

Nectar: The Interchangeable Download Client Library

The Interface:

	Request Objects

	Report Objects

	Downloader Configuration Objects

	Event Listeners

The Downloaders:

	Base Downloader API

	Threads+Requests-Based Downloader

Indices and tables

	Index

	Module Index

	Search Page

Request Objects

Request objects represent remote resource, in the form of a URL, and local
storage in form of either a path or an open file-like object.

The DownloadRequest class has these parameters:

	url (required) the URL of the file to be downloaded as a string

	destination (required) either a local filesystem path as a string or an open file-like object

	data (optional) arbitrary data that will be passed back as part of a corresponding report object

	headers (optional) a dictionary of additional headers

Constructor Signature:

def __init__(self, url, destination, data=None, headers=None):

URL

The URL parameter url must be of a scheme (read: protocol) supported by the
downloader instance that it will be passed to.

Destination

The destination parameter is either an absolute filesystem path as a string
or an open file-like object. If the destination is an open file-like object, the
downloader will not close it upon completion of the download; even if an
error occurs.

Example:

destination = '/tmp/myfile'

destination = open('/tmp/myfile', wb)

Data

The parameter is passed, unadulterated, to the report object
that corresponds to the request object. This is convenience mechanism to allow
developers to pass arbitrary data to an event listener.

Headers

The headers parameter is an option dictionary that can contain any custom
headers for a particular request.

Report Objects

Report objects are created to correspond to a give request object.
They are not usually instantiated by a developer, but are passed back as the
parameter to event methods in an event listener.

They contain following fields that directly correspond to its request object:

	url

	destination

	data

They also contain the following informational fields:

	state

	total_bytes

	bytes_downloaded

	start_time

	finish_time

	error_report

State

The state field describes the current state of the download request. It is
always one of the following five states:

	waiting - the download has not yet started

	downloading - the download is in progress

	succeeded - the download is done and was successful

	failed - the download is done and was unsuccessful

	canceled - the download is done and was canceled

Total Bytes

The total bytes to be downloaded as an integer. If this could not be determined,
this field will be None.

Bytes Downloaded

The bytes downloaded so far as an integer. Initially 0.

Start Time

The date and time the download started as a datetime.datetime instance in
the UTC timezone.

Finish Time

The date and time the download finished as a datetime.datetime instance in
the UTC timezone.

Error Report

This field is an arbitrary dictionary that is populated only with the state
field is failed. It’s primary purpose is for debugging unsuccessful
downloads.

When the state is not failed, this dictionary will be empty.

Downloader Configuration Objects

Configuration objects represent common configuration across a set of
download requests. They are arbitrary objects in that
any keyword value passed to the constructor will be a field in the configuration
object. However, only a very specific set of fields are honored by the
Downloader objects.

Construct Signature:

def __init__(self, **kwargs):

The currently honored fields (read: keyword arguments) are:

	basic_auth_username

	basic_auth_password

	headers

	max_concurrent

	max_speed

	proxy_url

	proxy_port

	proxy_username

	proxy_password

	ssl_validation

	ssl_ca_cert

	ssl_ca_cert_path

	ssl_client_cert

	ssl_client_cert_path

	ssl_client_key

	ssl_client_key_path

This list will continue to grow and evolve as more downloaders are added,
especially downloaders that support protocols other than HTTP and HTTPS.

Download Control

max_concurrent is an integer that tells the downloader the maximum number of
files to download concurrently (read: in parallel). If this number is not
provided, each downloader has its own default value that will be used instead.

max_speed is an integer that tells the downloader at what speed to throttle
the downloads. The units are: bytes/second.

HTTP Basic Auth Support

The fields basic_auth_username and basic_auth_password are used for
the HTTP basic authorization header. The username and password fields must be
provided in plain text. The downloaders will Base64 encode them.

SSL Support

ssl_validation is a boolean that tells the downloader to verify the identity
of the remote server by checking its SSL certificate. If this parameter is not
provided, validation is assumed to be set to True.

ssl_ca_cert and ssl_ca_cert_path parameters are used to provide an
alternative CA cert to the downloader. The ssl_ca_cert parameter should
point the CA pem data and the ssl_ca_cert_path is a file system path to the
CA cert file. Both are strings. However, these parameters are mutually exclusive,
and the behavior of the downloader is undefined if both are provided.

ssl_client_cert, ssl_client_cert_path, ssl_client_key, and
ssl_client_key_path are used to provide two-way authentication via the SSL
protocol. Just like the ssl_ca_cert params, these point to either the data or
to a file path; and correlated parameters are mutually exclusive.

Proxy Support

proxy_url is string in the form of scheme://host, where scheme is either
http or https.

proxy_port is an integer port number.

proxy_username and proxy_password are used for authentication and must
be provided in plain text.

Headers

headers is a dictionary that can contain any additional headers that should
be used for every request.

Event Listeners

A DownloadEventListener object is passed into a downloader’s constructor. On
certain events, methods on the event listener are used as callbacks to inform on
headers availability, a download starting, a download’s progress, and a download’s
success or failure.

This gives the developer an opportunity to develop event-driven code by
overriding the this base class.

The event listener’s interface is as follows:

def download_started(self, report):
def download_progress(self, report):
def download_succeeded(self, report):
def download_failed(self, report):
def download_headers(self, report):

All methods are passed a report object that corresponds
to the download request that has triggered the event.

Download Started

This event is handled by the download_started method. It is called once per
download request when the download starts.

Download Progress

This event is handled by the download_progress method. It may be called
multiple times per download request. It is guaranteed to be called once.

Download Succeeded

This event is handled by the download_succeeded method. It is called if the
download completed successfullly.

Download Failed

This event is handled by the download_failed method. It is called if the
download encountered an error. Additional information about the error will be
in the report’s error_report dictionary.

Download Headers

This event is handled by the download_headers method. It is called at the moment
when headers from the response are available.

Base Downloader API

The Downloader base class defines the general downloader API. It has a number of
simple methods and behaviors that are common across any derived classes. This
provides the pluggable aspect of the Nectar library.

Instantiation

A downloader constructor takes two parameters, one required and one optional:

	a configuration object, required

	an event listener, optional

Configuration

The configuration object provides options that are common
across all download requests. Their documentation have be found here.

Events

As the downloader downloads files, it fires off events by calling methods on the
provided event listener.

If no event listener is passed to a downloader’s constructor, a no-op event
listener is automatically used.

Event listener’s methods are described here.

Downloading Requests

The downloaders do one thing: they download files. The download method on
a downloader takes a list of request objects and
downloads them using information from it’s configuration.

The download signature:

def download(self, request_list):

The request_list parameter doesn’t necessarily need to be a list, but it
does need to be an iterator of request objects.

Canceling Downloads

Downloaders support the canceling of the a call to download via the
cancel method. Since downloading is synchronous and does not return until
all the download requests have been either successfully downloaded or have
failed in their attempt, the cancel method must be called by another thread.

Threads+Requests-Based Downloader

The threaded downloader leverages both python threads and the requests library.
It is optimized for speed when use an already threaded applications. It provides
the downloader API.

Its major use case is downloading lots of files quickly.

Warning

The proxy support for this downloader is incomplete. Due to limitations in
the urllib3 library, HTTPS requests via an HTTPS proxy is not supported.
However, all other permutations are.

Index

 nav.xhtml

 Table of Contents

 		Nectar: The Interchangeable Download Client Library

 		Request Objects

 		URL

 		Destination

 		Data

 		Headers

 		Report Objects

 		State

 		Total Bytes

 		Bytes Downloaded

 		Start Time

 		Finish Time

 		Error Report

 		Downloader Configuration Objects

 		Download Control

 		HTTP Basic Auth Support

 		SSL Support

 		Proxy Support

 		Headers

 		Event Listeners

 		Download Started

 		Download Progress

 		Download Succeeded

 		Download Failed

 		Download Headers

 		Base Downloader API

 		Instantiation

 		Configuration

 		Events

 		Downloading Requests

 		Canceling Downloads

 		Threads+Requests-Based Downloader

_static/comment-close.png

_static/up-pressed.png

_static/up.png

_static/plus.png

_static/comment-bright.png

_static/comment.png

_static/down.png

_static/down-pressed.png

_static/ajax-loader.gif

_static/minus.png

_static/file.png

