

Welcome to Open Data Policing’s documentation!

Open Data Policing is a project of the Southern Coalition for Social Justice [http://www.scsj.org/].
The site’s development team consists of attorney Ian Mance of the Southern
Coalition; Colin Copeland, CTO of Caktus Group [http://www.caktusgroup.com/], and volunteer developers Andy
Shapiro and Dylan Young of Durham, NC. A special thanks to Tom Meehan for
assisting with analyzing US census data.

This is the developer documentation.

Contents:

	Development Setup
	Getting Started

	Development

	When running migrations

	Docker
	Restore Production Data

	Deployment

	Data Import
	Local/Development Environment

	Server

	Updating landing page stats

	Server Setup
	Provisioning

	Layout

	Deployment

	Server Provisioning
	Overview

	Salt Master

	Pillar Setup

	Managing Secrets

	Github Deploy Keys

	Environment Variables

	Setup Checklist

	Provision a Minion

	Optional Configuration

	Quickstart

	API Endpoints
	Stops by all races and ethnicities by year

	Likelihood-of-search by stop-reason

	Use-of-force

	Contraband Hit Rate

	Vagrant Testing
	Starting the VM

	Provisioning the VM

	Testing on the VM

Indices and tables

	Index

	Module Index

	Search Page

Development Setup

Below you will find basic setup and deployment instructions for the NC Traffic
Stops project. To begin you should have the following applications installed on
your local development system:

	Python 3.4

	NodeJS >= 4.2

	pip >= 8 or so [http://www.pip-installer.org/]

	virtualenv >= 1.10 [http://www.virtualenv.org/]

	virtualenvwrapper >= 3.0 [http://pypi.python.org/pypi/virtualenvwrapper]

	Postgres >= 9.3

	git >= 1.7

If you need Python 3.4 installed, you can use this PPA:

sudo add-apt-repository ppa:fkrull/deadsnakes
sudo apt-get update
sudo apt-get install python3.4-dev

(If you build Python 3.4 yourself on Ubuntu, ensure that the libbz2-dev
package is installed first.)

The tool that we use to deploy code is called Fabric [http://docs.fabfile.org/], which is not yet Python3 compatible. So,
we need to install that globally in our Python2 environment:

sudo pip install fabric==1.10.0

For a working fab encrypt you’ll need more modules in a Python 2
environment. Create a new virtualenv for that and use requirements/fab.txt.

The deployment uses SSH with agent forwarding so you’ll need to enable agent
forwarding if it is not already by adding ForwardAgent yes to your SSH
config.

Getting Started

To setup your local environment you should create a virtualenv and install the
necessary requirements:

$ which python3.4 # make sure you have Python 3.4 installed
$ mkvirtualenv --python=`which python3.4` opendatapolicing
(opendatapolicing)$ pip install -U pip
(opendatapolicing)$ pip install -r requirements/dev.txt
(opendatapolicing)$ npm install

If npm install fails, make sure you’re using npm from a reasonable version
of NodeJS, as documented at the top of this document.

Next, we’ll set up our local environment variables. We use django-dotenv [https://github.com/jpadilla/django-dotenv] to help with this. It reads environment variables
located in a file name .env in the top level directory of the project. The only variable we need
to start is DJANGO_SETTINGS_MODULE:

(opendatapolicing)$ cp traffic_stops/settings/local.example.py traffic_stops/settings/local.py
(opendatapolicing)$ echo "DJANGO_SETTINGS_MODULE=traffic_stops.settings.local" > .env

Exit the virtualenv and reactivate it to activate the settings just changed:

(opendatapolicing)$ deactivate
(opendatapolicing)$ workon opendatapolicing

Create the Postgres database and run the initial syncdb/migrate:

(opendatapolicing)$ createdb -E UTF-8 traffic_stops
(opendatapolicing)$ createdb -E UTF-8 traffic_stops_nc
(opendatapolicing)$ createdb -E UTF-8 traffic_stops_md
(opendatapolicing)$ createdb -E UTF-8 traffic_stops_il
(opendatapolicing)$./migrate_all_dbs.sh

Development

You should be able to run the development server via the configured dev script:

(opendatapolicing)$ npm run dev

Or, on a custom port and address:

(opendatapolicing)$ npm run dev -- --address=0.0.0.0 --port=8020

Any changes made to Python, Javascript or Less files will be detected and rebuilt transparently as
long as the development server is running.

When running migrations

This is a multi-database project. Whenever you have unapplied migrations,
either added locally or via an update from the source repository, the
migrations need to be applied to all databases by running the
./migrate_all_dbs.sh command.

Docker

You can use the provided docker-compose environment to create a local development environment.
See previous section for more detailed instructions about how this project is configured.

Setup your local development settings:

cp traffic_stops/settings/local.example.py traffic_stops/settings/local.py
uncomment lines below "UNCOMMENT BELOW IF USING DOCKER SETUP" in local.py
echo "DJANGO_SETTINGS_MODULE=traffic_stops.settings.local" > .env

For basic setup, run the following commands:

docker-compose up -d db # start the PostgreSQL container in the background
docker-compose build web # build the container (can take a while)
docker-compose run --rm web createdb -E UTF-8 traffic_stops
docker-compose run --rm web createdb -E UTF-8 traffic_stops_nc
docker-compose run --rm web createdb -E UTF-8 traffic_stops_md
docker-compose run --rm web createdb -E UTF-8 traffic_stops_il
docker-compose run --rm web ./migrate_all_dbs.sh

Run npm install inside the web container (you’ll need to do this for any update to
package.json):

rm -rf ./node_modules # if needed
docker-compose run --rm web bash -lc "npm install"

You can now run the web container and tail the logs:

start up the dev server, and watch the logs:
docker-compose up -d web && docker-compose logs -f web

These are other useful docker-compose commands:

explicitly execute runserver in the foreground (for breakpoints):
docker-compose stop web
docker-compose run --rm --service-ports web python manage.py runserver 0.0.0.0:8000

Visit http://localhost:8003/ in your browser.

Restore Production Data

The data import process for each state can take a long time. You can load the production data using
the following steps:

First download a dump (in this case, NC) of the database:

ssh opendatapolicing.com 'sudo -u postgres pg_dump -Fc -Ox traffic_stops_nc_production' > traffic_stops_nc_production.pgdump

Now run pg_restore within the web container:

docker-compose stop web # free up connections to the DB
docker-compose run --rm web dropdb traffic_stops_nc
docker-compose run --rm web createdb -E UTF-8 traffic_stops_nc
docker-compose run --rm web pg_restore -Ox -d traffic_stops_nc traffic_stops_nc_production.pgdump
rm traffic_stops_nc_production.pgdump # so it doesn't get built into the container

You can also load the primary DB with user accounts and state statistics:

ssh opendatapolicing.com 'sudo -u postgres pg_dump -Fc -Ox traffic_stops_production' > traffic_stops_production.pgdump
docker-compose stop web # free up connections to the DB
docker-compose run --rm web dropdb traffic_stops
docker-compose run --rm web createdb -E UTF-8 traffic_stops
docker-compose run --rm web pg_restore -Ox -d traffic_stops traffic_stops_production.pgdump
rm traffic_stops_production.pgdump # so it doesn't get built into the container

Deployment

You can run a deployment from within a docker container using the following commands:

docker-compose run --rm web /bin/bash
eval $(ssh-agent)
ssh-add ~/.ssh/YOUR_KEY

fab -u YOUR_USER staging salt:"test.ping"

Data Import

Stop data can be imported in the same manner for all states. Substitute the state
abbreviation (e.g., “md”) as appropriate in the Generic NC instructions below.

Census data for all states is imported all at once, in the same manner for all
environments, using the import_census management command. This must be
performed as part of developer and server setup as well as when census support is
added for additional states.

Local/Development Environment

Before running state imports, first import census data:

python manage.py import_census

Database Dump (quicker)

To load an existing database dump on S3, run:

dropdb traffic_stops_nc
createdb -E UTF-8 traffic_stops_nc
wget https://s3-us-west-2.amazonaws.com/openpolicingdata/traffic_stops_nc_2018_01_08.dump.zip
unzip traffic_stops_nc_2018_01_08.dump.zip
pg_restore -Ox -d traffic_stops_nc traffic_stops_nc_2018_01_08.dump

Browse https://s3-us-west-2.amazonaws.com/openpolicingdata/ to see what dumps
are available.

To create a new database dump, run:

ssh dev.opendatapolicingnc.com 'sudo -u postgres pg_dump -Fc traffic_stops_nc_staging' > traffic_stops_nc.dump

That can be loaded with the pg_restore command shown above.

Raw NC Data (slower)

The state-specific database must exist and current migrations need to have been
applied before importing. If in doubt:

for NC
dropdb traffic_stops_nc && createdb -E UTF-8 traffic_stops_nc
for MD
dropdb traffic_stops_md && createdb -E UTF-8 traffic_stops_md

./migrate_all_dbs.sh

Command-line

If loading NC, make sure to add NC_FTP_USER and NC_FTP_PASSWORD and your .env file.

If on a Mac, install gnu-sed:

brew install gnu-sed --with-default-names

Run the import command:

for NC (~25m)
rm -rf ./ncdata # if you don't want to reuse previous download
python manage.py import_nc --dest $PWD/ncdata --noprime # noprime = don't prime cache
for MD (~30m)
rm -rf ./mddata # if you don't want to reuse previous download
python manage.py import_md --dest $PWD/mddata

This took ~25 minutes on my laptop. Run tail -f traffic_stops.log to follow
along. Reusing an existing --dest directory will speed up import. However,
if import code has changed since the last time the directory was used, don’t
reuse an existing directory.

Now you should be able to view data with runserver:

python manage.py runserver

Admin

Access /admin/tsdata/dataset/ and create a “dataset” describing the data to be
imported. Setting the fields:

	Select the desired state

	Provide a unique name for the dataset

	The date received should reflect when the raw data was received

	Set the URL to one of the available datasets at
https://s3-us-west-2.amazonaws.com/openpolicingdata/ . The normal URLs
are stored in the source code (in <state_app>.data.__init__.py).
For NC, if you use the magic URL ftp://nc.us/, the latest available
dataset will be downloaded from the state and used for this import.

	Specify a destination directory where the dataset will be downloaded and
extracted.

	Optionally specify one or two e-mail addresses that will be notified when
the import completes successfully.

Once the “dataset” has been created, select the new dataset in list view and
apply the “Import selected dataset” action.

Server

The PostgreSQL user must have SUPERUSER privileges to perform the import.
Depending on current admin policies, that may have to be granted and
revoked around the import.

Temporarily grant our PostgreSQL user SUPERUSER privileges:

sudo -u postgres psql -c 'ALTER USER traffic_stops_staging WITH SUPERUSER;'

When finished, revoke SUPERUSER privileges:

sudo -u postgres psql -c 'ALTER USER traffic_stops_staging WITH NOSUPERUSER;'

When importing IL data on a server, paging space is required due to the memory
requirements. Currently the staging and production servers do not have a “swap”
file or device permanently assigned, nor do they have a device on which paging
space can be routinely used without incurring I/O charges. Thus a swap file is
activated prior to an import of IL data and then deactivated afterwards, as follows:

sudo fallocate -l 3G /swapfile
sudo chmod 600 /swapfile
sudo mkswap /swapfile
sudo swapon /swapfile
<<perform the IL data import using the appropriate mechanism>>
sudo swapoff /swapfile
sudo rm /swapfile

Raw NC Data

Command-line

Run the import command:

sudo su - traffic_stops
cd /var/www/traffic_stops
source ./env/bin/activate
./manage.sh import_nc --dest=/var/www/traffic_stops/data

Reusing an existing --dest directory will speed up import. However,
if import code has changed since the last time the directory was used, don’t
reuse an existing directory.

Admin

Follow the “Admin” instructions above under “Local/Development Environment”.

Create DB Dump

sudo -u postgres pg_dump -Ox -Ft traffic_stops_nc_production > traffic_stops_nc_production.tar
zip traffic_stops_nc_production.tar.zip traffic_stops_nc_production.tar
then on local laptop, run:
scp opendatapolicingnc.com:traffic_stops_nc_production.tar.zip .

Updating landing page stats

NC landing page stats are updated automatically after import. This
section applies only to other states. (The NC command in the example
below will work and can be used during development, but for NC it is
not necessary to run the command and update the Django template using
the output when you get a new set of data from the state.)

Currently, various statistics on the state landing page are hard-coded
in the Django templates for that state, including the number of stops,
the range of dates, and the top five agencies.

When first importing a new set of data from a state, the landing page
stats must be edited to reflect the new data. This process involves the
following steps:

	Calculate the statistics using the new dataset.

	Update the Django template for the state to include the current
statistics.

	Pay attention to whether or not agency ids or the top five agencies
have changed; if they have, the top five agencies as shown in the
landing page will require more editing.

The landing page stats are computed with the <state_app>_dataset_facts
management commands. Example:

$./manage.py nc_dataset_facts
Timeframe: Jan 01, 2000 - Apr 12, 2016
Stops: 20,622,253
Searches: 632,719
Agencies: 314

Top 5:
Id 193: NC State Highway Patrol 9,608,578
Id 51: Charlotte-Mecklenburg Police Department 1,600,836
Id 224: Raleigh Police Department 863,653
Id 104: Greensboro Police Department 555,453
Id 88: Fayetteville Police Department 503,013

Server Setup

Provisioning

The server provisioning is managed using Salt Stack [http://saltstack.com/]. The base
states are managed in a common repo [https://github.com/caktus/margarita] and additional
states specific to this project are contained within the conf directory at the root
of the repository.

For more information see the doc:provisioning guide </provisioning>.

Layout

Below is the server layout created by this provisioning process:

/var/www/traffic_stops/
 source/
 env/
 log/
 public/
 static/
 media/
 ssl/

source contains the source code of the project. env
is the virtualenv [http://www.virtualenv.org/] for Python requirements. log
stores the Nginx, Gunicorn and other logs used by the project. public
holds the static resources (css/js) for the project and the uploaded user media.
public/static/ and public/media/ map to the STATIC_ROOT and
MEDIA_ROOT settings. ssl contains the SSL key and certificate pair.

Deployment

For deployment, each developer connects to the Salt master as their own user. Each developer
has SSH access via their public key. These users are created/managed by the Salt
provisioning. The deployment itself is automated with Fabric [http://docs.fabfile.org/].
To deploy, a developer simply runs:

Deploy updates to staging
fab staging deploy
Deploy updates to production
fab production deploy

This runs the Salt highstate for the given environment. This handles both the configuration
of the server as well as updating the latest source code. This can take a few minutes and
does not produce any output while it is running. Once it has finished the output should be
checked for errors.

Server Provisioning

Overview

traffic_stops is deployed on the following stack.

	OS: Ubuntu 14.04 LTS

	Python: 3.4

	Database: Postgres 9.3, PostGIS 2.1

	Application Server: Gunicorn

	Frontend Server: Nginx

	Cache: Memcached

These services can configured to run together on a single machine or on different machines.
Supervisord [http://supervisord.org/] manages the application server process.

Salt Master

Each project needs a Salt Master per environment (staging, production, etc).
The master is configured with Fabric. env.master should be set to the IP
of this server in the environment where it will be used:

@task
def staging():
 ...
 env.master = <ip-of-master>

You will need to be able to connect to the server as a root user.
How this is done will depend on where the server is hosted.
VPS providers such as Linode will give you a username/password combination. Amazon’s
EC2 uses a private key. These credentials will be passed as command line arguments.:

Template of the command
fab -u <root-user> <environment> setup_master
Example of provisioning 33.33.33.10 as the Salt Master for staging
fab -u root staging setup_master
Example AWS setup
fab -u ubuntu -i ~/.ssh/traffic-stops.pem staging setup_master

This will install salt-master and update the master configuration file. The master will use a
set of base states from https://github.com/caktus/margarita checked out at /srv/margarita

As part of the master setup, a new GPG public/private key pair is generated. The private
key remains on the master but the public version is exported and fetched back to the
developer’s machine. This will be put in conf/<environment>.pub.gpg. This will
be used by all developers to encrypt secrets for the environment and needs to be
committed into the repo.

Pillar Setup

Before your project can be deployed to a server, the code needs to be
accessible in a git repository. Once that is done you should update
conf/pillar/<environment>.sls to set the repo and branch for the environment.
E.g., change this:

FIXME: Update to the correct project repo
repo:
 url: git@github.com:CHANGEME/CHANGEME.git
 branch: master

to this:

repo:
 url: git@github.com:copelco/NC-Traffic-Stops.git
 branch: master

You also need to set project_name and python_version in
conf/pillar/project.sls. The project template is set up for 3.4 by default.
If you want to use 2.7, you will need to change python_version and make a
few changes to requirements. In requirements/production.txt, change
python3-memcached to python-memcached.

For the environment you want to setup you will need to set the domain in
conf/pillar/<environment>.sls.

You will also need add the developer’s user names and SSH keys to conf/pillar/devs.sls. Each
user record (under the parent users: key) should match the format:

example-user:
 public_key:
 - ssh-rsa <Full SSH Public Key would go here>

Additional developers can be added later, but you will need to create at least one user for
yourself.

Managing Secrets

Secret information such as passwords and API keys must be encrypted before being added
to the pillar files. As previously noted, provisioning the master for the environment
generates a public GPG key which is added to repo under conf/<environment>.pub.gpg
To encrypt a new secret using this key, you can use the encrypt fab command:

Example command
fab <environment> encrypt:<key>=<secret-value>
Encrypt the SECRET_KEY for the staging environment
fab staging encrypt:SECRET_KEY='thisismysecretkey'

The output of this command will look something like:

"SECRET_KEY": |-
 -----BEGIN PGP MESSAGE-----
 Version: GnuPG v1.4.11 (GNU/Linux)

 hQEMA87BIemwflZuAQf/XDTq6pdZsS07zw88lvGcWbcy5pj5CLueVldE+NLAHilv
 YaFb1qPM1W+yrnxFQgsapcHUM82ULkXbMskYoK5qp5Or2ujwzAVRpbSrFTq19Frz
 sasFTPNNREgThLB8oyQIHN2XfqSvIqi6RkqXGf+eQDXLyl9Guu+7EhFtW5PJRo3i
 BSBVEuMi4Du60uAssQswNuit7lkEqxFprZDb9aHmjVBi+DAipmBuJ+FIyK0ePFAf
 dVfp/Es/y4/hWkM7TXDw5JMFtVfCo6Dm1LE53N339eJX01w19exB/Sek6HVwDsL4
 d45c1dm7qBiXN0zO8Yadhm520J0H9NcIPO47KyRkCtJAARsY5eu8cHxYW4DcYWLu
 PRr2CLuI8At1Q2KqlRgdEm17lV5HOEcMoT1SyvMzaWOnbpul5PoLCAebJ0zcJZT5
 Pw==
 =V1Uh
 -----END PGP MESSAGE-----

where SECRET_KEY would be replace with the key you were trying to encrypt. This
block of text should be added to the environment pillar conf/pillar/<environment>.sls
under the secrets block:

secrets:
 "SECRET_KEY": |-
 -----BEGIN PGP MESSAGE-----
 Version: GnuPG v1.4.11 (GNU/Linux)

 hQEMA87BIemwflZuAQf/XDTq6pdZsS07zw88lvGcWbcy5pj5CLueVldE+NLAHilv
 YaFb1qPM1W+yrnxFQgsapcHUM82ULkXbMskYoK5qp5Or2ujwzAVRpbSrFTq19Frz
 sasFTPNNREgThLB8oyQIHN2XfqSvIqi6RkqXGf+eQDXLyl9Guu+7EhFtW5PJRo3i
 BSBVEuMi4Du60uAssQswNuit7lkEqxFprZDb9aHmjVBi+DAipmBuJ+FIyK0ePFAf
 dVfp/Es/y4/hWkM7TXDw5JMFtVfCo6Dm1LE53N339eJX01w19exB/Sek6HVwDsL4
 d45c1dm7qBiXN0zO8Yadhm520J0H9NcIPO47KyRkCtJAARsY5eu8cHxYW4DcYWLu
 PRr2CLuI8At1Q2KqlRgdEm17lV5HOEcMoT1SyvMzaWOnbpul5PoLCAebJ0zcJZT5
 Pw==
 =V1Uh
 -----END PGP MESSAGE-----

The Makefile has a make command for generating a random secret. By default
this is 32 characters long but can be adjusted using the length argument.:

make generate-secret
make generate-secret length=64

This can be combined with the above encryption command to generate a random
secret and immediately encrypt it.:

fab staging encrypt:SECRET_KEY=`make generate-secret length=64`

By default the project will use the SECRET_KEY if it is set. You can also
optionally set a DB_PASSWORD. If not set, you can only connect to the database
server on localhost so this will only work for single server setups.

Github Deploy Keys

The repo will also need a deployment key generated so that the Salt minion can
access the repository. You can generate a deployment key locally for the new
server like so:

Example command
make <environment>-deploy-key
Generating the staging deploy key
make staging-deploy-key

This will generate two files named <environment>.priv and conf/<environment>.pub.ssh.
The first file contains the private key and the second file contains the public
key. The public key needs to be added to the “Deploy keys” in the GitHub repository.
For more information, see the Github docs on managing deploy keys:
https://help.github.com/articles/managing-deploy-keys

The text in the private key file should be added to conf/pillar/<environment>.sls`
under the label github_deploy_key but it must be encrypted first. To encrypt
the file you can use the same encrypt fab command as before passing the filename
rather than a key/value pair:

fab staging encrypt:staging.priv

This will create a new file with appends .asc to the end of the original filename
(i.e. staging.priv.asc). The entire contents of this file should be added to the
github_deploy_key section of the pillar file.:

github_deploy_key: |
 -----BEGIN PGP MESSAGE-----
 Version: GnuPG v1.4.11 (GNU/Linux)

 hQEMA87BIemwflZuAQf/RW2bXuUpg5QuwuY9dLqLpdpKz+/971FHqM1Kz5NXgJHo
 hir8yh/wxlKlMbSpiyri6QPigj8DZLrGLi+VTwWCXJ
 ...
 -----END PGP MESSAGE-----

Do not commit the original *.priv files into the repo.

Environment Variables

Other environment variables which need to be configured but aren’t secret can be added
to the env dictionary in conf/pillar/<environment>.sls without encryption:

Additional public environment variables to set for the project
env:
 FOO: BAR

For instance the default layout expects the cache server to listen at 127.0.0.1:11211
but if there is a dedicated cache server this can be changed via CACHE_HOST. Similarly
the DB_HOST/DB_PORT defaults to ''/'':

env:
 DB_HOST: 10.10.20.2
 CACHE_HOST: 10.10.20.1:11211

Setup Checklist

To summarize the steps above, you can use the following checklist

	repo is set in conf/pillar/<environment>.sls

	Developer user names and SSH keys have been added to conf/pillar/devs.sls

	Project name has been set in conf/pillar/project.sls

	Environment domain name has been set in conf/pillar/<environment>.sls

	Environment secrets including the deploy key have been set in conf/pillar/<environment>.sls

Provision a Minion

Once you have completed the above steps, you are ready to provision a new server
for a given environment. Again you will need to be able to connect to the server
as a root user. This is to install the Salt Minion which will connect to the Master
to complete the provisioning. To setup a minion you call the Fabric command:

fab <environment> setup_minion:<roles> -H <ip-of-new-server> -u <root-user>
fab staging setup_minion:web,balancer,db-master,cache -H 33.33.33.10 -u root
Example AWS setup
fab staging setup_minion:web,balancer,db-master,cache,queue,worker -H 52.6.26.10 -u ubuntu -i ~/.ssh/traffic-stops.pem
fab staging deploy -H 52.6.26.10 -u ubuntu -i ~/.ssh/traffic-stops.pem

The available roles are salt-master, web, worker, balancer, db-master,
queue and cache. If you are running everything on a single server you need to enable
the web, balancer, db-master, and cache roles. The worker
and queue roles are only needed to run Celery which is explained in more detail later.

Additional roles can be added later to a server via add_role. Note that there is no
corresponding delete_role command because deleting a role does not disable the services or
remove the configuration files of the deleted role:

fab add_role:web -H 33.33.33.10

After that you can run the deploy/highstate to provision the new server:

fab <environment> deploy

The first time you run this command, it may complete before the server is set up.
It is most likely still completing in the background. If the server does not become
accessible or if you encounter errors during the process, review the Salt logs for
any hints in /var/log/salt on the minion and/or master. For more information about
deployment, see the server setup </server-setup> documentation.

The initial deployment will create developer users for the server so you should not
need to connect as root after the first deploy.

Optional Configuration

The default template contains setup to help manage common configuration needs which
are not enabled by default.

HTTP Auth

The <environment>.sls can also contain a section to enable HTTP basic authentication. This
is useful for staging environments where you want to limit who can see the site before it
is ready. This will also prevent bots from crawling and indexing the pages. To enable basic
auth simply add a section called http_auth in the relevant conf/pillar/<environment>.sls.
As with other passwords this should be encrypted before it is added:

Example encryption
fab <environment> encrypt:<username>=<password>
Encrypt admin/abc123 for the staging environment
fab staging encrypt:admin=abc123

This would be added in conf/pillar/<environment>.sls under http_auth:

http_auth:
 "admin": |-
 -----BEGIN PGP MESSAGE-----
 Version: GnuPG v1.4.11 (GNU/Linux)

 hQEMA87BIemwflZuAQf+J4+G74ZSfrUPRF7z7+DPAmhBlK//A6dvplrsY2RsfEE4
 Tfp7QPrHZc5V/gS3FXvlIGWzJOEFscKslzgzlccCHqsNUKE96qqnTNjsIoGOBZ4z
 tmZV2F3AXzOVv4bOgipKIrjJDQcFJFjZKMAXa4spOAUp4cyIV/AQBu0Gwe9EUkfp
 yXD+C/qTB0pCdAv5C4vyl+TJ5RE4fGnuPsOqzy4Q0mv+EkXf6EHL1HUywm3UhUaa
 wbFdS7zUGrdU1BbJNuVAJTVnxAoM+AhNegLK9yAVDweWK6pApz3jN6YKfVLFWg1R
 +miQe9hxGa2C/9X9+7gxeUagqPeOU3uX7pbUtJldwdJBAY++dkerVIihlbyWOkn4
 0HYlzMI27ezJ9WcOV4ywTWwOE2+8dwMXE1bWlMCC9WAl8VkDDYup2FNzmYX87Kl4
 9EY=
 =PrGi
 -----END PGP MESSAGE-----

This should be a list of key/value pairs. The keys will serve as the usernames and
the values will be the password. As with all password usage please pick a strong
password.

Celery

Many Django projects make use of Celery [http://celery.readthedocs.org/en/latest/]
for handling long running task outside of request/response cycle. Enabling a worker
makes use of Django setup for Celery [http://celery.readthedocs.org/en/latest/django/first-steps-with-django.html].
As documented you should create/import your Celery app in traffic_stops/__init__.py so that you
can run the worker via:

celery -A traffic_stops worker

Additionally you will need to configure the project settings for Celery:

traffic_stops.settings.staging.py
import os
from traffic_stops.settings.base import *

Other settings would be here
BROKER_URL = 'amqp://traffic_stops_staging:%(BROKER_PASSWORD)s@%(BROKER_HOST)s/traffic_stops_staging' % os.environ

You will also need to add the BROKER_URL to the traffic_stops.settings.production so
that the vhost is set correctly. These are the minimal settings to make Celery work. Refer to the
Celery documentation [http://docs.celeryproject.org/en/latest/configuration.html] for additional
configuration options.

BROKER_HOST defaults to 127.0.0.1:5672. If the queue server is configured on a separate host
that will need to be reflected in the BROKER_URL setting. This is done by setting the BROKER_HOST
environment variable in the env dictionary of conf/pillar/<environment>.sls.

To add the states you should add the worker role when provisioning the minion.
At least one server in the stack should be provisioned with the queue role as well.
This will use RabbitMQ as the broker by default. The
RabbitMQ user will be named traffic_stops_<environment> and the vhost will be named traffic_stops_<environment>
for each environment. It requires that you add a password for the RabbitMQ user to each of
the conf/pillar/<environment>.sls under the secrets using the key BROKER_PASSWORD.
As with all secrets this must be encrypted.

The worker will run also run the beat process which allows for running periodic tasks.

SSL

The default configuration expects the site to run under HTTPS everywhere. However, unless
an SSL certificate is provided, the site will use a self-signed certificate. To include
a certificate signed by a CA you must update the ssl_key and ssl_cert pillars
in the environment secrets. The ssl_cert should contain the intermediate certificates
provided by the CA. It is recommended that this pillar is only pushed to servers
using the balancer role. See the secrets.ex file for an example.

You can use the below OpenSSL commands to generate the key and signing request:

Generate a new 2048 bit RSA key
openssl genrsa -out traffic_stops.key 2048
Make copy of the key with the passphrase
cp traffic_stops.key traffic_stops.key.secure
Remove any passphrase
openssl rsa -in traffic_stops.secure -out traffic_stops.key
Generate signing request
openssl req -new -key traffic_stops.key -out traffic_stops.csr

The last command will prompt you for information for the signing request including
the organization for which the request is being made, the location (country, city, state),
email, etc. The most important field in this request is the common name which must
match the domain for which the certificate is going to be deployed (i.e example.com).

This signing request (.csr) will be handed off to a trusted Certificate Authority (CA) such as
StartSSL, NameCheap, GoDaddy, etc. to purchase the signed certificate. The contents of
the *.key file will be added to the ssl_key pillar and the signed certificate
from the CA will be added to the ssl_cert pillar. These should be encrypted using
the same proceedure as with the private SSH deploy key.

Quickstart

Staging

Terraform:

terraform plan -var-file="secrets.tfvars" -var-file="staging.tfvars"
terraform apply -var-file="secrets.tfvars" -var-file="staging.tfvars"

terraform plan -destroy -var-file="secrets.tfvars" -var-file="staging.tfvars"
terraform destroy -var-file="secrets.tfvars" -var-file="staging.tfvars"

Salt:

ssh-keygen -f "$HOME/.ssh/known_hosts" -R dev.opendatapolicingnc.com
ssh-keygen -f "$HOME/.ssh/known_hosts" -R 52.6.26.10
fab -u ubuntu -i ~/.ssh/traffic-stops.pem staging setup_master
fab staging encrypt:DB_PASSWORD=`pwgen --secure -1 32`
fab staging encrypt:SECRET_KEY=`pwgen --secure -1 64`
fab staging encrypt:BROKER_PASSWORD=`pwgen --secure -1 32`
fab staging encrypt:LOG_DESTINATION='<fill-me-in>'
fab staging encrypt:admin='<fill-me-in>'
fab staging encrypt:NEW_RELIC_LICENSE_KEY='<fill-me-in>'
copy each generated encrypted key to conf/pillar/<env>.sls
fab staging setup_minion:web,balancer,db-master,cache,queue,worker,salt-master -H dev.opendatapolicingnc.com -u ubuntu -i ~/.ssh/traffic-stops.pem
fab staging deploy -H dev.opendatapolicingnc.com -u ubuntu -i ~/.ssh/traffic-stops.pem
fab staging deploy

Production

Terraform:

make production # see plan
make production-apply

Salt:

ssh-keygen -f "$HOME/.ssh/known_hosts" -R opendatapolicing.com
ssh-keygen -f "$HOME/.ssh/known_hosts" -R 52.206.92.217
fab -u ubuntu -i ~/.ssh/traffic-stops.pem production setup_master
rm production*.asc
fab production encrypt:DB_PASSWORD=`pwgen --secure -1 32`
fab production encrypt:SECRET_KEY=`pwgen --secure -1 64`
fab production encrypt:BROKER_PASSWORD=`pwgen --secure -1 32`
fab production encrypt:production-ssl.cert && cat production-ssl.cert.asc
fab production encrypt:production-ssl.key && cat production-ssl.key.asc
fab production encrypt:admin=<fill-me-in>
fab production encrypt:LOG_DESTINATION='<fill-me-in>'
fab production encrypt:NEW_RELIC_LICENSE_KEY='<fill-me-in>'
copy each generated encrypted key to conf/pillar/<env>.sls
fab production setup_minion:web,balancer,db-master,cache,queue,worker,salt-master -H opendatapolicing.com -u ubuntu -i ~/.ssh/traffic-stops.pem
fab production deploy -H opendatapolicing.com -u ubuntu -i ~/.ssh/traffic-stops.pem
fab production deploy

API Endpoints

Stops by all races and ethnicities by year

URI: /api/agency/<id>/stops/ [https://opendatapolicingnc.com/api/agency/78/stops/]

Officer URI: /api/agency/<id>/stops/?officer=<id> [https://opendatapolicingnc.com/api/agency/78/stops/?officer=368]

Counts of stops by all races and by all ethnicities by year.

SQL

Sample SQL query (Durham Police Department):

SELECT count(person_id),
 p.race,
 extract(YEAR FROM s.date) AS year
FROM stops_person p
JOIN stops_stop s ON p.stop_id = s.stop_id
WHERE p.type='D'
 AND s.agency_id = 78
GROUP BY p.race,
 year
ORDER BY year ASC, p.race DESC;

Sample SQL Results:

 count | race | year
-------+------+------
 4481 | W | 2005
 357 | U | 2005
 9 | I | 2005
 5665 | B | 2005
 163 | A | 2005
 5319 | W | 2006
 231 | U | 2006
 41 | I | 2006
 7205 | B | 2006
 178 | A | 2006
 7520 | W | 2007
 120 | U | 2007
 75 | I | 2007
 10372 | B | 2007
 261 | A | 2007

JSON

Sample JSON response (Durham Police Department):

[
 {
 "year": 2005,
 "native_american": 9,
 "black": 5665,
 "white": 4481,
 "other": 357,
 "non-hispanic": 9298,
 "hispanic": 1377,
 "asian": 163
 },
 {
 "year": 2006,
 "native_american": 41,
 "black": 7200,
 "white": 5318,
 "other": 231,
 "non-hispanic": 11342,
 "hispanic": 1626,
 "asian": 178
 },
 {
 "year": 2007,
 "native_american": 75,
 "black": 10365,
 "white": 7516,
 "other": 120,
 "non-hispanic": 16050,
 "hispanic": 2287,
 "asian": 261
 },
]

Likelihood-of-search by stop-reason

URI: /api/agency/<id>/stops_by_reason/ [https://opendatapolicingnc.com/api/agency/78/stops_by_reason/]

Officer URI: /api/agency/<id>/stops_by_reason/?officer=<id> [https://opendatapolicingnc.com/api/agency/78/stops_by_reason/?officer=368]

A count of likelihood-of-search by stop-reason.

SQL Query

One query for all stops and another for only stops with searches.

SELECT count(p.person_id),
 p.race,
 s.purpose,
 extract(YEAR FROM s.date) AS year
FROM stops_person p
JOIN stops_stop s ON p.stop_id = s.stop_id
WHERE p.type='D'
 AND s.agency_id = 78
GROUP BY p.race,
 s.purpose,
 year
ORDER BY year ASC,
 s.purpose ASC,
 p.race DESC;

SELECT count(se.person_id),
 p.race,
 s.purpose,
 extract(YEAR FROM s.date) AS year
FROM stops_person p
JOIN stops_stop s ON p.stop_id = s.stop_id
JOIN stops_search se ON s.stop_id = se.stop_id
WHERE p.type='D'
 AND s.agency_id = 78
GROUP BY p.race,
 s.purpose,
 year
ORDER BY year ASC,
 s.purpose ASC,
 p.race DESC;

Sample SQL Results:

 count | race | purpose | year
-------+------+---------+------
 2568 | W | 1 | 2006
 134 | U | 1 | 2006
 31 | I | 1 | 2006
 2386 | B | 1 | 2006
 117 | A | 1 | 2006
 272 | W | 2 | 2006
 18 | U | 2 | 2006
 348 | B | 2 | 2006
 8 | A | 2 | 2006
 29 | W | 3 | 2006
 35 | B | 3 | 2006
 342 | W | 4 | 2006
 9 | U | 4 | 2006
 1 | I | 4 | 2006
 430 | B | 4 | 2006
 11 | A | 4 | 2006
 628 | W | 5 | 2006
 14 | U | 5 | 2006
 3 | I | 5 | 2006
 1231 | B | 5 | 2006
 12 | A | 5 | 2006
 750 | W | 6 | 2006
 20 | U | 6 | 2006
 4 | I | 6 | 2006
 1511 | B | 6 | 2006
 11 | A | 6 | 2006
 198 | W | 7 | 2006
 9 | U | 7 | 2006
 373 | B | 7 | 2006
 5 | A | 7 | 2006
 204 | W | 8 | 2006
 3 | U | 8 | 2006
 409 | B | 8 | 2006
 1 | A | 8 | 2006
 328 | W | 9 | 2006
 24 | U | 9 | 2006
 2 | I | 9 | 2006
 482 | B | 9 | 2006
 13 | A | 9 | 2006

 count | race | purpose | year
-------+------+---------+------
 73 | W | 1 | 2006
 1 | U | 1 | 2006
 126 | B | 1 | 2006
 5 | A | 1 | 2006
 21 | W | 2 | 2006
 1 | U | 2 | 2006
 25 | B | 2 | 2006
 19 | W | 3 | 2006
 18 | B | 3 | 2006
 44 | W | 4 | 2006
 56 | B | 4 | 2006
 62 | W | 5 | 2006
 156 | B | 5 | 2006
 1 | A | 5 | 2006
 47 | W | 6 | 2006
 1 | U | 6 | 2006
 169 | B | 6 | 2006
 5 | W | 7 | 2006
 1 | U | 7 | 2006
 26 | B | 7 | 2006
 29 | W | 8 | 2006
 91 | B | 8 | 2006
 1 | A | 8 | 2006
 16 | W | 9 | 2006
 2 | U | 9 | 2006
 1 | I | 9 | 2006
 50 | B | 9 | 2006

JSON Response

{
 "searches": [
 {
 "purpose": "Speed Limit Violation",
 "year": 2006,
 "hispanic": 35,
 "native_american": 0,
 "white": 73,
 "asian": 5,
 "black": 126,
 "non-hispanic": 170,
 "other": 1
 },
 {
 "purpose": "Stop Light/Sign Violation",
 "year": 2006,
 "hispanic": 14,
 "native_american": 0,
 "white": 21,
 "asian": 0,
 "black": 25,
 "non-hispanic": 33,
 "other": 1
 }
],
 "stops": [
 {
 "purpose": "Speed Limit Violation",
 "year": 2006,
 "hispanic": 475,
 "native_american": 31,
 "white": 2567,
 "asian": 117,
 "black": 2386,
 "non-hispanic": 4760,
 "other": 134
 },
 {
 "purpose": "Stop Light/Sign Violation",
 "year": 2006,
 "hispanic": 90,
 "native_american": 0,
 "white": 272,
 "asian": 8,
 "black": 348,
 "non-hispanic": 556,
 "other": 18
 },
]
}

Use-of-force

URI: /api/agency/<id>/use_of_force/ [https://opendatapolicingnc.com/api/agency/78/use_of_force/]

Officer URI: /api/agency/<id>/use_of_force/?officer=<id> [https://opendatapolicingnc.com/api/agency/78/use_of_force/?officer=368]

A count of all use-of-force by all races and by all ethnicities by year.

SQL Query

Sample SQL query:

SELECT count(se.person_id),
 p.race,
 extract(YEAR FROM s.date) AS year
FROM stops_person p
JOIN stops_stop s ON p.stop_id = s.stop_id
JOIN stops_search se ON s.stop_id = se.stop_id
WHERE p.type='D'
 AND s.agency_id = 78
 AND s.engage_force = 't'
GROUP BY p.race,
 year
ORDER BY p.race DESC,
 year ASC;

Sample SQL results:

 count | race | year
-------+------+------
 3 | W | 2002
 1 | W | 2003
 1 | W | 2005
 3 | W | 2006
 3 | W | 2007
 9 | W | 2008
 1 | W | 2010
 1 | W | 2011
 1 | W | 2012
 2 | U | 2002
 12 | B | 2002
 4 | B | 2003
 4 | B | 2004
 1 | B | 2005
 5 | B | 2006
 10 | B | 2007
 12 | B | 2008
 3 | B | 2009
 4 | B | 2010
 8 | B | 2011
 4 | B | 2012
 1 | B | 2013
(22 rows)

JSON

Sample JSON response (Durham Police Department):

[
 {
 "year": 2006,
 "native_american": 0,
 "other": 0,
 "black": 5,
 "hispanic": 3,
 "asian": 0,
 "non-hispanic": 5,
 "white": 3
 },
 {
 "year": 2007,
 "native_american": 0,
 "other": 0,
 "black": 10,
 "hispanic": 1,
 "asian": 0,
 "non-hispanic": 12,
 "white": 3
 },
 {
 "year": 2008,
 "native_american": 0,
 "other": 0,
 "black": 12,
 "hispanic": 6,
 "asian": 0,
 "non-hispanic": 15,
 "white": 9
 }
]

Contraband Hit Rate

URI: /api/agency/<id>/contraband_hit_rate/ [https://opendatapolicingnc.com/api/agency/78/contraband_hit_rate/]

Officer URI: /api/agency/<id>/contraband_hit_rate/?officer=<id> [https://opendatapolicingnc.com/api/agency/78/contraband_hit_rate/?officer=368]

A count of contraband hit-rate by year and race.

SQL Query

One query for all stops with searches and another for stops with searches with contraband.

SELECT count(se.person_id),
 p.race,
 extract(YEAR FROM s.date) AS year
FROM stops_person p
JOIN stops_stop s ON p.stop_id = s.stop_id
JOIN stops_search se ON s.stop_id = se.stop_id
WHERE p.type='D'
 AND s.agency_id = 78
GROUP BY p.race,
 year
ORDER BY year ASC,
 p.race DESC;

SELECT count(c.person_id),
 p.race,
 extract(YEAR FROM s.date) AS year
FROM stops_person p
JOIN stops_stop s ON p.stop_id = s.stop_id
JOIN stops_search se ON s.stop_id = se.stop_id
JOIN stops_contraband c ON se.search_id = c.search_id
WHERE p.type='D'
 AND s.agency_id = 78
GROUP BY p.race,
 year
ORDER BY year ASC,
 p.race DESC;

Sample SQL Results:

 count | race | year
-------+------+------
 316 | W | 2006
 6 | U | 2006
 1 | I | 2006
 717 | B | 2006
 7 | A | 2006
 465 | W | 2007
 5 | U | 2007
 3 | I | 2007
 934 | B | 2007
 17 | A | 2007

 count | race | year
-------+------+------
 47 | W | 2006
 1 | U | 2006
 150 | B | 2006
 2 | A | 2006
 85 | W | 2007
 1 | I | 2007
 259 | B | 2007
 4 | A | 2007

JSON

Sample JSON response (Durham Police Department):

{
 "contraband": [
 {
 "year": 2006,
 "hispanic": 17,
 "native_american": 0,
 "other": 1,
 "black": 149,
 "asian": 2,
 "non-hispanic": 182,
 "white": 47
 },
 {
 "year": 2007,
 "hispanic": 31,
 "native_american": 1,
 "other": 0,
 "black": 260,
 "asian": 4,
 "non-hispanic": 319,
 "white": 85
 },
],
 "searches": [
 {
 "year": 2006,
 "hispanic": 174,
 "native_american": 1,
 "other": 6,
 "black": 716,
 "asian": 7,
 "non-hispanic": 872,
 "white": 316
 },
 {
 "year": 2007,
 "hispanic": 225,
 "native_american": 3,
 "other": 5,
 "black": 935,
 "asian": 17,
 "non-hispanic": 1200,
 "white": 465
 },
]
}

Vagrant Testing

Starting the VM

You can test the provisioning/deployment using Vagrant [http://vagrantup.com/]. This requires
Vagrant 1.3+. The Vagrantfile is configured to install the Salt Master and Minion inside the VM once
you’ve run vagrant up. The box will be installed if you don’t have it already.:

vagrant up

The general provision workflow is the same as in the previous provisioning guide
so here are notes of the Vagrant specifics.

Provisioning the VM

Set your environment variables and secrets in conf/pillar/local.sls. It is OK for this to
be checked into version control because it can only be used on the developer’s local machine. To
finalize the provisioning you simply need to run:

fab vagrant deploy

The Vagrant box will use the current working copy of the project and the local.py settings. If you
want to use this for development/testing it is helpful to change your local settings to extend from
staging instead of dev:

Example local.py
from traffic_stops.settings.staging import *

Override settings here
DATABASES['default']['NAME'] = 'traffic_stops_local'
DATABASES['default']['USER'] = 'traffic_stops_local'

DEBUG = True

This won’t have the same nice features of the development server such as auto-reloading but it will
run with a stack which is much closer to the production environment. Also beware that while
conf/pillar/local.sls is checked into version control, local.py generally isn’t, so it will
be up to you to keep them in sync.

Testing on the VM

With the VM fully provisioned and deployed, you can access the VM at the IP address specified in the
Vagrantfile, which is 33.33.33.10 by default. Since the Nginx configuration will only listen for the domain name in
conf/pillar/staging/env.sls, you will need to modify your /etc/hosts configuration to view it
at one of those IP addresses. I recommend 33.33.33.10, otherwise the ports in the localhost URL cause
the CSRF middleware to complain REASON_BAD_REFERER when testing over SSL. You will need to add:

33.33.33.10 <domain>

where <domain> matches the domain in conf/pillar/staging/env.sls. For example, let’s use
dev.example.com:

33.33.33.10 dev.example.com

In your browser you can now view https://dev.example.com and see the VM running the full web stack.

Note that this /etc/hosts entry will prevent you from accessing the true dev.example.com.
When your testing is complete, you should remove or comment out this entry.

Index

Organization of the front-end

Overview

The front-end code for the graphs on the Open Data Policing site is broken down into three groups.

	
	base: classes that define the shared functionality of all components. These include:

	
	DataHandlerBase: the Model subclass that handles talking to the API

	AggregateDataHandlerBase: used for supplying data to graphs that combine multiple sources

	VisualBase: the Model subclass that handles the graph-specific data processing and D3-based rendering for each graph

	TableBase: like VisualBase but specific to tables

	common: classes that define the specific graphs, factoring out the code that’s shared across states; graphs for particular states are configured by subclassing these common components and replacing their abstract methods

	states: subclasses of common components configured for individual states

How these components interact is the subject of the rest of these docs.

Putting the pieces together

In the agency_detail.html template for individual states, you will see a script block within {% block graph-code %} containing a number of variable declarations along these lines:

var stop_handler = new MD.StopsHandler({url: "{% url 'md:agency-api-stops' object.pk %}?officer={{officer_id|urlencode}}"});

Beneath these, there are object creation statements referring to these variables, like this:

new MD.StopRatioDonut({handler: stop_handler, selector: "#stop_race_pie"});

These two statements, in combination, create a graph on the page. The Handler component connects to the API using the supplied values; it invokes its own clean_data method, which must be defined for each particular Handler subclass; and it triggers an event when the loading and cleaning are completed.

The graph component (here, StopRatioDonut) listens for its associated Handler’s event and invokes its update method, defined on VisualBase, which sets off a cascade of other methods that handle the visual behavior of the graph.

Each subclass of VisualBase needs to define at least these methods:

	drawStartup: DOM manipulation steps that precede the drawing of the chart (e.g. creating and appending elements that are parameterized by the received data)

	setDefaultChart: setting the this.chart value to an NVD3 chart with correct configuration values

	drawChart: calling this.chart to actually mount and draw the chart with the data

Understanding “common” classes

Almost all of the code can be shared between states. There are exceptions, however; and the common classes are defined so that these exceptions can be handled gracefully. Parameterization for particular states is, in general, handled by means of abstract methods that calculate state-specific values.

Let’s look at StopRatioDonutBase as a concrete example. This has two abstract methods:

	_items: the items to display on the chart

	_pprint: a function used to format (“pretty-print”) item names for display

The North Carolina instance of this class defines them like this:

_items: function () {
 return Stops.ethnicities;
},

_pprint: function (type) {
 return Stops.pprint.get(type);
}

So when _items is invoked, it fetches Stops.ethnicities. When _pprint is used, it looks up a value in Stops.pprint.

The Maryland instance is much simpler:

_items: function () {
 return Stops.ethnicities;
},

_pprint: function (x) {
 return x;
}

Because its data is “humanized” from the get-go, its _pprint function can just return the input value.

Other configuration

Using state code

Each state has an index.js file that makes each data handler and piece of graph code globally available so that it can be executed in templates. This works by importing each value and splicing it into an object at window.<state-abbreviation>, like so:

import Stops from './defaults.js';
import StopsGraphs from './Stops.js';
import StopSearch from './StopSearch.js';

if (typeof window.MD === 'undefined') window.MD = {};

Object.assign(window.MD,
 {Stops},
 StopsGraphs,
 StopSearch
)

Other configuration

Each state also has a configuration file in defaults.js. For historical reasons, this exports a value usually referred to as Stops (this somewhat confusing name is how we inherited it, and this is how it still is!).

Many common classes refer to Stops, and it needs to be defined for each state, as well as included in index.js.

 The traffic stop data received from the state of Illinois was post-processed
and interpreted as described below.

“agencyname” column

The same agency may be written in multiple variations such as
“ABINGDON POLICE” and “ABINGDON POLICE DEPARTMENT”. The first variation
encountered in the dataset is the one used for display, after converting to
mixed case.

“Race” column

The input data uses the code “O” for “other”. The web interface refers to
the “O” race as “unknown”.

“Search” column

Many entries have no value for this column instead of a “Y” or “N”. Those
stops with no value for this column will not be included in the search rate
in the web interface.

“Contraband” column

Many entries have no value for this column instead of a “Y” or “N”. Those
stops with no value for this column will not be included in the contraband
“hit rate” in the web interface.

The question is perhaps not applicable to stops with no search, but the
number of “Y” and “N” for contraband do not add up to the number of searches.

Census data

A spreadsheet is used to map agencies to census locations. The initial
mapping was created by removing “Police” or “Police Department” from the
end of agency names and then attempting to match the remainder of the
agency name to a city, town, or village in the census data. Many agencies
were matched to a census location.

 The traffic stop data received from the state of Maryland has been post-processed
in two general ways:

	Add 2016 YTD Excel worksheet as-is to pre-2016 Excel workbook. See the
README in the dataset for more information.

	Address minor variations in the input data as well as group values into a
smaller set of categories for display in the web interface. These changes
are described below for columns where such processing is performed.

TIME_OF_STOP

A small number of values for this field are not valid times. Any time which is
not valid is treated as 00:00 (midnight). Thus, some traffic stops will be
treated as occurring at midnight even though they happened at a different time
on that day.

Example invalid values: “:”, “24:44”

STOP_REASON

The input data consists of code references like “13-411(f)”, “13-411”, “21-801.1”,
“64*”, and so on. This is transformed to a stop purpose, like ‘Seat Belt Violation’,
‘Driving While Impaired’, and so on. A spreadsheet provided by SCSJ maps stop
reasons (codes) to the various purposes. The codes are simplified in the spreadsheet
reflecting that subsections, paragraphs, etc. aren’t relevant to the mapping, so
the raw stop codes are similarly simplified before looking them up.

After transforming to a stop purpose, stop data for these purposes is removed from
the dataset:

	“Investigation”

	“Failure to remain at scene of accident”

Here are typical examples of how the raw data values from MD are simplified
before matching with values in the spreadsheet:

	64* => 64

	21-202(h1) => 21-202

	21-507G3I(i1) => 21-507

	22-412.3(c2) => 22-412

	409-b => 409

	412.3-b => 412

The SCSJ was originally provided as an Excel worksheet; it was saved as CSV from
LibreOffice. The spreadsheet is in this repository as
md/data/STOP_REASON-normalization.csv.

GENDER

A small number of stops do not have a gender recorded. Additionally, a handful
of stops do not have recognizable values for gender recorded. These are treated
as Unknown.

Example invalid values: “MD”, “n”

SEIZED

Both personal property and contraband can be seized, but for the purposes of this
web site only the seizure of contraband is considered.

Any stop with a SEIZED field value starting with “Contraband” or the words “Both”
or “paraphernalia” is treated as having an item seized.

Example values which are not treated as seizure of contraband: “N/A”, “Property Only”,
“No CDs in vehicle”, “28124”, “arrest”, “impound inventory”.

ETHNICITY

All values of the ETHNICITY column have been mapped to one of

WHITE, BLACK, HISPANIC, ASIAN, NATIVE AMERICAN, UNKNOWN

Most values of ETHNICITY are already one of these values. If the data recorded
is “OTHER” or blank or an unrecognized value, it is treated as UNKNOWN.

Example invalid values: “M”, “F”, “hiq”

Age, as computed from STOPDATE and DOB

If the DOB is after STOPDATE, age is treated as zero.

 _static/comment-bright.png

_static/ajax-loader.gif

_static/down-pressed.png

_static/down.png

_static/comment-close.png

_static/comment.png

_static/file.png

_static/minus.png

nav.xhtml

 Table of Contents

 		
 Welcome to Open Data Policing’s documentation!

 		
 Development Setup

 		
 Getting Started

 		
 Development

 		
 When running migrations

 		
 Docker

 		
 Restore Production Data

 		
 Deployment

 		
 Data Import

 		
 Local/Development Environment

 		
 Database Dump (quicker)

 		
 Raw NC Data (slower)

 		
 Server

 		
 Raw NC Data

 		
 Create DB Dump

 		
 Updating landing page stats

 		
 Server Setup

 		
 Provisioning

 		
 Layout

 		
 Deployment

 		
 Server Provisioning

 		
 Overview

 		
 Salt Master

 		
 Pillar Setup

 		
 Managing Secrets

 		
 Github Deploy Keys

 		
 Environment Variables

 		
 Setup Checklist

 		
 Provision a Minion

 		
 Optional Configuration

 		
 HTTP Auth

 		
 Celery

 		
 SSL

 		
 Quickstart

 		
 Staging

 		
 Production

 		
 API Endpoints

 		
 Stops by all races and ethnicities by year

 		
 SQL

 		
 JSON

 		
 Likelihood-of-search by stop-reason

 		
 SQL Query

 		
 JSON Response

 		
 Use-of-force

 		
 SQL Query

 		
 JSON

 		
 Contraband Hit Rate

 		
 SQL Query

 		
 JSON

 		
 Vagrant Testing

 		
 Starting the VM

 		
 Provisioning the VM

 		
 Testing on the VM

_static/up-pressed.png

_static/up.png

_static/plus.png

