

napalm-yang

YANG (RFC6020) [https://tools.ietf.org/html/rfc6020] is a data modelling language, it’s a way of defining how data is supposed to look like. The napalm-yang [https://github.com/napalm-automation/napalm-yang] library provides a framework to use models defined with YANG in the context of network management. It provides mechanisms to transform native data/config into YANG and vice versa.

You can take a look to the following tutorial [https://github.com/napalm-automation/napalm-yang/blob/develop/interactive_demo/tutorial.ipynb] to see what this is about and how to get started.

Installation

To install napalm-yang you can use pip as with any other driver:

pip install -U napalm-yang

Documentation

	Profiles

	YANG Basics

	Writing Profiles

	Parsers

	XMLParser

	TextParser

	Translators

	XMLTranslator

	TextTranslator

	API

	Jinja2 Filters

	FAQ

Profiles

In order to correctly map YANG objects to native configuration and vice versa, napalm-yang uses the concept of profiles. Profiles, identify the type of device you are dealing with, which can vary depending on the OS, version and/or platform you are using.

If you are using a napalm driver and have access to your device, you will have access to the profile property which you can pass to any function that requires to know the profile. If you are not using a napalm driver or don’t have access to the device, a profile is just a list of strings so you can just specify it directly. For example:

Without access to the device
model.parse_config(profile=["junos"], config=my_configuration)

With access
with driver(hostname, username, password) as d:
 model.parse_config(device=d)

With access but overriding profile
with driver(hostname, username, password) as d:
 model.parse_config(device=d, profile=["junos13", "junos"])

Note

As you noticed a device may have multiple profiles. When that happens, each model that is
parsed will loop through the profiles from left to right and use the first profile that
implements that model (note that a YANG model is often comprised of multiple modules). This
is useful as there might be small variances between different systems
but not enough to justify reimplementing everything.

You can find the profiles here [https://github.com/napalm-automation/napalm-yang/tree/develop/napalm_yang/mappings] but what exactly is a profile? A profile is a bunch of YAML files that follows the structure of a YANG model and describes two things:

	How to parse native configuration/state and map it into a model.

	How to translate a model and map it into native configuration.

For example, for a given interface, the snippet below specifies how to map configuration into the openconfig_interface model on EOS:

enabled:
 _process:
 - mode: is_present
 regexp: "(?P<value>no shutdown)"
 from: "{{ parse_bookmarks.interface[interface_key] }}"
description:
 _process:
 - mode: search
 regexp: "description (?P<value>.*)"
 from: "{{ parse_bookmarks.interface[interface_key] }}"
mtu:
 _process:
 - mode: search
 regexp: "mtu (?P<value>[0-9]+)"
 from: "{{ parse_bookmarks.interface[interface_key] }}"

And the following snippet how to map the same attributes from the openconfig_interface to native configuration:

enabled:
 _process:
 - mode: element
 value: " shutdown\n"
 when: "{{ not model }}"
description:
 _process:
 - mode: element
 value: " description {{ model }}\n"
 negate: " default description"
mtu:
 _process:
 - mode: element
 value: " mtu {{ model }}\n"
 negate: " default mtu\n"

Note

Profiles can also deal with structured data like XML or JSON.

As you can see it’s not extremely difficult to understand what they are doing, in the next section we will learn how to write our own profiles.

YANG Basics

It’s not really necessary to understand how YANG works to write a profile but you need some basic
understanding.

Basic Types

	container - A container is just a placeholder, sort of like a map or dictionary. A container
doesn’t store any information per se, instead, it contains attributes of any type. For example,
the following config object would be a valid container with three attributes of various types:

container config:
 leaf description: string
 leaf mtu: uint16
 leaf enabled: boolean

	leaf - A leaf is an attribute that stores information. Leafs are of a type and values have to
be valid for the given type. For example:

leaf descrpition: string # Any string is valid
leaf mtu: uint16 # -1 is not valid but 1500 is
leaf enabled: boolean # true, false, 1, 0, True, False are valid

Note

There can be further restrictions, for example the leaf prefix-length is of type uint8 but
it’s further restricted with the option range 0..32

	YANG lists - A YANG list represents a container in the tree that will represent individual
members of a list. For example:

container interfaces:
 list interface:
 container config:
 leaf description: string
 leaf mtu: uint16
 leaf enabled: boolean

As we start adding elements to the interface list, each individual interface will have it’s own
attributes. For example:

interfaces:
 interface["eth1"]:
 config:
 description: "An interface"
 mtu: 1500
 enabled: true
 interface["eth2"]:
 config:
 description: "Another interface"
 mtu: 9000
 enabled: false

Writing Profiles

As it’s been already mentioned, a profile is a bunch of YAML files that describe how to map native
configuration and how to translate an object into native configuration. In order to read native
configuration we will use parsers, to translate a YANG model into native configuration we will
use translators.

Both parsers and translators follow three basic rules:

	One directory per module.

	One file per model.

	Exact same representation of the model inside the file:

For example:

$ tree napalm_yang/mappings/eos/parsers/config
napalm_yang/mappings/eos/parsers/config
├── napalm-if-ip
│ └── secondary.yaml
├── openconfig-if-ip
│ └── ipv4.yaml
├── openconfig-interfaces
│ └── interfaces.yaml
└── openconfig-vlan
 ├── routed-vlan.yaml
 └── vlan.yaml

4 directories, 5 files
$ cat napalm_yang/mappings/eos/parsers/config/openconfig-vlan/vlan.yaml

metadata:
 (trimmed for brevity)

vlan:
 (trimmed for brevity)
 config:
 (trimmed for brevity)
 vlan_id:
 (trimmed for brevity)

If we check the content of the file vlan.yaml we can clearly see two parts:

	metadata - This part specifies what parser or translator we want to use as there are several
depending on the type of data we are parsing from or translating to and some options that the
parser/translator might need. For example:

metadata:
 processor: XMLParser
 execute:
 - method: _rpc
 args: []
 kwargs:
 get: "<get-configuration/>"

In this case we are using the XMLParser parser and in order to get the data we need from the
device we have to call the method _rpc with the args and kwargs parameters. This is,
by the way, an RPC call for a junos device.

	vlan - This is the part that follows the model specification. In this case is vlan but in
others it might be interfaces, addressess or something else, this will be model dependent
but it’s basically whatever it’s not metadata. This part will follow the model specification
and add rules on each attribute to tell the parser/translator what needs to be done. For
example:

vlan:
 _process: unnecessary
 config:
 _process: unnecessary
 vlan_id:
 _process:
 - mode: xpath
 xpath: "vlan-id"
 from: "{{ parse_bookmarks['parent'] }}"

As we are dealing with a parser we have to specify the _process attribute at each step (translators
require the attribute _process). There are two special types of actions; unnecessary and
not_implemented. Both do exactly the same, skip any action and move onto the next attribute. The
only difference is purely aesthetically and for documentation purposes.

Something else worth noting is that each attribute inside _process/_process is evaluated as a
jinja2 template so you can do variable substitutions, evaluations, etc...

Parsers

Parsers are responsible for mapping native configuration/show_commands to a YANG model.

Special actions

Most actions depend on the parser you are using, however, some are common to all of them:

unnecessary

This makes the parser skip the field and continue processing the tree.

not_implemented

This makes the parser stop processing the tree underneath this value. For example:

field_1:
 process: unnecessary
field_2:
 process: not_implemented
 subfield_1:
 process: ...
 subfield_2:
 process: ...
field_3:
 ...

The not_implemented action will stop the parser from processing subfield_1 and subfield_2
and move directly onto field_3.

gate

Works like not_implemented but accepts a condition. For example:

protocols:
 protocol:
 bgp:
 _process:
 - mode: gate
 when: "{{ protocol_key != 'bgp bgp' }}"
 global:
 ...

The snippet above will only process the bgp subtree if the condition is not met.

Special fields

When parsing attributes, some fields may depend on the parser you are using but some
will be available regardless. Some may be even be mandatory.

mode

	Mandatory: Yes

	Description: Which parsing/translation action to use for this particular field.

	Example: Parse the description field with a simple regular expression:

_process:
 - mode: search
 regexp: "description (?P<value>.*)"
 from: "{{ bookmarks.interface[interface_key] }}"

when

	Mandatory: No

	Description: The evaluation of this field will determine if the action is executed or
skipped. This action is probably not very useful when parsing but it’s available if you need it.

	Example: Configure switchport on IOS devices only if the interface is not a Loopback
or a Management interface:

ipv4:
 _process: unnecessary
 config:
 _process: unnecessary
 enabled:
 _process:
 - mode: element
 value: " no switchport\n"
 negate: " switchport\n"
 in: "interface.{{ interface_key }}"
 when: "{{ model and interface_key[0:4] not in ['Mana', 'Loop'] }}"

from

	Mandatory: Yes

	Description: Configuration to read. In combination with bookmarks provides the content we
are operating with.

	Example: Get IP addresses from both both interfaces and subinterfaces:

address:
 _process:
 - mode: xpath
 xpath: "family/inet/address"
 key: name
 from: "{{ bookmarks['parent'] }}"

Special Variables

keys

When traversing lists, you will have all the relevant keys for the object available, including on nested
lists. Let’s see it with an example, let’s say we are currently parsing
interfaces/interface["et1"]/subinterfaces/subinterface["0"].ipv4.addresses.address["10.0.0.1"].
At this particular point you will have the following keys available:

	address_key - 10.0.0.1

	subinterface_key - 0

	interface_key - et1

	parent_key - 0

When a list is traversed you will always have available a key with name $(attribute)_key. In
addition, you will have parent_key as the key of the immediate parent object. In the example
above, parent_key will correspond to 0 as it’s the immediate parent of the address object.

bookmarks

Bookmarks are points of interest in the configuration. Usually, you will be gathering blocks of
configurations and parsing on those but sometimes, the configuration you need might be somewhere
else. For those cases, you will be able to access those with the bookmarks. Using the same example
as before,
interfaces/interface["et1"]/subinterfaces/subinterface["0"].ipv4.addresses.address["10.0.0.1"],
you will have the following bookmarks:

	bookmarks.interfaces - The root of the configuration

	bookmarks.interface["et1"] - The block of configuration that corresponds to the interface
et1

	bookmarks.subinterface["0"] - The block of configuration that corresponds to the subinterface
0 of et1.

	bookmarks.address["10.0.0.1"] - The block of configuration for the address belonging to the
subinterface.

	bookmarks.parent - The block of configuration for the immediate parent, in this case, the
subinterface 0.

Note you can use keys instead and do bookmarks.subinterface[parent_key] or
bookmarks.subinterface[subinterface_key].

extra_vars

Some actions let’s you provide additional information for later use. Those will be stored on the
extra_vars dictionary. For example:

address:
 _process:
 - mode: block
 regexp: "(?P<block>ip address (?P<key>(?P<ip>.*))\\/(?P<prefix>\\d+))(?P<secondary> secondary)*"
 from: "{{ bookmarks['parent'] }}"
 config:
 _process: unnecessary
 ip:
 _process:
 - mode: value
 value: "{{ extra_vars.ip }}"

The first regexp captures a bunch of vars that later can be used by just reading them from
extra_Vars.

Metadata

The metadata tells the profile how to process that module and how to get the necessary data from
the device. For example:

metadata:
 parser: XMLParser
 execute:
 - method: _rpc
 args: []
 kwargs:
 get: "<get-configuration/>"

	execute is a list of calls to do to from the device to extract the data.
	method is the method from the device to call.

	args are the numbered/ordered arguments for the method

	kwargs are the keyword arguments for the method

In addition, some methods like parse_config and parse_state may have mechanisms to pass the
information needed to the parser instead of relying on a live device to obtain it. For parsers, you
will just have to pass a string with the same information the profile is trying to gather.

XMLParser

This extractor will read an XML an extract data from it.

To illustrate the examples below we will use the following configuration:

<configuration>
 <interfaces>
 <interface>
 <name>ge-0/0/0</name>
 <description>adasdasd</description>
 </interface>
 <interface>
 <name>lo0</name>
 <disable/>
 </interface>
 </interfaces>
</configuration>

List - xpath

Advances in the XML document up to the point where the relevant list of elements is found.

Arguments:

	xpath (mandatory): elements to traverse

	key (mandatory): which element is the key of the list

	post_process_filter (optional): modify the key with this Jinja2 expression

Example:

Starting from the root, the following action will move us to interface so we can
parse each interface individually:

interface:
 _process:
 - mode: xpath
 xpath: "interfaces/interface"
 key: name
 from: "{{ bookmarks.interfaces }}"

This means after this action we will have a list of interface blocks like this:

- <interface>
 <name>ge-0/0/0</name>
 <description>adasdasd</description>
 </interface>
- <interface>
 <name>lo0</name>
 <disable/>
 </interface>

And we will be able to keep processing them individually.

Leaf - xpath

Extracts a value from an element.

Arguments:

	xpath (mandatory): element to extract

	regexp (optional): Apply regexp to the value of the element. Must capture value group.
See “leaf - map” example for more details.

	default (optional): Set this value if no element is found.

	attribute (optional): Instead of the text of the element extracted, extract this attribute of the element.

Example:

For each interface, read the element description and map it into the object:

description:
 _process:
 - mode: xpath
 xpath: description
 from: "{{ bookmarks['parent'] }}"

Leaf - value

Apply a user-defined value to the object.

Arguments:

	value (mandatory): What value to apply

Example:

In the following example we can assign a value we already have to the interface.name attribute:

name:
 _process:
 - mode: value
 value: "{{ interface_key }}"

Leaf - map

Extract value and do a lookup to choose value.

Arguments:

	xpath (mandatory): Same as xpath action.

	regexp (optional): Same as xpath action.

	map (mandatory): Dictionary where we will do the lookup action.

Example:

We can read an element, extract some information and then apply the lookup function, for example, we can
read the interface name, extract some of the first few characters and figure out the type of interface
like this:

type:
 _process:
 - mode: map
 xpath: name
 regexp: "(?P<value>[a-z]+).*"
 from: "{{ bookmarks['parent'] }}"
 map:
 ge: ethernetCsmacd
 lo: softwareLoopback
 ae: ieee8023adLag

The regular expression will give ge and lo which we can map into ethernetCsmacd and
ieee8023adLag respectively.

Leaf - is_absent

Works exactly like xpath but if the evaluation is None, it will return True.

Example:

We could check if an interface is enabled with this:

enabled:
 _process:
 - mode: is_absent
 xpath: "disable"
 from: "{{ bookmarks['parent'] }}"

As disable is missing in the interface ge-0/0/0 we know it’s enabled while lo0 will be not
as it was present.

Leaf - is_present

Works exactly like xpath but if the evaluation is None, it will return False.

TextParser

Will apply regular expressions to text to extract data from it.

To explain how this parser works, let’s use the following configuration:

interface Ethernet1
 no switchport
!
interface Ethernet1.1
 description blah
!
interface Loopback1
 no switchport
 ip address 192.168.0.1/24
 ip address 192.168.1.1/24 secondary
!

Note

The regular expressions on this parser have the MULTILINE and IGNORECASE flags turned on.

List - block

Using a regular expression it divides the configuration in blocks where each block is relevant for
a different element of the list.

Arguments:

	regexp (mandatory) - Regular expression to apply. Note that it must capture two things at least;
block, which will be the entire block of configuration relevant for the interface and
key, which will be the key of the element.

	mandatory (optional) will force the creation of one or more elements by specifying them manually
in a dict the key, block (can be empty string) and any potential extra_vars you may want to specify.

	composite_key (optional) is a list of attributes captured in the regexp to be used as the key for the element.

	flat (optional) if set to true (default is false) the parser will understand the configuration for the
element consists of flat commands instead of nested (for example BGP neighbors or static routes)

	key (optional) set key manually

	post_process_filter (optional) - Modify the key with this Jinja expression. key and extra_vars
variables are available.

Example 1

Capture the interfaces:

_process:
 - mode: block
 regexp: "(?P<block>interface (?P<key>(\\w|-)*\\d+)\n(?:.|\n)*?^!$)"
 from: "{{ bookmarks.interfaces }}"

So the regexp is basically doing two things. Capturing each block of text that starts with
interface (a word)(a number)\n (no dots allowed as a dot means it’s subinterface) and then
finishing in !. It’s also getting the key. So after this step we will have a list like:

- key: Ethernet1
 block: interface Ethernet1
 no switchport
 !
- key: Loopback1
 block: interface Loopback1
 no switchport
 ip address 192.168.0.1/24
 ip address 192.168.1.1/24 secondary
 !

Note that Ethernet1.1 is missing as it’s not matching the key.

Example 2

As we process Ethernet1 we will want it’s subinterfaces so we can use a similar regexp as
before but looking for a dot in the key, using the interface_key (Ethernet1) as part
of the regexp. We also have to make sure in the from we went back to the root of the config:

subinterface:
 _process:
 - mode: block
 regexp: "(?P<block>interface {{interface_key}}\\.(?P<key>\\d+)\\n(?:.|\\n)*?^!$)"
 from: "{{ bookmarks.interfaces }}"

Example 3

Sometimes we can get easily more information in one go than just the key and the block. For
those cases we can capture more groups and they will be stored in the extra_vars dictionary:

address:
 _process:
 - mode: block
 regexp: "(?P<block>ip address (?P<key>(?P<ip>.*))\\/(?P<prefix>\\d+))(?P<secondary> secondary)*"
 from: "{{ bookmarks['parent'] }}"

Example 4

In some cases native configuration might be “flat” but nested in a YANG model. This is the case of the global
or default VRF, in those cases, it is hard you may want to ensure that global VRF is always created:

_process:
 - mode: block
 regexp: "(?P<block>vrf definition (?P<key>(.*))\n(?:.|\n)*?^!$)"
 from: "{{ bookmarks['network-instances'][0] }}"
 mandatory:
 - key: "global"
 block: ""
 extra_vars: {}

Example 5

Some list elements have composite keys, if that’s the case, use the composite key to tell the parser how to map
captured elements to the composite key:

protocols:
 _process: unnecessary
 protocol:
 _process:
 - mode: block
 regexp: "(?P<block>router (?P<protocol_name>(bgp))\\s*(?P<process_id>\\d+)*\n(?:.|\n)*?)^(!| vrf \\w+)$"
 from: "{{ bookmarks['network-instances'][0] }}"
 composite_key: [protocol_name, protocol_name]
 when: "{{ network_instance_key == 'global' }}"

Example 6

Some list elements (like static routes or BGP neighbors) are configured as a flat list of commands instead of
nested. By default, if you would try to parse each command individually the parser would try to create
a new element with each line and fail as multiple lines belong to the same element but they are treated independently.
By setting flat: true this behavior is changed and subsequent commands will update an already created object:

bgp:
 neighbors:
 neighbor:
 _process:
 - mode: block
 regexp: "(?P<block>neighbor (?P<key>\\d+.\\d+.\\d+.\\d+).*)"
 from: "{{ bookmarks['protocol'][protocol_key] }}"
 flat: true

Example 7

In some rare cases you might not be able to extract the key directly from the configuration. For example,
the static protocol consists of ip route commands. In that case you can set the key yourself:

protocols:
 protocol:
 _process:
 - mode: block
 regexp: "(?P<block>ip route .*\n(?:.|\n)*?^!$)"
 from: "{{ bookmarks['network-instances'][0] }}"
 key: "static static"

Example 8

Sometimes you need to transform the key value. For example, static routes require the prefix in CIDR format,
but Cisco IOS outputs routes in <network> <mask> format. In that case you can use post_process_filter to
apply additional filters:

static:
 _process:
 - mode: block
 regexp: "(?P<block>ip route (?P<key>\\d+\\S+ \\d+\\S+).*)"
 from: "{{ bookmarks['network-instances'][0] }}"
 post_process_filter: "{{ key|addrmask_to_cidr }}"

Leaf - search

Extract value from a regexp.

Arguments:

	regexp (mandatory) - Regular expression to apply. Note the regular expression has to capture the value
at least but it can capture others if you want.

	default (optional) - Value to assign if the regexp returns nothing.

Example.

Get the description of an interface:

description:
 _process:
 - mode: search
 regexp: "description (?P<value>.*)"
 from: "{{ bookmarks.interface[interface_key] }}"

Leaf - value

Apply a user-defined value to the object.

Arguments:

	value (mandatory): What value to apply

Example.

Evaluate a value we already extracted and set model to True if is not None:

secondary:
 _process:
 - mode: value
 value: "{{ extra_vars.secondary != None }}"

Leaf - is_absent

Works exactly like search but if the evaluation is None, it will return True.

Example.

Check if an interface is an IP interface or not:

ipv4:
 _process: unnecessary
 config:
 _process: unnecessary
 enabled:
 _process:
 - mode: is_absent
 regexp: "(?P<value>^\\W*switchport$)"
 from: "{{ bookmarks['parent'] }}"

Leaf - is_present

Works exactly like search but if the evaluation is None, it will return False.

Example.

Check if an interface is enabled:

enabled:
 _process:
 - mode: is_present
 regexp: "(?P<value>no shutdown)"
 from: "{{ bookmarks.interface[interface_key] }}"

Leaf - map

Works exactly like search but we do a lookup of the value on a map.

Arguments:

	regexp (mandatory) - Same as search

	default (optional) - Same as search

	map (optional) - Map where to do the lookup function.

Example.

Check type of interface by extracting the name and doing a lookup:

_process:
 - mode: map
 regexp: "(?P<value>(\\w|-)*)\\d+"
 from: "{{ interface_key }}"
 map:
 Ethernet: ethernetCsmacd
 Management: ethernetCsmacd
 Loopback: softwareLoopback
 Port-Channel: ieee8023adLag
 Vlan: l3ipvlan

Translators

Translators are responsible for transforming a model into native configuration.

Special actions

Most actions depend on the parser you are using, however, some are common to all of them:

unnecessary

This makes the parser skip the field and continue processing the tree.

not_implemented

This makes the parser stop processing the tree underneath this value. For example:

field_1:
 process: unnecessary
field_2:
 process: not_implemented
 subfield_1:
 process: ...
 subfield_2:
 process: ...
field_3:
 ...

The not_implemented action will stop the parser from processing subfield_1 and subfield_2
and move directly onto field_3.

gate

Works like not_implemented but accepts a condition. For example:

protocols:
 protocol:
 bgp:
 _process:
 - mode: gate
 when: "{{ protocol_key != 'bgp bgp' }}"
 global:
 ...

The snippet above will only process the bgp subtree if the condition is not met.

Special fields

When translating an object, some fields might depend on the translator you are using but some will
available regardless. Some may be even be mandatory.

mode

	mandatory: yes

	description: which parsing/translation action to use for this particular field

	example: Translate description attribute of an interface to native configuration:

description:
 _process:
 - mode: element
 value: " description {{ model }}\n"
 negate: " default description"

when

	mandatory: no

	description: the evaluation of this field will determine if the action is executed or
skipped. This action is probably not very useful when parsing but it’s available if you need it.

	example: configure switchport on IOS devices only if the interface is not a loopback
or a management interface:

ipv4:
 _process: unnecessary
 config:
 _process: unnecessary
 enabled:
 _process:
 - mode: element
 value: " no switchport\n"
 negate: " switchport\n"
 in: "interface.{{ interface_key }}"
 when: "{{ model and interface_key[0:4] not in ['mana', 'loop'] }}"

in

	mandatory: no

	description: where to add the configuration. Sometimes the configuration might have to be
installed on a different object from the one you are parsing. For example, when configuring a
tagged subinterface on junos you will have to add also a vlan-tagging option on the parent
interface. On IOS/EOS, when configuring interfaces, you have to also add the configuration in
the root of the configuration and not as a child of the parent interface:

vlan:
 _process: unnecessary
 config:
 _process: unnecessary
 vlan_id:
 _process:
 - mode: element
 element: "vlan-tagging"
 in: "interface.{{ interface_key }}" # <--- add element to parent interface
 when: "{{ model > 0 }}"
 value: null
 - mode: element
 element: "vlan-id"
 when: "{{ model > 0 }}"

(...)
subinterface:
 _process:
 mode: container
 key_value: "interface {{ interface_key}}.{{ subinterface_key }}\n"
 negate: "no interface {{ interface_key}}.{{ subinterface_key }}\n"
 in: "interfaces" # <--- add element to root of configuration

Note

This field follows the same logic as the bookmarks special field.

continue_negating

	mandatory: no

	description: This option, when added to a container, will make the framework to also negate children.

	example: We can use as an example the “network-instances” model. In the model, BGP is inside the network-instance container, however, in EOS and other platforms that BGP configuration is decoupled from the VRF, so in order to tell the framework to delete also the direct children you will have to use this option. For example:

network-instance:
 _process:
 - mode: container
 key_value: "vrf definition {{ network_instance_key }}\n"
 negate: "no vrf definition {{ network_instance_key }}\n"
 continue_negating: true
 end: " exit\n"
 when: "{{ network_instance_key != 'global' }}"
 ...
 protocols:
 _process: unnecessary
 protocol:
 _process:
 - mode: container
 key_value: "router bgp {{ model.bgp.global_.config.as_ }}\n vrf {{ network_instance_key}}\n"
 negate: "router bgp {{ model.bgp.global_.config.as_ }}\n no vrf {{ network_instance_key}}\n"
 end: " exit\n"
 when: "{{ protocol_key == 'bgp bgp' and network_instance_key != 'global' }}"
 replace: false
 in: "network-instances"

The example above will generate:

no vrf definition blah
router bgp ASN
 no vrf blah

Without continue_negating it would just generate:

no vrf definition blah

Special variables

keys

See keys.

model

This is the current model/attribute being translated. You have the entire object at your disposal,
not only it’s value so you can do things like:

vlan_id:
 _process:
 - mode: element
 value: " encapsulation dot1q vlan {{ model }}\n"

Or:

config:
 _process: unnecessary
 ip:
 _process: unnecessary
 prefix_length:
 _process:
 - mode: element
 value: " ip address {{ model._parent.ip }}/{{ model }} {{ 'secondary' if model._parent.secondary else '' }}\n"
 negate: " default ip address {{ model._parent.ip }}/{{ model }}\n"

XMLTranslator

XMLTranslator is responsible of translating a model into XML configuration.

Metadata

	xml_root - Set this value on the root of the model to instantiate the XML object.

For example:

metadata:
 processor: XMLTranslator
 xml_root: configuration

This will instantiate the XML object <configuration/>.

Container - container

Creates a container.

Arguments:

	container (mandatory) - Which container to create

	replace (optional) - Whether this element has to be replaced in case of merge/replace or
it’s not necessary (remember XML is hierarchical which means you can unset things directly in
the root).

Example:

Create the interfaces container:

_process:
 . mode: container
 container: interfaces
 replace: true

List - container

For each element of the list, create a container.

Arguments:

	container (mandatory) - Which container to create

	key_element (mandatory) - Lists require a key element, this is the name of the element.

	key_value (mandatory) - Key element value.

Example:

Create interfaces:

interface:
 _process:
 . mode: container
 container: interface
 key_element: name
 key_value: "{{ interface_key }}"

This will result elements such as:

<interface>
 <name>ge-0/0/0</name>
</interface>
<interface>
 <name>lo0</name>
</interface>

Leaf - element

Adds an element to a container.

Arguments:

	element (mandatory): Element name.

	value (optional): Override value. Default is value of the object.

Example 1:

Configure description:

description:
 _process:
 - mode: element
 element: description

Example 2:

Enable or disable an interface:

enabled:
 _process:
 - mode: element
 element: "disable"
 when: "{{ not model }}"
 value: null

We override the value and set it to null because to disable we just have to create the
element, we don’t have to set any value.

Example 3:

Configure an IP address borrowing values from other fields:

config:
 _process: unnecessary
 ip:
 _process: unnecessary
 prefix_length:
 _process:
 - mode: element
 element: name
 value: "{{ model._parent.ip }}/{{ model }}"
 when: "{{ model }}"

TextTranslator

TextTranslator is responsible of translating a model into text configuration.

Metadata

	root - Set to true if this is the root of the model.

List - container

Create/Removes each element of the list.

Arguments:

	key_value (mandatory): How to create the element.

	negate (mandatory): How to eliminate/default the element.

	replace (optional): Whether the element has to be defaulted or not during the replace operation.

	end (optional): Closing command to signal end of element

Example 1:

Create/Default interfaces:

interfaces:
 _process: unnecessary
 interface:
 _process:
 . mode: container
 key_value: "interface {{ interface_key }}\n"
 negate: "{{ 'no' if interface_key[0:4] in ['Port', 'Loop'] else 'default' }} interface {{ interface_key }}\n"
 end: " exit\n"

Example 2:

Configure IP addresses. As the parent interface is defaulted already, don’t do it again:

address:
 _process:
 . mode: container
 key_value: " ip address {{ model.config.ip }} {{ model.config.prefix_length|cidr_to_netmask }}{{ ' secondary' if model.config.secondary else '' }}\n"
 negate: " default ip address {{ model.config.ip }} {{ model.config.prefix_length|cidr_to_netmask }}{{ ' secondary' if model.config.secondary else '' }}\n"
 replace: false

Leaf - element

Configures an attribute.

Arguments:

	value (mandatory): How to configure the attribute

	negate (mandatory): How to default the attribute

Example 1:

Configure description:

description:
 _process:
 - mode: element
 value: " description {{ model }}\n"
 negate: " default description"

Example 2:

Configure an IP address borrowing values from other fields:

address:
 _process: unnecessary
 config:
 _process: unnecessary
 ip:
 _process: unnecessary
 prefix_length:
 _process:
 - mode: element
 value: " ip address {{ model._parent.ip }}/{{ model }} {{ 'secondary' if model._parent.secondary else '' }}\n"
 negate: " default ip address {{ model._parent.ip }}/{{ model }} {{ 'secondary' if model._parent.secondary else '' }}\n"

API

Models

Models are generated by pyangbind so it’s better to check it’s documentation for up to date
information: http://pynms.io/pyangbind/generic_methods/

Utils

	
napalm_yang.utils.model_to_dict(model, mode='')

	Given a model, return a representation of the model in a dict.

This is mostly useful to have a quick visual represenation of the model.

	Parameters:	
	model (PybindBase) – Model to transform.

	mode (string) – Whether to print config, state or all elements (“” for all)

	Returns:	A dictionary representing the model.

	Return type:	dict

Examples

>>> config = napalm_yang.base.Root()
>>>
>>> # Adding models to the object
>>> config.add_model(napalm_yang.models.openconfig_interfaces())
>>> config.add_model(napalm_yang.models.openconfig_vlan())
>>> # Printing the model in a human readable format
>>> pretty_print(napalm_yang.utils.model_to_dict(config))
>>> {
>>> "openconfig-interfaces:interfaces [rw]": {
>>> "interface [rw]": {
>>> "config [rw]": {
>>> "description [rw]": "string",
>>> "enabled [rw]": "boolean",
>>> "mtu [rw]": "uint16",
>>> "name [rw]": "string",
>>> "type [rw]": "identityref"
>>> },
>>> "hold_time [rw]": {
>>> "config [rw]": {
>>> "down [rw]": "uint32",
>>> "up [rw]": "uint32"
 (trimmed for clarity)

	
napalm_yang.utils.diff(f, s)

	Given two models, return the difference between them.

	Parameters:	
	f (Pybindbase) – First element.

	s (Pybindbase) – Second element.

	Returns:	A dictionary highlighting the differences.

	Return type:	dict

Examples

>>> diff = napalm_yang.utils.diff(candidate, running)
>>> pretty_print(diff)
>>> {
>>> "interfaces": {
>>> "interface": {
>>> "both": {
>>> "Port-Channel1": {
>>> "config": {
>>> "mtu": {
>>> "first": "0",
>>> "second": "9000"
>>> }
>>> }
>>> }
>>> },
>>> "first_only": [
>>> "Loopback0"
>>>],
>>> "second_only": [
>>> "Loopback1"
>>>]
>>> }
>>> }
>>> }

Root

	
class napalm_yang.base.Root

	Bases: object

This is a container you can use as root for your other models.

Examples

>>> config = napalm_yang.base.Root()
>>>
>>> # Adding models to the object
>>> config.add_model(napalm_yang.models.openconfig_interfaces())
>>> config.add_model(napalm_yang.models.openconfig_vlan())

	
add_model(model, force=False)

	Add a model.

The model will be asssigned to a class attribute with the YANG name of the model.

	Parameters:	
	model (PybindBase) – Model to add.

	force (bool) – If not set, verify the model is in SUPPORTED_MODELS

Examples

>>> import napalm_yang
>>> config = napalm_yang.base.Root()
>>> config.add_model(napalm_yang.models.openconfig_interfaces)
>>> config.interfaces
<pyangbind.lib.yangtypes.YANGBaseClass object at 0x10bef6680>

	
compliance_report(validation_file='validate.yml')

	Return a compliance report.
Verify that the device complies with the given validation file and writes a compliance
report file. See https://napalm.readthedocs.io/en/latest/validate.html.

	
elements()

	

	
get(filter=False)

	Returns a dictionary with the values of the model. Note that the values
of the leafs are YANG classes.

	Parameters:	filter (bool) – If set to True, show only values that have been set.

	Returns:	A dictionary with the values of the model.

	Return type:	dict

Example

>>> pretty_print(config.get(filter=True))
>>> {
>>> "interfaces": {
>>> "interface": {
>>> "et1": {
>>> "config": {
>>> "description": "My description",
>>> "mtu": 1500
>>> },
>>> "name": "et1"
>>> },
>>> "et2": {
>>> "config": {
>>> "description": "Another description",
>>> "mtu": 9000
>>> },
>>> "name": "et2"
>>> }
>>> }
>>> }
>>> }

	
load_dict(data, overwrite=False)

	Load a dictionary into the model.

	Parameters:	
	data (dict) – Dictionary to loead

	overwrite (bool) – Whether the data present in the model should be overwritten by the

	in the dict or not. (data) –

Examples

>>> vlans_dict = {
>>> "vlans": { "vlan": { 100: {
>>> "config": {
>>> "vlan_id": 100, "name": "production"}},
>>> 200: {
>>> "config": {
>>> "vlan_id": 200, "name": "dev"}}}}}
>>> config.load_dict(vlans_dict)
>>> print(config.vlans.vlan.keys())
... [200, 100]
>>> print(100, config.vlans.vlan[100].config.name)
... (100, u'production')
>>> print(200, config.vlans.vlan[200].config.name)
... (200, u'dev')

	
parse_config(device=None, profile=None, native=None, attrs=None)

	Parse native configuration and load it into the corresponding models. Only models
that have been added to the root object will be parsed.

If native is passed to the method that’s what we will parse, otherwise, we will use the
device to retrieve it.

	Parameters:	
	device (NetworkDriver) – Device to load the configuration from.

	profile (list) – Profiles that the device supports. If no profile is passed it will
be read from device.

	native (list of strings) – Native configuration to parse.

Examples

>>> # Load from device
>>> running_config = napalm_yang.base.Root()
>>> running_config.add_model(napalm_yang.models.openconfig_interfaces)
>>> running_config.parse_config(device=d)

>>> # Load from file
>>> with open("junos.config", "r") as f:
>>> config = f.read()
>>>
>>> running_config = napalm_yang.base.Root()
>>> running_config.add_model(napalm_yang.models.openconfig_interfaces)
>>> running_config.parse_config(native=config, profile="junos")

	
parse_state(device=None, profile=None, native=None, attrs=None)

	Parse native state and load it into the corresponding models. Only models
that have been added to the root object will be parsed.

If native is passed to the method that’s what we will parse, otherwise, we will use the
device to retrieve it.

	Parameters:	
	device (NetworkDriver) – Device to load the configuration from.

	profile (list) – Profiles that the device supports. If no profile is passed it will
be read from device.

	native (list string) – Native output to parse.

Examples

>>> # Load from device
>>> state = napalm_yang.base.Root()
>>> state.add_model(napalm_yang.models.openconfig_interfaces)
>>> state.parse_config(device=d)

>>> # Load from file
>>> with open("junos.state", "r") as f:
>>> state_data = f.read()
>>>
>>> state = napalm_yang.base.Root()
>>> state.add_model(napalm_yang.models.openconfig_interfaces)
>>> state.parse_config(native=state_data, profile="junos")

	
to_dict(filter=True)

	Returns a dictionary with the values of the model. Note that the values
of the leafs are evaluated to python types.

	Parameters:	filter (bool) – If set to True, show only values that have been set.

	Returns:	A dictionary with the values of the model.

	Return type:	dict

Example

>>> pretty_print(config.to_dict(filter=True))
>>> {
>>> "interfaces": {
>>> "interface": {
>>> "et1": {
>>> "config": {
>>> "description": "My description",
>>> "mtu": 1500
>>> },
>>> "name": "et1"
>>> },
>>> "et2": {
>>> "config": {
>>> "description": "Another description",
>>> "mtu": 9000
>>> },
>>> "name": "et2"
>>> }
>>> }
>>> }
>>> }

	
translate_config(profile, merge=None, replace=None)

	Translate the object to native configuration.

In this context, merge and replace means the following:

	Merge - Elements that exist in both self and merge will use by default the
values in merge unless self specifies a new one. Elements that exist only
in self will be translated as they are and elements present only in merge
will be removed.

	Replace - All the elements in replace will either be removed or replaced by
elements in self.

You can specify one of merge, replace or none of them. If none of them are set we
will just translate configuration.

	Parameters:	
	profile (list) – Which profiles to use.

	merge (Root) – Object we want to merge with.

	replace (Root) – Object we want to replace.

Jinja2 Filters

IP address

FAQ

Some YAML files are insanely largely. Can I break them down into multiple files?

Yes, you can with the !include relative/path/to/file.yaml directive. For example:

./main.yaml
my_key:
 blah: asdasdasd
 bleh: !include includes/bleh.yaml

./includes/bleh.yaml
qwe: 1
asd: 2

Will result in the final object:

my_key:
 blah: asdasdasd
 bleh:
 qwe: 1
 asd: 2

 Python Module Index

 n

 		 	

 		
 n	

 	[image: -]
 	
 napalm_yang	

 	
 	
 napalm_yang.jinja_filters.ip_filters	

Index

 A
 | C
 | D
 | E
 | G
 | L
 | M
 | N
 | P
 | R
 | T

A

 	
 	add_model() (napalm_yang.base.Root method)

C

 	
 	compliance_report() (napalm_yang.base.Root method)

D

 	
 	diff() (in module napalm_yang.utils)

E

 	
 	elements() (napalm_yang.base.Root method)

G

 	
 	get() (napalm_yang.base.Root method)

L

 	
 	load_dict() (napalm_yang.base.Root method)

M

 	
 	model_to_dict() (in module napalm_yang.utils)

N

 	
 	napalm_yang.jinja_filters.ip_filters (module)

P

 	
 	parse_config() (napalm_yang.base.Root method)

 	
 	parse_state() (napalm_yang.base.Root method)

R

 	
 	Root (class in napalm_yang.base)

T

 	
 	to_dict() (napalm_yang.base.Root method)

 	
 	translate_config() (napalm_yang.base.Root method)

 _static/ajax-loader.gif

_static/down-pressed.png

_static/file.png

_static/plus.png

_static/up-pressed.png

_static/down.png

_static/up.png

_static/minus.png

_static/comment.png

_static/comment-bright.png

nav.xhtml

 Table of Contents

 		napalm-yang

 		Profiles

 		YANG Basics

 		Basic Types

 		Writing Profiles

 		Parsers

 		Special actions

 		unnecessary

 		not_implemented

 		gate

 		Special fields

 		mode

 		when

 		from

 		Special Variables

 		keys

 		bookmarks

 		extra_vars

 		Metadata

 		XMLParser

 		List - xpath

 		Leaf - xpath

 		Leaf - value

 		Leaf - map

 		Leaf - is_absent

 		Leaf - is_present

 		TextParser

 		List - block

 		Leaf - search

 		Leaf - value

 		Leaf - is_absent

 		Leaf - is_present

 		Leaf - map

 		Translators

 		Special actions

 		unnecessary

 		not_implemented

 		gate

 		Special fields

 		mode

 		when

 		in

 		continue_negating

 		Special variables

 		keys

 		model

 		XMLTranslator

 		Metadata

 		Container - container

 		List - container

 		Leaf - element

 		TextTranslator

 		Metadata

 		List - container

 		Leaf - element

 		API

 		Models

 		Utils

 		Root

 		Jinja2 Filters

 		IP address

 		FAQ

 		Some YAML files are insanely largely. Can I break them down into multiple files?

_static/comment-close.png

