
NAPALM Documentation
Release 1

David Barroso

Aug 13, 2017

Contents

1 Documentation 3

Python Module Index 33

i

ii

NAPALM Documentation, Release 1

YANG (RFC6020) is a data modelling language, it’s a way of defining how data is supposed to look like. The napalm-
yang library provides a framework to use models defined with YANG in the context of network management. It
provides mechanisms to transform native data/config into YANG and vice versa.

Contents 1

https://tools.ietf.org/html/rfc6020
https://github.com/napalm-automation/napalm-yang
https://github.com/napalm-automation/napalm-yang

NAPALM Documentation, Release 1

2 Contents

CHAPTER 1

Documentation

Quickstart

Tutorial

You can take a look to the following tutorial to see what this is about and how to get started.

Installation

To install napalm-yang you can use pip as with any other driver:

pip install -U napalm-yang

YANG Basics

It’s not really necessary to fully understand how YANG works to work with napalm-yang but understanding the
language used by YANG can be beneficial to better understand the documentation and the benefits of it.

Here is a list or resources to start learning YANG:

• YANG for dummies

Supported Models

Below you can find all the YANG models supported and which profiles implements which ones. Note that all the
iplementations are not necessarily complete, in the next section you can find links to each individual profile so you
can instpect them yourself

3

https://github.com/napalm-automation/napalm-yang/blob/develop/interactive_demo/tutorial.ipynb
https://napalm-automation.net/YANG-for-dummies/

NAPALM Documentation, Release 1

Profiles

Profiles are responsible from mapping native data/configuration to a YANG model and viceversa. Below you can find
links to all the profiles so you can inspect what each one does.

API

Models

Models are generated by pyangbind so it’s better to check it’s documentation for up to date information: http:
//pynms.io/pyangbind/generic_methods/

Utils

napalm_yang.utils.model_to_dict(model, mode=’‘)
Given a model, return a representation of the model in a dict.

This is mostly useful to have a quick visual represenation of the model.

Parameters

• model (PybindBase) – Model to transform.

• mode (string) – Whether to print config, state or all elements (“” for all)

Returns A dictionary representing the model.

Return type dict

Examples

>>> config = napalm_yang.base.Root()
>>>
>>> # Adding models to the object
>>> config.add_model(napalm_yang.models.openconfig_interfaces())
>>> config.add_model(napalm_yang.models.openconfig_vlan())
>>> # Printing the model in a human readable format
>>> pretty_print(napalm_yang.utils.model_to_dict(config))
>>> {
>>> "openconfig-interfaces:interfaces [rw]": {
>>> "interface [rw]": {
>>> "config [rw]": {
>>> "description [rw]": "string",
>>> "enabled [rw]": "boolean",
>>> "mtu [rw]": "uint16",
>>> "name [rw]": "string",
>>> "type [rw]": "identityref"
>>> },
>>> "hold_time [rw]": {
>>> "config [rw]": {
>>> "down [rw]": "uint32",
>>> "up [rw]": "uint32"

(trimmed for clarity)

4 Chapter 1. Documentation

http://pynms.io/pyangbind/generic_methods/
http://pynms.io/pyangbind/generic_methods/

NAPALM Documentation, Release 1

napalm_yang.utils.diff(f, s)
Given two models, return the difference between them.

Parameters

• f (Pybindbase) – First element.

• s (Pybindbase) – Second element.

Returns A dictionary highlighting the differences.

Return type dict

Examples

>>> diff = napalm_yang.utils.diff(candidate, running)
>>> pretty_print(diff)
>>> {
>>> "interfaces": {
>>> "interface": {
>>> "both": {
>>> "Port-Channel1": {
>>> "config": {
>>> "mtu": {
>>> "first": "0",
>>> "second": "9000"
>>> }
>>> }
>>> }
>>> },
>>> "first_only": [
>>> "Loopback0"
>>>],
>>> "second_only": [
>>> "Loopback1"
>>>]
>>> }
>>> }
>>> }

Root

class napalm_yang.base.Root
Bases: object

This is a container you can use as root for your other models.

Examples

>>> config = napalm_yang.base.Root()
>>>
>>> # Adding models to the object
>>> config.add_model(napalm_yang.models.openconfig_interfaces())
>>> config.add_model(napalm_yang.models.openconfig_vlan())

1.5. API 5

NAPALM Documentation, Release 1

add_model(model, force=False)
Add a model.

The model will be asssigned to a class attribute with the YANG name of the model.

Parameters

• model (PybindBase) – Model to add.

• force (bool) – If not set, verify the model is in SUPPORTED_MODELS

Examples

>>> import napalm_yang
>>> config = napalm_yang.base.Root()
>>> config.add_model(napalm_yang.models.openconfig_interfaces)
>>> config.interfaces
<pyangbind.lib.yangtypes.YANGBaseClass object at 0x10bef6680>

compliance_report(validation_file=’validate.yml’)
Return a compliance report. Verify that the device complies with the given validation file and writes a
compliance report file. See https://napalm.readthedocs.io/en/latest/validate.html.

elements()

get(filter=False)
Returns a dictionary with the values of the model. Note that the values of the leafs are YANG classes.

Parameters filter (bool) – If set to True, show only values that have been set.

Returns A dictionary with the values of the model.

Return type dict

Example

>>> pretty_print(config.get(filter=True))
>>> {
>>> "interfaces": {
>>> "interface": {
>>> "et1": {
>>> "config": {
>>> "description": "My description",
>>> "mtu": 1500
>>> },
>>> "name": "et1"
>>> },
>>> "et2": {
>>> "config": {
>>> "description": "Another description",
>>> "mtu": 9000
>>> },
>>> "name": "et2"
>>> }
>>> }
>>> }
>>> }

6 Chapter 1. Documentation

https://napalm.readthedocs.io/en/latest/validate.html

NAPALM Documentation, Release 1

load_dict(data, overwrite=False)
Load a dictionary into the model.

Parameters

• data (dict) – Dictionary to loead

• overwrite (bool) – Whether the data present in the model should be overwritten by
the

• in the dictor not. (data) –

Examples

>>> vlans_dict = {
>>> "vlans": { "vlan": { 100: {
>>> "config": {
>>> "vlan_id": 100, "name": "production"}},
>>> 200: {
>>> "config": {
>>> "vlan_id": 200, "name": "dev"}}}}}
>>> config.load_dict(vlans_dict)
>>> print(config.vlans.vlan.keys())
... [200, 100]
>>> print(100, config.vlans.vlan[100].config.name)
... (100, u'production')
>>> print(200, config.vlans.vlan[200].config.name)
... (200, u'dev')

parse_config(device=None, profile=None, native=None, attrs=None)
Parse native configuration and load it into the corresponding models. Only models that have been added
to the root object will be parsed.

If native is passed to the method that’s what we will parse, otherwise, we will use the device to
retrieve it.

Parameters

• device (NetworkDriver) – Device to load the configuration from.

• profile (list) – Profiles that the device supports. If no profile is passed it will be
read from device.

• native (list of strings) – Native configuration to parse.

Examples

>>> # Load from device
>>> running_config = napalm_yang.base.Root()
>>> running_config.add_model(napalm_yang.models.openconfig_interfaces)
>>> running_config.parse_config(device=d)

>>> # Load from file
>>> with open("junos.config", "r") as f:
>>> config = f.read()
>>>
>>> running_config = napalm_yang.base.Root()

1.5. API 7

NAPALM Documentation, Release 1

>>> running_config.add_model(napalm_yang.models.openconfig_interfaces)
>>> running_config.parse_config(native=config, profile="junos")

parse_state(device=None, profile=None, native=None, attrs=None)
Parse native state and load it into the corresponding models. Only models that have been added to the root
object will be parsed.

If native is passed to the method that’s what we will parse, otherwise, we will use the device to
retrieve it.

Parameters

• device (NetworkDriver) – Device to load the configuration from.

• profile (list) – Profiles that the device supports. If no profile is passed it will be
read from device.

• native (list string) – Native output to parse.

Examples

>>> # Load from device
>>> state = napalm_yang.base.Root()
>>> state.add_model(napalm_yang.models.openconfig_interfaces)
>>> state.parse_config(device=d)

>>> # Load from file
>>> with open("junos.state", "r") as f:
>>> state_data = f.read()
>>>
>>> state = napalm_yang.base.Root()
>>> state.add_model(napalm_yang.models.openconfig_interfaces)
>>> state.parse_config(native=state_data, profile="junos")

to_dict(filter=True)
Returns a dictionary with the values of the model. Note that the values of the leafs are evaluated to python
types.

Parameters filter (bool) – If set to True, show only values that have been set.

Returns A dictionary with the values of the model.

Return type dict

Example

>>> pretty_print(config.to_dict(filter=True))
>>> {
>>> "interfaces": {
>>> "interface": {
>>> "et1": {
>>> "config": {
>>> "description": "My description",
>>> "mtu": 1500
>>> },
>>> "name": "et1"

8 Chapter 1. Documentation

NAPALM Documentation, Release 1

>>> },
>>> "et2": {
>>> "config": {
>>> "description": "Another description",
>>> "mtu": 9000
>>> },
>>> "name": "et2"
>>> }
>>> }
>>> }
>>> }

translate_config(profile, merge=None, replace=None)
Translate the object to native configuration.

In this context, merge and replace means the following:

•Merge - Elements that exist in both self and merge will use by default the values in merge
unless self specifies a new one. Elements that exist only in self will be translated as they are and
elements present only in merge will be removed.

•Replace - All the elements in replace will either be removed or replaced by elements in self.

You can specify one of merge, replace or none of them. If none of them are set we will just translate
configuration.

Parameters

• profile (list) – Which profiles to use.

• merge (Root) – Object we want to merge with.

• replace (Root) – Object we want to replace.

Developers Guide

WIP. Information here is a bit chaotic, sorry about that.

Profiles

In order to correctly map YANG objects to native configuration and vice versa, napalm-yang uses the concept of
profiles. Profiles, identify the type of device you are dealing with, which can vary depending on the OS, version and/or
platform you are using.

If you are using a napalm driver and have access to your device, you will have access to the profile property which
you can pass to any function that requires to know the profile. If you are not using a napalm driver or don’t have access
to the device, a profile is just a list of strings so you can just specify it directly. For example:

Without access to the device
model.parse_config(profile=["junos"], config=my_configuration)

With access
with driver(hostname, username, password) as d:

model.parse_config(device=d)

With access but overriding profile

1.6. Developers Guide 9

NAPALM Documentation, Release 1

with driver(hostname, username, password) as d:
model.parse_config(device=d, profile=["junos13", "junos"])

Note: As you noticed a device may have multiple profiles. When that happens, each model that is parsed will loop
through the profiles from left to right and use the first profile that implements that model (note that a YANG model is
often comprised of multiple modules). This is useful as there might be small variances between different systems but
not enough to justify reimplementing everything.

You can find the profiles here but what exactly is a profile? A profile is a bunch of YAML files that follows the structure
of a YANG model and describes two things:

1. How to parse native configuration/state and map it into a model.

2. How to translate a model and map it into native configuration.

For example, here you can see how to map native configuration from an EOS device into the
openconfig-interface model and here how to map the model to native configuration.

As you can see it’s not extremely difficult to understand what they are doing, in the next section we will learn how to
write our own profiles.

Writing Profiles

As it’s been already mentioned, a profile consists of a bunch of YAML files that describe how to map native configura-
tion and how to translate an object into native configuration. In order to read native configuration we will use parsers.
To translate a YANG model into native configuration we will use translators.

Both parsers and translators follow three basic rules:

1. One directory per module.

2. One file per model.

3. Exact same representation of the model inside the file:

For example:

$ tree napalm_yang/mappings/eos/parsers/config
napalm_yang/mappings/eos/parsers/config
- napalm-if-ip
| - secondary.yaml
- openconfig-if-ip
| - ipv4.yaml
- openconfig-interfaces
| - interfaces.yaml
- openconfig-vlan

- routed-vlan.yaml
- vlan.yaml

4 directories, 5 files
$ cat napalm_yang/mappings/eos/parsers/config/openconfig-vlan/vlan.yaml

metadata:

(trimmed for brevity)

vlan:
(trimmed for brevity)

10 Chapter 1. Documentation

https://github.com/napalm-automation/napalm-yang/tree/develop/napalm_yang/mappings
https://github.com/napalm-automation/napalm-yang/blob/develop/napalm_yang/mappings/eos/parsers/config/openconfig-interfaces/interfaces.yaml
https://github.com/napalm-automation/napalm-yang/blob/develop/napalm_yang/mappings/eos/translators/openconfig-interfaces/interfaces.yaml

NAPALM Documentation, Release 1

config:
(trimmed for brevity)
vlan_id:

(trimmed for brevity)

If we check the content of the file vlan.yaml we can clearly see two parts:

• metadata - This part specifies what parser or translator we want to use. There are several options available
depending on the type of data we are parsing from or translating to. Additionally, we need to provide some
options that the parser/translator might need. For example:

metadata:
processor: XMLParser
execute:

- method: _rpc
args: []
kwargs:

get: "<get-configuration/>"

In this case we are using the XMLParser parser. In order to get the data we need from the device we have to call the
method _rpc with the args and kwargs parameters. This is, by the way, an RPC call for a junos device.

• vlan - This is the part that follows the model specification. In this case is vlan but in others it might be
interfaces, addressess or something else, this will be model dependent but it’s basically whatever
it’s not metadata. This part will follow the model specification and add rules on each attribute to tell the
parser/translator what needs to be done. For example:

vlan:
_process: unnecessary
config:

_process: unnecessary
vlan_id:

_process:
- mode: xpath
xpath: "vlan-id"
from: "{{ parse_bookmarks['parent'] }}"

We have to specify the _process attribute at each step, which can either be unnecessary, ‘‘ not_implemented‘‘
or a list of rules:

• not_implemented means that we haven’t added support to that field. In addition it will stop parsing that
branch of the tree.

• unnecessary means that we don’t need that field. This is common in containers as you usually don’t need to
process them at all.

• list of rules. See Parsers and Translators.

Something else worth noting is that each rule inside _process is evaluated as a jinja2 template so you can do
variable substitutions, evaluations, etc...

Parsers

Parsers are responsible for mapping native configuration/data to a YANG model.

1.6. Developers Guide 11

NAPALM Documentation, Release 1

Processing data

The first thing you have to know is what type of data you are dealing with and then select the appropiate parser. Each
one initializes the data and makes it available in similar ways but you have to be aware of the particularities of each
one.

You can select the parser with the metadata field:

metadata:

processor: TextTree
execute:

- method: cli
kwargs:

commands: ["show running-config all"]

That block not only specifies which parser to use but how to retrieve the data necessary for the parser to operate for
that particular model.

Available processors are:

JSONParser

TBD

XMLParser

TBD

TextParser

TBD

Rule Directives

Keys

When a list is traversed you will always have available a key with name $(attribute)_key. In addition, you will
have parent_key as the key of the immediate parent object. Example.

Bookmarks

Bookmarks are points of interest in the configuration. Usually, you will be gathering blocks of configurations and
parsing on those as you progress. However, sometimes the data you need is somewhere else. For those cases you can
use the bookmarks within the from field to pick the correct block of configuration.

Bookmarks are created automatically according to these rules:

• At the begining of each model a bookmark of name root_$first_attribute_name will point to the list
of data that the parser requires. Example

• When a container is traversed, a bookmark will be created with name $attribure_name

12 Chapter 1. Documentation

https://github.com/napalm-automation/napalm-yang/blob/develop/napalm_yang/mappings/eos/parsers/config/openconfig-interfaces/interfaces.yaml#L63
https://github.com/napalm-automation/napalm-yang/blob/develop/napalm_yang/mappings/eos/parsers/config/openconfig-interfaces/interfaces.yaml#L14

NAPALM Documentation, Release 1

• When a list is traveresed, each element of the list will have its own bookmark with name $attribute_name.
$key.

extra_vars

The regexp directive lets you capture any arbitary amount of information you want. All captured groups will be
avaible to you inside the extra_vars.$attribute ($attribute is the attribute where the additional informa-
tion was captured). Example.

Examples

Examples - Lists

Parsing interfaces in industry standard CLIs (simple case)

When TexTree parses industry standard CLIs it will generate a dictionary similar to:

interface:
Fa1:

'#standalone': true
'#text': no shutdown
'no':
'#text': shutdown
shutdown:
'#standalone': true

other data relevant to the interface
Fa2:

'#standalone': true
'#text': shutdown
shutdown:
'#standalone': true

other data relevant to the interface

This means that to parse the interfaces we only have to advance to the interface key and map the keys to the
YANG model key and get the block for further processing.

Original data

interface Port-Channel1
shutdown

!
interface Port-Channel1.1

shutdown
!
interface Ethernet1

shutdown
!
interface Ethernet2

no shutdown
!
interface Ethernet2.1

no shutdown
!

1.6. Developers Guide 13

https://github.com/napalm-automation/napalm-yang/blob/develop/napalm_yang/mappings/eos/parsers/config/openconfig-if-ip/ipv4.yaml#L27

NAPALM Documentation, Release 1

interface Ethernet2.2
no shutdown

!
interface Loopback1

no shutdown
!
interface Management1

no shutdown
!

Parser rule

- from: root_interfaces.0
path: interface
regexp: ^(?P<value>(\w|-)*\d+(\/\d+)*)$

• regexp is useful to filter out data that we don’t want to process. For example, in the example above we are
basically filtering subinterfaces as they will be processed later. Note that the regular expression has to capture a
value.

• path is simply telling the parser that the data is looking for is inside the interface key.

• from is just telling the parser where to get the data from. This is the first element processed by the profile so
there is no information that can be inferred yet.

Result

Note that extra_vars will be populated with anything you capture with the regular expression. This might be
handier when parsing more complex keys like ip addresses which might include the prefix length.

Note as well that we didn’t get any subinterface thanks to regexp.

Example 1

extra_vars: {}
keys: {}

Parsing subinterfaces in industry standard CLIs (variables)

When we were parsing interfaces we skipped the subinterfaces. In order to pass subinterfaces we can leverage on the
interface_key to build a dynamic regular expression.

Original data

interface Port-Channel1
shutdown

!
interface Port-Channel1.1

shutdown

14 Chapter 1. Documentation

NAPALM Documentation, Release 1

!
interface Ethernet1

shutdown
!
interface Ethernet2

no shutdown
!
interface Ethernet2.1

no shutdown
!
interface Ethernet2.2

no shutdown
!
interface Loopback1

no shutdown
!
interface Management1

no shutdown
!

Parser rule

- path: interface
regexp: '{{interface_key}}\.(?P<value>\d+)'

Because we are parsing a subinterface which is a child of an interface, all the keys and extra_vars that we previously
collected in the current interface will be available. We will use {{ interface_key }} in our regular expression
to match only our current parent interface.

Result

Note that thanks to the variable used in the regular expression we are only capturing the relevant subinterface for the
current interface. In the second case it turns out there are no subinterfaces.

Example 1

extra_vars: {}
keys:

interface_key: Ethernet2

Example 2

extra_vars: {}
keys:

interface_key: Loopback1

1.6. Developers Guide 15

NAPALM Documentation, Release 1

Parsing IP addresses in EOS (extracting extra information from a key)

IP addresses in EOS contain two pieces of information; the address and it’s prefix-length. You can use regexp to
select the relevant part for the key and any additional information you may need.

Original data

ip address 192.168.1.1/24
ip address 192.168.2.1/24 secondary
ip address 172.20.0.1/24 secondary

Parser rule

- path: ip.address
regexp: (?P<value>(?P<ip>.*))\/(?P<prefix>\d+)

The regular expression is doing two things; use the <value> to capture which part should be used for the key and
then capture as well all the useful information so we have it available for later use in the extra_vars field.

Result

Note that extra_vars is populated with the information we captured with regexp..

Example 1

extra_vars: {}
keys: {}

Parsing IP addresses in IOS (flattening dictionaries)

Sometimes the information is unnecessarily nested. This is the case for the ip address configuration in IOS. Let’s see
how that data might look like after processing it with the TextParser:

ip:
address:

192.168.2.1:
255.255.255.0:

secondary:
"#standalone": true

192.168.1.1": {
255.255.255.0:

"#standalone": true
172.20.0.1:

255.255.255.0:
secondary":

"#standalone": true

Luckily, we can solve this issue with the path resolver.

16 Chapter 1. Documentation

NAPALM Documentation, Release 1

Original data

ip address 192.168.1.1 255.255.255.0
ip address 192.168.2.1 255.255.255.0 secondary
ip address 172.20.0.1 255.255.255.0 secondary

Parser rule

- key: prefix
path: ip.address.?prefix.?mask
regexp: ^(?P<value>\d+\.\d+\.\d+\.\d+)

We specify a regexp here to make sure we don’t parse lines like ip address dhcp.

When path contains ?identifier what it actually does is flatten that key and assign the value of that key to a new
key named identifier. For example, with the nested structure and the path we have right now we would get the
following:

- prefix: 192.168.1.1
mask: 255.255.255.0
'#standalone': true

- prefix: 192.168.2.1
mask: 255.255.255.0
secondary:
'#standalone': true

- prefix: 172.20.0.1
mask: 255.255.255.0
prefix: 172.20.0.1
secondary:
'#standalone': true

Result

Example 1

extra_vars: {}
keys: {}

Parse BGP neighbors in Junos (nested lists)

XML often consists of lists of lists of lists which sometimes makes it challenging to nest things in a sane manner.
Hopefully, the path can solve this issue as well.

Original data

<some_configuration_block>
<group>

<name>my_peers</name>
<neighbor>

1.6. Developers Guide 17

NAPALM Documentation, Release 1

<name>192.168.100.2</name>
<description>adsasd</description>
<peer-as>65100</peer-as>

</neighbor>
<neighbor>

<name>192.168.100.3</name>
<peer-as>65100</peer-as>

</neighbor>
</group>
<group>

<name>my_other_peers</name>
<neighbor>

<name>172.20.0.1</name>
<peer-as>65200</peer-as>

</neighbor>
</group>

</some_configuration_block>

Parser rule

- key: neighbor
path: group.?peer_group:name.neighbor.?neighbor:name

Note that this time the path contains a couple of ?identifier:field. That pattern is used to flatten lists and
what it does is assign the contents of that sublist to the parent object and also assign the value of field to a new key
called identifier. For example, the XML above will be converted to the following structure:

- name:
'#text': my_peers

peer-as:
'#text': 65100

neighbor: 192.168.100.3
peer_group: my_peers

- name:
'#text': my_peers

description:
'#text': adsasd

peer-as:
'#text': 65100

neighbor: 192.168.100.2
peer_group: my_peers

- name:
'#text': my_other_peers

peer-as:
'#text': 65200

neighbor: 172.20.0.1
peer_group: my_other_peers

Result

18 Chapter 1. Documentation

NAPALM Documentation, Release 1

Example 1

extra_vars: {}
keys: {}

Parsing protocols (down the rabbit hole)

Some parsing might require more complex rules. In this example we can see how to combine multiple rules ran under
different circumstances.

Original data

ip route 10.0.0.0/24 192.168.0.2 10 tag 0
ip route vrf devel 10.0.0.0/24 192.168.2.2 1 tag 0
!
router bgp 65001

router-id 1.1.1.1
address-family ipv4

default neighbor 192.168.0.200 activate
!
address-family ipv6

default neighbor 192.168.0.200 activate
vrf devel

router-id 3.3.3.3
!
router pim sparse-mode

vrf devel
ip pim log-neighbor-changes

!

Parser rule

- key: '{{ protocol }} {{ protocol }}'
path: router.?protocol.?process_id
regexp: (?P<value>bgp bgp)
when: '{{ network_instance_key == ''global'' }}'

- from: root_network-instances.0
key: '{{ protocol }} {{ protocol }}'
path: router.?protocol.?process_id.vrf.{{ network_instance_key }}
regexp: (?P<value>bgp bgp)
when: '{{ network_instance_key != ''global'' }}'

- from: root_network-instances.0
key: '{{ ''static static'' }}'
path: ip.route

When multiple rules are specified all of them will be executed and the results will be concatenated. You can combine
this technique with when to specify how to parse the data under different circumstances (see rules #1 and #2) or just
to add more ways of parsing data (see rule #3)

Note also that we are also dynamically building the key to follow the format that the YANG model requires, which in
this case is as simple (and weird) as just specifying a name for our protocol (which in our case will be the same as the
protocool).

1.6. Developers Guide 19

NAPALM Documentation, Release 1

It also worth noting that we are using a regular expression to match only on BGP. We are doing that to avoid processing
protocols that we are not (yet) supporting in this profile.

Result

The results below might look intimidating but it’s basically the relevant configuration for BGP and for the static routes
for the current network_instance.

Example 1

extra_vars: {}
keys:

network_instance_key: global

Example 2

extra_vars: {}
keys:

network_instance_key: devel

Parsing json interfaces IOS-XE (jsonrpc)

IOS-XE groups interfaces by type.

Original data

{
"Cisco-IOS-XE-native:interface": {
"GigabitEthernet": [

{
"name": "1",
"ip": {
"address": {

"dhcp": {
}

}
},
"mop": {
"enabled": false

},
"Cisco-IOS-XE-ethernet:negotiation": {
"auto": true

}
},
{

"name": "2",
"description": "GbE 2",
"ip": {
"no-address": {

20 Chapter 1. Documentation

NAPALM Documentation, Release 1

"address": false
}

},
"mop": {
"enabled": false

},
"Cisco-IOS-XE-ethernet:negotiation": {
"auto": true

}
},
{

"name": "2.10",
"description": "GbE 2.10",
"encapsulation": {
"dot1Q": {

"vlan-id": 10
}

},
"vrf": {
"forwarding": "internal"

},
"ip": {
"address": {

"primary": {
"address": "172.16.10.1",
"mask": "255.255.255.0"

}
}

}
}
],

"Loopback": [
{

"name": 0,
"description": "Loopback Zero",
"ip": {
"address": {

"primary": {
"address": "100.64.0.1",
"mask": "255.255.255.255"

}
}

},
"ipv6": {
"address": {

"prefix-list": [
{
"prefix": "2001:DB8::1/64"

}
]

}
}

},
{

"name": 1,
"description": "Loopback One",
"vrf": {
"forwarding": "mgmt"

1.6. Developers Guide 21

NAPALM Documentation, Release 1

},
"ip": {
"no-address": {
"address": false

}
}

}
]

}
}

Parser rule

- from: root_interfaces.0
key: '{{ type }}{{ name }}'
path: Cisco-IOS-XE-native:interface.?type
regexp: ^(?P<value>(\w|-)*\d+(\/\d+)*)$

Result

Example 1

extra_vars: {}
keys: {}

Translators

Translators are responsible for transforming a model into native configuration.

Special actions

Most actions depend on the parser you are using, however, some are common to all of them:

unnecessary

This makes the parser skip the field and continue processing the tree.

not_implemented

This makes the parser stop processing the tree underneath this value. For example:

field_1:
process: unnecessary

field_2:
process: not_implemented
subfield_1:

process: ...

22 Chapter 1. Documentation

NAPALM Documentation, Release 1

subfield_2:
process: ...

field_3:
...

The not_implemented action will stop the parser from processing subfield_1 and subfield_2 and move
directly onto field_3.

gate

Works like not_implemented but accepts a condition. For example:

protocols:
protocol:

bgp:
_process:
- mode: gate
when: "{{ protocol_key != 'bgp bgp' }}"

global:
...

The snippet above will only process the bgp subtree if the condition is not met.

Special fields

When translating an object, some fields might depend on the translator you are using but some will available regardless.
Some may be even be mandatory.

mode

• mandatory: yes

• description: which parsing/translation action to use for this particular field

• example: translate description attribute of an interface to native configuration:

description:
_process:

- mode: element
value: " description {{ model }}\n"
negate: " default description"

when

• mandatory: no

• description: the evaluation of this field will determine if the action is executed or skipped. This action is
probably not very useful when parsing but it’s available if you need it.

• example: configure switchport on IOS devices only if the interface is not a loopback or a management
interface:

1.6. Developers Guide 23

NAPALM Documentation, Release 1

ipv4:
_process: unnecessary
config:

_process: unnecessary
enabled:

_process:
- mode: element
value: " no switchport\n"
negate: " switchport\n"
in: "interface.{{ interface_key }}"
when: "{{ model and interface_key[0:4] not in ['mana', 'loop'] }

→˓}"

in

• mandatory: no

• description: where to add the configuration. Sometimes the configuration might have to be installed on a
different object from the one you are parsing. For example, when configuring a tagged subinterface on junos
you will have to add also a vlan-tagging option on the parent interface. On IOS/EOS, when configuring
interfaces, you have to also add the configuration in the root of the configuration and not as a child of the parent
interface:

vlan:
_process: unnecessary
config:

_process: unnecessary
vlan_id:

_process:
- mode: element
element: "vlan-tagging"
in: "interface.{{ interface_key }}" # <--- add element to

→˓parent interface
when: "{{ model > 0 }}"
value: null

- mode: element
element: "vlan-id"
when: "{{ model > 0 }}"

(...)
subinterface:

_process:
mode: container
key_value: "interface {{ interface_key}}.{{ subinterface_key }}\n"
negate: "no interface {{ interface_key}}.{{ subinterface_key }}\n"
in: "interfaces" # <--- add element to root of

→˓configuration

Note: This field follows the same logic as the yang_special_field_bookmarks special field.

continue_negating

• mandatory: no

24 Chapter 1. Documentation

NAPALM Documentation, Release 1

• description: this option, when added to a container, will make the framework to also negate children.

• example: we can use as an example the “network-instances” model. In the model, BGP is inside the
network-instance container, however, in EOS and other platforms that BGP configuration is decoupled
from the VRF, so in order to tell the framework to delete also the direct children you will have to use this option.
For example:

network-instance:
_process:

- mode: container
key_value: "vrf definition {{ network_instance_key }}\n"
negate: "no vrf definition {{ network_instance_key }}\n"
continue_negating: true
end: " exit\n"
when: "{{ network_instance_key != 'global' }}"

...
protocols:

_process: unnecessary
protocol:

_process:
- mode: container
key_value: "router bgp {{ model.bgp.global_.config.as_ }}\n vrf {

→˓{ network_instance_key}}\n"
negate: "router bgp {{ model.bgp.global_.config.as_ }}\n no vrf {

→˓{ network_instance_key}}\n"
end: " exit\n"
when: "{{ protocol_key == 'bgp bgp' and network_instance_key !=

→˓'global' }}"
replace: false
in: "network-instances"

The example above will generate:

no vrf definition blah
router bgp ASN

no vrf blah

Without continue_negating it would just generate:

no vrf definition blah

Special variables

keys

See yang_special_field_keys.

model

This is the current model/attribute being translated. You have the entire object at your disposal, not only it’s value so
you can do things like:

vlan_id:
_process:

1.6. Developers Guide 25

NAPALM Documentation, Release 1

- mode: element
value: " encapsulation dot1q vlan {{ model }}\n"

Or:

config:
_process: unnecessary
ip:

_process: unnecessary
prefix_length:

_process:
- mode: element
value: " ip address {{ model._parent.ip }}/{{ model }} {{ 'secondary

→˓' if model._parent.secondary else '' }}\n"
negate: " default ip address {{ model._parent.ip }}/{{ model }}\n"

XMLTranslator

XMLTranslator is responsible for translating a model into XML configuration.

Metadata

• xml_root - Set this value on the root of the model to instantiate the XML object.

For example:

metadata:

processor: XMLTranslator
xml_root: configuration

This will instantiate the XML object <configuration/>.

Container - container

Creates a container.

Arguments:

• container (mandatory) - Container name.

• replace (optional) - True/Flase, depending Whether this element has to be replaced in case of merge/replace or
it’s not necessary (remember XML is hierarchical, which means you can unset things directly in the root).

Example:

Create the interfaces container:

_process:
. mode: container

container: interfaces
replace: true

26 Chapter 1. Documentation

NAPALM Documentation, Release 1

List - container

For each element of the list, create a container.

Arguments:

• container (mandatory) - Name of container to create.

• key_element (mandatory) - Lists require a key element, this is the name of the element.

• key_value (mandatory) - Key element value.

Example:

Create interfaces:

interface:
_process:
. mode: container
container: interface
key_element: name
key_value: "{{ interface_key }}"

This will result elements such as:

<interface>
<name>ge-0/0/0</name>

</interface>
<interface>
<name>lo0</name>

</interface>

Leaf - element

Adds an element to a container.

Arguments:

• element (mandatory): Element name.

• value (optional): Override value. Default is value of the object.

Example 1:

Configure description:

description:
_process:

- mode: element
element: description

Example 2:

Enable or disable an interface:

enabled:
_process:

- mode: element
element: "disable"
when: "{{ not model }}"
value: null

1.6. Developers Guide 27

NAPALM Documentation, Release 1

We override the value and set it to null because to disable we just have to create the element, we don’t
have to set any value.

Example 3:

Configure an IP address borrowing values from other fields:

config:
_process: unnecessary
ip:

_process: unnecessary
prefix_length:

_process:
- mode: element
element: name
value: "{{ model._parent.ip }}/{{ model }}"
when: "{{ model }}"

TextTranslator

TextTranslator is responsible of translating a model into text configuration.

Metadata

• root - Set to true if this is the root of the model.

List - container

Create/Removes each element of the list.

Arguments:

• key_value (mandatory): How to create the element.

• negate (mandatory): How to eliminate/default the element.

• replace (optional): Whether the element has to be defaulted or not during the replace operation.

• end (optional): Closing command to signal end of element

Example 1:

Create/Default interfaces:

interfaces:
_process: unnecessary
interface:

_process:
. mode: container
key_value: "interface {{ interface_key }}\n"
negate: "{{ 'no' if interface_key[0:4] in ['Port', 'Loop'] else

→˓'default' }} interface {{ interface_key }}\n"
end: " exit\n"

Example 2:

Configure IP addresses. As the parent interface is defaulted already, don’t do it again:

28 Chapter 1. Documentation

NAPALM Documentation, Release 1

address:
_process:
. mode: container
key_value: " ip address {{ model.config.ip }} {{ model.config.

→˓prefix_length|cidr_to_netmask }}{{ ' secondary' if model.config.secondary
→˓else '' }}\n"

negate: " default ip address {{ model.config.ip }} {{ model.
→˓config.prefix_length|cidr_to_netmask }}{{ ' secondary' if model.config.
→˓secondary else '' }}\n"

replace: false

Leaf - element

Configures an attribute.

Arguments:

• value (mandatory): How to configure the attribute

• negate (mandatory): How to default the attribute

Example 1:

Configure description:

description:
_process:

- mode: element
value: " description {{ model }}\n"
negate: " default description"

Example 2:

Configure an IP address borrowing values from other fields:

address:
_process: unnecessary
config:

_process: unnecessary
ip:

_process: unnecessary
prefix_length:

_process:
- mode: element
value: " ip address {{ model._parent.ip }}/{{ model }} {

→˓{ 'secondary' if model._parent.secondary else '' }}\n"
negate: " default ip address {{ model._parent.ip }}/{{

→˓model }} {{ 'secondary' if model._parent.secondary else '' }}\n"

Jinja2 Filters

IP address

napalm_yang.jinja_filters.ip_filters.cidr_to_netmask(value, *args, **kwargs)
Converts a CIDR prefix-length to a network mask.

1.6. Developers Guide 29

NAPALM Documentation, Release 1

Examples

>>> "{{ '24'|cidr_to_netmask }}" -> "255.255.255.0"

napalm_yang.jinja_filters.ip_filters.netmask_to_cidr(value, *args, **kwargs)
Converts a network mask to it’s CIDR value.

Examples

>>> "{{ '255.255.255.0'|netmask_to_cidr }}" -> "24"

napalm_yang.jinja_filters.ip_filters.normalize_address(value, *args, **kwargs)
Converts an IPv4 or IPv6 address writen in various formats to a standard textual representation.

This filter works only on addresses without network mask. Use normalize_prefix to normalize networks.

Examples

>>> "{{ '192.168.0.1'|normalize_address }}" -> "192.168.0.1"
>>> "{{ '192.168.1'|normalize_address }}" -> "192.168.0.1"
>>> "{{ '2001:DB8:0:0:1:0:0:1'|normalize_address }}" -> "2001:db8::1:0:0:1"

napalm_yang.jinja_filters.ip_filters.normalize_prefix(value, *args, **kwargs)
Converts an IPv4 or IPv6 prefix writen in various formats to its CIDR representation.

This filter works only on prefixes. Use normalize_address if you wish to normalize an address without a network
mask.

Examples

>>> "{{ '192.168.0.0 255.255.255.0'|normalize_prefix }}" -> "192.168.0.0/24"
>>> "{{ '192.168/255.255.255.0'|normalize_prefix }}" -> "192.168.0.0/24"
>>> "{{ '2001:DB8:0:0:1:0:0:1/64'|normalize_prefix }}" -> "2001:db8::1:0:0:1/64"

napalm_yang.jinja_filters.ip_filters.prefix_to_addrmask(value, *args, **kwargs)
Converts a CIDR formatted prefix into an address netmask representation. Argument sep specifies the separator
between the address and netmask parts. By default it’s a single space.

Examples

>>> "{{ '192.168.0.1/24|prefix_to_addrmask }}" -> "192.168.0.1 255.255.255.0"
>>> "{{ '192.168.0.1/24|prefix_to_addrmask('/') }}" -> "192.168.0.1/255.255.255.0"

FAQ

Some YAML files are insanely large. Can I break them down into multiple files?

Yes, you can with the !include relative/path/to/file.yaml directive. For example:

30 Chapter 1. Documentation

NAPALM Documentation, Release 1

./main.yaml
my_key:

blah: asdasdasd
bleh: !include includes/bleh.yaml

./includes/bleh.yaml
qwe: 1
asd: 2

Will result in the final object:

my_key:
blah: asdasdasd
bleh:

qwe: 1
asd: 2

1.6. Developers Guide 31

NAPALM Documentation, Release 1

32 Chapter 1. Documentation

Python Module Index

n
napalm_yang.jinja_filters.ip_filters,

29

33

NAPALM Documentation, Release 1

34 Python Module Index

Index

A
add_model() (napalm_yang.base.Root method), 5

C
cidr_to_netmask() (in module na-

palm_yang.jinja_filters.ip_filters), 29
compliance_report() (napalm_yang.base.Root method), 6

D
diff() (in module napalm_yang.utils), 4

E
elements() (napalm_yang.base.Root method), 6

G
get() (napalm_yang.base.Root method), 6

L
load_dict() (napalm_yang.base.Root method), 6

M
model_to_dict() (in module napalm_yang.utils), 4

N
napalm_yang.jinja_filters.ip_filters (module), 29
netmask_to_cidr() (in module na-

palm_yang.jinja_filters.ip_filters), 30
normalize_address() (in module na-

palm_yang.jinja_filters.ip_filters), 30
normalize_prefix() (in module na-

palm_yang.jinja_filters.ip_filters), 30

P
parse_config() (napalm_yang.base.Root method), 7
parse_state() (napalm_yang.base.Root method), 8
prefix_to_addrmask() (in module na-

palm_yang.jinja_filters.ip_filters), 30

R
Root (class in napalm_yang.base), 5

T
to_dict() (napalm_yang.base.Root method), 8
translate_config() (napalm_yang.base.Root method), 9

35

	Documentation
	Python Module Index

