

Namerer

Namerer is a cross-platform name text generator specifically designed to
ease the process of coming up with unique company, product, brand or project
names. Beyond just random strings, Namerer supports a template approach which
allows you to zero in on the name that you want to use.

You can use Namerer directly on the command-line, or within your own Node.js
projects.

	Getting Started
	Prerequisites

	Installation

	Hello World

	Generating Names
	Templates
	Basic Templates

	Template Functions
	[alpha(count?)]

	[numeric(count?)]

	[vowel(count?)]

	[phoneticVowel()]

	[consonant(count?)]

	[syllable(usePhoneticVowels?)]

	[synonym(word)]

	Command-line Options

	Filtering Names
	Command-line Options

Getting Started

Getting started with Namerer is easy. You just need to make sure you have
the right prerequisites installed, and then pull down the NPM package.

Prerequisites

Namerer requires Node.js 4.0.0 or greater to be installed, but you may as
well just grab the latest version because that is what we build and test
against.

Installation

Once you have Node.js installed and configured on your system, you just
need to pull down and install the namerer NPM package using the
following command:

npm install -g namerer

This will install the namerer package globally so that you can issue
commands anywhere in the shell. Alternatively you can install it locally
which is especially useful if you want to use it as a library for your
own project.

Hello World

Once you’ve installed Namerer, it is time for a simple hello world example
to make sure everything is working. The simplest command in Namerer is a
basic generate command, invoked as follows:

$ namerer generate

This will output a single string which should be eight characters long
comprised of characters from the alphabet, for example:

ighhkccy

Namerer is template driven so you can actually control what is output so
you could make it output only four random characters by issuing the
following command:

$ namerer generate "????"

You can learn more about how Namerer works in the Generating Names section.

Generating Names

As demonstrated in the Getting Started section, generating a names
using Namerer is as simple as using the generate command, for example:

$ namerer generate

You can control what Namerer generates by providing a template as an
argument to the generate command. For example:

$ namerer generate "????"

This would generate a simple four character output string, for example:

yjrq

By default Namerer generates a single name, but you can use the --count
option to generate more, for example:

$ namerer generate --count 5

This would generate something like the following output:

fkeyshtt
ytgebziv
kvitnilx
cvmmwvhz
tfsinukm

You can find out more about the various name generation command-line options
in the Command-line Options section. The real power of Namerer
however comes from the templates that you can provide.

Templates

A template is a string that you pass into the Namerer generate command
which controls the shape of the name that is generated. Namerer provides a
shortcut syntax for simple alpha and numeric which you can read about in the
Basic Templates section which expands into a JavaScript-powered
function syntax that you can read about in the Template Functions
section.

	Basic Templates

	Template Functions
	[alpha(count?)]

	[numeric(count?)]

	[vowel(count?)]

	[phoneticVowel()]

	[consonant(count?)]

	[syllable(usePhoneticVowels?)]

	[synonym(word)]

Command-line Options

You can display the list of command-line options for the generate
command by adding a --help option to the command, for example:

$ namerer generate --help

 Usage: generate [options] [template]

 Options:

 -h, --help output usage information
 -a, --alphabet [alphabet] Selection of letters to generate from.
 -n, --numbers [numbers] Seletion of numbers to generate from.
 -c, --count [count] Number of names to generate.

The --alphabet or -a option takes a list of characters and uses them to
constrain which characters can be used when replacing a ? token or
[alpha()] function in the template string. For example, take the
following command and its result:

$ namerer generate --alphabet abc "????"
acba

The --numeric or -n option works the same way, but instead controls what
digits can be injected when the # token or [numeric()] function
are used in the template string. For example you might want to append
some digits to a product name but avoid what some cultures might consider
to be unlucky numbers, for example:

$ namerer generate --numbers 0235789 "cafe ###"
cafe 203

Finally the --count or -c option takes a numeric value and controls
how many instances of a particular template you want to generate:

$ namerer generate --count 5 "???###"
vyo148
xyx152
sqp102
apt577
njz132

That can be very useful when you want to generate some sample data, or just
a selection of names to consider in one pass.

Basic Templates

The Namerer generate function uses templates to control its
output. Templates are strings interspersed with placeholders which
when processed are replaced with values which correspond to the kind
of placeholders used. For example the basic template ???### could be
transformed into abc123.

The ? and # placeholders are really just shorthand for a more
function-based syntax. Prior to processing a template into a string
the ? and # characters are first converted into equivalent
function-based syntax. For example, the ???### template would be
expanded into the following:

[alpha()][alpha()][alpha()][numeric()][numeric()[numeric()]

We’ll explore Template Functions a little later, but for now know
that ? is the same as [alpha()] and # is the same as
[numeric()]. At this point in time ? and # are the only
two shorthand characters. Now that you’ve got the basics you should check
out the Template Functions section.

Template Functions

Template functions are the core of Namerer’s string generation
capabilities. A template function is a special token delimited
by square brakets (for example [vowel()]) which when processed
is replaced by a random string, the nature of which varies depending
on which function you used.

Namerer has a bunch of different template functions from basic
random character selection to syllable generation and synonym
discovery. The following sections explain each of the template
functions.

Usage of template functions is simple. The function, enclosed in its
square brackets is placed in the template string passed into the
generate function. The following invocation is an example:

$ namerer generate -c 5 "[syllable()]"
jwa
piv
wigh
wef
un

The [syllable()] function takes an optional boolean argument
which specifies whether phonetic vowels can be used. Here is an
example of the same invocation with the first argument (usePhoneticVowels)
set to false. See how it affects the nature of the output:

$ namerer generate -c 5 "[syllable(false)]"
hu
wiw
ut
on
he

You can read up on the [syllable(usePhoneticVowels?)] in more detail
in the following sections. You can combine template functions in a
single template easily, for example:

$ namerer generate -c 5 "[syllable(false)][syllable()] [synonym('store')]"
qiug outlet
rodkah storage
yisil outlet
esro depositary
qawlug depositary

It’s really through combining multiple template functions together and
adding in character sequences that you really want in the name that you
find the usefulness of the Namerer tool.

[alpha(count?)]

The [alpha(count?)] template function outputs a random character
constrained by the --alphabet option which can optionally be passed
into the generate command. The function supports an optional count
parameter which allows you to specify how many random alpha characters to
output. The following table maps example templates to possible outputs.

	Template

	Output

	[alpha()]

	a

	[alpha(1)]

	w

	[alpha(5)]

	esome

[numeric(count?)]

The [numeric(count?)] template function is similar to the [alpha(count?)]
in that it generates a random character, but it is instead constained by the
--numbers option which can optionally be passed into the generate
command. This function also supports an optional count parameter which
allows you to specifiy how many random numeric characters to output. The
following table maps example templates to possible outputs.

	Template

	Output

	[numeric()]

	3

	[numeric(1)]

	9

	[numeric(5)]

	31337

[vowel(count?)]

The [alpha(count?)] template function is similar to the [alpha(count?)]
in that it generates a random character, however it will only generate a simple
vowel, such as a, e, i, o, or u. This function also supports
an optional count parameter which allows you to specify how many vowels
to output. The following table maps templates to possible outputs.

	Template

	Output

	[vowel()]

	a

	[vowel(1)]

	e

	[vowel(5)]

	iouee

[phoneticVowel()]

The [phoneticVowel()] template function outputs a single string and takes
no arguments. It outputs a vowels similar to the [vowel(count?)]
template function, but also adds additional phonetic vowels. The following
table shows basic vowels and their related phonetic vowels that might also
be output when using the [phoneticVowel()] function.

	Basic Vowel

	Phonetic Vowels

	a

	ai ay au aw augh wa all ald alk alm alt

	e

	ee ea eu ei ey ew eigh

	i

	ie ye igh ign ind

	o

	oo oa oe oi oy old olk olt oll ost ou ow

	u

	ue ui

[consonant(count?)]

The [consonant(count?)] template function is similar to the [vowel(count?)]
in that it generates a random character, however it will only generate a consonant
such as b, c, d, f, g, h, j,
k, l, m, n, p, q, r, s,
t, v, w, x, y, or z. This function
also supports an optional count parameter which allows you to specify
how many consonants to output. The following table maps templates to
possible outputs.

	Template

	Output

	[consonant()]

	z

	[consonant(1)]

	b

	[consonant(5)]

	phjkl

[syllable(usePhoneticVowels?)]

The [syllable(usePhoneticVowels?)] template function is very useful for
generating names which are easier to pronounce than random strings that
might be generated by the [alpha(count?)] template function
(for example). The [syllable(usePhoneticVowels)] function reuses the
logic from the [vowel(count?)], [phoneticVowel()] and [consonant(count?)]
template functions. It randomly selects from the following four possible
equivalent templates.

	[consonant()][vowel()]

	[consonant()][vowel()][consonant()]

	[vowel()][consonant()]

	[consonant()][phoneticVowel()]

The fourth option is included by default, however, it can be disabled
when the usePhoneticVowels optional parameter is set to false. The following
is an example of its usage:

$ namerer generate -c 5 "[syllable(false)][syllable()]"
xucpa
inkwa
kucta
etheigh
varom

[synonym(word)]

The [synonym(word)] template function can be used to find words which
have a similar or related meaning to the value of the word parameter. The
[synonym(word)] template function calls an external web service at
Big Huge Labs [http://words.bighugelabs.com]. At this point in time the
[synonym(word)] template function should be considered experimental and
may fail if it is used heavily across all Namerer users (because of API call
limitations). The following is an example of its usage:

$ namerer generate -c 5 "[synonym('port')]###"
turn351
opening171
side462
porthole843
turn118

Filtering Names

The Namerer filter command is a useful utility to take a name (or
multiple names via stdin) and then check whether it is available. The
current implementation of the filter command supports checking
for DNS domain names with one more more suffixes. Refer to the Command-line Options
section.

The filter command works by taking an input string (or multple) and
then performing a number of availability checks. If the name passes all
of the availability checks it is output to stdout. Here is an example of
checking a single name:

$ namerer filter "somerandomname"
somerandomname

The above invocation worked because the somerandomname.com domain
was available. In contrast, the following invocation would return nothing:

$ namerer filter "microsoft"

The Namerer filter command is designed to be used in conjunction with
the generate command to quickly zero in on names that have a good
chance of being usable. Here is an example of how you might use them
to come up with a name with two syllables and check that the .com and .io
suffixes are available:

$ namerer generate -c 10 "[syllable(false)][syllable()]" | namerer filter -d com,io
zetjim
amza
vogoy
viij
ufmall
halev
ozyun
nopoll

In this case only 8 names made it through the filter meaning that 2 of the 10
generated names had either a .com or .io suffix.

Command-line Options

You can display the list of command-line options for the filter
command by adding a --help option to the command, for example:

$ namerer filter --help

Usage: filter [options] [name]

Options:

 -h, --help output usage information
 -d, --dnssuffixes [suffix]

The --dnssuffixes or -d option takes a comma-seperated list of DNS
suffixes, for example:

$ namerer filter --dnssuffixes com,com.au "somerandomname"
somerandomname

If the --dnssuffixes option is excluded then the current behaviour
is that a .com suffix will be assumed. In the future when future checks
are performed for other services it may be that a bare --dnssuffixes
option will apply .com and other sensible defaults and its absence
will skip the DNS check altogether.

Index

 _static/up.png

nav.xhtml

 Table of Contents

 		
 Namerer

 		
 Getting Started

 		
 Prerequisites

 		
 Installation

 		
 Hello World

 		
 Generating Names

 		
 Templates

 		
 Basic Templates

 		
 Template Functions

 		
 Command-line Options

 		
 Filtering Names

 		
 Command-line Options

_static/down-pressed.png

_static/down.png

_static/comment-close.png

_static/comment.png

_static/minus.png

_static/plus.png

_static/file.png

_static/up-pressed.png

_static/ajax-loader.gif

_static/comment-bright.png

