding an aggregate target creates a collection (for each terminal node of the current nest state) which can be updated in downstream nest levels.
Once targets have been added to the aggregate collection, you can return to a previous nest level by using the pop() method and operate on the populated aggregate collection at that level.

For example, let’s say we have two nest levels, level1 and level2, which take the values [A, B] and [C, D] respectively.
If we want to perform an operation for every unique combination of {level1, level2}, then aggregate the results grouped by values of level1:

>>> # Create the first nest level, and add an aggregate named "aggregate1"
>>> nest.add('level1', ['A', 'B'])
>>> nest.add_aggregate('aggregate1', list)
...
>>> # Next, add level2 and a target to level2
>>> nest.add('level2', ['C', 'D'])
>>> @nest.add_target()
... def some_target(outdir, c):
... target = c['level1'] + c['level2']
... # here we populate the aggregate
... c['aggregate1'].append(target)
... return target
...
>>> # Now the aggregates have been filled!
>>> # Note that the aggregate collection is shared among all descendents of
>>> # each `level1` value
>>> pprint.pprint([(c['level1'], c['level2'], c['aggregate1']) for outdir, c in nest])
[('A', 'C', ['AC', 'AD']),
 ('A', 'D', ['AC', 'AD']),
 ('B', 'C', ['BC', 'BD']),
 ('B', 'D', ['BC', 'BD'])]
>>>
>>> # However, if we try to build something from the aggregate collection now, we'd get 4 copies (one for
>>> # 'A/C', one for 'A/D', etc.).
>>> # To return to the nest state prior to adding `level2`, we pop it from the nest:
>>> nest.pop('level2')
>>> # Now when we access the aggregate collection, there are only two entries, one for A and one for B:
>>> pprint.pprint([(c['level1'], c['aggregate1']) for outdir, c in nest])
[('A', ['AC', 'AD']), ('B', ['BC', 'BD'])]
>>>
>>> # we can add targets using the aggregate collection!
>>> @nest.add_target()
... def operate_on_aggregate(outdir, c):
... print 'agg', c['level1'], c['aggregate1']
...
agg A ['AC', 'AD']
agg B ['BC', 'BD']

As you can see above, aggregate targets are added using the add_aggregate() method.
The first argument to this method is used as a key for accessing the aggregate collection(s) from the control dictionary.
The second argument should be a factory function which will be called with no arguments and set as the initial value of the aggregate (typically a collection constructor like list or dict).

Prior to using the aggregate collection, any branching nest levels added after the aggregate should be removed, using pop() to prevent building identical targets.
This function, when passed the name of a nest level, returns the SConsWrap to the state just before that nest level was created.
The only modifications which remain are those on the aggregate collection, which retains any targets added to it within the removed nest levels.
Once back at the parental nest level, targets added to the aggregate can be operated on by any further targets added.
Note that to pop a level from the nest, one must call nestly.scons.SConsWrap.add() rather than nestly.core.Nest.add().

Because the results of operations on aggregates are just regular targets at some ancestral nest level, these targets can be used as the sources to targets further downstream.

Note

nestly’s initial SCons aggregation functionality added in version 0.4.0 [https://github.com/fhcrc/nestly/tree/0.4.0] and described in the nestly manuscript [http://dx.doi.org/doi:10.1093/bioinformatics/bts696] involved registering aggregate functions before adding additional levels to the nest.
This interface did not allow the user to utilize aggregate targets as sources of other targets downstream.
The original aggregation functionality has since been removed in favor of that described above.

Calling commands from SCons

While the previous example demonstrate how to use the various methods of
SConsWrap, they did not demonstrate how to actually call commands
using SCons. The easiest way is to define the various targets from within the
SConstruct file:

from nestly.scons import SConsWrap
from nestly import Nest
import os

nest = Nest()
wrap = SConsWrap(nest, 'build')

Add a nest for each of our input files.
nest.add('input_file', [join('inputs', f) for f in os.listdir('inputs')],
 label_func=os.path.basename)

Each input will get transformed each of these different ways.
nest.add('transformation', ['log', 'unit', 'asinh'])

@nest.add_target()
def transformed(outdir, c):
 # The template for the command to run.
 action = 'guppy mft --transform {0[transformation]} $SOURCE -o $TARGET'
 # Command will return a tuple of the targets; we want the only item.
 outfile, = Command(
 source=c['input_file'],
 target=os.path.join(outdir, 'transformed.jplace'),
 action=action.format(c))
 return outfile

A function name_targets() is also provided for more easily naming the
targets of an SCons command:

@nest.add_target('target1')
@name_targets
def target1(outdir, c):
 return 'outfile1', 'outfile2', Command(
 source=c['input_file'],
 target=[os.path.join(outdir, 'outfile1'),
 os.path.join(outdir, 'outfile2')],
 action="transform $SOURCE $TARGETS")

In this case, target1 will be a dict resembling {'outfile1':
'build/outdir/outfile1', 'outfile2': 'build/outdir/outfile2'}.

Note

name_targets() does not preserve the name of the decorated function,
so the name of the target must be provided as a parameter to
add_target().

A more involved, runnable example is in the examples/scons directory.

Project Modules

	nestly Package
	nestly Package

	core Module

	scons Module

	Subpackages
	scripts Package
	nestrun Module

	nestagg Module

nestly Package

nestly Package

nestly is a collection of functions designed to make running software with
combinatorial choices of parameters easier.

core Module

Core functions for building nests.

	
class nestly.core.Nest(control_name='control.json', indent=2, fail_on_clash=False, warn_on_clash=True, base_dict=None, include_outdir=True)

	Bases: object

Nests are used to build nested parameter selections, culminating in a
directory structure representing choices made, and a JSON dictionary with
all selections.

Build parameter combinations with Nest.add(), then create a nested
directory structure with Nest.build().

	Parameters:	
	control_name – Name JSON file to be created in each leaf

	indent – Indentation level in json file

	fail_on_clash – Error if a nest level attempts to overwrite a
previous value

	warn_on_clash – Print a warning if a nest level attempts ot overwrite
a previous value

	base_dict – Base dictionary to start all control dictionaries from
(default: {})

	include_outdir – If true, include an OUTDIR key in every control
indicating the directory this control would be written to.

	
add(name, nestable, create_dir=True, update=False, label_func=<type 'str'>, template_subs=False)

	Add a level to the nest

	Parameters:	
	name (string) – Name of the level. Forms the key in the output
dictionary.

	nestable – Either an iterable object containing values, _or_ a
function which takes a single argument (the control dictionary)
and returns an iterable object containing values

	create_dir (boolean) – Should a directory level be created for this
nestable?

	update (boolean) – Should the control dictionary be updated with
the results of each value returned by the nestable? Only valid for
dictionary results; useful for updating multiple values. At a
minimum, a key-value pair corresponding to name must be
returned.

	label_func – Function to be called to convert each value to a
directory label.

	template_subs (boolean) – Should the strings in / returned by
nestable be treated as templates? If true, str.format is called
with the current values of the control dictionary.

	
build(root='runs')

	Build a nested directory structure, starting in root

	Parameters:	root – Root directory for structure

	
iter(root=None)

	Create an iterator of (directory, control_dict) tuples for all valid
parameter choices in this Nest.

	Parameters:	root – Root directory

	Return type:	Generator of (directory, control_dictionary) tuples.

	
nestly.core.control_iter(base_dir, control_name='control.json')

	Generate the names of all control files under base_dir

	
nestly.core.nest_map(control_iter, map_fn)

	Apply map_fn to the directories defined by control_iter

For each control file in control_iter, map_fn is called with the directory
and control file contents as arguments.

Example:

>>> list(nest_map(['run1/control.json', 'run2/control.json'],
... lambda d, c: c['run_id']))
[1, 2]

	Parameters:	
	control_iter – Iterable of paths to JSON control files

	map_fn (function) – Function to run for each control file. It should
accept two arguments: the directory of the control file and the
json-decoded contents of the control file.

	Returns:	A generator of the results of applying map_fn to elements in
control_iter

	
nestly.core.stripext(path)

	Return the basename, minus extension, of a path.

	Parameters:	path (string) – Path to file

scons Module

SCons integration for nestly.

	
class nestly.scons.SConsEncoder(skipkeys=False, ensure_ascii=True, check_circular=True, allow_nan=True, sort_keys=False, indent=None, separators=None, encoding='utf-8', default=None)

	Bases: json.encoder.JSONEncoder

JSON Encoder which handles SCons objects.

	
default(obj)

	

	
class nestly.scons.SConsWrap(nest, dest_dir='.', alias_environment=None)

	Bases: object

A Nest wrapper to add SCons integration.

This class wraps a Nest in order to provide
methods which are useful for using nestly with SCons.

A Nest passed to SConsWrap must have been created with
include_outdir=True, which is the default.

	Parameters:	
	nest – A Nest object to wrap

	dest_dir – The base directory for all output directories.

	alias_environment – An optional SCons Environment object.
If present, targets added via SConsWrap.add_target() will include
an alias using the nest key.

	
add(name, nestable, **kw)

	Adds a level to the nesting and creates a checkpoint that can be
reverted to later for aggregation by calling SConsWrap.pop().

	Parameters:	
	name – Identifier for the nest level

	nestable – A nestable object - see
Nest.add().

	kw – Additional parameters to pass to
Nest.add().

	
add_aggregate(name, data_fac)

	Add an aggregate target to this nest.

Since nests added after the aggregate can access the construct returned
by the factory function value, it can be mutated to provide additional
values for use when the decorated function is called.

To do something with the aggregates, you must SConsWrap.pop()
nest levels created between addition of the aggregate and then can add
any normal targets you would like which take advantage of the targets
added to the data structure.

	Parameters:	
	name – Name for the target in the nest

	data_fac – a nullary factory function which will be called
immediately for each of the current control dictionaries and stored
in each dictionary with the given name as in
SConsWrap.add_target().

	
add_controls(env, target_name='control', file_name='control.json', encoder_cls=<class 'nestly.scons.SConsEncoder'>)

	Adds a target to build a control file at each of the current leaves.

	Parameters:	
	env – SCons Environment object

	target_name – Name for target in nest

	file_name – Name for output file.

	
add_nest(name=None, **kw)

	A simple decorator which wraps nestly.core.Nest.add().

	
add_target(name=None)

	Add an SCons target to this nest.

The function decorated will be immediately called with each of the
output directories and current control dictionaries. Each result will
be added to the respective control dictionary for later nests to
access.

	Parameters:	name – Name for the target in the name (default: function name).

	
add_target_with_env(environment, name=None)

	Add an SCons target to this nest, with an SCons Environment

The function decorated will be immediately called with three arguments:

	environment: A clone of the SCons environment, with variables
populated for all values in the control dictionary, plus a variable
OUTDIR.

	outdir: The output directory

	control: The control dictionary

Each result will be added to the respective control dictionary for
later nests to access.

Differs from SConsWrap.add_target() only by the addition of the
Environment clone.

	
pop(name=None)

	Reverts to the nest stage just before the corresponding call of
SConsWrap.add_aggregate(). However, any aggregate collections
which have been worked on will still be accessible, and can be called
operated on together after calling this method. If no name is passed,
will revert to the last nest level.

	Parameters:	name – Name of the nest level to pop.

	
nestly.scons.name_targets(func)

	Wrap a function such that returning 'a', 'b', 'c', [1, 2, 3] transforms
the value into dict(a=1, b=2, c=3).

This is useful in the case where the last parameter is an SCons command.

Subpackages

	scripts Package
	nestrun Module

	nestagg Module

scripts Package

nestrun Module

nestrun.py - run commands based on control dictionaries.

	
class nestly.scripts.nestrun.NestlyProcess(command, working_dir, popen, log_name='log.txt')

	Bases: object

Metadata about a process run

	
complete(return_code)

	Mark the process as complete with provided return_code

	
log_tail(nlines=10)

	Return the last nlines lines of the log file

	
running_time

	

	
terminate()

	

	
nestly.scripts.nestrun.extant_file(x)

	‘Type’ for argparse - checks that file exists but does not open.

	
nestly.scripts.nestrun.invoke(max_procs, data, json_files)

	

	
nestly.scripts.nestrun.main()

	

	
nestly.scripts.nestrun.parse_arguments()

	Grab options and json files.

	
nestly.scripts.nestrun.sigint_handler(nlocal, write_this_summary, running_procs, signum, frame)

	

	
nestly.scripts.nestrun.sigterm_handler(nlocal, signum, frame)

	

	
nestly.scripts.nestrun.sigusr1_handler(running_procs, signum, frame)

	

	
nestly.scripts.nestrun.template_subs_file(in_file, out_fobj, d)

	Substitute template arguments in in_file from variables in d, write the
result to out_fobj.

	
nestly.scripts.nestrun.worker(data, json_file)

	Handle parameter substitution and execute command as child process.

	
nestly.scripts.nestrun.write_summary(all_procs, summary_file)

	Write a summary of all run processes to summary_file in tab-delimited
format.

nestagg Module

Aggregate results of nestly runs.

	
nestly.scripts.nestagg.comma_separated_values(s)

	

	
nestly.scripts.nestagg.delim(arguments)

	Execute delim action.

	Parameters:	arguments – Parsed command line arguments from main()

	
nestly.scripts.nestagg.main(args=['-T', '-b', 'epub', '-d', '_build/doctrees-epub', '-D', 'language=en', '.', '_build/epub'])

	Command-line interface for nestagg

	
nestly.scripts.nestagg.warn(message)

	

Changes

0.6.1

	Fix bug wherein pop does not work on nest levels added with a function (GH-23).

0.6.0

	Add support for automatic alias creation in SConsWrap instances (GH-17).

0.5.0

	Add SConsWrap.add_target_with_env (GH-14)

	Completely revamped aggregation functionality (GH-15)

	Add SConsWrap.add_controls (GH-16)

0.4.0

	Add SIG{INT,TERM,USR1} handling to nestrun (GH-9)

	Add SCons integration via nestly.scons (GH-12)

	Support for walking a directory in nestagg (GH-13)

	Initial Python 3, PyPy support

	Add an OUTDIR key to nest control files

	Additional examples

0.3.0

	Add nestly.core.stripext

	New aggregation functionality: nestagg subcommand; nestly.core.nest_map

	Show tail of log file when nestrun fails (GH-10)

0.2.0

	Deprecated nestly.nestly

	New object-oriented API in nestly.core

	Updated examples

 Python Module Index

 n

 		 	

 		
 n	

 	[image: -]
 	
 nestly	

 	
 	
 nestly.__init__	

 	
 	
 nestly.core	

 	
 	
 nestly.scons	

 	
 	
 nestly.scripts.nestagg	

 	
 	
 nestly.scripts.nestrun	

Index

 A
 | B
 | C
 | D
 | E
 | I
 | L
 | M
 | N
 | P
 | R
 | S
 | T
 | W

A

 	
 	add() (nestly.core.Nest method)

 	(nestly.scons.SConsWrap method)

 	add_aggregate() (nestly.scons.SConsWrap method)

 	
 	add_controls() (nestly.scons.SConsWrap method)

 	add_nest() (nestly.scons.SConsWrap method)

 	add_target() (nestly.scons.SConsWrap method)

 	add_target_with_env() (nestly.scons.SConsWrap method)

B

 	
 	build() (nestly.core.Nest method)

C

 	
 	comma_separated_values() (in module nestly.scripts.nestagg)

 	
 	complete() (nestly.scripts.nestrun.NestlyProcess method)

 	control_iter() (in module nestly.core)

D

 	
 	default() (nestly.scons.SConsEncoder method)

 	
 	delim() (in module nestly.scripts.nestagg)

E

 	
 	extant_file() (in module nestly.scripts.nestrun)

I

 	
 	invoke() (in module nestly.scripts.nestrun)

 	
 	iter() (nestly.core.Nest method)

L

 	
 	log_tail() (nestly.scripts.nestrun.NestlyProcess method)

M

 	
 	main() (in module nestly.scripts.nestagg)

 	(in module nestly.scripts.nestrun)

N

 	
 	name_targets() (in module nestly.scons)

 	Nest (class in nestly.core)

 	nest_map() (in module nestly.core)

 	nestly.__init__ (module)

 	
 	nestly.core (module)

 	nestly.scons (module)

 	nestly.scripts.nestagg (module)

 	nestly.scripts.nestrun (module)

 	NestlyProcess (class in nestly.scripts.nestrun)

P

 	
 	parse_arguments() (in module nestly.scripts.nestrun)

 	
 	pop() (nestly.scons.SConsWrap method)

R

 	
 	running_time (nestly.scripts.nestrun.NestlyProcess attribute)

S

 	
 	SConsEncoder (class in nestly.scons)

 	SConsWrap (class in nestly.scons)

 	sigint_handler() (in module nestly.scripts.nestrun)

 	
 	sigterm_handler() (in module nestly.scripts.nestrun)

 	sigusr1_handler() (in module nestly.scripts.nestrun)

 	stripext() (in module nestly.core)

T

 	
 	template_subs_file() (in module nestly.scripts.nestrun)

 	
 	terminate() (nestly.scripts.nestrun.NestlyProcess method)

W

 	
 	warn() (in module nestly.scripts.nestagg)

 	
 	worker() (in module nestly.scripts.nestrun)

 	write_summary() (in module nestly.scripts.nestrun)

 _images/adcl_plot_result.png
Median elapsed time (s)

Median memory use

Runtime

full

885 88

pam o

1500000

1000000

R
pam o

_static/comment-bright.png

_static/comment-close.png

_static/minus.png

_static/comment.png

nav.xhtml

 Table of Contents

 		Welcome to nestly's documentation!

 		Examples

 		Comparing two algorithms

 		Making the nest

 		Running the algorithm

 		Aggregating results

 		Building Nests

 		Basic Nest

 		Meal

 		SCons integration

 		nestly Package

 		nestly Package

 		core Module

 		scons Module

 		Subpackages

 		scripts Package

 		Command line tools

 		nestrun

 		Signals

 		Help

 		nestagg

 		Help

 		SCons integration

 		Constructing an SConsWrap

 		Adding levels

 		Adding targets

 		Adding aggregates

 		Calling commands from SCons

 		Project Modules

 		nestly Package

 		nestly Package

 		core Module

 		scons Module

 		Subpackages

 		Changes

 		0.6.1

 		0.6.0

 		0.5.0

 		0.4.0

 		0.3.0

 		0.2.0

_static/ajax-loader.gif

_static/adcl_plot_result.png
Median elapsed time (s)

Median memory use

Runtime

full

885 88

pam o

1500000

1000000

R
pam o

_static/file.png

_static/plus.png

_static/up.png

_static/up-pressed.png

_static/down-pressed.png

_static/down.png

