

Navigator - self managed DBaaS on Kubernetes

Navigator is a Kubernetes extension for managing common stateful services on Kubernetes.
It is implemented as a custom apiserver that operates behind kube-aggregator and introduces a variety of new Kubernetes resource types.

As well as following “the operator model”, Navigator additionally introduces the concept of ‘Pilots’ -
small ‘nanny’ processes that run inside each pod in your application deployment.
These Pilots are responsible for managing the lifecycle of your underlying application process (e.g. an Elasticsearch JVM process)
and periodically report state information about the individual node back to the Navigator API.

By separating this logic into it’s own binary that is run alongside each node,
in certain failure events the Pilot is able to intervene in order to help prevent data loss,
or otherwise update the Navigator API with details of the failure so that navigator-controller can take action to restore service.

	navigator-apiserver - this takes on a similar role to kube-apiserver.
It is responsible for storing and coordinating all of the state stored for Navigator. It requires a connection to an etcd cluster in order to do this.
In order to make Navigator API types generally consumable to users of your cluster,
it registers itself with kube-aggregator.
It performs validation of your resources, as well as performing conversions between API versions which allow us to maintain a stable API without hindering development.

	navigator-controller - the controller is akin to kube-controller-manager.
It is responsible for actually realizing your deployments within the Kubernetes cluster.
It can be seen as the ‘operator’ for the various applications supported by navigator-apiserver.

	pilots - the pilot is responsible for managing each database process.
Currently Navigator has two types: pilot-elasticsearch and pilot-cassandra.

[image: _images/arch.jpg]

Contents:

	Quick-start
	1) Install Navigator using Helm

	2) Prepare your Kubernetes nodes

	3) Create an Elasticsearch cluster

	4) Scale the data nodes

	Elasticsearch
	Example cluster definition

	Node Pools

	Configure Scheduler Type

	Managing Compute Resources for Clusters

	Pilots

	Other Supplementary Resources

	System Configuration for Elasticsearch Nodes

	Cassandra
	Example cluster definition

	Node Pools

	Configure Scheduler Type

	Cassandra Across Multiple Availability Zones

	Managing Compute Resources for Clusters

	Connecting to Cassandra

	Pilots

	Other Supplementary Resources

	The Life Cycle of a Navigator Cassandra Cluster

	Development guide
	Setting up

	Developing

Indices and tables

	Index

	Search Page

Quick-start

Here we’re going to deploy a distributed and scalable Elasticsearch cluster using the examples provided in this repository.
This will involve first deploying Navigator, and then creating an ElasticsearchCluster resource.
All management of the Elasticsearch cluster will be through changes to the ElasticsearchCluster manifest.

1) Install Navigator using Helm [https://github.com/kubernetes/helm]

$ helm install contrib/charts/navigator --name navigator --namespace navigator --wait

You should see the Navigator service start in the navigator namespace:

$ kubectl get pod -n navigator
NAME READY STATUS RESTARTS AGE
navigator-745449320-dcgms 1/1 Running 0 30s

2) Prepare your Kubernetes nodes

Elasticsearch requires certain important system configuration settings [https://www.elastic.co/guide/en/elasticsearch/reference/current/system-config.html] to be configured on the host operating system i.e. on the Kubernetes node.
For this demonstration, it should be sufficient to run sysctl -w vm.max_map_count=262144, which increases a particular virtual memory limit [https://www.elastic.co/guide/en/elasticsearch/reference/current/vm-max-map-count.html].
You can quickly run the command on all your Kubernetes nodes by installing the following DaemonSet:

$ kubectl apply -f docs/quick-start/sysctl-daemonset.yaml

Or you can log into each node and run the command by hand.

See System Configuration for Elasticsearch Nodes for more information.

3) Create an Elasticsearch cluster

$ kubectl create -f docs/quick-start/es-cluster-demo.yaml

This will deploy a multi-node Elasticsearch cluster, split into nodes of 3 roles: master, client (ingest) and data.
There will be 4 data nodes, each with a 10GB PV, 2 client nodes, and 3 master nodes.
All of the options you may need for configuring your cluster are documented on the supported types page.

$ kubectl get pod
NAME READY STATUS RESTARTS AGE
es-demo-client-3995124321-5rc6g 1/1 Running 0 7m
es-demo-client-3995124321-9zrv9 1/1 Running 0 7m
es-demo-data-0 1/1 Running 0 7m
es-demo-data-1 1/1 Running 0 5m
es-demo-data-2 1/1 Running 0 3m
es-demo-data-3 1/1 Running 0 1m
es-demo-master-554549909-00162 1/1 Running 0 7m
es-demo-master-554549909-pp557 1/1 Running 0 7m
es-demo-master-554549909-vjgrt 1/1 Running 0 7m

4) Scale the data nodes

Scaling the nodes can be done by modifying your ElasticsearchCluster manifest.
Currently this is only possible using kubectl replace, due to bugs with the way ThirdPartyResource’s are handled in kubectl 1.5.

Edit your manifest and increase the number of replicas in the data node pool, then run:

$ kubectl replace -f examples/es-cluster-example.yaml
$ kubectl get pod
NAME READY STATUS RESTARTS AGE
es-demo-client-3995124321-5rc6g 1/1 Running 0 9m
es-demo-client-3995124321-9zrv9 1/1 Running 0 9m
es-demo-data-0 1/1 Running 0 9m
es-demo-data-1 1/1 Running 0 7m
es-demo-data-2 1/1 Running 0 5m
es-demo-data-3 1/1 Running 0 3m
es-demo-data-4 0/1 Running 0 29s
es-demo-master-554549909-00162 1/1 Running 0 9m
es-demo-master-554549909-pp557 1/1 Running 0 9m
es-demo-master-554549909-vjgrt 1/1 Running 0 9m

You should see new data nodes being added into your cluster gradually.
Once all are in the Running state, we can try a scale down.
Do the same as before, but instead reduce the number of replicas in the data node pool.
Then run a kubectl replace again:

$ kubectl replace -f examples/es-cluster-example.yaml
$ kubectl get pod
NAME READY STATUS RESTARTS AGE
es-demo-client-3995124321-5rc6g 1/1 Running 0 10m
es-demo-client-3995124321-9zrv9 1/1 Running 0 10m
es-demo-data-0 1/1 Running 0 10m
es-demo-data-1 1/1 Running 0 8m
es-demo-data-2 1/1 Running 0 6m
es-demo-data-3 1/1 Running 0 4m
es-demo-data-4 1/1 Terminating 0 2m
es-demo-master-554549909-00162 1/1 Running 0 10m
es-demo-master-554549909-pp557 1/1 Running 0 10m
es-demo-master-554549909-vjgrt 1/1 Running 0 10m

Upon scale-down, the Elasticsearch nodes will mark themselves as non-allocatable.
This will trigger Elasticsearch to re-allocate any shards currently on the nodes being scaled down, meaning your data will be safely relocated within the cluster.

Elasticsearch

Example cluster definition

Example ElasticsearchCluster resource:

apiVersion: navigator.jetstack.io/v1alpha1
kind: ElasticsearchCluster
metadata:
 name: demo
spec:
 ## Omitting the minimumMasters fields will cause navigator to automatically
 ## determine a quorum of masters to use.
 # minimumMasters: 2
 version: 5.6.2

 securityContext:
 runAsUser: 1000

 pilotImage:
 repository: quay.io/jetstack/navigator-pilot-elasticsearch
 tag: v0.1.0
 pullPolicy: Always

 nodePools:
 - name: master
 replicas: 3

 roles:
 - master

 resources:
 requests:
 cpu: "500m"
 memory: "2Gi"
 limits:
 cpu: "1"
 memory: "3Gi"

 persistence:
 enabled: true
 # size of the volume
 size: 10Gi
 # storageClass of the volume
 storageClass: standard

 - name: mixed
 replicas: 2

 roles:
 - data
 - ingest

 resources:
 requests:
 cpu: "500m"
 memory: "2Gi"
 limits:
 cpu: "1"
 memory: "3Gi"

 persistence:
 enabled: true
 # size of the volume
 size: 10Gi
 # storageClass of the volume
 storageClass: standard

Node Pools

The Elasticsearch nodes in a Navigator ElasticsearchCluster are configured and grouped by role
and in Navigator, these groups of nodes are called nodepools.

Note

Other than the following whitelisted fields, updates to nodepool configuration are not allowed:

	replicas

	persistence

Configure Scheduler Type

If a custom scheduler [https://kubernetes.io/docs/tasks/administer-cluster/configure-multiple-schedulers/] type is required
(for example if you are deploying with stork [https://docs.portworx.com/scheduler/kubernetes/stork.html] or another storage provider),
this can be set on each nodepool:

spec:
 nodePools:
 - name: "ringnodes-1"
 schedulerName: "fancy-scheduler"
 - name: "ringnodes-2"
 schedulerName: "fancy-scheduler"

If the nodepool field is not specified, the default scheduler is used.

Managing Compute Resources for Clusters

Each nodepool has a resources attribute which defines the resource requirements and limits for each database node (pod) in that pool.

In the example above, each database node will request 0.5 CPU core and 2GiB of memory,
and will be limited to 1 CPU core and 3GiB of memory.

The resources field follows exactly the same specification as the Kubernetes Pod API
(pod.spec.containers[].resources).

See Managing Compute Resources for Containers [https://kubernetes.io/docs/concepts/configuration/manage-compute-resources-container/] for more information.

Pilots

Navigator creates one Pilot resource for every database node.
Pilot resources have the same name and name space as the Pod for the corresponding database node.
The Pilot.Spec is read by the pilot process running inside a Pod and contains its desired configuration.
The Pilot.Status is updated by the pilot process and contains the discovered state of a single database node.

Other Supplementary Resources

Navigator will also create a number of supplementary resources for each cluster.
For example it will create a serviceaccount, a role and a rolebinding
so that pilot pods in a cluster have read-only access the API resources containing cluster configuration,
and so that pilot pods can update the status of their corresponding Pilot resource and leader election configmap.

System Configuration for Elasticsearch Nodes

Elasticsearch requires important system configuration settings [https://www.elastic.co/guide/en/elasticsearch/reference/current/system-config.html] to be applied globally on the host operating system.

You must either ensure that Navigator is running in a Kubernetes cluster where all the nodes have been configured this way.
Or you could use node labels and node selectors [https://kubernetes.io/docs/concepts/configuration/assign-pod-node/] to ensure that the pods of an Elasticsearch cluster are only scheduled to nodes with the required configuration.

See Using Sysctls in a Kubernetes Cluster [https://kubernetes.io/docs/concepts/cluster-administration/sysctl-cluster/],
and Taints and Tolerations [https://kubernetes.io/docs/concepts/configuration/taint-and-toleration/] for more information.

One way to apply these settings is to deploy a DaemonSet that runs the configuration commands from within a privileged container on each Kubernetes node.
Here’s a simple example of such a DaemonSet:

$ kubectl apply -f docs/quick-start/sysctl-daemonset.yaml

Apply sysctl configuration required by Elasticsearch
#
This DaemonSet will re-run sysctl every 60s on all nodes.
#
XXX See CronJob daemonset which will allow scheduling one-shot or repeated
jobs across nodes:
https://github.com/kubernetes/kubernetes/issues/36601

apiVersion: "extensions/v1beta1"
kind: "DaemonSet"
metadata:
 name: "navigator-elasticsearch-sysctl"
 namespace: "kube-system"
spec:
 template:
 metadata:
 labels:
 app: "navigator-elasticsearch-sysctl"
 spec:
 containers:
 - name: "apply-sysctl"
 image: "busybox:latest"
 resources:
 limits:
 cpu: "10m"
 memory: "8Mi"
 requests:
 cpu: "10m"
 memory: "8Mi"
 securityContext:
 privileged: true
 command:
 - "/bin/sh"
 - "-c"
 - |
 set -o errexit
 set -o xtrace
 while sysctl -w vm.max_map_count=262144
 do
 sleep 60s
 done

docs/quick-start/sysctl-daemonset.yaml

Cassandra

Example cluster definition

Example CassandraCluster resource:

apiVersion: "navigator.jetstack.io/v1alpha1"
kind: "CassandraCluster"
metadata:
 name: "demo"
spec:
 version: "3.11.1"
 nodePools:
 - name: "region-1-zone-a"
 replicas: 3
 datacenter: "region-1"
 rack: "zone-a"
 persistence:
 enabled: true
 size: "5Gi"
 storageClass: "default"
 nodeSelector: {}
 resources:
 requests:
 cpu: "500m"
 memory: "2Gi"
 limits:
 cpu: "1"
 memory: "3Gi"
 image:
 repository: "cassandra"
 tag: "3"
 pullPolicy: "IfNotPresent"
 pilotImage:
 repository: "quay.io/jetstack/navigator-pilot-cassandra"
 tag: "v0.1.0"

Node Pools

The C* nodes in a Navigator cassandracluster are configured and grouped by rack and data center
and in Navigator, these groups of nodes are called nodepools.

All the C* nodes (pods) in a nodepool have the same configuration and the following sections describe the configuration options that are available.

Note

Other than the following whitelisted fields, updates to nodepool configuration are not allowed:

	replicas

	persistence

Configure Scheduler Type

If a custom scheduler [https://kubernetes.io/docs/tasks/administer-cluster/configure-multiple-schedulers/] type is required
(for example if you are deploying with stork [https://docs.portworx.com/scheduler/kubernetes/stork.html] or another storage provider),
this can be set on each nodepool:

spec:
 nodePools:
 - name: "ringnodes-1"
 schedulerName: "fancy-scheduler"
 - name: "ringnodes-2"
 schedulerName: "fancy-scheduler"

If the nodepool field is not specified, the default scheduler is used.

Cassandra Across Multiple Availability Zones

With rack awareness

Navigator supports running Cassandra with
rack and datacenter-aware replication [https://docs.datastax.com/en/cassandra/latest/cassandra/architecture/archDataDistributeReplication.html]
To deploy this, you must run a nodePool in each availability zone, and mark each as a separate Cassandra rack.

The
nodeSelector
field of a nodePool allows scheduling the nodePool to a set of nodes matching labels.
This should be used with a node label such as
failure-domain.beta.kubernetes.io/zone [https://kubernetes.io/docs/reference/labels-annotations-taints/#failure-domainbetakubernetesiozone].

The datacenter and rack fields mark all Cassandra nodes in a nodepool as being located in that datacenter and rack.
This information can then be used with the
NetworkTopologyStrategy [http://cassandra.apache.org/doc/latest/architecture/dynamo.html#network-topology-strategy]
keyspace replica placement strategy.
If these are not specified, Navigator will select an appropriate name for each: datacenter defaults to a static value, and rack defaults to the nodePool’s name.

As an example, the nodePool section of a CassandraCluster spec for deploying into GKE in europe-west1 with rack awareness enabled:

nodePools:
- name: "np-europe-west1-b"
 replicas: 3
 datacenter: "europe-west1"
 rack: "europe-west1-b"
 nodeSelector:
 failure-domain.beta.kubernetes.io/zone: "europe-west1-b"
 persistence:
 enabled: true
 size: "5Gi"
 storageClass: "default"
- name: "np-europe-west1-c"
 replicas: 3
 datacenter: "europe-west1"
 rack: "europe-west1-c"
 nodeSelector:
 failure-domain.beta.kubernetes.io/zone: "europe-west1-c"
 persistence:
 enabled: true
 size: "5Gi"
 storageClass: "default"
- name: "np-europe-west1-d"
 replicas: 3
 datacenter: "europe-west1"
 rack: "europe-west1-d"
 nodeSelector:
 failure-domain.beta.kubernetes.io/zone: "europe-west1-d"
 persistence:
 enabled: true
 size: "5Gi"
 storageClass: "default"

Without rack awareness

Since the default rack name is equal to the nodepool name,
simply set the rack name to the same static value in each nodepool to disable rack awareness.

A simplified example:

nodePools:
- name: "np-europe-west1-b"
 replicas: 3
 datacenter: "europe-west1"
 rack: "default-rack"
 nodeSelector:
 failure-domain.beta.kubernetes.io/zone: "europe-west1-b"
- name: "np-europe-west1-c"
 replicas: 3
 datacenter: "europe-west1"
 rack: "default-rack"
 nodeSelector:
 failure-domain.beta.kubernetes.io/zone: "europe-west1-c"
- name: "np-europe-west1-d"
 replicas: 3
 datacenter: "europe-west1"
 rack: "default-rack"
 nodeSelector:
 failure-domain.beta.kubernetes.io/zone: "europe-west1-d"

Managing Compute Resources for Clusters

Each nodepool has a resources attribute which defines the resource requirements and limits for each database node (pod) in that pool.

In the example above, each database node will request 0.5 CPU core and 2GiB of memory,
and will be limited to 1 CPU core and 3GiB of memory.

The resources field follows exactly the same specification as the Kubernetes Pod API
(pod.spec.containers[].resources).

See Managing Compute Resources for Containers [https://kubernetes.io/docs/concepts/configuration/manage-compute-resources-container/] for more information.

Connecting to Cassandra

If you apply the YAML manifest from the example above,
Navigator will create a Cassandra cluster with three C* nodes running in three pods.
The IP addresses assigned to each C* node may change when pods are rescheduled or restarted, but there are stable DNS names which allow you to connect to the cluster.

Services and DNS Names

Navigator creates two headless services [https://kubernetes.io/docs/concepts/services-networking/service/#headless-services] for every Cassandra cluster that it creates.
Each service has a corresponding DNS domain name:

	The nodes service (e.g. cass-demo-nodes) has a DNS domain name which resolves to the IP addresses of all the C* nodes in cluster (nodes 0, 1, and 2 in this example).

	The seeds service (e.g. cass-demo-seeds) has a DNS domain name which resolves to the IP addresses of only the seed nodes [http://cassandra.apache.org/doc/latest/faq/index.html#what-are-seeds] (node 0 in this example).

These DNS names have multiple HOST (A) records, one for each healthy C* node IP address.

Note

The DNS server only includes healthy [https://kubernetes.io/docs/tasks/configure-pod-container/configure-liveness-readiness-probes/] nodes when answering requests for these two services.

The DNS names can be resolved from any pod in the Kubernetes cluster:

	If the pod is in the same namespace as the Cassandra cluster you need only use the left most label of the DNS name. E.g. cass-demo-nodes.

	If the pod is in a different namespace you must use the fully qualified DNS name. E.g. cass-demo-nodes.my-namespace.svc.cluster.local.

Note

Read DNS for Services and Pods [https://kubernetes.io/docs/concepts/services-networking/dns-pod-service/] for more information about DNS in Kubernetes.

TCP Ports

The C* nodes all listen on the following TCP ports:

	9042: For CQL client connections.

	8080: For Prometheus client connections.

Connect using a CQL Client

Navigator configures all the nodes in a Cassandra cluster to listen on TCP port 9042 for CQL client connections [http://cassandra.apache.org/doc/latest/cql/].
And there are CQL drivers for most popular programming languages [http://cassandra.apache.org/doc/latest/getting_started/drivers.html].
Most drivers have the ability to connect to a single node and then discover all the other cluster nodes.

For example, you could use the Datastax Python driver [http://datastax.github.io/python-driver/] to connect to the Cassandra cluster as follows:

from cassandra.cluster import Cluster

cluster = Cluster(['cass-demo-nodes'], port=9042)
session = cluster.connect()
rows = session.execute('SELECT ... FROM ...')
for row in rows:
 print row

Note

The IP address to which the driver makes the initial connection
depends on the DNS server and operating system configuration.

Pilots

Navigator creates one Pilot resource for every database node.
Pilot resources have the same name and name space as the Pod for the corresponding database node.
The Pilot.Spec is read by the pilot process running inside a Pod and contains its desired configuration.
The Pilot.Status is updated by the pilot process and contains the discovered state of a single database node.

Other Supplementary Resources

Navigator will also create a number of supplementary resources for each cluster.
For example it will create a serviceaccount, a role and a rolebinding
so that pilot pods in a cluster have read-only access the API resources containing cluster configuration,
and so that pilot pods can update the status of their corresponding Pilot resource and leader election configmap.

The Life Cycle of a Navigator Cassandra Cluster

Changes to the configuration of an established Cassandra cluster must be carefully sequenced in order to maintain the health of the cluster.
So Navigator is conservative about the configuration changes that it supports.

Here are the configuration changes that are supported and the configuration changes which are not yet supported.

Supported Configuration Changes

Navigator supports the following changes to a Cassandra cluster:

	Create Cluster: Add all initially configured node pools and nodes.

	Scale Out: Increase CassandraCluster.Spec.NodePools[0].Replicas to add more C* nodes to a nodepool.

Navigator does not currently support any other changes to the Cassandra cluster configuration.

Unsupported Configuration Changes

The following configuration changes are not currently supported but will be supported in the near future:

	Minor Upgrade: Trigger a rolling Cassandra upgrade by increasing the minor and / or patch components of CassandraCluster.Spec.Version.

	Scale In: Decrease CassandraCluster.Spec.NodePools[0].Replicas to remove C* nodes from a nodepool.

	The following configuration changes are not currently supported:

	
	Add Rack: Add a nodepool for a new rack.

	Remove Rack: Remove a nodepool.

	Add Data Center: Add a nodepool for a new data center.

	Remove Data Center: Remove all the nodepools in a data center.

	Major Upgrade: Upgrade to a new major Cassandra version.

Create Cluster

When you first create a CassandraCluster resource, Navigator will add nodes, one at a time,
in order of NodePool and according to the process described in Scale Out (below).
The order of node creation is determined by the order of the entries in the CassandraCluster.Spec.NodePools list.
You can look at CassandraCluster.Status.NodePools to see the current state.

Scale Out

When you first create a cluster or when you increment the CassandraCluster.Spec.NodePools[i].ReplicaCount,
Navigator will add C* nodes, one at a time, until the desired number of nodes is reached.

Note

Navigator adds C* Nodes in series (one-at-a-time)
and it configures all C* nodes with auto_bootstrap: true [https://docs.datastax.com/en/cassandra/3.0/cassandra/configuration/configCassandra_yaml.html#configCassandra_yaml__auto_bootstrap].
These settings are chosen based on current best practice for Cassandra v3, described in the the following documents:
Bootstrapping Apache Cassandra Nodes [http://thelastpickle.com/blog/2017/05/23/auto-bootstrapping-part1.html]
and Best way to add multiple nodes to existing cassandra cluster [https://stackoverflow.com/questions/37283424/best-way-to-add-multiple-nodes-to-existing-cassandra-cluster].

You can look at CassandraCluster.Status.NodePools[<nodepoolname>].ReadyReplicas to see the current number of healthy C* nodes in each nodepool.

Development guide

Setting up

Install minikube and start a cluster with RBAC enabled:

minikube start --extra-config=apiserver.Authorization.Mode=RBAC

Work around kube-dns and helm having problems when RBAC is enabled in minikube:

kubectl create clusterrolebinding cluster-admin:kube-system \
 --clusterrole=cluster-admin \
 --serviceaccount=kube-system:default

Fetch the docker configuration:

eval $(minikube docker-env)

Build images in minikube’s docker:

make BUILD_TAG=dev all

Or quicker (skips tests):

make BUILD_TAG=dev build docker_build

Install helm into the minikube cluster:

helm init

Install navigator using the helm chart:

helm install contrib/charts/navigator \
 --set apiserver.image.pullPolicy=Never \
 --set apiserver.image.tag=dev \
 --set controller.image.pullPolicy=Never \
 --set controller.image.tag=dev \
 --name navigator --namespace navigator --wait

Now test navigator is deployed by creating a demo elasticsearch cluster. Edit
docs/quick-start/es-cluster-demo.yaml to change the pilot image tag to dev,
and set the pullPolicy to Never, then create the cluster:

kubectl create -f docs/quick-start/es-cluster-demo.yaml

Developing

Edit code, then build:

make BUILD_TAG=dev build docker_build

Or only for the component you’re interested in:

make BUILD_TAG=dev controller docker_build_controller

Kill the component you’re working on, for example the controller:

kubectl delete pods -n navigator -l app=navigator -l component=controller

Index

Configure Scheduler Type

If a custom scheduler [https://kubernetes.io/docs/tasks/administer-cluster/configure-multiple-schedulers/] type is required
(for example if you are deploying with stork [https://docs.portworx.com/scheduler/kubernetes/stork.html] or another storage provider),
this can be set on each nodepool:

spec:
 nodePools:
 - name: "ringnodes-1"
 schedulerName: "fancy-scheduler"
 - name: "ringnodes-2"
 schedulerName: "fancy-scheduler"

If the nodepool field is not specified, the default scheduler is used.

Managing Compute Resources for Clusters

Each nodepool has a resources attribute which defines the resource requirements and limits for each database node (pod) in that pool.

In the example above, each database node will request 0.5 CPU core and 2GiB of memory,
and will be limited to 1 CPU core and 3GiB of memory.

The resources field follows exactly the same specification as the Kubernetes Pod API
(pod.spec.containers[].resources).

See Managing Compute Resources for Containers [https://kubernetes.io/docs/concepts/configuration/manage-compute-resources-container/] for more information.

Pilots

Navigator creates one Pilot resource for every database node.
Pilot resources have the same name and name space as the Pod for the corresponding database node.
The Pilot.Spec is read by the pilot process running inside a Pod and contains its desired configuration.
The Pilot.Status is updated by the pilot process and contains the discovered state of a single database node.

Other Supplementary Resources

Navigator will also create a number of supplementary resources for each cluster.
For example it will create a serviceaccount, a role and a rolebinding
so that pilot pods in a cluster have read-only access the API resources containing cluster configuration,
and so that pilot pods can update the status of their corresponding Pilot resource and leader election configmap.

 _static/comment-bright.png

_static/comment-close.png

_static/ajax-loader.gif

_static/down.png

_static/comment.png

_static/down-pressed.png

_static/file.png

_static/minus.png

_images/arch.jpg
Kubernetes cluster

3]

Managed Database
lots (sidecars)

Interacts with database
Application-aware
Leader-elected (f necessary)

Database Controller
Navigator
Monitors Plots

Manages resource lifecycie
Leader-clected

Monitoring Engine
Prometheus

—0

@ ElasticsearchCluster
10GB PD

& &

[

_static/plus.png

nav.xhtml

 Table of Contents

 		
 Navigator - self managed DBaaS on Kubernetes

 		
 Quick-start

 		
 1) Install Navigator using Helm

 		
 2) Prepare your Kubernetes nodes

 		
 3) Create an Elasticsearch cluster

 		
 4) Scale the data nodes

 		
 Elasticsearch

 		
 Example cluster definition

 		
 Node Pools

 		
 Configure Scheduler Type

 		
 Managing Compute Resources for Clusters

 		
 Pilots

 		
 Other Supplementary Resources

 		
 System Configuration for Elasticsearch Nodes

 		
 Cassandra

 		
 Example cluster definition

 		
 Node Pools

 		
 Configure Scheduler Type

 		
 Cassandra Across Multiple Availability Zones

 		
 With rack awareness

 		
 Without rack awareness

 		
 Managing Compute Resources for Clusters

 		
 Connecting to Cassandra

 		
 Services and DNS Names

 		
 TCP Ports

 		
 Connect using a CQL Client

 		
 Pilots

 		
 Other Supplementary Resources

 		
 The Life Cycle of a Navigator Cassandra Cluster

 		
 Supported Configuration Changes

 		
 Unsupported Configuration Changes

 		
 Create Cluster

 		
 Scale Out

 		
 Development guide

 		
 Setting up

 		
 Developing

_static/up.png

_static/up-pressed.png

