
Nalu Documentation
Release 1.2.0

Nalu Development Team

Mar 28, 2018

Contents

1 User Manual 1
1.1 Building Nalu . 1
1.2 Running Nalu . 13

2 Developer Manual 45
2.1 Testing Nalu . 45
2.2 Source Code Documentation . 47
2.3 Writing Developer Documentation . 68
2.4 Writing User Documentation . 72
2.5 Building the Documentation . 72
2.6 Developer Workflow . 73
2.7 Nalu Style Guide . 73
2.8 Contributing to Nalu . 73

3 Sierra Low Mach Module: Nalu - Theory Manual 75
3.1 Low Mach Number Derivation . 75
3.2 Supported Equation Set . 77
3.3 Discretization Approach . 88
3.4 Advection Stabilization . 96
3.5 Pressure Stabilization . 98
3.6 RTE Stabilization . 99
3.7 Nonlinear Stabilization Operator (NSO) . 103
3.8 Turbulence Modeling . 105
3.9 Supported Boundary Conditions . 108
3.10 Overset . 119
3.11 Property Evaluations . 127
3.12 Coupling Approach . 127
3.13 Time discretization . 128
3.14 Multi-Physics . 129
3.15 Wind Energy Modeling . 129
3.16 Topological Support . 135
3.17 Adaptivity . 135
3.18 Code Abstractions . 136

4 Sierra Low Mach Module: Nalu - Verification Manual 145
4.1 Introduction . 145
4.2 2D Unsteady Uniform Property: Convecting Decaying Taylor Vortex 146

i

4.3 Higher Order 2D Steady Uniform Property: Taylor Vortex . 146
4.4 3D Steady Non-isothermal with Buoyancy . 150
4.5 3D Steady Non-uniform with Buoyancy . 153
4.6 2D Steady Laplace Operator . 153
4.7 3D Steady Laplace Operator with Nonconformal Interface . 154
4.8 Precursor-based Simulations . 159
4.9 Boussinesq Verification . 166
4.10 3D Hybrid 1x2x10 Duct: Specified Pressure Drop . 167
4.11 3D Hybrid 1x1x1 Cube: Laplace . 168
4.12 Actuator line simulations coupled to OpenFAST . 168
4.13 Open Boundary Condition With Outflow Thermal Stratification . 173
4.14 Specified Normal Temperature Gradient Boundary Condition . 179

Bibliography 183

ii

CHAPTER 1

User Manual

1.1 Building Nalu

1.1.1 Building Nalu Semi-Automatically Using Spack

Mac OS X or Linux

The following describes how to build Nalu and its dependencies mostly automatically on your Mac using Spack. This
can also be used as a template to build Nalu on any Linux system with Spack.

Step 1

This assumes you have a (Homebrew) installation of GCC installed already (we are using GCC 7.2.0). These instruc-
tions have been tested on OSX 10.11 and MacOS 10.12. MacOS 10.12 will not build CMake or Pkg-Config with GCC
anymore because they will pick up system header files that have objective C code in them. We build Nalu using Spack
on MacOS Sierra by using Homebrew to install cmake and pkg-config and defining these as external packages in
Spack (see packages.yaml).

Step 2

Checkout the official Spack repo from github (we will checkout into ${HOME}):

cd ${HOME} && git clone https://github.com/spack/spack.git

Step 3

Add Spack shell support to your .profile or .bash_profile etc, by adding the lines:

1

https://spack.readthedocs.io/en/latest
https://github.com/NaluCFD/NaluSpack/blob/master/spack_config/machines/mac_sierra/packages.yaml

Nalu Documentation, Release 1.2.0

export SPACK_ROOT=${HOME}/spack
source ${SPACK_ROOT}/share/spack/setup-env.sh

Step 4

Run the setup_spack.sh script from the repo which tries to find out what machine your on and then copies the corre-
sponding *.yaml configuration files to your Spack installation:

cd ${HOME} && git clone https://github.com/NaluCFD/NaluSpack.git
cd ${HOME}/NaluSpack/spack_config && ./setup_spack.sh

Step 5

Try spack info nalu to see if Spack works. If it does, check the compilers you have available by:

machine:~ user$ spack compilers
==> Available compilers
-- clang sierra-x86_64 --
clang@9.0.0-apple

-- gcc sierra-x86_64 --
gcc@7.2.0 gcc@6.4.0 gcc@5.4.0

Step 6

Install Nalu with whatever version of GCC (7.2.0 for us) you prefer by editing and running the
install_nalu_gcc_mac.sh script in the NaluSpack repo:

cd ${HOME}/NaluSpack/install_scripts && ./install_nalu_gcc_mac.sh

That should be it! Spack will install using the constraints we’ve specified in shared_constraints.sh as can be
seen in the install script.

NREL’s Peregrine Machine

The following describes how to build Nalu and its dependencies mostly automatically on NREL’s Peregrine machine
using Spack. This can also be used as a template to help build Nalu on any Linux system with Spack.

Step 1

Login to Peregrine, and checkout the https://github.com/NaluCFD/NaluSpack.git repo (we will be
cloning into the ${HOME} directory):

cd ${HOME} && git clone https://github.com/NaluCFD/NaluSpack.git

One first thing to note is that the login nodes and the compute nodes on Peregrine run different OSes. So programs will
be organized in Spack according to the OS they were built on, i.e. a login node (rhel6) typically called the front-end or
compute node (centos6) typically called the back-end. You can see this in the directory structure where the programs
will be built which will be located in ${SPACK_ROOT}/opt. You should build on a compute node.

2 Chapter 1. User Manual

https://github.com/NaluCFD/NaluSpack/blob/master/spack_config/setup_spack.sh
https://github.com/NaluCFD/NaluSpack

Nalu Documentation, Release 1.2.0

Step 2

Checkout the official Spack repo from github:

cd ${HOME} && git clone https://github.com/spack/spack.git

Step 3

Configure your environment in the recommended way. You should purge all modules and only load GCC 5.2.0 in your
login script. In the example .bash_profile in the repo we also load Python. If you have problems building with Spack
on Peregrine, it is most likely your environment has deviated from this recommended one. Even when building with
the Intel compiler in Spack, this is the recommended environment.

{
module purge
module load gcc/5.2.0
module load python/2.7.8
unload mkl
} &> /dev/null

Also add Spack shell support to your .bash_profile as shown in the example .bash_profile in the repo or the
following lines:

export SPACK_ROOT=${HOME}/spack
source ${SPACK_ROOT}/share/spack/setup-env.sh

Log out and log back in or source your .bash_profile to get the Spack shell support loaded. Try spack info
nalu to see if Spack works.

Step 4

Configure Spack for Peregrine. This is done by running the setup_spack.sh script provided which tries finding what
machine you’re on and copying the corresponding *.yaml file to your Spack directory:

cd ${HOME}/NaluSpack/spack_config && ./setup_spack.sh

Step 5

Try spack info nalu to see if Spack works.

Step 6

Note the build scripts provided here adhere to the official versions of the third party libraries we test with, and that
you may want to adhere to using them as well. Also note that when you checkout the latest Spack, it also means you
will be using the latest packages available if you do not set constraints at install time and the newest packages may not
have been tested to build correctly on NREL machines yet. So specifying versions of the TPL dependencies in this
step is recommended.

Install Nalu using a compute node either interactively (qsub -V -I -l nodes=1:ppn=24,
walltime=4:00:00 -A <allocation> -q short) with the example script install_nalu_gcc_peregrine.sh
or edit the script to use the correct allocation and qsub install_nalu_gcc_peregrine.sh.

1.1. Building Nalu 3

https://github.com/NaluCFD/NaluSpack/blob/master/spack_config/machines/peregrine/dot_bash_profile_peregrine.sh
https://github.com/NaluCFD/NaluSpack/blob/master/spack_config/machines/peregrine/dot_bash_profile_peregrine.sh
https://github.com/NaluCFD/NaluSpack/blob/master/spack_config/setup_spack.sh
https://github.com/NaluCFD/NaluSpack/blob/master/install_scripts/install_nalu_gcc_peregrine.sh

Nalu Documentation, Release 1.2.0

That’s it! Hopefully the install_nalu_gcc_peregrine.sh script installs the entire set of dependencies and
you get a working build of Nalu on Peregrine. . . after about 2 hours of waiting for it to build. Note that Peregrine may
have problems fetching/downloading packages due to SSL errors which are due to the way the machine is configured.
Using the command spack fetch -D <name> on your own laptop and then copying the package archives to
Peregrine is a possible workaround.

To build with the Intel compiler, note the necessary commands in install_nalu_intel_peregrine.sh batch script (note
you will need to point ${TMPDIR} to disk as it defaults to RAM and will cause problems when building Trilinos).

Then to load Nalu (and you will need Spack’s openmpi for Nalu now) into your path you will need to spack load
openmpi %compiler and spack load nalu %compiler, using %gcc or %intel to specify which to load.

NREL’s Merlin Machine

The following describes how to build Nalu and its dependencies mostly automatically on NREL’s Merlin machine
using Spack.

Step 1

Login to Merlin, and checkout the https://github.com/NaluCFD/NaluSpack.git repo (we will be
cloning into the ${HOME} directory):

cd ${HOME} && git clone https://github.com/NaluCFD/NaluSpack.git

On Merlin, thankfully the login nodes and compute nodes use the same OS (centos7), so building on the login node
will still allow the package to be loaded on the compute node. Spack will default to using all cores, so be mindful
using it on a compute node. You should probably build on a compute node, or set Spack to use a small number of
processes when building.

Step 2

Checkout the official Spack repo from github:

cd ${HOME} && git clone https://github.com/spack/spack.git

Step 3

Configure your environment in the recommended way. You should purge all modules and load GCCcore/4.9.2 in
your login script. See the example .bash_profile . If you have problems building with Spack on Merlin, it is most likely
your environment has deviated from this recommended one. Even when building with the Intel compiler in Spack, this
is the recommended environment.

module purge
module load GCCcore/4.9.2

Also add Spack shell support to your .bash_profile as shown in the example .bash_profile in the repo or the
following lines:

export SPACK_ROOT=${HOME}/spack
source ${SPACK_ROOT}/share/spack/setup-env.sh

Log out and log back in or source your .bash_profile to get the Spack shell support loaded.

4 Chapter 1. User Manual

https://github.com/NaluCFD/NaluSpack/blob/master/install_scripts/install_nalu_intel_peregrine.sh
https://github.com/NaluCFD/NaluSpack/blob/master/spack_config/machines/merlin/dot_bash_profile_merlin.sh
https://github.com/NaluCFD/NaluSpack/blob/master/spack_config/machines/merlin/dot_bash_profile_merlin.sh

Nalu Documentation, Release 1.2.0

Step 4

Configure Spack for Merlin. This is done by running the setup_spack.sh script provided which tries finding what
machine you’re on and copying the corresponding *.yaml file to your Spack directory:

cd ${HOME}/NaluSpack/spack_config && ./setup_spack.sh

Step 5

Try spack info nalu to see if Spack works.

Step 6

Note the build scripts provided here adhere to the official versions of the third party libraries we test with, and that you
may want to adhere to using them as well. Also note that when you checkout the latest Spack, it also means you will
be using the latest packages available if you do not specify a package version at install time and the newest packages
may not have been tested to build correctly on NREL machines yet. So specifying versions of the TPL dependencies
in this step is recommended.

Install Nalu using a compute node either interactively (qsub -V -I -l nodes=1:ppn=24,
walltime=4:00:00 -A <allocation> -q batch) or with the example batch script in-
stall_nalu_gcc_merlin.sh by editing to use the correct allocation and then qsub install_nalu_gcc_merlin.
sh.

That’s it! Hopefully that command installs the entire set of dependencies and you get a working build of Nalu on
Merlin.

To build with the Intel compiler, note the necessary commands in install_nalu_intel_merlin.sh batch script.

Then to load Nalu (and you will need Spack’s openmpi for Nalu now) into your path you will need to spack load
openmpi %compiler and spack load nalu %compiler, using %gcc or %intel to specify which to load.

Development Build of Nalu

When building Nalu with Spack, Spack will cache downloaded archive files such as *.tar.gz files. However, by
default Spack will also erase extracted or checked out (‘staged’) source files after it has built a package successfully.
Therefore if your build succeeds, Spack will have erased the Nalu source code it checked out from Github.

The recommended way to get a version of Nalu you can develop in is to checkout Nalu yourself outside of Spack and
build this version using the dependencies Spack has built for you. To do so, checkout Nalu:

git clone https://github.com/NaluCFD/Nalu.git

Next, create your own directory to build in, or use the existing build directory in Nalu to run the CMake config-
uration. When running the CMake configuration, point Nalu to the dependencies by using spack location -i
<package>. For example in the build directory run:

cmake -DTrilinos_DIR:PATH=$(spack location -i nalu-trilinos) \
-DYAML_DIR:PATH=$(spack location -i yaml-cpp) \
-DCMAKE_BUILD_TYPE=RELEASE \
..

make

1.1. Building Nalu 5

https://github.com/NaluCFD/NaluSpack/blob/master/spack_config/setup_spack.sh
https://github.com/NaluCFD/NaluSpack/blob/master/install_scripts/install_nalu_gcc_merlin.sh
https://github.com/NaluCFD/NaluSpack/blob/master/install_scripts/install_nalu_gcc_merlin.sh
https://github.com/NaluCFD/NaluSpack/blob/master/install_scripts/install_nalu_intel_merlin.sh

Nalu Documentation, Release 1.2.0

There are also scripts available for this according to machine here. These scripts may also provide the capability to
access and use pre-built dependencies from a shared directory if they are available on the machine. This should allow
you to have a build of Nalu in which you are able to continuosly modify the source code and rebuild.

Development Build of Trilinos

If you want to go even further into having a development build of Trilinos while using TPLs Spack has built for you,
checkout Trilinos somewhere and see the example configure script for Trilinos according to machine here.

1.1.2 Building Nalu Manually

If you prefer not to build using Spack, below are instructions which describe the process of building Nalu by hand.

Linux and OSX

The instructions for Linux and OSX are mostly the same, except on each OS you may be able to use a package manager
to install some dependencies for you. Using Homebrew on OSX is one option listed below. Compilers and MPI are
expected to be already installed. If they are not, please follow the open-mpi build instructions. Below, we are using
OpenMPI v1.10.4 and GCC v4.9.2. Start by create a $nalu_build_dir to work in.

Homebrew

If using OSX, you can install many dependencies using Homebrew. Install Homebrew on your local machine and
reference the list below for some packages Homebrew can install for you which allows you to skip the steps describing
the build process for each application, but not that you will need to find the location of the applications in which
Homebrew has installed them, to use when building Trilinos and Nalu.

brew install openmpi
brew install cmake
brew install libxml2
brew install boost
brew tap homebrew/science
brew install superlu43

CMake v3.6.1

CMake is provided here.

Prepare:

cd $nalu_build_dir/packages
curl -o cmake-3.6.1.tar.gz http://www.cmake.org/files/v3.6/cmake-3.6.1.tar.gz
tar xf cmake-3.6.1.tar.gz

Build:

cd $nalu_build_dir/packages/cmake-3.6.1
./configure --prefix=$nalu_build_dir/install
make
make install

6 Chapter 1. User Manual

https://github.com/NaluCFD/NaluSpack/blob/master/spack_config
https://github.com/NaluCFD/NaluSpack/blob/master/spack_config
https://github.com/Homebrew/homebrew/wiki/Installation
http://www.cmake.org/download/

Nalu Documentation, Release 1.2.0

SuperLU v4.3

SuperLU is provided here.

Prepare:

cd $nalu_build_dir/packages
curl -o superlu_4.3.tar.gz http://crd-legacy.lbl.gov/~xiaoye/SuperLU/superlu_4.3.tar.
→˓gz
tar xf superlu_4.3.tar.gz

Build:

cd $nalu_build_dir/packages/SuperLU_4.3
cp MAKE_INC/make.linux make.inc

To find out what the correct platform extension PLAT is:

uname -m

Edit make.inc as shown below (diffs shown from baseline).

PLAT = _x86_64
SuperLUroot = /your_path/install/SuperLU_4.3 i.e., $nalu_build_dir/install/SuperLU_
→˓4.3
BLASLIB = -L/usr/lib64 -lblas
CC = mpicc
FORTRAN = mpif77

On some platforms, the $nalu_build_dir may be mangled. In such cases, you may need to use the entire path to
install/SuperLU_4.3.

Next, make some new directories:

mkdir $nalu_build_dir/install/SuperLU_4.3
mkdir $nalu_build_dir/install/SuperLU_4.3/lib
mkdir $nalu_build_dir/install/SuperLU_4.3/include
cd $nalu_build_dir/packages/SuperLU_4.3
make
cp SRC/*.h $nalu_build_dir/install/SuperLU_4.3/include

Libxml2 v2.9.2

Libxml2 is found here.

Prepare:

cd $nalu_build_dir/packages
curl -o libxml2-2.9.2.tar.gz http://www.xmlsoft.org/sources/libxml2-2.9.2.tar.gz
tar -xvf libxml2-2.9.2.tar.gz

Build:

cd $nalu_build_dir/packages/libxml2-2.9.2
CC=mpicc CXX=mpicxx ./configure -without-python --prefix=$nalu_build_dir/install
make
make install

1.1. Building Nalu 7

http://crd-legacy.lbl.gov/~xiaoye/SuperLU/
http://www.xmlsoft.org/sources/

Nalu Documentation, Release 1.2.0

Boost v1.60.0

Boost is found here.

Prepare:

cd $nalu_build_dir/packages
curl -o boost_1_60_0.tar.gz http://iweb.dl.sourceforge.net/project/boost/boost/1.60.0/
→˓boost_1_60_0.tar.gz
tar -zxvf boost_1_60_0.tar.gz

Build:

cd $nalu_build_dir/packages/boost_1_60_0
./bootstrap.sh --prefix=$nalu_build_dir/install --with-libraries=signals,regex,
→˓filesystem,system,mpi,serialization,thread,program_options,exception

Next, edit project-config.jam and add a ‘using mpi’, e.g,

using mpi: /path/to/mpi/openmpi/bin/mpicc

./b2 -j 4 2>&1 | tee boost_build_one

./b2 -j 4 install 2>&1 | tee boost_build_intall

YAML-CPP

YAML is provided here. Versions of Nalu before v1.1.0 used earlier versions of YAML-CPP. For brevity only the latest
build instructions are discussed and the history of the Nalu git repo can be used to find older installation instructions
if required. YAML-CPP has introduced several fixes since v0.5.3 in the master branch, so it is recommended to build
the master branch, or choose commit 5d5bb52e which is the latest commit that has been tested as of this writing.

Prepare:

cd $nalu_build_dir/packages
git clone https://github.com/jbeder/yaml-cpp

Build:

cd $nalu_build_dir/packages/yaml-cpp
mkdir build
cd build
cmake -DCMAKE_CXX_COMPILER=mpicxx -DCMAKE_CXX_FLAGS=-std=c++11 -DCMAKE_CC_
→˓COMPILER=mpicc -DCMAKE_INSTALL_PREFIX=$nalu_build_dir/install ..
make
make install

Zlib v1.2.8

Zlib is provided here.

Prepare:

cd $nalu_build_dir/packages
curl -o zlib-1.2.8.tar.gz http://zlib.net/zlib-1.2.8.tar.gz
tar -zxvf zlib-1.2.8.tar.gz

8 Chapter 1. User Manual

http://www.boost.org
https://github.com/jbeder/yaml-cpp
http://www.zlib.net

Nalu Documentation, Release 1.2.0

Build:

cd $nalu_build_dir/packages/zlib-1.2.8
CC=gcc CXX=g++ CFLAGS=-O3 CXXFLAGS=-O3 ./configure --prefix=$nalu_build_dir/install/
make
make install

HDF5 v1.8.16

HDF5 1.8.16 is provided here.

Prepare:

cd $nalu_build_dir/packages/
curl -o hdf5-1.8.16.tar.gz http://www.hdfgroup.org/ftp/HDF5/releases/hdf5-1.8.16/src/
→˓hdf5-1.8.16.tar.gz
tar -zxvf hdf5-1.8.16.tar.gz

Build:

cd $nalu_build_dir/packages/hdf5-1.8.16
./configure CC=mpicc FC=mpif90 CXX=mpicxx CXXFLAGS="-fPIC -O3" CFLAGS="-fPIC -O3"
→˓FCFLAGS="-fPIC -O3" --enable-parallel --with-zlib=$nalu_build_dir/install --prefix=
→˓$nalu_build_dir/install
make
make install
make check

NetCDF v4.3.3.1 and Parallel NetCDF v1.6.1

In order to support all aspects of Nalu’s parallel models, this combination of products is required.

Parallel NetCDF v1.6.1

Parallel NetCDF is provided on the Argon Trac Page.

Prepare:

cd $nalu_build_dir/packages/
tar -zxvf parallel-netcdf-1.6.1.tar.gz

Build:

cd parallel-netcdf-1.6.1
./configure --prefix=$nalu_install_dir CC=mpicc FC=mpif90 CXX=mpicxx CFLAGS="-I$nalu_
→˓install_dir/include -O3" LDFLAGS=-L$nalu_install_dir/lib --disable-fortran
make
make install

Note that we have created an install directory that might look like $nalu_build_dir/install.

1.1. Building Nalu 9

http://www.hdfgroup.org/downloads/index.html
https://trac.mcs.anl.gov/projects/parallel-netcdf/wiki/Download

Nalu Documentation, Release 1.2.0

NetCDF v4.3.3.1

NetCDF is provided here.

Prepare:

cd $nalu_build_dir/packages/
curl -o netcdf-c-4.3.3.1.tar.gz https://codeload.github.com/Unidata/netcdf-c/tar.gz/
→˓v4.3.3.1
tar -zxvf netcdf-c-4.3.3.1.tar.gz

Build:

cd netcdf-c-4.3.3.1
./configure --prefix=$nalu_install_dir CC=mpicc FC=mpif90 CXX=mpicxx CFLAGS="-I$nalu_
→˓install_dir/include -O3" LDFLAGS=-L$nalu_install_dir/lib --enable-pnetcdf --enable-
→˓parallel-tests --enable-netcdf-4 --disable-shared --disable-fsync --disable-
→˓cdmremote --disable-dap --disable-doxygen --disable-v2
make -j 4
make check
make install

Trilinos

Trilinos is managed by the Trilinos project and can be found on Github.

Prepare:

cd $nalu_build_dir/packages/
git clone https://github.com/trilinos/Trilinos.git
cd $nalu_build_dir/packages/Trilinos
mkdir build

HYPRE

Nalu can use HYPRE solvers and preconditioners, especially for Pressure Poisson solves. However, this dependency
is optional and is not enabled by default. Users wishing to use HYPRE solver and preconditioner combination must
compile HYPRE library and link to it when building Nalu.

1. Clone hypre sources
https://github.com/LLNL/hypre.git
cd hypre/src

2. Configure HYPRE package and pass installation directory
./configure --prefix=$nalu_install_dir --without-superlu --without-openmp --enable-
→˓bigint

3. Compile and install
make && make install

Note:

1. Make sure that --enable-bigint option is turned on if you intend to run linear systems with > 2 billion
rows. Otherwise, nalu executable will throw an error at runtime for large problems.

10 Chapter 1. User Manual

https://github.com/Unidata/netcdf-c/releases
http://www.trilinos.org

Nalu Documentation, Release 1.2.0

2. Users must pass -DENABLE_HYPRE option to CMake during Nalu configuration phase. Optionally, the vari-
able -DHYPRE_DIR‘ can be used to pass the path of HYPRE install location to CMake.

Build

Place into the build directory, one of the do-configTrilinos_* files, that can be obtained from the Nalu repo.

do-configTrilinos_* will be used to run cmake to build trilinos correctly for Nalu. Note that there are two
files: one for ‘release’ and the other ‘debug’. The files can be found on the Nalu GitHub site or copied from
$nalu_build_dir/packages/Nalu/build, which is created in the Nalu build step documented below. For
example:

Pull latest version of do-configTrilinos_* from Nalu’s GitHub site:

curl -o $nalu_build_dir/packages/Trilinos/build/do-configTrilinos_release https://raw.
→˓githubusercontent.com/NaluCFD/Nalu/master/build/do-configTrilinos_release

Or if you create the Nalu directory as directed below, simply copy one of the do-configTrilinos_* files from
local copy of Nalu’s git repository:

cp $nalu_build_dir/packages/Nalu/build/do-configTrilinos_release $nalu_build_dir/
→˓packages/Trilinos/build

Now edit do-configTrilinos_release to modify the paths so they point to $nalu_build_dir/
install.

cd $nalu_build_dir/packages/Trilinos/build
chmod +x do-configTrilinos_release

Make sure all other paths to netcdf, hdf5, etc., are correct.

./do-configTrilinos_release
make
make install

ParaView Catalyst

Optionally enable ParaView Catalyst for in-situ visualization with Nalu. These instructions can be skipped if you do
not require in-situ visualization with Nalu.

Build ParaView SuperBuild v5.3.0

The ParaView SuperBuild builds ParaView along with all dependencies necessary to enable Catalyst with Nalu. Clone
the ParaView SuperBuild within $nalu_build_dir/packages:

cd $nalu_build_dir/packages/
git clone --recursive https://gitlab.kitware.com/paraview/paraview-superbuild.git
cd paraview-superbuild
git fetch origin
git checkout v5.3.0
git submodule update

Create a new build folder in $nalu_build_dir/:

1.1. Building Nalu 11

https://www.paraview.org/in-situ/
https://gitlab.kitware.com/paraview/paraview-superbuild

Nalu Documentation, Release 1.2.0

cd $nalu_build_dir
mkdir paraview-superbuild-build
cd paraview-superbuild-build

Copy do-configParaViewSuperBuild to paraview-superbuild-build. Edit
do-configParaViewSuperBuild to modify the defined paths as follows:

mpi_base_dir=<same MPI base directory used to build Trilinos>
nalu_build_dir=<path to root nalu build dir>

Make sure the MPI library names are correct.

./do-configParaViewSuperBuild
make -j 8

Build Nalu ParaView Catalyst Adapter

Create a new build folder in $nalu_build_dir/:

cd $nalu_build_dir
mkdir nalu-catalyst-adapter-build
cd nalu-catalyst-adapter-build

Copy do-configNaluCatalystAdapter to nalu-catalyst-adapter-build. Edit
do-configNaluCatalystAdapter and modify nalu_build_dir at the top of the file to the root
build directory path.

./do-configNaluCatalystAdapter
make
make install

Nalu

Nalu is provided here. One may either build the released Nalu version 1.2.0 which matches with Trilinos version
12.12.1, or the master branch of Nalu which matches with the master branch or develop branch of Trilinos. If it is
necessary to build an older version of Nalu, refer to the history of the Nalu git repo for instructions on doing so.

Prepare:

git clone https://github.com/NaluCFD/Nalu.git

Build

In Nalu/build, you will find the do-configNalu script. Copy the do-configNalu_release or debug file to
a new, non-tracked file:

cp do-configNalu_release do-configNaluNonTracked

Edit the paths at the top of the files by defining the nalu_build_dir variable. Within Nalu/build, execute
the following commands:

12 Chapter 1. User Manual

https://github.com/NaluCFD/Nalu
https://github.com/NaluCFD/Nalu/blob/master/build/do-configNalu_release

Nalu Documentation, Release 1.2.0

./do-configNaluNonTracked
make

This process will create naluX within the Nalu/build location. You may also build a debug executable by modi-
fying the Nalu config file to use “Debug”. In this case, a naluXd executable is created.

Build Nalu with ParaView Catalyst Enabled

If you have built ParaView Catalyst and the Nalu ParaView Catalyst Adapter, you can build Nalu with Catalyst enabled.

In Nalu/build, find do-configNaluCatalyst. Copy do-configNaluCatalyst to a new, non-tracked
file:

cp do-configNaluCatalyst do-configNaluCatalystNonTracked
./do-configNaluCatalystNonTracked
make

The build will create the same executables as a regular Nalu build, and will also create a bash shell script named
naluXCatalyst. Use naluXCatalyst to run Nalu with Catalyst enabled. It is also possible to run naluX with
Catalyst enabled by first setting the environment variable:

export CATALYST_ADAPTER_INSTALL_DIR=$nalu_build_dir/install

Nalu will render images to Catalyst in-situ if it encounters the keyword catalyst_file_name in the output
section of the Nalu input deck. The catalyst_file_name command specifies the path to a text file containing
ParaView Catalyst input deck commands. Consult the catalyst.txt files in the following Nalu regression test
directories for examples of the Catalyst input deck command syntax:

ablForcingEdge/
mixedTetPipe/
steadyTaylorVortex/

output:
output_data_base_name: mixedTetPipe.e
catalyst_file_name: catalyst.txt

When the above regression tests are run, Catalyst is run as part of the regression test. The regression test checks that
the correct number of image output files have been created by the test.

The Nalu Catalyst integration also supports running Catalyst Python script files exported from the ParaView GUI. The
procedure for exporting Catalyst Python scripts from ParaView is documented in the Catalyst user guide. To use an
exported Catalyst script, insert the paraview_script_name keyword in the output section of the Nalu input
deck. The argument for the paraview_script_name command contains a file path to the exported script.

output:
output_data_base_name: mixedTetPipe.e
paraview_script_name: paraview_exported_catalyst_script.py

1.2 Running Nalu

This section describes the general process of setting up and executing Nalu, understanding the various input file
options available to the user, and how to extract results and analyze them. For the simplest case, Nalu requires the

1.2. Running Nalu 13

https://www.paraview.org/in-situ/

Nalu Documentation, Release 1.2.0

user to provide a YAML input file with the options that control the run along with a computational mesh in Exodus-II
format. More complex setups might require additional files:

• Trilinos MueLu preconditioner configuration in XML format

• ParaView Cataylst input file for in-situ visualizations

• Additional Exodus-II mesh files for solving different physics equation sets on different meshes, or for solution
transfer to an input/output mesh.

1.2.1 Exodus-II File Format

Nalu requires the user to provide the computational mesh in Exodus-II format. The output and restart files generated
by Nalu are also in Exodus-II format where the requested fields are output along side the mesh. The restart files from
one Nalu simulation can serve as the input file for a subsequent simulation.

Several commercial mesh generation software support output to Exodus-II format. Two such software used by Nalu
developers are:

• CUBIT

• Pointwise

Furthermore, NaluWindUtils provides an abl_mesh utility that can be used to generate simple structured meshes
(output into Exodus-II format) for use with atmospheric boundary layer simulations.

Examining Exodus-II Files

Exodus-II uses the NetCDF format to store data, therefore, the several NetCDF utilities can be used to examine the
file metadata. For example, the following code snippet shows the use of ncdump to examine the names of the mesh
blocks and side sets, as well as the nodal fields available in a given mesh file.

ncdump -v eb_names,ss_names,name_nod_var channel_coarse_ic.g
<output truncated to show only relevant parts>
data:

eb_names =
"interior" ;

ss_names =
"inlet",
"outlet",
"bottomwall",
"topwall",
"back",
"front" ;

name_nod_var =
"turbulent_ke",
"velocity_x",
"velocity_y",
"velocity_z" ;

For brevity, the example above has removed the NetCDF dimensions and variables sections to show just the
contents of the variable names of interest. The output shows that the mesh in question contains one element block
(interior) with six boundary planes (side-sets) and has two nodal fields: the velocity vector, and the turbulent
kinetic energy scalar. ncdump can be invoked with the -h flag to print just the headers. Of particular interest is the

14 Chapter 1. User Manual

http://prod.sandia.gov/techlib/access-control.cgi/1992/922137.pdf
https://cubit.sandia.gov/public/13.2/help_manual/WebHelp/cubit_users_manual.html
http://www.pointwise.com
http://naluwindutils.readthedocs.io/en/latest/user/abl_mesh.html
http://www.unidata.ucar.edu/software/netcdf/

Nalu Documentation, Release 1.2.0

NetCDF dimensions section that contains information about the total number of nodes, element, boundary faces,
etc. in the mesh file.

Most visualization programs support loading Exodus-II mesh/solution files and can be used to visualize the flow fields
generated by Nalu. Two open-source visualization programs available are:

• ParaView

• VisIt

Preliminary support for in-situ visualization using ParaView Catalyst is available within the Nalu code base and can
be enabled by linking to Catalyst libraries during compile time. See input file specifications more details on setting up
Cataylst for in-situ visualization of Nalu solution files.

Other Exodus-II Utilities

A brief description of some useful Exodus-II utilities are provided here. Please consult the documentation of these
programs to understand the full range of options available.

decomp

decomp is a SEACAS utility (available from a Trilinos install) that can be used to decompose a mesh file
acros several MPI ranks for use in a subsequent paralell simulation.

epu

epu performs the reverse action of decomp, i.e., it combines parallel decomposed files from a simulation
into a single Exodus-II database. The simplest invocation is

epu -auto nalu_output.e.8.0

The -auto flag determines the database structured based on the file provided on the command line and
combines the files (in the above example into nalu_output.e).

mapvar-kd

Map solution fields from one mesh to another mesh.

percept

The Percept project provides various tools to perform mesh refinement, higher-order promotion, etc. See
documentation for mesh_adapt to determine various options available.

1.2.2 Invoking Nalu - Command-line options

Nalu’s runtime behavior can be controlled by using several command line input options during invocation. Users can
invoke -h to determine the various options available.

-h, --help
Print the help message describing all Nalu options and exit

-i, --input-deck
Use the filename provided as the input file. If this option is not provided, naluX will attempt to load a file
called nalu.i in the current working directory as the input file.

-o, --log-file
The log file where the output generated by Nalu is directed to. If no file is provided, then naluX will use the
base name of the Nalu input file with the extension .log as the output file. For example, if naluX was invoked
as naluX -i ABL.neutral.i then the output will be redirected to a file named ABL.neutral.log.
Note that the file is overwritten if it already exists.

1.2. Running Nalu 15

https://www.paraview.org
https://wci.llnl.gov/simulation/computer-codes/visit/
https://www.paraview.org/in-situ/
https://github.com/PerceptTools/percept

Nalu Documentation, Release 1.2.0

-v, --version
Print the Nalu version string.

-p, --pprint
Enable parallel printing from all MPI ranks.

-D, --debug
Enable verbose debug printing to log file.

1.2.3 Nalu Input File

Nalu requires the user to provide an input file, in YAML format, during invocation at the command line using the
naluX -i flag. By default, naluX will look for nalu.i in the current working directory to determine the mesh
file as well as the run setup for execution. A sample nalu.i is shown below:

Listing 1.1: Sample Nalu input file for the Heat Conduction problem

-*- mode: yaml -*-
#
Example Nalu input file for a heat conduction problem
#

Simulations:
- name: sim1
time_integrator: ti_1
optimizer: opt1

linear_solvers:
- name: solve_scalar
type: tpetra
method: gmres
preconditioner: sgs
tolerance: 1e-3
max_iterations: 75
kspace: 75
output_level: 0

realms:

- name: realm_1
mesh: periodic3d.g
use_edges: no
automatic_decomposition_type: rcb

equation_systems:
name: theEqSys
max_iterations: 2

solver_system_specification:
temperature: solve_scalar

systems:
- HeatConduction:

name: myHC
max_iterations: 1
convergence_tolerance: 1e-5

initial_conditions:

16 Chapter 1. User Manual

Nalu Documentation, Release 1.2.0

- constant: ic_1
target_name: block_1
value:
temperature: 10.0

material_properties:
target_name: block_1
specifications:

- name: density
type: constant
value: 1.0

- name: thermal_conductivity
type: constant
value: 1.0

- name: specific_heat
type: constant
value: 1.0

boundary_conditions:

- wall_boundary_condition: bc_left
target_name: surface_1
wall_user_data:

temperature: 20.0

- wall_boundary_condition: bc_right
target_name: surface_2
wall_user_data:

temperature: 40.0

solution_options:
name: myOptions

use_consolidated_solver_algorithm: yes

options:
- element_source_terms:

temperature: FEM_DIFF

output:
output_data_base_name: femHC.e
output_frequency: 10
output_node_set: no
output_variables:
- dual_nodal_volume
- temperature

Time_Integrators:
- StandardTimeIntegrator:

name: ti_1
start_time: 0
termination_step_count: 25
time_step: 10.0
time_stepping_type: fixed
time_step_count: 0
second_order_accuracy: no

1.2. Running Nalu 17

Nalu Documentation, Release 1.2.0

realms:
- realm_1

Nalu input file contains the following top-level sections that describe the simulation to be executed.

Realms

Realms describe the computational domain (via mesh input files) and the set of physics equations (Low-
Mach Navier-Stokes, Heat Conduction, etc.) that are solved over this particular domain. The list can
contain multiple computational domains (realms) that use different meshes as well as solve different sets
of physics equations and interact via solution transfer. This section also contains information regarding
the initial and boundary conditions, solution output and restart options, the linear solvers used to solve the
linear system of equations, and solution options that govern the discretization of the equation set.

A special case of a realm instance is the input-output realm; this realm type does not solve any physics
equations, but instead serves one of the following purposes:

• provide time-varying boundary conditions to one or more boundaries within one or more of the
participating realms in the simulations. In this context, it acts as an input realm.

• extract a subset of data for output at a different frequency from the other realms. In this context, it
acts as an output realm.

Inclusion of an input/output realm will require the user to provide the additional transfers section in
the Nalu input file that defines the solution fields that are transferred between the realms. See Physics
Realm Options for detailed documentation on all Realm options.

Linear Solvers

This section configures the solvers and preconditioners used to solve the resulting linear system of equa-
tions within Nalu. The linear system convergence tolerance and other controls are set here and can be
used with multiple systems across different realms. See Linear Solvers for more details.

Time Integrators

This section configures the time integration scheme used (first/second order in time), the duration of sim-
ulation, fixed or adaptive timestepping based on Courant number constraints, etc. Each time integration
section in this list can accept one or more realms that are integrated in time using that specific time inte-
gration scheme. See Time Integration Options for complete documentation of all time integration options
available in Nalu.

Transfers

An optional section that defines one or more solution transfer definitions between the participating
realms during the simulation. Each transfer definition provides a mapping of the to and from realm,
part, and the solution field that must be transferred at every timestep during the simulation. See ABL
Forcing section for complete documentation of all transfer options available in Nalu.

Simulations

Simulations provides the top-level architecture that orchestrates the time-stepping across all the realms
and the required equation sets.

Linear Solvers

The linear_solvers section contains a list of one or more linear solver settings that specify the solver, precon-
ditioner, convergence tolerance for solving a linear system. Every entry in the YAML list will contain the following
entries:

18 Chapter 1. User Manual

Nalu Documentation, Release 1.2.0

Note: The variable in the linear_solvers subsection are prefixed with linear_solvers.name but only the
variable name after the period should appear in the input file.

linear_solvers.name
The key used to refer to the linear solver configuration in equation_systems.
solver_system_specification section.

linear_solvers.type
The type of solver library used.

Type Description
tpetra Tpetra data structures and Belos solvers/preconditioners
hypre Hypre data structures and Hypre solver/preconditioners

linear_solvers.method
The solver used for solving the linear system.

When linear_solvers.type is tpetra the valid options are: gmres, biCgStab, cg. For hypre the
valid options are hypre_boomerAMG and hypre_gmres.

Options Common to both Solver Libraries

linear_solvers.preconditioner
The type of preconditioner used.

When linear_solvers.type is tpetra the valid options are sgs, mt_sgs, muelu. For hypre the
valid options are boomerAMG or none.

linear_solvers.tolerance
The relative tolerance used to determine convergence of the linear system.

linear_solvers.max_iterations
Maximum number of linear solver iterations performed.

linear_solvers.kspace
The Krylov vector space.

linear_solvers.output_level
Verbosity of output from the linear solver during execution.

linear_solvers.write_matrix_files
A boolean flag indicating whether the matrix, the right hand side, and the solution vector are written to files
during execution. The matrix files are written in MatrixMarket format. The default value is no.

Additional parameters for Belos Solver/Preconditioners

linear_solvers.muelu_xml_file_name
Only used when the linear_solvers.preconditioner is set to muelu and specifies the path to the
XML filename that contains various configuration parameters for Trilinos MueLu package.

linear_solvers.recompute_preconditioner
A boolean flag indicating whether preconditioner is recomputed during runs. The default value is yes.

linear_solvers.reuse_preconditioner
Boolean flag. Default value is no.

linear_solvers.summarize_muelu_timer
Boolean flag indicating whether MueLu timer summary is printed. Default value is no.

1.2. Running Nalu 19

Nalu Documentation, Release 1.2.0

Additional parameters for Hypre Solver/Preconditioners

The user is referred to Hypre Reference Manual for full details on the usage of the parameters described briefly below.

The parameters that start with bamg_ prefix refer to options related to Hypre’s BoomerAMG preconditioner.

linear_solvers.bamg_output_level
The level of verbosity of BoomerAMG preconditioner. See HYPRE_BoomerAMGSetPrintLevel. Default:
0.

linear_solvers.bamg_coarsen_type
See HYPRE_BoomerAMGSetCoarsenType. Default: 6

linear_solvers.bamg_cycle_type
See HYPRE_BoomerAMGSetCycleType. Default: 1

linear_solvers.bamg_relax_type
See HYPRE_BoomerAMGSetRelaxType. Default: 6

linear_solvers.bamg_relax_order
See HYPRE_BoomerAMGSetRelaxOrder. Default: 1

linear_solvers.bamg_num_sweeps
See HYPRE_BoomerAMGSetNumSweeps. Default: 2

linear_solvers.bamg_max_levels
See HYPRE_BoomerAMGSetMaxLevels. Default: 20

linear_solvers.bamg_strong_threshold
See HYPRE_BoomerAMGSetStrongThreshold. Default: 0.25

Time Integration Options

Time_Integrators
A list of time-integration options used to advance the realms in time. Each list entry must con-
tain a YAML mapping with the key indicating the type of time integrator. Currently only one option,
StandardTimeIntegrator is available.

Time_Integrators:
- StandardTimeIntegrator:

name: ti_1
start_time: 0.0
termination_step_count: 10
time_step: 0.5
time_stepping_type: fixed
time_step_count: 0
second_order_accuracy: yes

realms:
- fluids_realm

time_int.name
The lookup key for this time integration entry. This name must match the one provided in Simulations
section.

time_int.termination_time
Nalu will stop the simulation once the termination_time has reached.

20 Chapter 1. User Manual

https://computation.llnl.gov/projects/hypre-scalable-linear-solvers-multigrid-methods/software

Nalu Documentation, Release 1.2.0

time_int.termination_step_count
Nalu will stop the simulation once the specified termination_step_count timesteps have been com-
pleted. If both time_int.termination_time and this parameter are provided then this parameter will
prevail.

time_int.time_step
The time step (∆𝑡) used for the simulation. If time_int.time_stepping_type is fixed this value does
not change during the simulation.

time_int.start_time
The starting time step (default: 0.0) when starting a new simulation. Note that this has no effect on restart
which is controlled by restart.restart_time in the restart section.

time_int.time_step_count
The starting timestep counter for a new simulation. See restart for restarting from a previous simulation.

time_int.second_order_accuracy
A boolean flag indicating whether second-order time integration scheme is activated. Default: no.

time_int.time_stepping_type
One of fixed or adaptive indicating whether a fixed time-stepping scheme or an adaptive timestepping
scheme is used for simulations. See time_step_control for more information on max Courant number
based adaptive time stepping.

time_int.realms
A list of realms names. The names entered here must match name used in the realms section. Names listed
here not found in realms list will trigger an error, while realms not included in this list but present in realms
will not be initialized and silently ignored. This can cause the code to abort if the user attempts to access the
specific realm in the transfers section.

Physics Realm Options

As mentioned previously, realms is a YAML list data structure containing at least one Physics Realm Options
entry that defines the computational domain (provided as an Exodus-II mesh), the set of physics equations that must
be solved over this domain, along with the necessary initial and boundary conditions. Each list entry is a YAML
dictionary mapping that is described in this section of the manual. The key subsections of a Realm entry in the input
file are

Realm subsection Purpose
equation_systems Set of physics equations to be solved
initial_conditions Initial conditions for the various fields
boundary_conditions Boundary condition for the different fields
material_properties Material properties (e.g., fluid density, viscosity etc.)
solution_options Discretization options
output Solution output options (file, frequency, etc.)
restart Optional: Restart options (restart time, checkpoint frequency etc.)
time_step_control Optional: Parameters determining variable timestepping

In addition to the sections mentioned in the table, there are several additional sections that could be present depending
on the specific simulation type and post-processing options requested by the user. A brief description of these optional
sections are provided below:

1.2. Running Nalu 21

Nalu Documentation, Release 1.2.0

Realm subsection Purpose
turbulence_averaging Generate statistics for the flow field
post_processing Extract integrated data from the simulation
solution_norm Compare the solution error to a reference solution
data_probes Extract data using probes
actuator Model turbine blades/tower using actuator lines
abl_forcing Momentum source term to drive ABL flows to a desired velocity profile

Common options

name
The name of the realm. The name provided here is used in the Time_Integrators section to determine the
time-integration scheme used for this computational domain.

mesh
The name of the Exodus-II mesh file that defines the computational domain for this realm. Note that only
the base name (i.e., without the .NPROCS.IPROC suffix) is provided even for simulations using previously
decomposed mesh/restart files.

automatic_decomposition_type
Used only for parallel runs, this indicates how the a single mesh database must be decomposed amongst the MPI
processes during initialization. This option should not be used if the mesh has already been decomposed by an
external utility. Possible values are:

Value Description
rcb recursive coordinate bisection
rib recursive inertial bisection
linear elements in order first n/p to proc 0, next to proc 1.
cyclic elements handed out to id % proc_count

activate_aura
A boolean flag indicating whether an extra element is ghosted across the processor boundaries. The default
value is no.

use_edges
A boolean flag indicating whether edge based discretization scheme is used instead of element based schemes.
The default value is no.

polynomial_order
An integer value indicating the polynomial order used for higher-order mesh simulations. The default value
is 1. When polynomial_order is greater than 1, the Realm has the capability to promote the mesh to
higher-order during initialization.

solve_frequency
An integer value indicating how often this realm is solved during time integration. The default value is 1.

support_inconsistent_multi_state_restart
A boolean flag indicating whether restarts are allowed from files where the necessary field states are missing. A
typical situation is when the simulation is restarted using second-order time integration but the restart file was
created using first-order time integration scheme.

activate_memory_diagnostic
A boolean flag indicating whether memory diagnostics are activated during simulation. Default value is no.

22 Chapter 1. User Manual

Nalu Documentation, Release 1.2.0

balance_nodes
A boolean flag indicating whether node balancing is performed during simulations. See also
balance_node_iterations and balance_nodes_target.

balance_node_iterations
The frequency at which node rebalancing is performed. Default value is 5.

balance_node_target
The target balance ratio. Default value is 1.0.

Equation Systems

equation_systems
equation_systems subsection defines the physics equation sets that are solved for this realm and the linear
solvers used to solve the different linear systems.

Note: The variable in the equation_systems subsection are prefixed with equation_systems.name but
only the variable name after the period should appear in the input file.

equation_systems.name
A string indicating the name used in log messages etc.

equation_systems.max_iterations
The maximum number of non-linear iterations performed during a timestep that couples the different equation
systems.

equation_systems.solver_system_specification
A mapping containing field_name: linear_solver_name that determines the linear solver used for
solving the linear system. Example:

solver_system_specification:
pressure: solve_continuity
enthalpy: solve_scalar
velocity: solve_scalar

The above example indicates that the linear systems for the enthalpy and momentum (velocity) equations are
solved by the linear solver corresponding to the tag solve_scalar in the linear_systems entry, whereas
the continuity equation system (pressure Poisson solve) should be solved using the linear solver definition cor-
responding to the tag solve_continuity.

equation_systems.systems
A list of equation systems to be solved within this realm. Each entry is a YAML mapping with the key corre-
sponding to a pre-defined equation system name that contains additional parameters governing the solution of
this equation set. The predefined equation types are

Equation system Description
LowMachEOM Low-Mach Momentum and Continuity equations
Enthalpy Energy equations
ShearStressTransport 𝑘 − 𝜔 SST equation set
TurbKineticEnergy TKE equation system
MassFraction Mass Fraction
MixtureFraction Mixture Fraction
MeshDisplacement Arbitrary Mesh Displacement

1.2. Running Nalu 23

Nalu Documentation, Release 1.2.0

An example of the equation system definition for ABL precursor simulations is shown below:

Equation systems example for ABL precursor simulations
systems:
- LowMachEOM:

name: myLowMach
max_iterations: 1
convergence_tolerance: 1.0e-5

- TurbKineticEnergy:
name: myTke
max_iterations: 1
convergence_tolerance: 1.0e-2

- Enthalpy:
name: myEnth
max_iterations: 1
convergence_tolerance: 1.0e-2

Initial conditions

initial_conditions
The initial_conditions sub-sections defines the conditions used to initialize the computational fields if
they are not provided via the mesh file. Two types of field initializations are currently possible:

• constant - Initialize the field with a constant value throughout the domain;

• user_function - Initialize the field with a pre-defined user function.

The snippet below shows an example of both options available to initialize the various computational fields used
for ABL simulations. In this example, the pressure and turbulent kinetic energy fields are initialized using a con-
stant value, whereas the velocity field is initialized by the user function boundary_layer_perturbation
that imposes sinusoidal fluctations over a velocity field to trip the flow.

initial_conditions:
- constant: ic_1

target_name: [fluid_part]
value:

pressure: 0.0
turbulent_ke: 0.1

- user_function: ic_2
target_name: [fluid_part]
user_function_name:

velocity: boundary_layer_perturbation
user_function_parameters:

velocity: [1.0,0.0075398,0.0075398,50.0,8.0]

initial_conditions.constant
This input parameter serves two purposes: 1. it indicates the type (constant), and 2. provides the custom
name for this condition. In addition to the initial_conditions.target_name this section requires
another entry value that contains the mapping of (field_name, value) as shown in the above example.

initial_conditions.user_function
Indicates that this block of YAML input must be parsed as input for a user defined function.

initial_conditions.target_name
A list of element blocks (parts) where this initial condition must be applied.

24 Chapter 1. User Manual

Nalu Documentation, Release 1.2.0

Boundary Conditions

boundary_conditions
This subsection of the physics Realm contains a list of boundary conditions that must be used dur-
ing the simulation. Each entry of this list is a YAML mapping entry with the key of the form
<type>_boundary_condition where the available types are:

• inflow

• open – Outflow BC

• wall

• symmetry

• periodic

• non_conformal – e.g., BC across sliding mesh interfaces

• overset – overset mesh assembly description

All BC types require bc.target_name that contains a list of side sets where the specified BC is to be ap-
plied. Additional information necessary for certain BC types are provided by a sub-dictionary with the key
<type>_user_data: that contains the parameters necessary to initialize a specific BC type.

bc.target_name
A list of side set part names where the given BC type must be applied. If a single string value is provided, it is
converted to a list internally during input file processing phase.

Inflow Boundary Condition

- inflow_boundary_condition: bc_inflow
target_name: inlet
inflow_user_data:
velocity: [0.0,0.0,1.0]

Open Boundary Condition

- open_boundary_condition: bc_open
target_name: outlet
open_user_data:
velocity: [0,0,0]
pressure: 0.0

Wall Boundary Condition

bc.wall_user_data
This subsection contains specifications as to whether wall models are used, or how to treat the velocity at the
wall when there is mesh motion.

The following input file snippet shows an example of using an ABL wall function at the terrain during ABL simula-
tions. See ABL Wall Function for more details on the actual implementation.

1.2. Running Nalu 25

Nalu Documentation, Release 1.2.0

Wall boundary condition example for ABL terrain modeling
- wall_boundary_condition: bc_terrain

target_name: terrain
wall_user_data:
velocity: [0,0,0]
use_abl_wall_function: yes
heat_flux: 0.0
roughness_height: 0.2
gravity_vector_component: 3
reference_temperature: 300.0

The entry gravity_vector_component is an integer that specifies the component of the gravity vector, de-
fined in solution_options.gravity, that should be used in the definition of the Monin-Obukhov length scale
calculation. The entry reference_temperature is the reference temperature used in calculation of the Monin-
Obukhov length scale.

When there is mesh motion involved the wall boundary must specify a user function to determine relative velocity at
the surface.

Wall boundary specification with mesh motion
- wall_boundary_condition: bc_cylinder

target_name: cylinder_wall
wall_user_data:
user_function_name:

velocity: wind_energy
user_function_string_parameters:

velocity: [cylinder]

The misnomer wind_energy is a pre-defined user function that provides the correct velocity at the wall accounting
for relative mesh motion with respect to fluid and doesn’t specifically deal with any wind energy simulation. The
user_function_string_parameters contains a YAML mapping of fields, e.g. velocity, to the list of names
provided in the soln_opts.mesh_motion entry in the solution_options section.

Example of wall boundary with a custom user function for temperature at the wall

- wall_boundary_condition: bc_6
target_name: surface_6
wall_user_data:
user_function_name:
temperature: steady_2d_thermal

Symmetry Boundary Condition

Requires no additional input other than bc.target_name.

- symmetry_boundary_condition: bc_top
target_name: top
symmetry_user_data:

Periodic Boundary Condition

Unlike the other BCs described so far, the parameter bc.target_name behaves differently for the periodic BC.
This parameter must be a list containing exactly two entries: the boundary face pair where periodicity is enforced.

26 Chapter 1. User Manual

Nalu Documentation, Release 1.2.0

The nodes on these planes must coincide after translation in the direction of periodicity. This BC also requires a
periodic_user_data section that specifies the search tolerance for locating node pairs.

periodic_user_data

- periodic_boundary_condition: bc_east_west
target_name: [east, west]
periodic_user_data:
search_tolerance: 0.0001

Non-Conformal Boundary

Like the periodic BC, the parameter bc.target_name must be a list with exactly two entries that specify the
boundary plane pair forming the non-conformal boundary.

- non_conformal_boundary_condition: bc_left
target_name: [surface_77, surface_7]
non_conformal_user_data:
expand_box_percentage: 10.0

Material Properties

material_properties
The section provides the properties required for various physical quantities during the simulation. A sample
section used for simulating ABL flows is shown below

material_properties:
target_name: [fluid_part]

constant_specification:
universal_gas_constant: 8314.4621
reference_pressure: 101325.0

reference_quantities:
- species_name: Air

mw: 29.0
mass_fraction: 1.0

specifications:
- name: density

type: constant
value: 1.178037722969475

- name: viscosity
type: constant
value: 1.6e-5

- name: specific_heat
type: constant
value: 1000.0

material_properties.target_name
A list of element blocks (parts) where the material properties are applied. This list should ideally include all the
parts that are referenced by initial_conditions.target_name.

1.2. Running Nalu 27

Nalu Documentation, Release 1.2.0

material_properties.constant_specification
Values for several constants used during the simulation. Currently the following properties are defined:

Name Description
universal_gas_constant Ideal gas constant 𝑅
reference_temperature Reference temperature for simulations
reference_pressure Reference pressure for simulations

material_properties.reference_quantities
Provides material properties for the different species involved in the simulation.

Name Description
species_name Name used to lookup properties
mw Molecular weight
mass_fraction Mass fraction
primary_mass_fraction
secondary_mass_fraction
stoichiometry

material_properties.specifications
A list of material properties with the following parameters

material_properties.specifications.name
The name used for lookup, e.g., density, viscosity, etc.

material_properties.specifications.type
The type can be one of the following

Type Description
constant Constant value property
polynomial Property determined by a polynomial function
ideal_gas_t Function of 𝑇ref , 𝑃ref , molecular weight
ideal_gas_t_p Function of 𝑇ref , pressure, molecular weight
ideal_gas_yk
hdf5table Lookup from an HDF5 table
mixture_fraction Property determined by the mixture fraction
geometric
generic

Examples

1. Specification for density as a function of temperature

specifications:
- name: density
type: ideal_gas_t

2. Specification of viscosity as a function of temperature

- name: viscosity
type: polynomial
coefficient_declaration:
- species_name: Air
coefficients: [1.7894e-5, 273.11, 110.56]

28 Chapter 1. User Manual

Nalu Documentation, Release 1.2.0

The species_namemust correspond to the entry in reference quantitites to lookup molecular
weight information.

3. Specification via hdf5table

material_properties:
table_file_name: SLFM_CGauss_C2H4_ZMean_ZScaledVarianceMean_logChiMean.h5

specifications:
- name: density
type: hdf5table
independent_variable_set: [mixture_fraction, scalar_variance, scalar_

→˓dissipation]
table_name_for_property: density
table_name_for_independent_variable_set: [ZMean, ZScaledVarianceMean,

→˓ChiMean]
aux_variables: temperature
table_name_for_aux_variables: temperature

- name: viscosity
type: hdf5table
independent_variable_set: [mixture_fraction, scalar_variance, scalar_

→˓dissipation]
table_name_for_property: mu
table_name_for_independent_variable_set: [ZMean, ZScaledVarianceMean,

→˓ChiMean]

4. Specification via mixture_fraction

material_properties:
target_name: block_1

specifications:
- name: density
type: mixture_fraction
primary_value: 0.163e-3
secondary_value: 1.18e-3

- name: viscosity
type: mixture_fraction
primary_value: 1.967e-4
secondary_value: 1.85e-4

Output Options

output
Specifies the frequency of output, the output database name, etc.

Example:

output:
output_data_base_name: out/ABL.neutral.e
output_frequency: 100
output_node_set: no
output_variables:
- velocity
- pressure
- temperature

1.2. Running Nalu 29

Nalu Documentation, Release 1.2.0

output.output_data_base_name
The name of the output Exodus-II database. Can specify a directory relative to the run directory, e.g., out/
nalu_results.e. The directory will be created automatically if one doesn’t exist. Default: output.e

output.output_frequency
Nalu will write the output file every output_frequency timesteps. Note that currently there is no option to
output results at a specified simulation time. Default: 1.

output.output_start
Nalu will start writing output past the output_start timestep. Default: 0.

output.output_forced_wall_time
Force output at a specified wall-clock time in seconds.

output.output_node_set
Boolean flag indicating whether nodesets, if present, should be output to the output file along with element
blocks.

output.compression_level
Integer value indicating the compression level used. Default: 0.

output.output_variables
A list of field names to be output to the database. The field variables can be node or element based quantities.

Restart Options

restart
This section manages the restart for this realm object.

restart.restart_data_base_name
The filename for restart. Like output, the filename can contain a directory and it will be created if not already
present.

restart.restart_time
If this variable is present, it indicates that the current run will restart from a previous simulation. This
requires that the mesh be a restart file with all the fields necessary for the equation sets defined in
the equation_systems.systems. Nalu will restart from the closest time available in the mesh to
restart_time. The timesteps available in a restart file can be examined by looking at the time_whole
variable using the ncdump utility.

Note: The restart database used for restarting a simulation is the mesh parameter. The
restart_data_base_name parameter is used exclusively for outputs.

restart.restart_frequency
The frequency at which restart files are written to the disk. Default: 500 timesteps.

restart.restart_start
Nalu will write a restart file after restart_start timesteps have elapsed.

restart.restart_forced_wall_time
Force writing of restart file after specified wall-clock time in seconds.

restart.restart_node_set
A boolean flag indicating whether nodesets are output to the restart database.

restart.max_data_base_step_size
Default: 100,000.

30 Chapter 1. User Manual

Nalu Documentation, Release 1.2.0

restart.compression_level
Compression level. Default: 0.

Time-step Control Options

time_step_control
This optional section specifies the adpative time stepping parameters used if time_int.
time_stepping_type is set to adaptive.

time_step_control:
target_courant: 2.0
time_step_change_factor: 1.2

dtctrl.target_courant
Maximum Courant number allowed during the simulation. Default: 1.0

dtctrl.time_step_change_factor
Maximum allowable increase in dt over a given timestep.

Actuator

actuator
actuator subsection defines the inputs for actuator line simulations. A sample section is shown below for
running actuator line simulations coupled to OpenFAST with two turbines.

actuator:
type: ActLineFAST
search_method: boost_rtree
search_target_part: Unspecified-2-HEX

n_turbines_glob: 2
dry_run: False
debug: False
t_start: 0.0
simStart: init # init/trueRestart/restartDriverInitFAST
t_max: 5.0
n_every_checkpoint: 100

Turbine0:
procNo: 0
num_force_pts_blade: 50
num_force_pts_tower: 20
epsilon: [5.0, 5.0, 5.0]
turbine_base_pos: [0.0, 0.0, -90.0]
turbine_hub_pos: [0.0, 0.0, 0.0]
restart_filename: ""
FAST_input_filename: "Test01.fst"
turb_id: 1
turbine_name: machine_zero

Turbine1:
procNo: 0
num_force_pts_blade: 50
num_force_pts_tower: 20
epsilon: [5.0, 5.0, 5.0]

1.2. Running Nalu 31

Nalu Documentation, Release 1.2.0

turbine_base_pos: [250.0, 0.0, -90.0]
turbine_hub_pos: [250.0, 0.0, 0.0]
restart_filename: ""
FAST_input_filename: "Test02.fst"
turb_id: 2
turbine_name: machine_one

actuator.type
Type of actuator source. Options are ActLineFAST and ActLinePointDrag. Only ActLineFAST is
documented here.

actuator.search_method
String specifying the type of search method used to identify the nodes within the search radius of the ac-
tuator points. Options are boost_rtree and stk_kdtree. The default is stk_kdtree when the
search_type is not specified.

search_target_part
String or an array of strings specifying the parts of the mesh to be searched to identify the nodes near the actuator
points.

actuator.n_turbines_glob
Total number of turbines in the simulation. The input file must contain a number of turbine specific sections
(Turbine0, Turbine1, . . . , Turbine(n-1)) that is consistent with nTurbinesGlob.

actuator.debug
Enable debug outputs if set to true

actuator.dry_run
The simulation will not run if dryRun is set to true. However, the simulation will read the input files, allocate
turbines to processors and prepare to run the individual turbine instances. This flag is useful to test the setup of
the simulation before running it.

actuator.simStart
Flag indicating whether the simulation starts from scratch or restart. simStart takes on one of three values:

• init - Use this option when starting a simulation from t=0s.

• trueRestart - While OpenFAST allows for restart of a turbine simulation, external components like
the Bladed style controller may not. Use this option when all components of the simulation are known to
restart.

• restartDriverInitFAST - When the restartDriverInitFAST option is selected, the individ-
ual turbine models start from t=0s and run up to the specified restart time using the inflow data stored at
the actuator nodes from a hdf5 file. The C++ API stores the inflow data at the actuator nodes in a hdf5 file
at every OpenFAST time step and then reads it back when using this restart option. This restart option is
especially useful when the glue code is a CFD solver.

actuator.t_start
Start time of the simulation

actuator.t_end
End time of the simulation. t_end <= t_max

actuator.t_max
Max time of the simulation

Note: t_max can only be set when OpenFAST is running from t=0s and simStart is init. t_max can not
be changed on a restart. OpenFAST will not be able to run beyond t_max. Choose t_max to be large enough

32 Chapter 1. User Manual

Nalu Documentation, Release 1.2.0

to accomodate any possible future extensions of runs. One can change t_start and t_end to start and stop the
simulation any number of times as long as t_end <= t_max.

actuator.dt_fast
Time step for OpenFAST. All turbines should have the same time step.

actuator.n_every_checkpoint
Restart files will be written every so many time steps

Turbine specific input options

actuator.turbine_base_pos
The position of the turbine base for actuator-line simulations

actuator.num_force_pts_blade
The number of actuator points along each blade for actuator-line simulations

actuator.num_force_pts_tower
The number of actuator points along the tower for actuator-line simulations.

actuator.epsilon
The spreading width 𝜖 in the Gaussian spreading function in the [chordwise, spanwise, chord normal] coordinate
system to spread the forces from the actuator point to the nodes. Nalu currently only supports an isotropic
Gaussian spreading function and uses only the value in the first component along the chordwise direction.

actuator.restart_filename
The checkpoint file for this turbine when restarting a simulation

actuator.FAST_input_filename
The FAST input file for this turbine

actuator.turb_id
A unique turbine id for each turbine

Turbulence averaging

turbulence_averaging
turbulence_averaging subsection defines the turbulence post-processing quantities and averaging pro-
cedures. A sample section is shown below

turbulence_averaging:
forced_reset: no
time_filter_interval: 100000.0

averaging_type: nalu_classic/moving_exponential

specifications:

- name: turbulence_postprocessing
target_name: interior
reynolds_averaged_variables:
- velocity

favre_averaged_variables:
- velocity
- resolved_turbulent_ke

compute_tke: yes

1.2. Running Nalu 33

Nalu Documentation, Release 1.2.0

compute_reynolds_stress: yes
compute_resolved_stress: yes
compute_temperature_resolved_flux: yes
compute_sfs_stress: yes
compute_temperature_sfs_flux: yes
compute_q_criterion: yes
compute_vorticity: yes
compute_lambda_ci: yes

Note: The variable in the turbulence_averaging subsection are prefixed with turbulence_averaging.
name but only the variable name after the period should appear in the input file.

turbulence_averaging.forced_reset
A boolean flag indicating whether the averaging of all quantities in the turbulence averaging section is reset. If
this flag is true, the running average is set to zero.

turbulence_averaging.averaging_type
This parameter sets the choice of the running average type. Possible values are:

nalu_classic “Sawtooth” average. The running average is set to zero each time the time filter width is
reached and a new average is calculated for the next time interval.

moving_exponential “Moving window” average where the window size is set to to the time filter width.
The contribution of any quantity before the moving window towards the average value reduces exponen-
tially with every time step.

turbulence_averaging.time_filter_interval
Number indicating the time filter size over which to calculate the running average. This quantity is used in
different ways for each filter discussed above.

turbulence_averaging.specifications
A list of turbulence postprocessing properties with the following parameters

turbulence_averaging.specifications.name
The name used for lookup and logging.

turbulence_averaging.specifications.target_name
A list of element blocks (parts) where the turbulence averaging is applied.

turbulence_averaging.specifications.reynolds_average_variables
A list of field names to be averaged.

turbulence_averaging.specifications.favre_average_variables
A list of field names to be Favre averaged.

turbulence_averaging.specifications.compute_tke
A boolean flag indicating whether the turbulent kinetic energy is computed. The default value is no.

turbulence_averaging.specifications.compute_reynolds_stress
A boolean flag indicating whether the reynolds stress is computed. The default value is no.

turbulence_averaging.specifications.compute_resolved_stress
A boolean flag indicating whether the average resolved stress is computed as < 𝜌 ̃︀𝑢𝑖 ̃︀𝑢𝑗 >. The default value is
no. When this option is turned on, the Favre average of the resolved velocity, < 𝜌 ̃︀𝑢𝑗 >, is computed as well.

turbulence_averaging.specifications.compute_temperature_resolved_flux
A boolean flag indicating whether the average resolved temperature flux is computed as < 𝜌 ̃︀𝑢𝑖̃︀𝜃 >. The default
value is no. When this option is turned on, the Favre average of the resolved temperature, < 𝜌̃︀𝜃 >, is computed
as well.

34 Chapter 1. User Manual

Nalu Documentation, Release 1.2.0

turbulence_averaging.specifications.compute_sfs_stress
A boolean flag indicating whether the average sub-filter scale stress is computed. The default value is no. The
sub-filter scale stress model is assumed to be of an eddy viscosity type and the turbulent viscosity computed by
the turbulence model is used. The sub-filter scale kinetic energy is used to determine the isotropic component
of the sub-filter stress. As described in the section Conservation of Momentum, the Yoshizawa model is used to
compute the sub-filter kinetic energy when it is not transported.

turbulence_averaging.specifications.compute_temperature_sfs_flux
A boolean flag indicating whether the average sub-filter scale flux of temperature is computed. The default value
is no. The sub-filter scale stress model is assumed to be of an eddy diffusivity type and the turbulent diffusivity
computed by the turbulence model is used along with a constant turbulent Prandtl number obtained from the
Realm.

turbulence_averaging.specifications.compute_favre_stress
A boolean flag indicating whether the Favre stress is computed. The default value is no.

turbulence_averaging.specifications.compute_favre_tke
A boolean flag indicating whether the Favre stress is computed. The default value is no.

turbulence_averaging.specifications.compute_q_criterion
A boolean flag indicating whether the q-criterion is computed. The default value is no.

turbulence_averaging.specifications.compute_vorticity
A boolean flag indicating whether the vorticity is computed. The default value is no.

turbulence_averaging.specifications.compute_lambda_ci
A boolean flag indicating whether the Lambda2 vorticity criterion is computed. The default value is no.

Data probes

data_probes
data_probes subsection defines the data probes. A sample section is shown below

data_probes:

output_frequency: 100

search_method: stk_octree
search_tolerance: 1.0e-3
search_expansion_factor: 2.0

specifications:
- name: probe_bottomwall

from_target_part: bottomwall

line_of_site_specifications:
- name: probe_bottomwall
number_of_points: 100
tip_coordinates: [-6.39, 0.0, 0.0]
tail_coordinates: [4.0, 0.0, 0.0]

output_variables:
- field_name: tau_wall
field_size: 1

- field_name: pressure

specifications:
- name: probe_profile

1.2. Running Nalu 35

Nalu Documentation, Release 1.2.0

from_target_part: interior

line_of_site_specifications:
- name: probe_profile
number_of_points: 100
tip_coordinates: [0, 0.0, 0.0]
tail_coordinates: [0.0, 0.0, 1.0]

output_variables:
- field_name: velocity
field_size: 3

- field_name: reynolds_stress
field_size: 6

Note: The variable in the data_probes subsection are prefixed with data_probes.name but only the variable
name after the period should appear in the input file.

data_probes.output_frequency
Integer specifying the frequency of output.

data_probes.search_method
String specifying the search method for finding nodes to transfer field quantities to the data probe lineout.

data_probes.search_tolerance
Number specifying the search tolerance for locating nodes.

data_probes.search_expansion_factor
Number specifying the factor to use when expanding the node search.

data_probes.specifications
A list of data probe properties with the following parameters

data_probes.specifications.name
The name used for lookup and logging.

data_probes.specifications.from_target_part
A list of element blocks (parts) where to do the data probing.

data_probes.specifications.line_of_site_specifications
A list specifications defining the lineout

Parameter Description
name File name (without extension) for the data probe
number_of_points Number of points along the lineout
tip_coordinates List containing the coordinates for the start of the lineout
tail_coordinates List containing the coordinates for the end of the lineout

data_probes.specifications.output_variables
A list of field names (and field size) to be probed.

Post-processing

post_processing
post_processing subsection defines the different post-processign options. A sample section is shown
below

36 Chapter 1. User Manual

Nalu Documentation, Release 1.2.0

post_processing:

- type: surface
physics: surface_force_and_moment
output_file_name: results/wallHump.dat
frequency: 100
parameters: [0,0]
target_name: bottomwall

Note: The variable in the post_processing subsection are prefixed with post_processing.name but only
the variable name after the period should appear in the input file.

post_processing.type
Type of post-processing. Possible values are:

Value Description
surface Post-processing of surface quantities

post_processing.physics
Physics to be post-processing. Possible values are:

Value Description
surface_force_and_moment Calculate surface forces and moments
surface_force_and_moment_wall_function Calculate surface forces and moments when using a wall func-

tion

post_processing.output_file_name
String specifying the output file name.

post_processing.frequency
Integer specifying the frequency of output.

post_processing.parameters
Parameters for the physics function. For the surface_force_and_moment type functions, this is a list
specifying the centroid coordinates used in the moment calculation.

post_processing.target_name
A list of element blocks (parts) where to do the post-processing

ABL Forcing

abl_forcing
abl_forcing allows the user to specify desired velocities and temperatures at different heights. These ve-
locities and temperatures are enforced through the use of source in the momentum and enthalpy equations. The
abl_forcing option needs to be specified in the momentum and/or enthalpy source blocks:

- source_terms:
momentum: abl_forcing
enthalpy: abl_forcing

This option allows the code to implement source terms in the momentum and/or enthalpy equations. A sample
section is shown below

1.2. Running Nalu 37

Nalu Documentation, Release 1.2.0

abl_forcing:
search_method: stk_kdtree
search_tolerance: 0.0001
search_expansion_factor: 1.5
output_frequency: 1

from_target_part: [fluid_part]

momentum:
type: computed
relaxation_factor: 1.0
heights: [250.0, 500.0, 750.0]
target_part_format: "zplane_%06.1f"

The velocities at each plane
Each list include a time and the velocities for each plane
Notice that the total number of elements in each list will be
number of planes + 1
velocity_x:

- [0.0, 10.0, 5.0, 15.0]
- [100000.0, 10.0, 5.0, 15.0]

velocity_y:
- [0.0, 0.0, 0.0, 0.0]
- [100000.0, 0.0, 0.0, 0.0]

velocity_z:
- [0.0, 0.0, 0.0, 0.0]
- [100000.0, 0.0, 0.0, 0.0]

temperature:
type: computed
relaxation_factor: 1.0
heights: [250.0, 500.0, 750.0]
target_part_format: "zplane_%06.1f"

temperature:
- [0.0, 300.0, 280.0, 310.0]
- [100000.0, 300.0, 280.0, 310.0]

Note: The variables in the abl_forcing subsection are prefixed with abl_forcing.name but only the variable
name after the period should appear in the input file.

abl_forcing.search_method
This specifies the search method algorithm within the stk framework. The default option stk_kdtree is recom-
mended.

abl_forcing.search_tolerance
This is the tolerance specified for the search_method algorithm. A default value of 0.0001 is recommended.

abl_forcing.search_expansion_factor
This option is related to the stk search algorithm. A value of 1.5 is recommended.

abl_forcing.output_frequency
This is the frequency at which the source term is written to the output value. A value of 1 means the source term
will be written to the output file every time-step.

38 Chapter 1. User Manual

Nalu Documentation, Release 1.2.0

Note: There are now two options in the following inputs. The can be momentum and/or temperature.

abl_forcing.momentum.computed
This option allows the user to choose if a momentum source is computed from a desired velocity (computed)
or if a user defined source term is directly applied into the momentum equation (user_defined).

abl_forcing.momentum.relaxation_factor
This is a relaxation factor which can be used to under/over-relax the momentum source term. The default value
is 1.

abl_forcing.momentum.heights
This is a list containing the planes at which the forcing should be implemented. Each input is the height for that
plane. This is the naming convention in the mesh file.

abl_forcing.momentum.target_part_format
This is the format in which the planes are saved in the mesh file.

abl_forcing.momentum.velocity_x
A set of lists containing the time in the first element, followed by the desired velocity at each plane in the 𝑥
direction.

abl_forcing.momentum.velocity_y
A set of lists containing the time in the first element, followed by the desired velocity at each plane in the 𝑦
direction.

abl_forcing.momentum.velocity_z
A set of lists containing the time in the first element, followed by the desired velocity at each plane in the 𝑧
direction.

Note: The temperature has the same inputs as the momentum source (abl_forcing.temperature.
type, abl_forcing.temperature.relaxation_factor, abl_forcing.temperature.heights,
and abl_forcing.temperature.target_part_format) which take the same options.

abl_forcing.temperature.temperature
A set of lists containing the time in the first element, followed by the desired temperature at each plane.

1.2.4 Transfers

transfers
Transfers section describes the search and mapping operations to be performed between participating realms
within a simulation.

1.2.5 Simulations

simulations
This is the top-level section that orchestrates the entire execution of Nalu.

1.2.6 Lessons Learned from Meshing the McAlister Case

Author Chris Bruner, Dept. 01515, Sandia National Laboratories

1.2. Running Nalu 39

Nalu Documentation, Release 1.2.0

Introduction

The series of wind-tunnel tests described by McAlister & Takahashi [McAl1991] have become something of a canon-
ical test case in the rotorcraft community. This is because the tests are well-documented and investigate both tip and
aspect ratio effects, and because the symmetric wing section used is fairly representative of those typically found on
rotorcraft.

This case also serves as a reasonably good test case for wind energy applications as there are measurements of the
trailing tip vortex far downstream, up to 13 chords. This is important to understand the grid requirements of our
unstructured approach to modeling a full-scale blade-resolved rotor and tower system.

Meshes

The meshes for this case are mixed structued/unstructured (hybrid) topologies. The mesh in the immediate vicinity
of the wing uses a quad-dominant approach to produce mostly hexahedra in the wing boundary layer. This has most
of the advantages of an unstructured triangular mesh in terms of ease of meshing and face isotropy in the interior, but
has fewer elements for a comparable node count. A potential disadvantage is that there is no way to produce a mixed
hex/tet mesh without the introduction of pyramid elements, which can cause convergence and accuracy problems.
There is also a refined region around the tipe inside the wing box to ensure resolution of the formation of the wing tip
vortex.

Further downstream, there is a fully structured hex mesh, expanding slightly and covering the path of the tip vortex
downstream as measured in the experiment.

The balance of the test section mesh is unstructured tets (except as noted below), while another structured block is
used upstream of the test section.

The meshes first produced used the Discontinuous Galerkin (DG) non-conformal interface between the hexahedral tip
vortex mesh and the fully unstructured test section mesh. Due to the relative novelty of the DG approach and our lack
of familiarity with its performance in Nalu, it was decided that a more conservative traditional, conformal interface
between the blocks was preferable. Therefore, the tetrahedral test section block interfaces to the hexahedral tip vortex
block and the upstream block using node-matched pyramid elements.

Notes on Geometry

• The trailing edge geometry of the NACA0018 airfoil isn’t given in either the McAlister report nor in the original
NACA publications describing it. Therefore, for ease of meshing, a rounded trailing edge was used.

• In order to capture at least the gross blockage effects, the model support structure in the wind tunnel is modeled,
and the tunnel walls are at the correct locations. However, in and effort to keep the mesh size low, the tunnel
walls and the support are modeled as slip walls and not as viscous.

• Most of the McAlister cases of interest were performed using a square wingtip. The initial mesh, however,
uses the rounded tip described in McAlister. We will eventually produce a square tip mesh as this is both more
interesting and has more-complete results.

Surface Mesh

Statistics of Current Mesh (grid07_conformal10.exo)

Node count: 58M

Element Count: 192M total, consisting of:

• 158M tets

40 Chapter 1. User Manual

Nalu Documentation, Release 1.2.0

Fig. 1.1: The surface mesh near the tip, as viewed from above.

Fig. 1.2: A close-up view of the tip and trailing edge, showing rounded tip and trailing edge and quad-dominant surface
mesh.

1.2. Running Nalu 41

Nalu Documentation, Release 1.2.0

• 2.5M pyramids

• 1.1M wedges

• 30M hexes

Max. Centroid Skew: 0.866; 52 > 0.8

Max. Included Angle: 177 degrees; 7 > 170 degrees

Max. Volume Ratio: 22; 12 > 20

Max. Aspect Ratio: 346

Wall Spacing on Wing: 8.8 × 10−5 m

T-Rex Growth Rate: 1.2

Full/Max Layers in Tip Block: 19/19 (limited to preserve quality)

Full/Max Layers in Wing Block: 19/33

Lessons Learned

• We need a lot of resolution to resolve and advect the tip vortex: on the order of 2–3mm edge length.

• Due to the mathematics of physical space, small changes in the maximum edge length in a block lead to
large changes in the final mesh size. For example, changing the maximum edge length from 0.0025m to
0.003m produces nearly a factor of 2 difference in the element count in the isotropic portion of the mesh:
(0.003/0.0025)3 ≈ 1.73.

• Heuristically, volume ratios should ideally be < 20. Slightly larger volume ratios are acceptable as long as there
are no steep gradients passing through these elements.

• Aspect ratios should be < 1000:1

• Centroid skewness is a better measure than the other skewness metrics as it is more even across element topolo-
gies

– equiangle skewness is also OK, but is stricter and can give misleadingly high readings for some tets

– equivolume skewness is useless for tets

• Centroid skewness should be < 0.8; however, skewness as high as the low 0.9s (usually associated with topology
transitions) is acceptable as long as:

– the skewed cells are far away from large gradients; and

– there are no more than a handful.

General Pointwise Tips

• Maximum aspect ratio for quads in domains should be ≤ 4 for good quality extrusions.

• Maximum included angle should be ≤ 170 degrees. The usual exceptions for regions with small gradients
should apply here, but there may be additional restrictions due to the elliptic nature of the incompressible flow
equations.

• It can be beneficial to push poor quality cells out of the boundary layer by increasing the minimum number of
T-Rex layers.

• One can set the maximum number of layers to prevent different numbers of layers in a block and its adjacent
domains. This can eliminate some poor-quality tetrahedra.

42 Chapter 1. User Manual

Nalu Documentation, Release 1.2.0

References

1.2.7 Examples

Here we describe any examples we have for users to try running Nalu.

1.2.8 Tutorials

Here we describe any tutorials that may be further in-depth than examples.

1.2. Running Nalu 43

Nalu Documentation, Release 1.2.0

44 Chapter 1. User Manual

CHAPTER 2

Developer Manual

2.1 Testing Nalu

Nalu’s regression tests and unit tests are run nightly using the GCC and Intel compilers against the Trilinos master and
development branches on a machine at NREL. The results can be seen at the CDash Nalu website.

2.1.1 Running Tests Locally

The nightly tests are implemented using CTest and these same tests are available to developers to run locally as well.
Due to the nature of error propagation of calculations in computers, results of regression testing can be difficult to keep
consistent. Output from Nalu can vary from established reference data for the regression tests based on the compiler
you are using, the types of optimizations set, and the versions of the third-party libraries Nalu utilizes, along with the
blas/lapack implementation in use. Therefore it may make sense when you checkout Nalu to create your own reference
data for the tests for the machine and configuration you are using, which is described later in this document. Or you
can use a lower tolerance when running the tests. At the moment, a single tolerance is chosen in which to use for all
the tests. The following instructions will describe how to run Nalu’s tests.

Since Nalu’s tests require a large amount of data (meshes), this data is hosted in a separate repository from Nalu.
This mesh repo is set as a submodule in the reg_tests/mesh directory in the main Nalu repository. Submodule
repos are not checked out by default, so either use git submodule init and then git submodule update
to clone it in your checkout of Nalu, or when you first clone Nalu you can also use git clone --recursive
<repo_url> to checkout all submodules as well.

Once this submodule is intialized and cloned, you will need to configure Nalu with testing on. To configure Nalu with
testing enabled, in Nalu’s existing build directory, we will run this command:

cmake -DTrilinos_DIR:PATH=`spack location -i nalu-trilinos` \
-DYAML_DIR:PATH=`spack location -i yaml-cpp` \
-DENABLE_TESTS:BOOL=ON \
..

Note we have chosen to originally build Nalu with Spack in this case, hence the use of spack location -i
<package> to locate our Yaml and Trilinos installations. Then we use -DENABLE_TESTS:BOOL=ON to enable

45

http://my.cdash.org/index.php?project=Nalu
https://cmake.org/cmake/help/v3.7/manual/ctest.1.html

Nalu Documentation, Release 1.2.0

CTest. Once Nalu is configured, you should be able to run the tests by building Nalu in the build directory, and
running make test or ctest. Looking at ctest -h will show you many ways you can run tests and choose
which tests to run.

There are advantages to using CTest, such as being able to run subsets of the tests, or tests matching a particular regular
expression for example. To do so, in the build directory, you can run ctest -R femHC to run the test matching
the femHC regular expression. Other useful capabilities are ctest --output-on-failure to see test outputs
when they fail, ctest --rerun-failed to only run the tests that previously failed, ctest --print-labels
to see the test labels, and ctest -L unit to run the tests with label ‘unit’ for example. All testing related log files
and output can be seen in Nalu/build/Testing/Temporary and Nalu/build/reg_tests after the test
have been run.

To define your own tolerance for tests, at configure time, add -DTEST_TOLERANCE=0.0001 for example to the
Nalu CMake configure line.

Updating Reference Data for Your Machine

When running the tests, the norms for each test are the output and they are ‘diffed’ against the ‘gold’ norms that we
have established for each test. To dictate whether or not a test passes, we use a chosen tolerance in which we allow the
results to deviate from the ‘gold’ norm. As stated earlier, these ‘gold’ norms are not able to reflect every configuration
of Nalu, per compiler, optimization, TPL versions, blas/lapack version, etc. This tolerance is currently defined in the
CMakeLists.txt in Nalu’s reg_tests directory. This tolerance can also be passed into Nalu at configure time
using -DTEST_TOLERANCE=0.0000001 for example. To update the ‘gold’ norms locally to your configuration,
merely run the tests once, and copy the *.norm files in the build/reg_tests/test_files directory to the
corresponding test location in reg_tests/test_files while overwriting the current ‘gold’ norms.

In regards to ‘official’ gold norms, Linux with GCC 4.9.2, netlib-blas/lapack, and the following TPL versions are
officially tested:

openmpi@1.10.4
boost@1.60.0
cmake@3.6.1
parallel-netcdf@1.6.1
yaml-cpp@master
hdf5@1.8.16
netcdf@4.3.3.1
zlib@1.2.11
superlu@4.3

2.1.2 Adding Tests to Nalu

The testing infrastructure is almost completely confined to the reg_tests directory. To add a test to Nalu, we need
to add the test name, and create a test directory to place the input files and gold norms for the test. First, the test itself
can be added to the list of CTest tests by adding a line to the CTestList.cmake file. For a single regression test,
provided it is similar to the categories shown at the top of the CTestList.cmake file, it can likely be added with a
single line using the test name and amount of processes you would like to run the test with and choosing the correct
function to use. For example:

add_test_r(mytest 6)

After this has been done, in the reg_tests/test_files directory, you should add a directory corresponding to
your test name and include the input file, mytest.i, and reference output file mytest.norm.gold. If you are
using an xml file that doesn’t exist in the xml directory, you will need to commit that as well.

46 Chapter 2. Developer Manual

Nalu Documentation, Release 1.2.0

To see commands used when running the tests, see the functions at the top of the CTestList.cmake file. These
functions ultimately create CTestTestFile.cmake files in the CMake build directory at configure time. You can
see the exact commands used for each test after configure in the build/reg_tests/CTestTestFile.cmake
file.

Note if your test doesn’t conform to an existing archetype, a new function in CTestList.cmake may need to be
created. Also, if you are using a mesh file that doesn’t exist in the mesh repo, you will need to add it, and update the
submodule in the Nalu main repo to use the latest commit of the mesh submodule repo.

2.1.3 Adding Testing Machines to CDash

To add a testing machine that will post results to CDash first means that you should have all software dependencies
satisified for Nalu. Next the script located at CTestNightlyScript.cmake can be run for example as:

ctest \
-DNIGHTLY_DIR=${NALU_TESTING_DIR} \
-DYAML_DIR=${YAML_INSTALL_DIR} \
-DTRILINOS_DIR=${TRILINOS_INSTALL_DIR} \
-DHOST_NAME=machine.domain.com \
-DEXTRA_BUILD_NAME=Linux-gcc-whatever \
-VV -S ${NALU_DIR}/reg_tests/CTestNightlyScript.cmake

In this case ${NALU_TESTING_DIR} is one directory above where the Nalu repo has been checked out. This runs
CTest in scripting mode with verbosity on and it will update the Nalu repo with the latest revisions, configure, build,
test, and finally submit results to the CDash site. Since CTest does the building, it needs to know the locations of Yaml
and Trilinos. For examples of nightly testing, refer to the testing scripts currently being run here.

2.2 Source Code Documentation

The source documentation is extracted from the C++ files using Doxygen.

2.2.1 Simulation – Nalu Top-level Interface

class sierra::nalu::Simulation

Realms

Realm is a Nalu abstraction of a set of equations that are solved on a computational domain, reresented by an Exodus-II
mesh. A simulation can contain multiple Realms and that can interact via sierra::nalu::Transfer instance.
InputOutputRealm is a special type of Realm that exists solely to provide data (input) or extract a subset of data
from another Realm.

class sierra::nalu::Realm
Representation of a computational domain and physics equations solved on this domain.

Subclassed by sierra::nalu::InputOutputRealm

Public Functions

void set_hypre_global_id()
Initialize the HYPRE global row IDs.

2.2. Source Code Documentation 47

https://github.com/NaluCFD/Nalu/blob/master/reg_tests/CTestNightlyScript.cmake
https://github.com/NaluCFD/NaluSpack/tree/master/test_scripts

Nalu Documentation, Release 1.2.0

See Realm::hypreGlobalId_

void check_job(bool get_node_count)
check job for fitting in memory

Public Members

stk::mesh::PartVector bcPartVec_
Vector holding side sets that have been registered with the boundary conditions in the input file.

The member is intended to for use in Realm::enforce_bc_on_exposed_faces to check for “exposed sur-
faces” that might have not been assigned BCs in the input file.

stk::mesh::EntityId hypreILower_
The starting index (global) of the HYPRE linear system in this MPI rank.

Note that this is actually the offset into the linear system. This index must be adjusted accord-
ingly to account for multiple degrees of freedom on a particular node. This is performed in
sierra::nalu::HypreLinearSystem.

stk::mesh::EntityId hypreIUpper_
The ending index (global) of the HYPRE linear system in this MPI rank.

Note that this is actually the offset into the linear system. This index must be adjusted accord-
ingly to account for multiple degrees of freedom on a particular node. This is performed in
sierra::nalu::HypreLinearSystem.

stk::mesh::EntityId hypreNumNodes_
The total number of HYPRE nodes in the linear system.

Note that this is not an MPI rank local quantity

HypreIDFieldType *hypreGlobalId_ = {nullptr}
Global Row IDs for the HYPRE linear system.

The HYPRE IDs are different from STK IDs and Realm::naluGlobalId_ because HYPRE expects con-
tiguous IDs for matrix rows and further requires that the IDs be ordered across MPI ranks; i.e., startIdx
(MPI_rank + 1) = endIdx(MPI_rank) + 1.

bool hypreIsActive_ = {false}
Flag indicating whether Hypre solver is being used for any of the equation systems.

class sierra::nalu::InputOutputRealm
Inherits from sierra::nalu::Realm

class sierra::nalu::Realms

Time Integration

class sierra::nalu::TimeIntegrator

Linear Solver Interface

class sierra::nalu::LinearSystem
Subclassed by sierra::nalu::HypreLinearSystem, sierra::nalu::TpetraLinearSystem

48 Chapter 2. Developer Manual

Nalu Documentation, Release 1.2.0

Public Functions

virtual void buildDirichletNodeGraph(const stk::mesh::PartVector&)
Process nodes that belong to Dirichlet-type BC.

virtual void buildDirichletNodeGraph(const std::vector<stk::mesh::Entity>&)
Process nodes as belonging to a Dirichlet-type row.

See the documentation/implementation of sierra::nalu::FixPressureAtNodeAlgorithm for an example of
this use case.

virtual void resetRows(std::vector<stk::mesh::Entity> nodeList, const unsigned beginPos,
const unsigned endPos) = 0

Reset LHS and RHS for the given set of nodes to 0.

Parameters

• nodeList: A list of STK node entities whose rows are zeroed out

• beginPos: Starting index (usually 0)

• endPos: Terminating index (1 for scalar quantities; nDim for vectors)

class sierra::nalu::LinearSolver
An abstract representation of a linear solver in Nalu.

Defines the basic API supported by the linear solvers for use within Nalu. See concrete implementations such
as sierra::nalu::TpetraLinearSolver for more details.

Subclassed by sierra::nalu::HypreDirectSolver, sierra::nalu::TpetraLinearSolver

Public Functions

virtual PetraType getType() = 0
Type of solver instance as defined in sierra::nalu::PetraType.

virtual void destroyLinearSolver() = 0
Utility method to cleanup solvers during simulation.

bool &recomputePreconditioner()
Flag indicating whether the preconditioner is recomputed on each invocation.

bool &reusePreconditioner()
Flag indicating whether the preconditioner is reused on each invocation.

void zero_timer_precond()
Reset the preconditioner timer to 0.0 for future accumulation.

double get_timer_precond()
Get the preconditioner timer for the last invocation.

bool &activeMueLu()
Flag indicating whether the user has activated MueLU.

LinearSolverConfig *getConfig()
Get the solver configuration specified in the input file.

2.2. Source Code Documentation 49

Nalu Documentation, Release 1.2.0

Public Members

std::string name_
User-friendly identifier for this particular solver instance.

class sierra::nalu::TpetraLinearSystem
Inherits from sierra::nalu::LinearSystem

Public Functions

virtual void resetRows(const std::vector<stk::mesh::Entity> nodeList, const unsigned begin-
Pos, const unsigned endPos)

Reset LHS and RHS for the given set of nodes to 0.

Parameters

• nodeList: A list of STK node entities whose rows are zeroed out

• beginPos: Starting index (usually 0)

• endPos: Terminating index (1 for scalar quantities; nDim for vectors)

Transfers

class sierra::nalu::Transfer

class sierra::nalu::Transfers

2.2.2 Equation Systems

class sierra::nalu::EquationSystem
Base class representation of a PDE.

EquationSystem defines the API supported by all concrete implementations of PDEs for performing the follow-
ing actions:

• Register computational fields

• Register computational algorithms for interior domain and boundary conditions

• Manage solve and update of the PDE for a given timestep

Subclassed by sierra::nalu::ContinuityEquationSystem, sierra::nalu::EnthalpyEquationSystem,
sierra::nalu::HeatCondEquationSystem, sierra::nalu::LowMachEquationSystem,
sierra::nalu::MassFractionEquationSystem, sierra::nalu::MeshDisplacementEquationSystem,
sierra::nalu::MixtureFractionEquationSystem, sierra::nalu::MomentumEquationSystem,
sierra::nalu::ProjectedNodalGradientEquationSystem, sierra::nalu::RadiativeTransportEquationSystem,
sierra::nalu::ShearStressTransportEquationSystem, sierra::nalu::SpecificDissipationRateEquationSystem,
sierra::nalu::TurbKineticEnergyEquationSystem

50 Chapter 2. Developer Manual

Nalu Documentation, Release 1.2.0

Public Functions

virtual void solve_and_update()
Assemble the LHS and RHS and perform linear solve for prescribed number of iterations.

This method is invoked in EquationSystems::solve_and_update method as shown below

pre_iter_work();
// Iterate over all equation systems
for (auto eqsys: equationSystems_) {

eqsys->pre_iter_work();
eqsys->solve_and_update(); //<<<< Assemble and solve system
eqsys->post_iter_work();

}
post_iter_work();

See EquationSystems::solve_and_update

virtual void pre_iter_work()
Perform setup tasks before entering the solve and update step.

This method is invoked in EquationSystems::solve_and_update method as shown below

pre_iter_work();
// Iterate over all equation systems
for (auto eqsys: equationSystems_) {

eqsys->pre_iter_work(); //<<<< Pre-iteration setup
eqsys->solve_and_update();
eqsys->post_iter_work();

}
post_iter_work();

See EquationSystems::solve_and_update

virtual void post_iter_work()
Perform setup tasks after he solve and update step.

This method is invoked in EquationSystems::solve_and_update method as shown below

pre_iter_work();
// Iterate over all equation systems
for (auto eqsys: equationSystems_) {

eqsys->pre_iter_work();
eqsys->solve_and_update();
eqsys->post_iter_work(); //<<<< Post-iteration actions

}
post_iter_work();

See EquationSystems::solve_and_update

virtual void post_iter_work_dep()
Deprecated post iteration work logic.

2.2. Source Code Documentation 51

Nalu Documentation, Release 1.2.0

Public Members

std::vector<AlgorithmDriver *> preIterAlgDriver_
List of tasks to be performed before each EquationSystem::solve_and_update.

std::vector<AlgorithmDriver *> postIterAlgDriver_
List of tasks to be performed after each EquationSystem::solve_and_update.

class sierra::nalu::LowMachEquationSystem
Low-Mach formulation of the Navier-Stokes Equations.

This class is a thin-wrapper around sierra::nalu::ContinuityEquationSystem and
sierra::nalu::MomentumEquationSystem that orchestrates the interactions between the velocity and the
pressure Possion solves in the LowMachEquationSystem::solve_and_update method.

Inherits from sierra::nalu::EquationSystem

Public Functions

virtual void pre_iter_work()
Perform setup tasks before entering the solve and update step.

This method is invoked in EquationSystems::solve_and_update method as shown below

pre_iter_work();
// Iterate over all equation systems
for (auto eqsys: equationSystems_) {

eqsys->pre_iter_work(); //<<<< Pre-iteration setup
eqsys->solve_and_update();
eqsys->post_iter_work();

}
post_iter_work();

See EquationSystems::solve_and_update

virtual void solve_and_update()
Assemble the LHS and RHS and perform linear solve for prescribed number of iterations.

This method is invoked in EquationSystems::solve_and_update method as shown below

pre_iter_work();
// Iterate over all equation systems
for (auto eqsys: equationSystems_) {

eqsys->pre_iter_work();
eqsys->solve_and_update(); //<<<< Assemble and solve system
eqsys->post_iter_work();

}
post_iter_work();

See EquationSystems::solve_and_update

class sierra::nalu::EnthalpyEquationSystem
Inherits from sierra::nalu::EquationSystem

52 Chapter 2. Developer Manual

Nalu Documentation, Release 1.2.0

Public Functions

void solve_and_update()
Assemble the LHS and RHS and perform linear solve for prescribed number of iterations.

This method is invoked in EquationSystems::solve_and_update method as shown below

pre_iter_work();
// Iterate over all equation systems
for (auto eqsys: equationSystems_) {

eqsys->pre_iter_work();
eqsys->solve_and_update(); //<<<< Assemble and solve system
eqsys->post_iter_work();

}
post_iter_work();

See EquationSystems::solve_and_update

void post_iter_work_dep()
Deprecated post iteration work logic.

class sierra::nalu::TurbKineticEnergyEquationSystem
Inherits from sierra::nalu::EquationSystem

Public Functions

void solve_and_update()
Assemble the LHS and RHS and perform linear solve for prescribed number of iterations.

This method is invoked in EquationSystems::solve_and_update method as shown below

pre_iter_work();
// Iterate over all equation systems
for (auto eqsys: equationSystems_) {

eqsys->pre_iter_work();
eqsys->solve_and_update(); //<<<< Assemble and solve system
eqsys->post_iter_work();

}
post_iter_work();

See EquationSystems::solve_and_update

class sierra::nalu::ShearStressTransportEquationSystem
Inherits from sierra::nalu::EquationSystem

Public Functions

virtual void solve_and_update()
Assemble the LHS and RHS and perform linear solve for prescribed number of iterations.

This method is invoked in EquationSystems::solve_and_update method as shown below

2.2. Source Code Documentation 53

Nalu Documentation, Release 1.2.0

pre_iter_work();
// Iterate over all equation systems
for (auto eqsys: equationSystems_) {

eqsys->pre_iter_work();
eqsys->solve_and_update(); //<<<< Assemble and solve system
eqsys->post_iter_work();

}
post_iter_work();

See EquationSystems::solve_and_update

class sierra::nalu::HeatCondEquationSystem
Inherits from sierra::nalu::EquationSystem

Public Functions

void solve_and_update()
Assemble the LHS and RHS and perform linear solve for prescribed number of iterations.

This method is invoked in EquationSystems::solve_and_update method as shown below

pre_iter_work();
// Iterate over all equation systems
for (auto eqsys: equationSystems_) {

eqsys->pre_iter_work();
eqsys->solve_and_update(); //<<<< Assemble and solve system
eqsys->post_iter_work();

}
post_iter_work();

See EquationSystems::solve_and_update

class sierra::nalu::MassFractionEquationSystem
Inherits from sierra::nalu::EquationSystem

Public Functions

void solve_and_update()
Assemble the LHS and RHS and perform linear solve for prescribed number of iterations.

This method is invoked in EquationSystems::solve_and_update method as shown below

pre_iter_work();
// Iterate over all equation systems
for (auto eqsys: equationSystems_) {

eqsys->pre_iter_work();
eqsys->solve_and_update(); //<<<< Assemble and solve system
eqsys->post_iter_work();

}
post_iter_work();

See EquationSystems::solve_and_update

54 Chapter 2. Developer Manual

Nalu Documentation, Release 1.2.0

class sierra::nalu::MixtureFractionEquationSystem
Inherits from sierra::nalu::EquationSystem

Public Functions

void solve_and_update()
Assemble the LHS and RHS and perform linear solve for prescribed number of iterations.

This method is invoked in EquationSystems::solve_and_update method as shown below

pre_iter_work();
// Iterate over all equation systems
for (auto eqsys: equationSystems_) {

eqsys->pre_iter_work();
eqsys->solve_and_update(); //<<<< Assemble and solve system
eqsys->post_iter_work();

}
post_iter_work();

See EquationSystems::solve_and_update

class sierra::nalu::MomentumEquationSystem
Representation of the Momentum conservation equations in 2-D and 3-D.

Inherits from sierra::nalu::EquationSystem

class sierra::nalu::ContinuityEquationSystem
Inherits from sierra::nalu::EquationSystem

class sierra::nalu::SpecificDissipationRateEquationSystem
Inherits from sierra::nalu::EquationSystem

class sierra::nalu::ProjectedNodalGradientEquationSystem
Inherits from sierra::nalu::EquationSystem

Public Functions

void solve_and_update()
Assemble the LHS and RHS and perform linear solve for prescribed number of iterations.

This method is invoked in EquationSystems::solve_and_update method as shown below

pre_iter_work();
// Iterate over all equation systems
for (auto eqsys: equationSystems_) {

eqsys->pre_iter_work();
eqsys->solve_and_update(); //<<<< Assemble and solve system
eqsys->post_iter_work();

}
post_iter_work();

See EquationSystems::solve_and_update

2.2. Source Code Documentation 55

Nalu Documentation, Release 1.2.0

class sierra::nalu::EquationSystems
A collection of Equations to be solved on a Realm.

EquationSystems holds a vector of EquationSystem instances representing the equations that are being solved in
a given Realm and is responsible for the management of the solve and update of the various field quantities in a
given timestep.

See EquationSystems::solve_and_update

Public Functions

bool solve_and_update()
Solve and update the state of all variables for a given timestep.

This method is responsible for executing setup actions before calling solve, performing the actual solve,
updating the solution, and performing post-solve actions after the solution has been updated. To provide
sufficient granularity and control of this pre- and post- solve actions, the solve method uses the following
series of steps:

// Perform tasks for this timestep before any Equation system is called
pre_iter_work();
// Iterate over all equation systems
for (auto eqsys: equationSystems_) {

eqsys->pre_iter_work();
eqsys->solve_and_update();
eqsys->post_iter_work();

}
// Perform tasks after all equation systems have updated
post_iter_work();

Tasks that require to be performed before any equation system is solved for needs to be registered to preIter-
AlgDriver_ on EquationSystems, similiary for post-solve tasks. And actions to be performed immediately
before individual equation system solves need to be registered in EquationSystem::preIterAlgDriver_.

See pre_iter_work(), post_iter_work(), EquationSystem::pre_iter_work(),

See EquationSystem::post_iter_work()

void pre_iter_work()
Perform necessary setup tasks that affect all EquationSystem instances at a given timestep.

See EquationSystems::solve_and_update()

void post_iter_work()
Perform necessary actions once all EquationSystem instances have been updated for the prescribed number
of outer iterations at a given timestep.

See EquationSystems::solve_and_update()

Public Members

std::vector<AlgorithmDriver *> preIterAlgDriver_
A list of tasks to be performed before all EquationSystem::solve_and_update.

56 Chapter 2. Developer Manual

Nalu Documentation, Release 1.2.0

std::vector<AlgorithmDriver *> postIterAlgDriver_
A list of tasks to be performed after all EquationSystem::solve_and_update.

2.2.3 Linear Solvers and Systems Interface

Linear Systems

class sierra::nalu::LinearSystem
Subclassed by sierra::nalu::HypreLinearSystem, sierra::nalu::TpetraLinearSystem

Public Functions

virtual void buildDirichletNodeGraph(const stk::mesh::PartVector&)
Process nodes that belong to Dirichlet-type BC.

virtual void buildDirichletNodeGraph(const std::vector<stk::mesh::Entity>&)
Process nodes as belonging to a Dirichlet-type row.

See the documentation/implementation of sierra::nalu::FixPressureAtNodeAlgorithm for an example of
this use case.

virtual void resetRows(std::vector<stk::mesh::Entity> nodeList, const unsigned beginPos,
const unsigned endPos) = 0

Reset LHS and RHS for the given set of nodes to 0.

Parameters

• nodeList: A list of STK node entities whose rows are zeroed out

• beginPos: Starting index (usually 0)

• endPos: Terminating index (1 for scalar quantities; nDim for vectors)

class sierra::nalu::TpetraLinearSystem
Inherits from sierra::nalu::LinearSystem

Public Functions

virtual void resetRows(const std::vector<stk::mesh::Entity> nodeList, const unsigned begin-
Pos, const unsigned endPos)

Reset LHS and RHS for the given set of nodes to 0.

Parameters

• nodeList: A list of STK node entities whose rows are zeroed out

• beginPos: Starting index (usually 0)

• endPos: Terminating index (1 for scalar quantities; nDim for vectors)

class sierra::nalu::HypreLinearSystem
Nalu interface to populate a Hypre Linear System.

This class provides an interface to the HYPRE IJMatrix and IJVector data structures. It is responsible for creat-
ing, resetting, and destroying the Hypre data structures and provides the HypreLinearSystem::sumInto interface

2.2. Source Code Documentation 57

Nalu Documentation, Release 1.2.0

used by Nalu Kernels and SupplementalAlgorithms to populate entries into the linear system. The Hypre-
LinearSystem::solve method interfaces with sierra::nalu::HypreDirectSolver that is responsible for the actual
solution of the system using the required solver and preconditioner combination.

Inherits from sierra::nalu::LinearSystem

Public Functions

HypreLinearSystem(Realm &realm, const unsigned numDof, EquationSystem *eqSys, Linear-
Solver *linearSolver)

Parameters

• realm: The realm instance that holds the EquationSystem being solved

• numDof: The degrees of freedom for the equation system created (Default: 1)

• eqSys: The equation system instance

• linearSolver: Handle to the HypreDirectSolver instance

virtual void buildDirichletNodeGraph(const stk::mesh::PartVector&)
Tag rows that must be handled as a Dirichlet BC node.

Parameters

• partVec: List of parts that contain the Dirichlet nodes

virtual void buildDirichletNodeGraph(const std::vector<stk::mesh::Entity>&)
Tag rows that must be handled as a Dirichlet node.

See sierra::nalu::FixPressureAtNodeAlgorithm

Parameters

• entities: List of nodes where Dirichlet conditions are applied

virtual void zeroSystem()
Reset the matrix and rhs data structures for the next iteration/timestep.

virtual void sumInto(unsigned numEntities, const stk::mesh::Entity *entities, const Shared-
MemView<const double *> &rhs, const SharedMemView<const dou-
ble **> &lhs, const SharedMemView<int *> &localIds, const Shared-
MemView<int *> &sortPermutation, const char *trace_tag)

Update coefficients of a particular row(s) in the linear system.

The core method of this class, it updates the matrix and RHS based on the inputs from the various algo-
rithms. Note that, unlike TpetraLinearSystem, this method skips over the fringe points of Overset mesh
and the Dirichlet nodes rather than resetting them afterward.

This overloaded method deals with Kernels designed with Kokkos::View arrays.

Parameters

• numEntities: The total number of nodes where data is to be updated

• entities: A list of STK node entities

• rhs: Array containing RHS entries to be summed into [numEntities * numDof]

58 Chapter 2. Developer Manual

Nalu Documentation, Release 1.2.0

• lhs: Array containing LHS entries to be summed into. [numEntities * numDof, numEntities *
numDof]

• localIds: Work array for storing local row IDs

• sortPermutation: Work array for sorting row IDs

• trace_tag: Debugging message

virtual void sumInto(const std::vector<stk::mesh::Entity> &sym_meshobj, std::vector<int>
&scratchIds, std::vector<double> &scratchVals, const std::vector<double>
&rhs, const std::vector<double> &lhs, const char *trace_tag)

Update coefficients of a particular row(s) in the linear system.

The core method of this class, it updates the matrix and RHS based on the inputs from the various algo-
rithms. Note that, unlike TpetraLinearSystem, this method skips over the fringe points of Overset mesh
and the Dirichlet nodes rather than resetting them afterward.

This overloaded method deals with classic SupplementalAlgorithms

Parameters

• sym_meshobj: A list of STK node entities

• scratchIds: Work array for row IDs

• scratchVals: Work array for row entries

• rhs: Array containing RHS entries to be summed into [numEntities * numDof]

• lhs: Array containing LHS entries to be summed into. [numEntities * numDof * numEntities *
numDof]

• trace_tag: Debugging message

virtual void applyDirichletBCs(stk::mesh::FieldBase *solutionField, stk::mesh::FieldBase
*bcValuesField, const stk::mesh::PartVector &parts, const
unsigned beginPos, const unsigned endPos)

Populate the LHS and RHS for the Dirichlet rows in linear system.

virtual void prepareConstraints(const unsigned, const unsigned)
Prepare assembly for overset fringe nodes.

The overset fringe nodes are skipped over by the sumInto method during normal assembly process. This
method toggles the flag to instruct sumInto that the constraint rows are being filled at this stage.

virtual void resetRows(std::vector<stk::mesh::Entity>, const unsigned, const unsigned)
Prepare assembly for Dirichlet-type rows.

Dirichlet rows are skipped over by the sumInto method when the interior parts are processed. This method
toggles the flag alerting the sumInto method that the Dirichlet rows will be processed next and sumInto
can proceed.

virtual int solve(stk::mesh::FieldBase *linearSolutionField)
Solve the system Ax = b.

The solution vector is returned in linearSolutionField

Parameters

• linearSolutionField: STK field where the solution is populated

2.2. Source Code Documentation 59

Nalu Documentation, Release 1.2.0

virtual void loadComplete()
Finalize construction of the linear system matrix and rhs vector.

This method calls the appropriate Hypre functions to assemble the matrix and rhs in a parallel run, as well
as registers the matrix and rhs with the solver preconditioner.

Linear Solvers Interface

class sierra::nalu::LinearSolver
An abstract representation of a linear solver in Nalu.

Defines the basic API supported by the linear solvers for use within Nalu. See concrete implementations such
as sierra::nalu::TpetraLinearSolver for more details.

Subclassed by sierra::nalu::HypreDirectSolver, sierra::nalu::TpetraLinearSolver

Public Functions

virtual PetraType getType() = 0
Type of solver instance as defined in sierra::nalu::PetraType.

virtual void destroyLinearSolver() = 0
Utility method to cleanup solvers during simulation.

bool &recomputePreconditioner()
Flag indicating whether the preconditioner is recomputed on each invocation.

bool &reusePreconditioner()
Flag indicating whether the preconditioner is reused on each invocation.

void zero_timer_precond()
Reset the preconditioner timer to 0.0 for future accumulation.

double get_timer_precond()
Get the preconditioner timer for the last invocation.

bool &activeMueLu()
Flag indicating whether the user has activated MueLU.

LinearSolverConfig *getConfig()
Get the solver configuration specified in the input file.

Public Members

std::string name_
User-friendly identifier for this particular solver instance.

class sierra::nalu::TpetraLinearSolver
Inherits from sierra::nalu::LinearSolver

60 Chapter 2. Developer Manual

Nalu Documentation, Release 1.2.0

Public Functions

TpetraLinearSolver(std::string solverName, TpetraLinearSolverConfig *config, const
Teuchos::RCP<Teuchos::ParameterList> params, const Teu-
chos::RCP<Teuchos::ParameterList> paramsPrecond, LinearSolvers
*linearSolvers)

Parameters

• solverName: The name of the solver

• config: Solver configuration

virtual void destroyLinearSolver()
Utility method to cleanup solvers during simulation.

void setMueLu()
Initialize the MueLU preconditioner before solve.

int residual_norm(int whichNorm, Teuchos::RCP<LinSys::Vector> sln, double &norm)
Compute the norm of the non-linear solution vector.

Parameters

• whichNorm: [0, 1, 2] norm to be computed

• sln: The solution vector

• norm: The norm of the solution vector

int solve(Teuchos::RCP<LinSys::Vector> sln, int &iterationCount, double &scaledResidual, bool isFi-
nalOuterIter)

Solve the linear system Ax = b.

Parameters

• sln: The solution vector

• iterationCount: The number of linear solver iterations to convergence

• scaledResidual: The final residual norm

• isFinalOuterIter: Is this the final outer iteration

virtual PetraType getType()
Type of solver instance as defined in sierra::nalu::PetraType.

class sierra::nalu::HypreDirectSolver
Nalu interface to Hypre Solvers and Preconditioners.

This class is responsible creation, initialization, execution, and clean up of Hypre solver and precon-
ditioner data structures during the simulation. It provides an abstraction layer so that the user can
choose different Hypre solvers via input parameters. This class interacts with rest of Nalu solely via
sierra::nalu::HypreLinearSystem. The configuration of Hypre solver is controlled via user input parameters
processed in sierra::nalu::HypreLinearSolverConfig

Users are referred to the Hypre Reference Manual for detailed documentation on the Hypre functions and data
structures used in this class.

Inherits from sierra::nalu::LinearSolver

2.2. Source Code Documentation 61

https://computation.llnl.gov/projects/hypre-scalable-linear-solvers-multigrid-methods/software

Nalu Documentation, Release 1.2.0

Public Functions

virtual void destroyLinearSolver()
Clean up Hypre data structures during simulation.

int solve(int&, double&)
Solves the linear system and updates the solution vector.

Parameters

• iters: The number of linear iterations performed

• norm: The norm of the final relative residual

virtual PetraType getType()
Return the type of solver instance.

Public Members

HYPRE_ParCSRMatrix parMat_
Instance of the Hypre parallel matrix.

HYPRE_ParVector parRhs_
Instance of the Hypre parallel RHS vector.

HYPRE_ParVector parSln_
Instance of Hypre parallel solution vector.

class sierra::nalu::LinearSolvers
Collection of solvers and their associated configuration.

This class performs the following actions within a Nalu simulation:

• Parse the linear_solvers section and create a mapping of user-defined configurations.

• Create solvers for specific equation system and update the mapping

Public Functions

void load(const YAML::Node &node)
Parse the linear_solvers section from Nalu input file.

LinearSolver *create_solver(std::string solverBlockName, EquationType theEQ)
Create a solver for the EquationSystem.

Parameters

• solverBlockName: The name specified in the input file, e.g., solve_scalar

• theEQ: The type of equation

62 Chapter 2. Developer Manual

Nalu Documentation, Release 1.2.0

Public Members

SolverMap solvers_
Mapping of solver instances to the EquationType.

SolverTpetraConfigMap solverTpetraConfig_
A lookup table of solver configurations against the names provided in the input file when the type is
tpetra

HypreSolverConfigMap solverHypreConfig_
A lookup table of solver configurations against the names provided in the input file when type is hypre
or tpetra_hypre

Simulation &sim_
Reference to the sierra::nalu::Simulation instance.

Solver Configuration

class sierra::nalu::LinearSolverConfig
Subclassed by sierra::nalu::HypreLinearSolverConfig, sierra::nalu::TpetraLinearSolverConfig

class sierra::nalu::TpetraLinearSolverConfig
Inherits from sierra::nalu::LinearSolverConfig

class sierra::nalu::HypreLinearSolverConfig
User configuration parmeters for Hypre solvers and preconditioners.

Inherits from sierra::nalu::LinearSolverConfig

Public Functions

virtual void load(const YAML::Node&)
Process and validate the user inputs and register calls to appropriate Hypre functions to configure the solver
and preconditioner.

2.2.4 CVFEM and FEM Interface

class sierra::nalu::MasterElement
Subclassed by sierra::nalu::Edge2DSCS, sierra::nalu::Hex8FEM, sierra::nalu::HexahedralP2Element,
sierra::nalu::HexSCS, sierra::nalu::HexSCV , sierra::nalu::HigherOrderEdge2DSCS,
sierra::nalu::HigherOrderHexSCS, sierra::nalu::HigherOrderHexSCV , sierra::nalu::HigherOrderQuad2DSCS,
sierra::nalu::HigherOrderQuad2DSCV , sierra::nalu::HigherOrderQuad3DSCS, sierra::nalu::PyrSCS,
sierra::nalu::PyrSCV , sierra::nalu::Quad3DSCS, sierra::nalu::Quad42DSCS, sierra::nalu::Quad42DSCV ,
sierra::nalu::QuadrilateralP2Element, sierra::nalu::TetSCS, sierra::nalu::TetSCV , sierra::nalu::Tri2DSCV,
sierra::nalu::Tri32DSCS, sierra::nalu::Tri32DSCV , sierra::nalu::Tri3DSCS, sierra::nalu::WedSCS,
sierra::nalu::WedSCV

3-D Topologies

class sierra::nalu::HexSCV
Inherits from sierra::nalu::MasterElement

class sierra::nalu::HexSCS
Inherits from sierra::nalu::MasterElement

2.2. Source Code Documentation 63

Nalu Documentation, Release 1.2.0

class sierra::nalu::TetSCV
Inherits from sierra::nalu::MasterElement

class sierra::nalu::TetSCS
Inherits from sierra::nalu::MasterElement

class sierra::nalu::PyrSCV
Inherits from sierra::nalu::MasterElement

class sierra::nalu::PyrSCS
Inherits from sierra::nalu::MasterElement

class sierra::nalu::WedSCV
Inherits from sierra::nalu::MasterElement

class sierra::nalu::WedSCS
Inherits from sierra::nalu::MasterElement

class sierra::nalu::Hex27SCV
Inherits from sierra::nalu::HexahedralP2Element

class sierra::nalu::Hex27SCS
Inherits from sierra::nalu::HexahedralP2Element

class sierra::nalu::Hex8FEM
Inherits from sierra::nalu::MasterElement

class sierra::nalu::Quad3DSCS
Inherits from sierra::nalu::MasterElement

class sierra::nalu::Quad93DSCS
Inherits from sierra::nalu::HexahedralP2Element

class sierra::nalu::Tri3DSCS
Inherits from sierra::nalu::MasterElement

2-D Topologies

class sierra::nalu::Quad42DSCV
Inherits from sierra::nalu::MasterElement

class sierra::nalu::Quad42DSCS
Inherits from sierra::nalu::MasterElement

class sierra::nalu::Tri32DSCV
Inherits from sierra::nalu::MasterElement

class sierra::nalu::Tri32DSCS
Inherits from sierra::nalu::MasterElement

Higher-order Element Topologies

class sierra::nalu::HigherOrderHexSCV
Inherits from sierra::nalu::MasterElement

class sierra::nalu::HigherOrderHexSCS
Inherits from sierra::nalu::MasterElement

class sierra::nalu::HigherOrderQuad2DSCV
Inherits from sierra::nalu::MasterElement

64 Chapter 2. Developer Manual

Nalu Documentation, Release 1.2.0

class sierra::nalu::HigherOrderQuad2DSCS
Inherits from sierra::nalu::MasterElement

2.2.5 Actuator Sources

The sierra::nalu::ActuatorLineFAST class is a child class of the generic sierra::nalu::Actuator
class that couples Nalu with OpenFAST for actuator line simulations of wind turbines.

class sierra::nalu::Actuator
Subclassed by sierra::nalu::ActuatorLineFAST , sierra::nalu::ActuatorLinePointDrag

class sierra::nalu::ActuatorLineFAST
The ActuatorLineFAST class couples Nalu with the third party library OpenFAST for actuator line simulations
of wind turbines.

OpenFAST (https://nwtc.nrel.gov/FAST) available from https://github.com/OpenFAST/openfast is a aero-
hydro-servo-elastic tool to model wind turbine developed by the National Renewable Energy Laboratory
(NREL). The ActuatorLineFAST class will help Nalu effectively act as an inflow module to OpenFAST by
supplying the velocity field information. The effect of the turbine on the flow field is modeled using the actuator
line approach. The force exerted by the wind turbine on the flow field is lumpled into a set of body forces at
a discrete set of actuator points. This class spreads the the body force at each actuator point using a Gaussian
function.

1) During the load phase - the turbine data from the yaml file is read and stored in an object of the
fast::fastInputs class

2) During the initialize phase - The processor containing the hub of each turbine is found through a search
and assigned to be the one controlling OpenFAST for that turbine. All processors controlling > 0 turbines
initialize OpenFAST, populate the map of ActuatorLinePointInfo and initialize element searches for all
the actuator points associated with the turbines. For every actuator point, the elements within a specified search
radius are found and stored in the corresponding object of the ActuatorLinePointInfo class.

3) Elements are ghosted to the owning point rank. We tried the opposite approach of ghosting the actuator points
to the processor owning the elements. The second approach was found to peform poorly compared to the first
method.

4) A time lagged simple FSI model is used to interface Nalu with the turbine model:

• The velocity at time step at time step ‘n’ is sampled at the actuator points and sent to OpenFAST

• OpenFAST advances the turbines upto the next Nalu time step ‘n+1’

• The body forces at the actuator points are converted to the source terms of the momentum equation to
advance Nalu to the next time step ‘n+1’.

5) During the execute phase called every time step, we sample the velocity at each actuator point and pass it to
OpenFAST. All the OpenFAST turbine models are advanced upto Nalu’s next time step to get the body forces at
the actuator points. We then iterate over the ActuatorLinePointInfoMap to assemble source terms. For
each node 𝑛within the search radius of an actuator point 𝑘, the spread_actuator_force_to_node_vec
function calculates the effective lumped body force by multiplying the actuator force with the Gaussian projec-
tion at the node as 𝐹𝑛

𝑖 = 𝑔(�⃗�𝑛𝑖)𝐹 𝑘
𝑖 .

Inherits from sierra::nalu::Actuator

2.2.6 Auxiliary Functions

class sierra::nalu::AuxFunction
Subclassed by sierra::nalu::BoundaryLayerPerturbationAuxFunction, sierra::nalu::BoussinesqNonIsoTemperatureAuxFunction,

2.2. Source Code Documentation 65

https://nwtc.nrel.gov/FAST
https://github.com/OpenFAST/openfast

Nalu Documentation, Release 1.2.0

sierra::nalu::BoussinesqNonIsoVelocityAuxFunction, sierra::nalu::ConstantAuxFunction,
sierra::nalu::ConvectingTaylorVortexPressureAuxFunction, sierra::nalu::ConvectingTaylorVortexPressureGradAuxFunction,
sierra::nalu::ConvectingTaylorVortexVelocityAuxFunction, sierra::nalu::FlowPastCylinderTempAuxFunction,
sierra::nalu::KovasznayPressureAuxFunction, sierra::nalu::KovasznayPressureGradientAuxFunction,
sierra::nalu::KovasznayVelocityAuxFunction, sierra::nalu::LinearRampMeshDisplacementAuxFunction,
sierra::nalu::OneTwoTenVelocityAuxFunction, sierra::nalu::RayleighTaylorMixFracAuxFunction,
sierra::nalu::SinMeshDisplacementAuxFunction, sierra::nalu::SinProfileChannelFlowVelocityAuxFunction,
sierra::nalu::SteadyTaylorVortexGradPressureAuxFunction, sierra::nalu::SteadyTaylorVortexPressureAuxFunction,
sierra::nalu::SteadyTaylorVortexVelocityAuxFunction, sierra::nalu::SteadyThermal3dContactAuxFunction,
sierra::nalu::SteadyThermal3dContactDtDxAuxFunction, sierra::nalu::SteadyThermalContactAuxFunction,
sierra::nalu::TaylorGreenPressureAuxFunction, sierra::nalu::TaylorGreenVelocityAuxFunction,
sierra::nalu::TornadoAuxFunction, sierra::nalu::VariableDensityMixFracAuxFunction,
sierra::nalu::VariableDensityNonIsoTemperatureAuxFunction, sierra::nalu::VariableDensityPressureAuxFunction,
sierra::nalu::VariableDensityVelocityAuxFunction, sierra::nalu::WindEnergyAuxFunction,
sierra::nalu::WindEnergyTaylorVortexAuxFunction, sierra::nalu::WindEnergyTaylorVortexPressureAuxFunction,
sierra::nalu::WindEnergyTaylorVortexPressureGradAuxFunction

ABL Utilities

class sierra::nalu::BoundaryLayerPerturbationAuxFunction
Add sinusoidal perturbations to the velocity field.

This function is used as an initial condition, primarily in Atmospheric Boundary Layer (ABL) flows, to trigger
transition to turbulent flow during ABL precursor simulations.

Inherits from sierra::nalu::AuxFunction

Steady Taylor Vortex

class sierra::nalu::SteadyTaylorVortexVelocityAuxFunction
Inherits from sierra::nalu::AuxFunction

class sierra::nalu::SteadyTaylorVortexPressureAuxFunction
Inherits from sierra::nalu::AuxFunction

class sierra::nalu::SteadyTaylorVortexGradPressureAuxFunction
Inherits from sierra::nalu::AuxFunction

class sierra::nalu::SteadyTaylorVortexMomentumSrcElemSuppAlg
Inherits from sierra::nalu::SupplementalAlgorithm

class sierra::nalu::SteadyTaylorVortexMomentumSrcNodeSuppAlg
Inherits from sierra::nalu::SupplementalAlgorithm

Convecting Taylor Vortex

class sierra::nalu::ConvectingTaylorVortexVelocityAuxFunction
Inherits from sierra::nalu::AuxFunction

class sierra::nalu::ConvectingTaylorVortexPressureAuxFunction
Inherits from sierra::nalu::AuxFunction

class sierra::nalu::ConvectingTaylorVortexPressureGradAuxFunction
Inherits from sierra::nalu::AuxFunction

66 Chapter 2. Developer Manual

Nalu Documentation, Release 1.2.0

Kovasznay 2-D Flow

class sierra::nalu::KovasznayVelocityAuxFunction
Inherits from sierra::nalu::AuxFunction

class sierra::nalu::KovasznayPressureAuxFunction
Inherits from sierra::nalu::AuxFunction

class sierra::nalu::KovasznayPressureGradientAuxFunction
Inherits from sierra::nalu::AuxFunction

Steady Thermal MMS (2-D and 3-D)

class sierra::nalu::SteadyThermal3dContactAuxFunction
Inherits from sierra::nalu::AuxFunction

class sierra::nalu::SteadyThermal3dContactDtDxAuxFunction
Inherits from sierra::nalu::AuxFunction

template <typename AlgTraits>
class sierra::nalu::SteadyThermal3dContactSrcElemKernel

Inherits from sierra::nalu::Kernel

Public Functions

virtual void execute(SharedMemView<DoubleType **> &lhs, SharedMemView<DoubleType *>
&rhs, ScratchViews<DoubleType> &scratchViews)

Execute the kernel within a Kokkos loop and populate the LHS and RHS for the linear solve.

class sierra::nalu::SteadyThermal3dContactSrcElemSuppAlgDep
Inherits from sierra::nalu::SupplementalAlgorithm

class sierra::nalu::SteadyThermalContact3DSrcNodeSuppAlg
Inherits from sierra::nalu::SupplementalAlgorithm

class sierra::nalu::SteadyThermalContactAuxFunction
Inherits from sierra::nalu::AuxFunction

class sierra::nalu::SteadyThermalContactSrcElemSuppAlg
Inherits from sierra::nalu::SupplementalAlgorithm

class sierra::nalu::SteadyThermalContactSrcNodeSuppAlg
Inherits from sierra::nalu::SupplementalAlgorithm

Mesh Motion/Displacement Utilities

class sierra::nalu::LinearRampMeshDisplacementAuxFunction
Inherits from sierra::nalu::AuxFunction

class sierra::nalu::SinMeshDisplacementAuxFunction
Inherits from sierra::nalu::AuxFunction

class sierra::nalu::WindEnergyAuxFunction
Inherits from sierra::nalu::AuxFunction

2.2. Source Code Documentation 67

Nalu Documentation, Release 1.2.0

2.2.7 Post-Processing Utilities

class sierra::nalu::TurbulenceAveragingPostProcessing
Post-processing to collect various types of statistics on flow fields.

This class implements Reynolds and Favre averaging as well as other useful quantities relevant to analyzing
turbulent flows.

Currently supported:

• Reynolds and Favre averaging of flow variables

• TKE and stress computation

• Vorticity, Q-criterion, lambda-ci calculation

Public Types

enum AveragingType
Type of time filter averaging applied.

Values:

NALU_CLASSIC = 0
Classic Nalu implementation (saw-tooth reset)

MOVING_EXPONENTIAL
Moving exponential window averaging.

class sierra::nalu::DataProbePostProcessing

class sierra::nalu::SolutionNormPostProcessing

class sierra::nalu::SurfaceForceAndMomentAlgorithm
Inherits from sierra::nalu::Algorithm

class sierra::nalu::SurfaceForceAndMomentWallFunctionAlgorithm
Inherits from sierra::nalu::Algorithm

2.3 Writing Developer Documentation

Developer documentation should be written using Doxygen annotations directly in the source code. This allows the
documentation to live with the code essentially as comments that Doxygen is able to extract automatically into a more
human readable form. Doxygen requires special syntax markers to indicate comments that should be processed as
inline documentation vs. generic comments in the source code. The Doxygen manual provides detailed information
on the various markers available to tailor the formatting of auto-generated documentation. It is recommended that
users document the classes and methods in the header file. A sample header file with specially formatted comments is
shown below. You can download a copy of the file.

Listing 2.1: Sample C++ header file showing inline documentation using specially formatted comments.

/** @file example.h

* @brief Brief description of a documented file.

*
* Longer description of a documented file.

*/

/** Here is a brief description of the example class.

68 Chapter 2. Developer Manual

http://www.stack.nl/~dimitri/doxygen/manual/index.html

Nalu Documentation, Release 1.2.0

*
* This is a more in-depth description of the class.

* This class is meant as an example.

* It is not useful by itself, rather its usefulness is only a

* function of how much it helps the reader. It is in a sense

* defined by the person who reads it and otherwise does

* not exist in any real form.

*
* @note This is a note.

*
*/

#ifndef EXAMPLECLASS_H
#define EXAMPLECLASS_H

class ExampleClass
{

public:

/// Create an ExampleClass.
ExampleClass();

/** Create an ExampleClass with lot's of intial values.

*
* @param a This is a description of parameter a.

* @param b This is a description of parameter b.

*
* The distance between \f$(x_1,y_1)\f$ and \f$(x_2,y_2)\f$ is

* \f$\sqrt{(x_2-x_1)^2+(y_2-y_1)^2}\f$.

*/
ExampleClass(int a, float b);

/** ExampleClass destructor description.

*/
~ExampleClass();

/// This method does something.
void DoSomething();

/**
* This is a method that does so

* much that I must write an epic

* novel just to describe how much

* it truly does.

*/
void DoNothing();

/** Brief description of a useful method.

* @param level An integer setting how useful to be.

* @return Description of the output.

*
* This method does unbelievably useful things.

* And returns exceptionally useful results.

* Use it everyday with good health.

* \f[

* |I_2|=\left| \int_{0}^T \psi(t)

* \left\{

2.3. Writing Developer Documentation 69

Nalu Documentation, Release 1.2.0

* u(a,t)-

* \int_{\gamma(t)}^a

* \frac{d\theta}{k(\theta,t)}

* \int_{a}^\theta c(\xi)u_t(\xi,t)\,d\xi

* \right\} dt

* \right|

* \f]

*/
void* VeryUsefulMethod(bool level);

/** Brief description of a useful method.

* @param level An integer setting how useful to be.

* @return Description of the output.

*
* - Item 1

*
* More text for this item.

*
* - Item 2

* + nested list item.

* + another nested item.

* - Item 3

*
* # Markdown Example

* [Here is a link.](http://www.google.com/)

*/
void* AnotherMethod(bool level);

protected:
/** The protected methods can be documented and extracted too.

*
*/

void SomeProtectedMethod();

private:

const char* fQuestion; ///< The question
int fAnswer; ///< The answer

}; // End of class ExampleClass

#endif // EXAMPLE_H

Once processed by Doxygen and embedded in Sphinx, the resulting documentation of the class looks as shown below:

class ExampleClass
Here is a brief description of the example class.

This is a more in-depth description of the class. This class is meant as an example. It is not useful by itself,
rather its usefulness is only a function of how much it helps the reader. It is in a sense defined by the person
who reads it and otherwise does not exist in any real form.

Note This is a note.

70 Chapter 2. Developer Manual

Nalu Documentation, Release 1.2.0

Public Functions

ExampleClass()
Create an ExampleClass.

ExampleClass(int a, float b)
Create an ExampleClass with lot’s of intial values.

The distance between (𝑥1, 𝑦1) and (𝑥2, 𝑦2) is
√︀

(𝑥2 − 𝑥1)2 + (𝑦2 − 𝑦1)2.

Parameters

• a: This is a description of parameter a.

• b: This is a description of parameter b.

~ExampleClass()
ExampleClass destructor description.

void DoSomething()
This method does something.

void DoNothing()
This is a method that does so much that I must write an epic novel just to describe how much it truly does.

void *VeryUsefulMethod(bool level)
Brief description of a useful method.

This method does unbelievably useful things. And returns exceptionally useful results. Use it everyday
with good health.

|𝐼2| =

⃒⃒⃒⃒
⃒
∫︁ 𝑇

0

𝜓(𝑡)

{︃
𝑢(𝑎, 𝑡) −

∫︁ 𝑎

𝛾(𝑡)

𝑑𝜃

𝑘(𝜃, 𝑡)

∫︁ 𝜃

𝑎

𝑐(𝜉)𝑢𝑡(𝜉, 𝑡) 𝑑𝜉

}︃
𝑑𝑡

⃒⃒⃒⃒
⃒

Return Description of the output.

Parameters

• level: An integer setting how useful to be.

void *AnotherMethod(bool level)
Brief description of a useful method.

• Item 1

More text for this item.

• Item 2

– nested list item.

– another nested item.

• Item 3

Return Description of the output.

Parameters

• level: An integer setting how useful to be.

Markdown Example

Here is a link.

2.3. Writing Developer Documentation 71

http://www.google.com/

Nalu Documentation, Release 1.2.0

Protected Functions

void SomeProtectedMethod()
The protected methods can be documented and extracted too.

Private Members

const char *fQuestion
The question.

int fAnswer
The answer.

2.4 Writing User Documentation

This documentation is written in Sphinx and is generated automatically on the http://nalu.readthedocs.io website every
time the Nalu Github repo is updated. This documentation can also be built locally on your machine by using the
instructions here. Sphinx uses restructured text (RST) to generate the documentation in many other formats, such as
this html version. Refer to the primer on writing restructured text here.

2.5 Building the Documentation

This document describes how to build Nalu’s documentation. The documentation is based on the use of Doxygen,
Sphinx, and Doxylink. Therefore we will need to install these tools as well as some extensions of Sphinx that are
utilized.

2.5.1 Install the Tools

Install CMake, Doxygen, Sphinx, Doxylink, and the extensions used. Doxygen uses the dot application installed
with GraphViz. Sphinx uses a combination of extensions installed with pip install as well as some that come
with Nalu located in the _extensions directory. Using Homebrew on Mac OS X, this would look something like:

brew install cmake
brew install python
brew install doxygen
brew install graphviz
pip2 install sphinx
pip2 install sphinxcontrib-bibtex
pip2 install breathe
pip2 install sphinx_rtd_theme

On Linux, CMake, Python, Doxygen, and GraphViz could be installed using your package manager, e.g. sudo
apt-get install cmake.

2.5.2 Run CMake Configure

In the Nalu repository checkout, create your own or use the build directory that already exists in the repo. Change
to your designated build directory and run CMake with -DENABLE_DOCUMENTATION on. For example:

72 Chapter 2. Developer Manual

http://nalu.readthedocs.io
https://github.com/nalucfd/nalu
build_doc.html
http://www.sphinx-doc.org/en/stable/rest.html
https://github.com/NaluCFD/Nalu

Nalu Documentation, Release 1.2.0

cmake -DTrilinos_DIR:PATH=$(spack location -i nalu-trilinos) \
-DYAML_DIR:PATH=$(spack location -i yaml-cpp) \
-DCMAKE_BUILD_TYPE=RELEASE \
-DENABLE_DOCUMENTATION:BOOL=ON \
..

If all of the main tools are found successfully, CMake should configure with the ability to build the documentation. If
Sphinx or Doxygen aren’t found, the configure will skip the documentation.

2.5.3 Make the Docs

In your designated build directory, issue the command make docs which should first build the Doxygen documen-
tation and then the Sphinx documentation. If this completes successfully, the entry point to the documentation should
be in build/docs/html/index.html.

2.6 Developer Workflow

This document describes a suggested developer workflow for Nalu.

2.7 Nalu Style Guide

1. No tabs. Remove them from your editor. Better yet, use eclipse and follow the xml style. Use the format here.

2. Use underscores for private data, e.g., const double thePrivateData_.

3. Use camel case for data members and classes unless it is silly (you get the idea).

4. Camel case on Class names always; non camel case for methods, e.g.,

const double Realm::get_me() {
return hereIAm_; // hmmm... silly? your call

}

5. Use const when possible, however, do not try to be a member of the ‘const’ police force.

6. We need logic to launch some special physics. Try to avoid run time logic by designing with polymor-
phic/templates.

7. When possible, add classes that manage loading, field registration, setup and execute, e.g., SolutionNormPost-
Processing, etc.

2.8 Contributing to Nalu

1. There is no rush to push. We only support production tested capability. Better yet, peform code verification and
unit testing.

2. Always run the full regression test suite. No exceptions.

3. Peer review when fully appropriate (ask for a pull request).

4. If adding a new feature, include a regression test for this feature. Refer to the section of this documentation on
adding a test here.

2.6. Developer Workflow 73

https://github.com/NaluCFD/Nalu/blob/master/SQA/naluEclipseFormat.xml

Nalu Documentation, Release 1.2.0

74 Chapter 2. Developer Manual

CHAPTER 3

Sierra Low Mach Module: Nalu - Theory Manual

The SIERRA Low Mach Module: Nalu (henceforth referred to as Nalu), developed at Sandia National Labs, rep-
resents a generalized unstructured, massively parallel, variable density turbulent flow capability designed for energy
applications. This code base began as an effort to prototype Sierra Toolkit, [EWS+10], usage along with direct par-
allel matrix assembly to the Trilinos, [HBH+03], Epetra and Tpetra data structure. However, the simulation tool has
evolved as a tool to support a variety of research projects germane to the energy sector including wind aerodynamic
prediction and traditional gas-phase combustion applications.

3.1 Low Mach Number Derivation

The low Mach number equations are a subset of the fully compressible equations of motion (momentum, continuity
and energy), admitting large variations in gas density while remaining acoustically incompressible. The low Mach
number equations are preferred over the full compressible equations for low speed flow problems as the accoustics
are of little consequence to the overall simulation accuracy. The technique avoids the need to resolve fast-moving
acoustic signals. Derivations of the low Mach number equations can be found in found in Rehm and Baum, [RB78],
or Paolucci, [Pao82].

The equations are derived from the compressible equations using a perturbation expansion in terms of the lower limit
of the Mach number squared; hence the name. The asymptotic expansion leads to a splitting of pressure into a spatially
constant thermodynamic pressure and a locally varying dynamic pressure. The dynamic pressure is decoupled from
the thermodynamic state and cannot propagate acoustic waves. The thermodynamic pressure is used in the equation of
state and to determine thermophysical properties. The thermodynamic pressure can vary in time and can be calculated
using a global energy balance.

3.1.1 Asymptotic Expansion

The asymptotic expansion for the low Mach number equations begins with the full compressible equations in Cartesian
coordinates. The equations are the minimum set required to propagate acoustic waves. The equations are written in

75

Nalu Documentation, Release 1.2.0

divergence form using Einstein notation (summation over repeated indices):

𝜕𝜌

𝜕𝑡
+
𝜕𝜌𝑢𝑗
𝜕𝑥𝑗

= 0,

𝜕𝜌𝑢𝑖
𝜕𝑡

+
𝜕𝜌𝑢𝑗𝑢𝑖
𝜕𝑥𝑗

+
𝜕𝑃

𝜕𝑥𝑖
=
𝜕𝜏𝑖𝑗
𝜕𝑥𝑗

+ 𝜌𝑔𝑖,

𝜕𝜌𝐸

𝜕𝑡
+
𝜕𝜌𝑢𝑗𝐻

𝜕𝑥𝑗
= − 𝜕𝑞𝑗

𝜕𝑥𝑗
+
𝜕𝑢𝑖𝜏𝑖𝑗
𝜕𝑥𝑗

+ 𝜌𝑢𝑖𝑔𝑖.

The primitive variables are the velocity components, 𝑢𝑖, the pressure, 𝑃 , and the temperature 𝑇 . The viscous shear
stress tensor is 𝜏𝑖𝑗 , the heat conduction is 𝑞𝑖, the total enthalpy is 𝐻 , the total internal energy is 𝐸, the density is 𝜌,
and the gravity vector is 𝑔𝑖. The total internal energy and total enthalpy contain the kinetic energy contributions. The
equations are closed using the following models and definitions:

𝑃 = 𝜌
𝑅

𝑊
𝑇,

𝐸 = 𝐻 − 𝑃/𝜌,

𝐻 = ℎ+
1

2
𝑢𝑘𝑢𝑘,

𝜏𝑖𝑗 = 𝜇

(︂
𝜕𝑢𝑖
𝜕𝑥𝑗

+
𝜕𝑢𝑗
𝜕𝑥𝑖

)︂
− 2

3
𝜇
𝜕𝑢𝑘
𝜕𝑥𝑘

𝛿𝑖𝑗 ,

𝑞𝑖 = −𝑘 𝜕𝑇
𝜕𝑥𝑖

The mean molecular weight of the gas is 𝑊 , the molecular viscosity is 𝜇, and the thermal conductivity is 𝑘. A
Newtonian fluid is assumed along with the Stokes hypothesis for the stress tensor.

The equations are scaled so that the variables are all of order one. The velocities, lengths, and times are nondimen-
sionalized by a characteristic velocity, 𝑈∞, and a length scale, 𝐿. The pressure, density, and temperature are nondi-
mensionalized by 𝑃∞, 𝜌∞, and 𝑇∞. The enthalpy and energy are nondimensionalized by 𝐶𝑝,∞𝑇∞. Dimensionless
variables are noted by overbars. The dimensionless equations are:

𝜕𝜌

𝜕𝑡
+
𝜕𝜌�̄�𝑗
𝜕�̄�𝑗

= 0,

𝜕𝜌�̄�𝑖
𝜕𝑡

+
𝜕𝜌�̄�𝑗 �̄�𝑖
𝜕�̄�𝑗

+
1

𝛾Ma2
𝜕𝑃

𝜕�̄�𝑖
=

1

Re

𝜕𝜏𝑖𝑗
𝜕�̄�𝑗

+
1

Fr𝑖
𝜌,

𝜕𝜌ℎ̄

𝜕𝑡
+
𝜕𝜌�̄�𝑗 ℎ̄

𝜕�̄�𝑗
= − 1

Pr

1

Re

𝜕𝑞𝑗
𝜕�̄�𝑗

+
𝛾 − 1

𝛾

𝜕𝑃

𝜕𝑡

+
𝛾 − 1

𝛾

Ma2

Re

𝜕�̄�𝑖𝜏𝑖𝑗
𝜕�̄�𝑗

+ 𝜌�̄�𝑖
𝛾 − 1

𝛾

Ma2

Fr𝑖

− 𝛾 − 1

2
Ma2

(︂
𝜕𝜌�̄�𝑘�̄�𝑘
𝜕𝑡

+
𝜕𝜌�̄�𝑗 �̄�𝑘�̄�𝑘

𝜕�̄�𝑗

)︂
.

The groupings of characteristic scaling terms are:

Re =
𝜌∞𝑈∞𝐿

𝜇∞
, Reynoldsnumber,

Pr =
𝐶𝑝,∞𝜇∞

𝑘∞
, Prandtlnumber,

Fr𝑖 =
𝑢2∞
𝑔𝑖𝐿

, Froudenumber, 𝑔𝑖 ̸= 0,

Ma =

√︃
𝑢2∞

𝛾𝑅𝑇∞/𝑊
, Machnumber,

76 Chapter 3. Sierra Low Mach Module: Nalu - Theory Manual

Nalu Documentation, Release 1.2.0

where 𝛾 is the ratio of specific heats.

For small Mach numbers, Ma ≪ 1, the kinetic energy, viscous work, and gravity work terms can be neglected in the
energy equation since those terms are scaled by the square of the Mach number. The inverse of Mach number squared
remains in the momentum equations, suggesting singular behavior. In order to explore the singularity, the pressure,
velocity and temperature are expanded as asymptotic series in terms of the parameter 𝜖:

𝑃 = 𝑃0 + 𝑃1𝜖+ 𝑃2𝜖
2 . . .

�̄�𝑖 = �̄�𝑖,0 + �̄�𝑖,1𝜖+ �̄�𝑖,2𝜖
2 . . .

𝑇 = 𝑇0 + 𝑇1𝜖+ 𝑇2𝜖
2 . . .

The zeroeth-order terms are collected together in each of the equations. The form of the continuity equation stays the
same. The gradient of the pressure in the zeroeth-order momentum equations can become singular since it is divided
by the characteristic Mach number squared. In order for the zeroeth-order momentum equations to remain well-
behaved, the spatial variation of the 𝑃0 term must be zero. If the magnitude of the expansion parameter is selected to
be proportional to the square of the characteristic Mach number, 𝜖 = 𝛾Ma2, then the 𝑃1 term can be included in the
zeroeth-order momentum equation.

1

𝛾Ma2
𝜕𝑃

𝜕𝑥𝑖
=

𝜕

𝜕𝑥𝑖

(︂
1

𝛾Ma2
𝑃0 +

𝜖

𝛾Ma2
𝑃1 + . . .

)︂
=

𝜕

𝜕𝑥𝑖

(︂
𝑃1 + 𝜖𝑃2 + . . .

)︂
The form of the energy equation remains the same, less the kinetic energy, viscous work and gravity work terms. The
𝑃0 term remains in the energy equation as a time derivative. The low Mach number equations are the zeroeth-order
equations in the expansion including the 𝑃1 term in the momentum equations. The expansion results in two different
types of pressure and they are considered to be split into a thermodynamic component and a dynamic component.
The thermodynamic pressure is constant in space, but can change in time. The thermodynamic pressure is used in the
equation of state. The dynamic pressure only arises as a gradient term in the momentum equation and acts to enforce
continuity. The unsplit dimensional pressure is

𝑃 = 𝑃𝑡ℎ + 𝛾Ma2𝑃1,

where the dynamic pressure, 𝑝 = 𝑃 − 𝑃𝑡ℎ, is related to a pressure coefficient

𝑃1 =
𝑃 − 𝑃𝑡ℎ

𝜌∞𝑢2∞
𝑃𝑡ℎ.

The resulting unscaled low Mach number equations are:

𝜕𝜌

𝜕𝑡
+
𝜕𝜌𝑢𝑗
𝜕𝑥𝑗

= 0,

𝜕𝜌𝑢𝑖
𝜕𝑡

+
𝜕𝜌𝑢𝑗𝑢𝑖
𝜕𝑥𝑗

+
𝜕𝑃

𝜕𝑥𝑖
=
𝜕𝜏𝑖𝑗
𝜕𝑥𝑗

+ (𝜌− 𝜌∘) 𝑔𝑖,

𝜕𝜌ℎ

𝜕𝑡
+
𝜕𝜌𝑢𝑗ℎ

𝜕𝑥𝑗
= − 𝜕𝑞𝑗

𝜕𝑥𝑗
+
𝜕𝑃𝑡ℎ

𝜕𝑡
,

where the ideal gas law becomes

𝑃𝑡ℎ = 𝜌
𝑅

𝑊
𝑇.

The hydrostatic pressure gradient has been subtracted from the momentum equation, assuming an ambient density of
𝜌∘. The stress tensor and heat conduction remain the same as in the original equations.

3.2 Supported Equation Set

This section provides an overview of the currently supported equation sets. Equations will be decribed in integral form
with assumed Favre averaging. However, the laminar counterparts are supported in the code base and are obtain in the
user file by ommitting a turbulence model specification.

3.2. Supported Equation Set 77

Nalu Documentation, Release 1.2.0

3.2.1 Conservation of Mass

The continuity equation is always solved in the variable density form.∫︁
𝜕𝜌

𝜕𝑡
𝑑𝑉 +

∫︁
𝜌̃︀𝑢𝑖𝑛𝑖 𝑑𝑆 = 0

Since Nalu uses equal-order interpolation (variables are collocated) stabilization is required. The stabilization choice
will be developed in the pressure stabilization section.

Note that the use of a low speed compressible formulation requires that the fluid density be computed by an equation
of state that uses the thermodynamic pressure. This thermodynamic pressure can either be computed based on a global
energy/mass balance or allowed to be spatially varying. By modification of the continuity density time derivative to
include the 𝜕𝜌

𝜕𝑝 sensitivity, an equation that admits acoustic pressure waves is realized.

3.2.2 Conservation of Momentum

The integral form of the Favre-filtered momentum equations used for turbulent transport are∫︁
𝜕𝜌̃︀𝑢𝑖
𝜕𝑡

d𝑉 +

∫︁
𝜌̃︀𝑢𝑖̃︀𝑢𝑗𝑛𝑗 d𝑆 =

∫︁ ̃︀𝜎𝑖𝑗𝑛𝑗 d𝑆 −
∫︁
𝜏𝑠𝑔𝑠𝑖𝑗 𝑛𝑗 d𝑆

+

∫︁
(𝜌− 𝜌∘) 𝑔𝑖 d𝑉 +

∫︁
f𝑖 d𝑉,

(3.1)

where the subgrid scale turbulent stress 𝜏𝑠𝑔𝑠𝑖𝑗 is defined as

𝜏𝑠𝑔𝑠𝑖𝑗 ≡ 𝜌(̃︂𝑢𝑖𝑢𝑗 − ̃︀𝑢𝑖̃︀𝑢𝑗). (3.2)

The term f𝑖 is a body force used to represent additional momentum sources such as wind turbine blades, Coriolis
effect, driving forces, etc. The Cauchy stress is provided by,

𝜎𝑖𝑗 = 2𝜇̃︀𝑆*
𝑖𝑗 − 𝑃𝛿𝑖𝑗

and the traceless rate-of-strain tensor defined as follows:

̃︀𝑆*
𝑖𝑗 = ̃︀𝑆𝑖𝑗 −

1

3
𝛿𝑖𝑗 ̃︀𝑆𝑘𝑘

= ̃︀𝑆𝑖𝑗 −
1

3

𝜕̃︀𝑢𝑘
𝜕𝑥𝑘

𝛿𝑖𝑗 .

In a low Mach flow, as described in the low Mach theory section, the above pressure, 𝑃 is the purturbation about the
thermodynamic pressure, 𝑃 𝑡ℎ. In a low speed compressible flow, i.e., flows confined to a closed domain with energy or
mass addition in which the continuity equation has been modifed to accomodate accoustics, this pressure is interpreted
at the thermodynamic pressure itself.

For LES, 𝜏𝑠𝑔𝑠𝑖𝑗 that appears in Equation (3.1) and defined in Equation (3.2) represents the subgrid stress tensor that
must be closed. The deviatoric part of the subgrid stress tensor is defined as

𝜏𝑠𝑔𝑠𝑖𝑗 = 𝜏𝑠𝑔𝑠𝑖𝑗 − 1

3
𝛿𝑖𝑗𝜏

𝑠𝑔𝑠
𝑘𝑘

(3.3)

where the subgrid turbulent kinetic energy is defined as 𝜏𝑠𝑔𝑠𝑘𝑘 = 2𝜌𝑘. Note that here, k represents the modeled turbulent
kinetic energy as is formally defined as,

𝜌𝑘 =
1

2
𝜌(𝑢𝑘𝑢𝑘 − ̃︀𝑢𝑘̃︀𝑢𝑘).

78 Chapter 3. Sierra Low Mach Module: Nalu - Theory Manual

Nalu Documentation, Release 1.2.0

Model closures can use, Yoshizawa’s approach when k is not transported:

𝜏𝑠𝑔𝑠𝑘𝑘 = 2𝐶𝐼𝜌∆2|̃︀𝑆|2.
Above, |̃︀𝑆| =

√︁
2̃︀𝑆𝑖𝑗

̃︀𝑆𝑖𝑗 .

For low Mach-number flows, a vast majority of the turbulent kinetic energy is contained at resolved scales. For
this reason, the subgrid turbulent kinetic energy is not directly treated and, rather, is included in the pressure as an
additional normal stress. The Favre-filtered momentum equations then become∫︁

𝜕𝜌̃︀𝑢𝑖
𝜕𝑡

d𝑉 +

∫︁
𝜌̃︀𝑢𝑖̃︀𝑢𝑗𝑛𝑗d𝑆 +

∫︁ (︂
𝑃 +

2

3
𝜌𝑘

)︂
𝑛𝑖d𝑆 =∫︁

2(𝜇+ 𝜇𝑡)

(︂̃︀𝑆𝑖𝑗 −
1

3
̃︀𝑆𝑘𝑘𝛿𝑖𝑗

)︂
𝑛𝑗d𝑆 +

∫︁
(𝜌− 𝜌∘) 𝑔𝑖d𝑉,

(3.4)

where LES closure models for the subgrid turbulent eddy viscosity 𝜇𝑡 are either the constant coefficient Smagorinsky,
WALE or the constant coefficient 𝑘𝑠𝑔𝑠 model (see the turbulence section).

Earth Coriolis Force

For simulation of large-scale atmospheric flows, the following Coriolis force term can be added to the right-hand-side
of the momentum equation ((3.1)):

f𝑖 = −2𝜌𝜖𝑖𝑗𝑘Ω𝑗𝑢𝑘. (3.5)

Here, Ω is the Earth’s angular velocity vector, and 𝜖𝑖𝑗𝑘 is the Levi-Civita symbol denoting the cross product of the
Earth’s angular velocity with the local fluid velocity vector. Consider an “East-North-Up” coordinate system on the
Earth’s surface, with the domain centered on a latitude angle 𝜑 (changes in latitude within the computational domain
are neglected). In this coordinate system, the integrand of (cor-term), or the Coriolis acceleration vector, is

2𝜌𝜔

⎡⎣𝑢𝑛 sin𝜑− 𝑢𝑢 cos𝜑
−𝑢𝑒 sin𝜑
𝑢𝑒 cos𝜑

⎤⎦ , (3.6)

where 𝜔 ≡ ||Ω||. Often, in geophysical flows it is assumed that the vertical component of velocity is small and
that the vertical component of the acceleration is small relative to gravity, such that the terms containing cos𝜑 are
neglected. However, there is evidence that this so-called traditional approximation is not valid for some mesoscale
atmospheric phenomena cite{Gerkema_etal:08}, and so the full Coriolis term is retained in Nalu. The implementation
proceeds by first finding the velocity vector in the East-North-Up coordinate system, then calculating the Coriolis
acceleration vector ((3.6)), then transforming this vector back to the model 𝑥−𝑦−𝑧 coordinate system. The coordinate
transformations are made using user-supplied North and East unit vectors given in the model coordinate system.

Boussinesq Buoyancy Model

In atmospheric and other flows, the density differences in the domain can be small enough as to not significantly affect
inertia, but nonetheless the buoyancy term, ∫︁

(𝜌− 𝜌∘) 𝑔𝑖 d𝑉, (3.7)

may still be important. The Boussinesq model ignores the effect of density on inertia while retaining the buoyancy
term in Equation (3.1). For the purpose of evaluating the buoyant force, the density is approximated as

𝜌

𝜌∘
≈ 1 − 𝛽(𝑇 − 𝑇∘), (3.8)

3.2. Supported Equation Set 79

Nalu Documentation, Release 1.2.0

This leads to a buoyancy body force term that depends on temperature (𝑇), a reference density (𝜌∘), a reference
temperature (𝑇∘), and a thermal expansion coefficient (𝛽) as∫︁

−𝜌∘𝛽(𝑇 − 𝑇∘)𝑔𝑖 d𝑉. (3.9)

The flow is otherwise kept as constant density.

3.2.3 Filtered Mixture Fraction

The optional quantity used to identify the chemical state is the mixture fraction, 𝑍. While there are many different
definitions of the mixture fraction that have subtle variations that attempt to capture effects like differential diffusion,
they can all be interpreted as a local mass fraction of the chemical elements that originated in the fuel stream. The
mixture fraction is a conserved scalar that varies between zero in the secondary stream and unity in the primary stream
and is transported in laminar flow by the equation,

𝜕𝜌𝑍

𝜕𝑡
+
𝜕𝜌𝑢𝑗𝑍

𝜕𝑥𝑗
=

𝜕

𝜕𝑥𝑗

(︂
𝜌𝐷

𝜕𝑍

𝜕𝑥𝑗

)︂
, (3.10)

where 𝐷 is an effective molecular mass diffusivity.

Applying either temporal Favre filtering for RANS-based treatments or spatial Favre filtering for LES-based treatments
yields ∫︁

𝜕𝜌 ̃︀𝑍
𝜕𝑡

d𝑉 +

∫︁
𝜌̃︀𝑢𝑗 ̃︀𝑍𝑛𝑗d𝑆 = −

∫︁
𝜏𝑠𝑔𝑠𝑍,𝑗 𝑛𝑗d𝑆 +

∫︁
𝜌𝐷

𝜕 ̃︀𝑍
𝜕𝑥𝑗

𝑛𝑗d𝑆, (3.11)

where sub-filter correlations have been neglected in the molecular diffusive flux vector and the turbulent diffusive flux
vector is defined as

𝜏𝑠𝑔𝑠𝑍,𝑗 ≡ 𝜌
(︁̃︂𝑍𝑢𝑗 − ̃︀𝑍̃︀𝑢𝑗)︁ .

This subgrid scale closure is modeled using the gradient diffusion hypothesis,

𝜏𝑠𝑔𝑠𝑍,𝑗 = −𝜌𝐷𝑡
𝜕𝑍

𝜕𝑥𝑗
,

where 𝐷𝑡 is the turbulent mass diffusivity, modeled as 𝜌𝐷𝑡 = 𝜇𝑡/Sc𝑡 where 𝜇𝑡 is the modeled turbulent viscosity
from momentum transport and Sc𝑡 is the turbulent Schmidt number. The molecular mass diffusivity is then expressed
similarly as 𝜌𝐷 = 𝜇/Sc so that the final modeled form of the filtered mixture fraction transport equation is

𝜕𝜌 ̃︀𝑍
𝜕𝑡

+
𝜕𝜌̃︀𝑢𝑗 ̃︀𝑍
𝜕𝑥𝑗

=
𝜕

𝜕𝑥𝑗

[︃(︂
𝜇

Sc
+

𝜇𝑡

Sc𝑡

)︂
𝜕 ̃︀𝑍
𝜕𝑥𝑗

]︃
.

In integral form the mixture fraction transport equation is∫︁
𝜕𝜌 ̃︀𝑍
𝜕𝑡

𝑑𝑉 +

∫︁
𝜌̃︀𝑢𝑗 ̃︀𝑍𝑛𝑗 𝑑𝑆 =

∫︁ (︂
𝜇

Sc
+

𝜇𝑡

Sc𝑡

)︂
𝜕 ̃︀𝑍
𝜕𝑥𝑗

𝑛𝑗 𝑑𝑆.

3.2.4 Conservation of Energy

The integral form of the Favre-filtered static enthalpy energy equation used for turbulent transport is∫︁
𝜕𝜌̃︀ℎ
𝜕𝑡

d𝑉 +

∫︁
𝜌̃︀ℎ̃︀𝑢𝑗𝑛𝑗d𝑆 = −

∫︁
𝑞𝑗𝑛𝑗d𝑆 −

∫︁
𝜏𝑠𝑔𝑠ℎ,𝑗 𝑛𝑗d𝑆 −

∫︁
𝜕𝑞𝑟𝑖
𝜕𝑥𝑖

d𝑉

+

∫︁ (︂
𝜕𝑃

𝜕𝑡
+ ̃︀𝑢𝑗 𝜕𝑃

𝜕𝑥𝑗

)︂
d𝑉 +

∫︁
𝜏𝑖𝑗

𝜕𝑢𝑖
𝜕𝑥𝑗

d𝑉 +

∫︁
𝑆𝜃d𝑉.

(3.12)

80 Chapter 3. Sierra Low Mach Module: Nalu - Theory Manual

Nalu Documentation, Release 1.2.0

The above equation is derived by starting with the total internal energy equation, subtracting the mechanical energy
equation and enforcing the variable density continuity equation. Note that the above equation includes possible source
terms due to thermal radiatitive transport, viscous dissipation, pressure work, and external driving sources (𝑆𝜃).

The simple Fickian diffusion velocity approximation, Equation (3.22), is assumed, so that the mean diffusive heat flux
vector 𝑞𝑗 is

𝑞𝑗 = −

[︃
𝜅

𝐶𝑝

𝜕ℎ

𝜕𝑥𝑗
− 𝜇

Pr

𝐾∑︁
𝑘=1

ℎ𝑘
𝜕𝑌𝑘
𝜕𝑥𝑗

]︃
− 𝜇

Sc

𝐾∑︁
𝑘=1

ℎ𝑘
𝜕𝑌𝑘
𝜕𝑥𝑗

.

If 𝑆𝑐 = 𝑃𝑟, i.e., unity Lewis number (𝐿𝑒 = 1), then the diffusive heat flux vector simplifies to 𝑞𝑗 = − 𝜇
Pr

𝜕̃︀ℎ
𝜕𝑥𝑗

. In the
code base, the user has the ability to either specify a laminar Prandtl number, which is a constant, or provide a property
evaluator for thermal conductivity. Inclusion of a Prandtl number prevails and ensures that the thermal conductivity is
computed base on 𝜅 =

𝐶𝑝𝜇
𝑃𝑟 . The viscous dissipation term is closed by

𝜏𝑖𝑗
𝜕𝑢𝑖
𝜕𝑥𝑗

=

(︂
(𝜇+ 𝜇𝑡)

(︂
𝜕̃︀𝑢𝑖
𝜕𝑥𝑗

+
𝜕̃︀𝑢𝑗
𝜕𝑥𝑖

)︂
− 2

3

(︂
𝜌̃︀𝑘 + 𝜇𝑡

𝜕̃︀𝑢𝑘
𝜕𝑥𝑘

)︂
𝛿𝑖𝑗

)︂
𝜕̃︀𝑢𝑖
𝜕𝑥𝑗

=

[︂
2𝜇̃︀𝑆𝑖𝑗 + 2𝜇𝑡

(︂̃︀𝑆𝑖𝑗 −
1

3
̃︀𝑆𝑘𝑘𝛿𝑖𝑗

)︂
− 2

3
𝜌̃︀𝑘𝛿𝑖𝑗]︂ 𝜕̃︀𝑢𝑖

𝜕𝑥𝑗
.

The subgrid scale turbulent flux vector 𝜏𝑠𝑔𝑠ℎ in Equation (3.12) is defined as

𝜏ℎ𝑢𝑗
≡ 𝜌

(︁̃︂ℎ𝑢𝑗 − ̃︀ℎ̃︀𝑢𝑗)︁ .
As with species transport, the gradient diffusion hypothesis is used to close this subgrid scale model,

𝜏𝑠𝑔𝑠ℎ,𝑗 = − 𝜇𝑡

Pr𝑡

𝜕̃︀ℎ
𝜕𝑥𝑗

,

where Pr𝑡 is the turbulent Prandtl number and 𝜇𝑡 is the modeled turbulent eddy viscosity from momentum closure.
The resulting filtered and modeled turbulent energy equation is given by,∫︁

𝜕𝜌̃︀ℎ
𝜕𝑡

d𝑉 +

∫︁
𝜌̃︀ℎ̃︀𝑢𝑗𝑛𝑗d𝑆 =

∫︁ (︂
𝜇

Pr
+

𝜇𝑡

Pr𝑡

)︂
𝜕̃︀ℎ
𝜕𝑥𝑗

𝑛𝑗d𝑆 −
∫︁
𝜕𝑞𝑟𝑖
𝜕𝑥𝑖

d𝑉

+

∫︁ (︂
𝜕𝑃

𝜕𝑡
+ ̃︀𝑢𝑗 𝜕𝑃

𝜕𝑥𝑗

)︂
d𝑉 +

∫︁
𝜏𝑖𝑗
𝜕𝑢𝑗
𝜕𝑥𝑗

d𝑉.

(3.13)

The turbulent Prandtl number must have the same value as the turbulent Schmidt number for species transport to
maintain unity Lewis number.

3.2.5 Review of Prandtl, Schmidt and Unity Lewis Number

For situations where a single diffusion coefficient is applicable (e.g., a binary gas system) the Lewis number is defined
as:

Le =
Sc

Pr
=
𝛼

𝐷
. (3.14)

If the diffusion rates of energy and mass are equal,

Sc = Pr and Le = 1. (3.15)

For completeness, the thermal diffusivity, Prandtl and Schmidt number are defined by,

𝛼 =
𝜅

𝜌𝑐𝑝
, (3.16)

3.2. Supported Equation Set 81

Nalu Documentation, Release 1.2.0

Pr =
𝑐𝑝𝜇

𝜅
=

𝜇

𝜌𝛼
, (3.17)

and

Sc =
𝜇

𝜌𝐷
, (3.18)

where 𝑐𝑝 is the specific heat, 𝜅, is the thermal conductivity and 𝛼 is the thermal diffusivity.

3.2.6 Thermal Heat Conduction

For non-isothermal object response that may occur in conjugate heat transfer applications, a simple single material
heat conduction equation is supported.∫︁

𝜌𝐶𝑝
𝜕𝑇

𝜕𝑡
d𝑉 +

∫︁
𝑞𝑗𝑛𝑗d𝑆 =

∫︁
𝑆d𝑉. (3.19)

where 𝑞𝑗 is again the energy flux vector, however, now in the following temperature form:

𝑞𝑗 = −𝜅 𝜕𝑇
𝜕𝑥𝑗

.

3.2.7 ABL Forcing Source Terms

In LES of wind plant atmospheric flows, it is often necessary to drive the flow to a predetermined vertical velocity
and/or temperature profile. In Nalu, this is achieved by adding appropriate source terms f𝑖 to the momentum equation
(3.1) and 𝑆𝜃 to the enthalpy equation (3.12).

First, the momentum source term is discussed. The main objective of this implementation is to force the volume
averaged velocity at a certain location to a specified value (< u𝑖 >= U𝑖). The brackets used here, <>, mean volume
averaging over a certain region. In order to achieve this, a source term must be applied to the momentum equation.
This source term can be better understood as a proportional controller within the momentum equation.

The velocity and density fields can be decomposed into a volume averaged component and fluctuations about that
volume average as u𝑖 = ⟨u𝑖⟩ + u′

𝑖 and 𝜌 = ⟨𝜌⟩ + 𝜌′. A decomposition of the plane averaged momentum at a given
instance in time is then

⟨𝜌u𝑖⟩ = ⟨𝜌⟩ ⟨u𝑖⟩ + ⟨𝜌′u′
𝑖⟩ .

We now wish to apply a momentum source based on a desired spatial averaged velocity U𝑖. This can be expressed as:

⟨𝜌u*
𝑖 ⟩ = ⟨𝜌⟩ ⟨u*

𝑖 ⟩ +
⟨︀
𝜌′u*

𝑖
′⟩︀ ,

where u*
𝑖 is an unknown reference velocity field whose volume average is the desired velocity ⟨u*

𝑖 ⟩ = U𝑖. Since the
correlation

⟨︀
𝜌′u*′

𝑖

⟩︀
is unknown, we assume that ⟨︀

𝜌′u*′
𝑖

⟩︀
= ⟨𝜌′u′

𝑖⟩

such that the momentum source can now be defined as:

f𝑖 = 𝛼𝑢

(︂
⟨𝜌⟩Ui − ⟨𝜌⟩ ⟨u𝑖⟩

∆𝑡

)︂
(3.20)

where ⟨⟩ denotes volume averaging at a certain time 𝑡, U𝑖 is the desired spatial averaged velocity, and ∆𝑡 is the time-
scale between when the source term is computed (time 𝑡) and when it is applied (time 𝑡+∆𝑡). This is typically chosen

82 Chapter 3. Sierra Low Mach Module: Nalu - Theory Manual

Nalu Documentation, Release 1.2.0

to be the simulation time-step. In the case of an ABL simulation with flat terrain, the voulme averaging is done over
an infinitesimally thin slice in the 𝑥 and 𝑦 directions, such that the body force is only a function of height 𝑧 and time 𝑡.
The implementation allows the user to prescribe relaxation factors 𝛼𝑢 for the source terms that are applied. Nalu uses
a default value of 1.0 for the relaxation factors if no values are defined in the input file during initialization.

The enthalpy source term works similarly to the momentum source term. A temperature difference is computed at
every time-step and a forcing term is added to the enthalpy equation:

𝑆𝜃 = 𝛼𝜃𝐶𝑝

(︂
𝜃ref − ⟨𝜃⟩

∆𝑡

)︂
where 𝜃ref is the desired spatial averaged temperature, ⟨𝜃⟩ is the spatial averaged temperature, 𝐶𝑝 is the heat capcity,
𝛼𝜃 is the relaxation factor, and ∆𝑡 is the time-scale.

The present implementation can vary the source terms as a function of time and space using either a user-defined table
of previously computed source terms (e.g., from a precursor simulation or another model such as WRF), or compute
the source term as a function of the transient flow solution.

3.2.8 Conservation of Species

The integral form of the Favre-filtered species equation used for turbulent transport is∫︁
𝜕𝜌̃︀𝑌𝑘
𝜕𝑡

d𝑉 +

∫︁
𝜌̃︀𝑌𝑘̃︀𝑢𝑗𝑛𝑗d𝑆 = −

∫︁
𝜏𝑠𝑔𝑠𝑌𝑘,𝑗

𝑛𝑗d𝑆 −
∫︁
𝜌𝑌𝑘�̂�𝑗,𝑘𝑛𝑗d𝑆 +

∫︁
�̇�𝑘d𝑉, (3.21)

where the form of diffusion velocities (see Equation (3.22)) assumes the Fickian approximation with a constant value
of diffusion velocity for consistency with the turbulent form of the energy equation, Equation (3.12). The simplest
form is Fickian diffusion with the same value of mass diffusivity for all species,

�̂�𝑗,𝑘 = −𝐷 1

𝑌𝑘

𝜕𝑌𝑘
𝜕𝑥𝑗

. (3.22)

The subgrid scale turbulent diffusive flux vector 𝜏𝑠𝑔𝑠𝑌𝑘𝑗
is defined as

𝜏𝑠𝑔𝑠𝑌𝑘,𝑗
≡ 𝜌

(︁
𝑌𝑘𝑢𝑗 −̃︁𝑌𝑘̃︀𝑢𝑗)︁ .

The closure for this model takes on its usual gradient diffusion hypothesis, i.e.,

𝜏𝑠𝑔𝑠𝑌𝑘,𝑗
= − 𝜇𝑡

Sc𝑡

𝜕 ̃︀𝑌𝑘
𝜕𝑥𝑗

,

where Sc𝑡 is the turbulent Schmidt number for all species and 𝜇𝑡 is the modeled turbulent eddy viscosity from mo-
mentum closure.

The Favre-filtered and modeled turbulent species transport equation is,∫︁
𝜕𝜌̃︀𝑌𝑘
𝜕𝑡

d𝑉 +

∫︁
𝜌̃︀𝑌𝑘̃︀𝑢𝑗𝑛𝑗d𝑆 =

∫︁ (︂
𝜇

Sc
+

𝜇𝑡

Sc𝑡

)︂
𝜕 ̃︀𝑌𝑘
𝜕𝑥𝑗

𝑛𝑗d𝑆 +

∫︁
�̇�𝑘d𝑉. (3.23)

If transporting both energy and species equations, the laminar Prandtl number must be equal to the laminar Schmidt
number and the turbulent Prandtl number must be equal to the turbulent Schmidt number to maintain unity Lewis
number. Although there is a species conservation equation for each species in a mixture of 𝑛 species, only 𝑛 − 1
species equations need to be solved since the mass fractions sum to unity and

̃︀𝑌𝑛 = 1 −
𝑛∑︁

𝑗 ̸=𝑛

̃︀𝑌𝑗 .
3.2. Supported Equation Set 83

Nalu Documentation, Release 1.2.0

Finally, the reaction rate source term is expected to be added based on an operator split approach wherebye the set of
ODEs are integrated over the full time step. The chemical kinetic source terms can be sub-integrated within a time
step using a stiff ODE integrator package.

The following system of ODEs are numerically integrated over a time step ∆𝑡 for a fixed temperature and pressure
starting from the initial values of gas phase mass fraction and density,

�̇�𝑘 =
�̇�𝑘 (𝑌𝑘)

𝜌
.

The sources for the sub-integration are computed with the composition and density at the new time level which are
used to approximate a mean production rate for the time step

�̇�𝑘 ≈ 𝜌*𝑌 *
𝑘 − 𝜌𝑌𝑘
∆𝑡

.

3.2.9 Subgrid-Scale Kinetic Energy One-Equation LES Model

The subgrid scale kinetic energy one-equation turbulence model, or 𝑘𝑠𝑔𝑠 model, [Dav97], represents a simple LES
closure model. The transport equation for subgrid turbulent kinetic energy is given by∫︁

𝜕𝜌𝑘sgs

𝜕𝑡
d𝑉 +

∫︁
𝜌𝑘sgs̃︀𝑢𝑗𝑛𝑗d𝑆 =

∫︁
𝜇𝑡

𝜎𝑘

𝜕𝑘sgs

𝜕𝑥𝑗
𝑛𝑗d𝑆 +

∫︁
(𝑃 sgs

𝑘 −𝐷sgs
𝑘) d𝑉. (3.24)

The production of subgrid turbulent kinetic energy, 𝑃 sgs
𝑘 , is modeled by,

𝑃𝑘 ≡ −𝜌𝑢′′𝑖 𝑢′′𝑗
𝜕̃︀𝑢𝑖
𝜕𝑥𝑗

, (3.25)

while the dissipation of turbulent kinetic energy, 𝐷sgs
𝑘 , is given by

𝐷sgs
𝑘 = 𝜌𝐶𝜖

𝑘sgs
3
2

∆
,

where the grid filter length, ∆, is given in terms of the grid cell volume by

∆ = 𝑉
1
3 .

The subgrid turbulent eddy viscosity is then provided by

𝜇𝑡 = 𝐶𝜇𝜖
∆𝑘sgs

1
2 ,

where the values of 𝐶𝜖 and 𝐶𝜇𝜖 are 0.845 and 0.0856, respectively.

For simulations in which a buoyancy source term is desired, the code supports the Rodi form,

𝑃𝑏 = 𝛽
𝜇𝑇

𝑃𝑟
𝑔𝑖
𝜕𝑇

𝜕𝑥𝑖
.

3.2.10 Shear Stress Transport (SST) RANS Model Suite

Although Nalu is primarily expected to be a LES simulation tool, RANS modeling is supported through the activation
of the SST equation set.

It has been observed that standard 1998 𝑘 − 𝜔 models display a strong sensitivity to the free stream value of 𝜔 (see
Mentor, [MKL03]). To remedy, this, an alternative set of transport equations have been used that are based on smoothly
blending the 𝑘 − 𝜔 model near a wall with 𝑘 − 𝜖 away from the wall. Because of the relationship between 𝜔 and 𝜖,

84 Chapter 3. Sierra Low Mach Module: Nalu - Theory Manual

Nalu Documentation, Release 1.2.0

the transport equations for turbulent kinetic energy and dissipation can be transformed into equations involving 𝑘 and
𝜔. Aside from constants, the transport equation for 𝑘 is unchanged. However, an additional cross-diffusion term is
present in the 𝜔 equation. Blending is introduced by using smoothing which is a function of the distance from the
wall, 𝐹 (𝑦). The transport equations for the Mentor 2003 model are then∫︁

𝜕𝜌𝑘

𝜕𝑡
d𝑉 +

∫︁
𝜌𝑘̃︀𝑢𝑗𝑛𝑗d𝑆 =

∫︁
(𝜇+ �̂�𝑘𝜇𝑡)

𝜕𝑘

𝜕𝑥𝑗
𝑛𝑗 +

∫︁
(𝑃𝜔

𝑘 − 𝛽*𝜌𝑘𝜔) d𝑉,∫︁
𝜕𝜌𝜔

𝜕𝑡
d𝑉 +

∫︁
𝜌𝜔̃︀𝑢𝑗𝑛𝑗d𝑆 =

∫︁
(𝜇+ �̂�𝜔𝜇𝑡)

𝜕𝜔

𝜕𝑥𝑗
𝑛𝑗 +

∫︁
2(1 − 𝐹)

𝜌𝜎𝜔2

𝜔

𝜕𝑘

𝜕𝑥𝑗

𝜕𝜔

𝜕𝑥𝑗
d𝑉

+

∫︁ (︂
𝛾

𝜈𝑡
𝑃𝜔
𝑘 − 𝛽𝜌𝜔2

)︂
d𝑉.

The model coefficients, �̂�𝑘, �̂�𝜔 , 𝛾 and 𝛽 must also be blended, which is represented by

𝜑 = 𝐹𝜑1 + (1 − 𝐹)𝜑2.

where 𝜎𝑘1 = 0.85, 𝜎𝑘2 = 1.0, 𝜎𝜔1 = 0.5, 𝜎𝜔2 = 0.856, 𝛾1 = 5
9 , 𝛾2 = 0.44, 𝛽1 = 0.075 and 𝛽2 = 0.0828. The

blending function is given by

𝐹 = tanh(𝑎𝑟𝑔41),

where

𝑎𝑟𝑔1 = min

(︃
max

(︃ √
𝑘

𝛽*𝜔𝑦
,

500𝜇

𝜌𝑦2𝜔

)︃
,

4𝜌𝜎𝜔2𝑘

𝐶𝐷𝑘𝜔𝑦2

)︃
.

The final parameter is

𝐶𝐷𝑘𝜔 = max

(︂
2𝜌𝜎𝜔2

1

𝜔

𝜕𝑘

𝜕𝑥𝑗

𝜕𝜔

𝜕𝑥𝑗
, 10−10

)︂
.

An important component of the SST model is the different expression used for the turbulent viscosity,

𝜇𝑡 =
𝑎1𝜌𝑘

max (𝑎1𝜔, 𝑆𝐹2)
,

where 𝐹2 is another blending function given by

𝐹2 = tanh(𝑎𝑟𝑔22).

The final parameter is

𝑎𝑟𝑔2 = max

(︃
2
√
𝑘

𝛽*𝜔𝑦
,

500𝜇

𝜌𝜔𝑦2

)︃
.

3.2.11 Direct Eddy Simulation (DES) Formulation

The DES technique is also supported in the code base when the SST model is activated. This model seeks to formally
relax the RANS-based approach and allows for a theoretical basis to allow for transient flows. The method follows the
method of Temporally Filtered NS formulation as decribed by Tieszen, [TDB05].

The SST DES model simply changes the turbulent kinetic energy equation to include a new minimum scale that
manipulates the dissipation term.

𝐷𝑘 =
𝜌𝑘3/2

𝑙𝐷𝐸𝑆
,

where 𝑙𝐷𝐸𝑆 is the min(𝑙𝑆𝑆𝑇 , 𝑐𝐷𝐸𝑆𝑙𝐷𝐸𝑆). The constants are given by, 𝑙𝑆𝑆𝑇 = 𝑘1/2

𝛽*𝜔 and 𝑐𝐷𝐸𝑆 represents a blended
set of DES constants: 𝑐𝐷𝐸𝑆1

= 0.78 and 𝑐𝐷𝐸𝑆2
= 0.61. The length scale, 𝑙𝐷𝐸𝑆 is the maximum edge length scale

touching a given node.

3.2. Supported Equation Set 85

Nalu Documentation, Release 1.2.0

3.2.12 Solid Stress

A fully implicit CVFEM (only) linear elastic equation is supported in the code base. This equation is either used for
true solid stress prediction or for smoothing the mesh due to boundary mesh motion (either through fluid structure
interaction (FSI) or prescribed mesh motion).

Consider the displacement for component i, 𝑢𝑖 equation set,

𝜌
𝜕2𝑢𝑖

𝜕𝑡2
− 𝜕𝜎𝑖𝑗
𝜕𝑥𝑗

= 𝐹𝑖, (3.26)

where the Cauchy stress tensor, 𝜎𝑖𝑗 assuming Hooke’s law is given by,

𝜎𝑖𝑗 = 𝜇

(︂
𝜕𝑢𝑖
𝜕𝑥𝑗

+
𝜕𝑢𝑗
𝜕𝑥𝑖

)︂
+ 𝜆

𝜕𝑢𝑘
𝜕𝑥𝑘

𝛿𝑖𝑗 . (3.27)

Above, the so-called Lame coefficients, Lame’s first parameter, 𝜆 (also known as the Lame modulus) and Lame’s
second parameter, 𝜇 (also known as the shear modulus) are provided as functions of the Young’s modulus, 𝐸, and
Poisson’s ratio, 𝜈; here shown in the context of a isotropic elastic material,

𝜇 =
𝐸

2 (1 + 𝜈)
, (3.28)

and

𝜆 =
𝐸𝜈

(1 + 𝜈) (1 − 2𝜈)
. (3.29)

Note that the above notation of 𝑢𝑖 to represent displacement is with respect to the classic definition of current and
model coordinates,

𝑥𝑖 = 𝑋𝑖 + 𝑢𝑖 (3.30)

where 𝑥𝑖 is the position, relative to the fixed, or previous position, 𝑋𝑖.

The above equations are solved for mesh displacements, 𝑢𝑖. The supplemental relationship for solid velocity, 𝑣𝑖 is
given by,

𝑣𝑖 =
𝜕𝑢𝑖
𝜕𝑡

. (3.31)

Numerically, the velocity might be obtained by a backward Euler or BDF2 scheme,

𝑣𝑖 =
𝛾1𝑢

𝑛+1
𝑖 + 𝛾2𝑢

𝑛
𝑖 + 𝛾3𝑢

𝑛−1
𝑖

∆𝑡
(3.32)

3.2.13 Moving Mesh

The code base supports three notions of moving mesh: 1) linear elastic equation system that computes the stress of a
solid 2) solid body rotation mesh motion and 3) mesh deformation via an external source.

The linear elastic equation system is activated via the standard equation system approach. Properties for the solid are
specified in the material block. Mesh motion is prescribed by the input file via the mesh_motion block. Here, it
is assumed that the mesh motion is solid rotation. For fluid/structure interaction (FSI) a mesh smoothing scheme is
used to propagate the surface mesh displacement obtained by the solids solve. Simple mesh smoothing is obtained via
a linear elastic solve in which the so-called Lame constants are proportional to the inverse of the dual volume. This
allows for boundary layer mesh locations to be stiff while free stream mesh elements to be soft.

86 Chapter 3. Sierra Low Mach Module: Nalu - Theory Manual

Nalu Documentation, Release 1.2.0

Additional mesh motion terms are required for the Eulerian fluid mechanics solve. Using the geometric conservative
law the time and advection source term for a general scalar 𝜑 can be written as:∫︁

𝜌𝜑

𝜕𝑡
𝑑𝑉 +

∫︁
𝜌𝜑 (𝑢𝑗 − 𝑣𝑗)𝑛𝑗 𝑑𝑆 +

∫︁
𝜌𝜑
𝜕𝑣𝑘
𝜕𝑥𝑗

𝑑𝑉, (3.33)

where 𝑢𝑗 is the fluid velocity and 𝑣𝑗 is the mesh velocity. Mesh velocities and the mesh velocity spatial derivatives
are provided by the mesh smoothing solve. Activating the external mesh deformation or mesh motion block will result
in the velocity relative to mesh calculation in the advection terms. The line command for source term, “𝑔𝑐𝑙” must
be activated for each equation for the volume integral to be included in the set of PDE solves. Finally, transfers are
expected between the physics. For example, the solids solve is to provide mesh displacements to the mesh smoothing
realm. The mesh smoothing procedure provides the boundary velocity, mesh velocity and projected nodal gradients
of the mesh velocity to the fluids realm. Finally, the fluids solve is to provide the surface force at the desired solids
surface. Currently, the pressure is transfered from the fluids realm to the solids realm. The ideal view of FSI is to
solve the solids pde at the half time step. As such, in time, the 𝑃𝑛+ 1

2 is expected. The fsi_interface input line
command attribute is expected to be set at these unique surfaces. More advanced FSI coupling techniques are under
development by a current academic partner.

3.2.14 Radiative Transport Equation

The spatial variation of the radiative intensity corresponding to a given direction and at a given wavelength within a
radiatively participating material, 𝐼(𝑠), is governed by the Boltzmann transport equation. In general, the Boltzmann
equation represents a balance between absorption, emission, out-scattering, and in-scattering of radiation at a point.
For combustion applications, however, the steady form of the Boltzmann equation is appropriate since the transient
term only becomes important on nanosecond time scales which is orders of magnitude shorter than the fastest chemical.

Experimental data shows that the radiative properties for heavily sooting, fuel-rich hydrocarbon diffusion flames
(10−4% to 10−6% soot by volume) are dominated by the soot phase and to a lesser extent by the gas phase. Since soot
emits and absorbs radiation in a relatively constant spectrum, it is common to ignore wavelength effects when mod-
eling radiative transport in these environments. Additionally, scattering from soot particles commonly generated by
hydrocarbon flames is several orders of magnitude smaller that the absorption effect and may be neglected. Moreover,
the phase function is rarely known. However, for situations in which the phase function can be approximated by the
iso-tropic scattering assumption, i.e., an intensity for direction 𝑘 has equal probability to be scattered in any direction
𝑙, the appropriate form of the Botzmann radiative transport is

𝑠𝑖
𝜕

𝜕𝑥𝑖
𝐼 (𝑠) + (𝜇𝑎 + 𝜇𝑠) 𝐼 (𝑠) =

𝜇𝑎𝜎𝑇
4

𝜋
+
𝜇𝑠

4𝜋
𝐺, (3.34)

where 𝜇𝑎 is the absorption coeffiecient, 𝜇𝑠 is the scattering coefficeint, 𝐼(𝑠) is the intensity along the direction 𝑠𝑖, 𝑇
is the temperature and the scalar flux is 𝐺. The black body radiation, 𝐼𝑏, is defined by 𝜎𝑇 4

𝜋 . Note that for situations in
which the scattering coefficient is zero, the RTE reduces to a set of liniear, decoupled equations for each intensity to
be solved.

The flux divergence may be written as a difference between the radiative emission and mean incident radiation at a
point,

𝜕𝑞𝑟𝑖
𝜕𝑥𝑖

= 𝜇𝑎

[︀
4𝜎𝑇 4 −𝐺

]︀
, (3.35)

where 𝐺 is again the scalar flux. The flux divergence term is the same regardless of whether or not scattering is active.
The quantity, 𝐺/4𝜋, is often referred to as the mean incident intensity. Note that when the scattering coefficient is
non-zero, the RTE is coupled over all intensity directions by the scalar flux relationship.

The scalar flux and radiative flux vector represent angular moments of the directional radiative intensity at a point,

𝐺 =

∫︁ 2𝜋

0

∫︁ 𝜋

0

𝐼 (𝑠) sin 𝜃𝑧𝑛𝑑𝜃𝑧𝑛𝑑𝜃𝑎𝑧,

3.2. Supported Equation Set 87

Nalu Documentation, Release 1.2.0

𝑞𝑟𝑖 =

∫︁ 2𝜋

0

∫︁ 𝜋

0

𝐼 (𝑠) 𝑠𝑖 sin 𝜃𝑧𝑛𝑑𝜃𝑧𝑛𝑑𝜃𝑎𝑧,

where 𝜃𝑧𝑛 and 𝜃𝑎𝑧 are the zenith and azimuthal angles respectively as shown in Figure Fig. 3.1.

Fig. 3.1: Ordinate Direction Definition, s = sin 𝜃𝑧𝑛 sin 𝜃𝑎𝑧i + cos 𝜃𝑧𝑛j + sin 𝜃𝑧𝑛 cos 𝜃𝑎𝑧k.

The radiation intensity must be defined at all portions of the boundary along which 𝑠𝑖𝑛𝑖 < 0, where 𝑛𝑖 is the outward
directed unit normal vector at the surface. The intensity is applied as a weak flux boundary condition which is deter-
mined from the surface properties and temperature. The diffuse surface assumption provides reasonable accuracy for
many engineering combustion applications. The intensity leaving a diffuse surface in all directions is given by

𝐼 (𝑠) =
1

𝜋

[︀
𝜏𝜎𝑇 4

∞ + 𝜖𝜎𝑇 4
𝑤 + (1 − 𝜖− 𝜏)𝐾

]︀
, (3.36)

where 𝜖 is the total normal emissivity of the surface, 𝜏 is the transmissivity of the surface, 𝑇𝑤 is the temperature of
the boundary, 𝑇∞ is the environmental temperature and 𝐻 is the incident radiation, or irradiation (incoming radiative
flux). Recall that the relationship given by Kirchoff’s Law that relates emissivity, transmissivity and reflectivity, 𝜌, is

𝜌+ 𝜏 + 𝜖 = 1.

where it is implied that 𝛼 = 𝜖.

3.3 Discretization Approach

Nalu supports two discretizations: control volume finite element and (CVFEM) edge-based vertex centered (EBVC).
Each are finite volume forumations and each solve for the primitives are are each considered vertex-based schemes.
Considerable testing has provided a set of general rules as to which scheme is optimal. In general, all equations and
boundary conditions support either equation discretization with exception of the solid stress equation which has only
been implemented for the CVFEM technique.

88 Chapter 3. Sierra Low Mach Module: Nalu - Theory Manual

Nalu Documentation, Release 1.2.0

For generalized unstructured meshes that have poor quality, CVFEM has been shown to excell in accuracy and robust-
ness. This is mostly due to the inherent accuracy limitation for the non-orthogonal correction terms that appear in the
diffusion term and pressure stabilization for the EBVC scheme. For generalized unstructured meshes of decent quality,
either scheme is ideal. Finally, for highly structured meshes with substantail aspect ratios, the edge-based scheme is
ideal.

In general, the edge-based scheme is at least two times faster per iteration than the element-based scheme. For some
classes of flows, it can be up to four times faster. However, due to the lagged coupling between the projected nodal
gradient equation and the dofs, on meshes with high non-orthogonality, nonlinear residual convergence can be delayed.

3.3.1 CVFEM Dual Mesh

The classic low Mach algorithm uses the finite volume technique known as the control volume finite element method,
see Schneider, [SR87], or Domino, [Dom06]. Control volumes (the mesh dual) are constructed about the nodes,
shown in Figure Fig. 3.2 (upper left). Each element contains a set of sub-faces that define control-volume surfaces.
The sub-faces consist of line segments (2D) or surfaces (3D). The 2D segments are connected between the element
centroid and the edge centroids. The 3D surfaces (not shown here) are connected between the element centroid, the
element face centroids, and the edge centroids. Integration points also exist within the sub-control volume centroids.

Recent work by Domino, [Dom14], has provided a proof-of-concept higher order CVFEM implementation whereby
the linear basis and dual mesh definition is extended to higher order. The current code base supports the usage of P=2
elements (quadratic) for both 2D and 3D quad/hex topologies. This method has been formally demonstrated to be
third-order spatially accurate and second-order in-time accurate. General polynomial promotion has been deployed
in the higher order github branch. Figure Fig. 3.2 illustrates a general polynomial promotion from P=1 to P=6 and
demonstrated spectral convergence using the method of manufactured solutions in Figure Fig. 3.3.

When using CVFEM, the discretized equations described in this manual are evaluated at either subcontrol-surface
integration points (terms that have been integrated by parts) or at the subcontrol volume (time and source terms).
Interpolation within the element is obtained by the standard elemental basis functions,

𝜑𝑖𝑝 =
∑︁

𝑁 𝑖𝑝
𝑘 𝜑𝑘. (3.37)

where the index 𝑘 represents a loop over all nodes in the element.

Gradients at the subcontrol volume surfaces are obtained by taking the derivative of Eq. (3.37), to obtain,

𝜕𝜑𝑖𝑝
𝜕𝑥𝑗

=
∑︁ 𝜕𝑁 𝑖𝑝

𝑗,𝑘

𝜕𝑥𝑗
𝜑𝑘. (3.38)

The usage of the CVFEM methods results in the canonical 27-point stencil for a structured hexahedral mesh.

3.3.2 Edge-Based Discretization

In the edge-based discretization, the dual mesh defined in the CVFEM method is used to pre-process both dual mesh
nodal volumes (needed in source and time terms) and edge-based area vectors (required for integrated-by-parts quan-
tities, e.g., advection and diffusion terms).

Consider Figure Fig. 3.4, which is the original set of CVFEM dual mesh quadrature points shown above in Figure
Fig. 3.2. Specifically, there are four subcontrol volumes about node 5 that contribute to the nodal volume dual mesh.
In an edge-based scheme, the time and source terms use single point quadrature by assembling these four subcontrol
volume contributions (eight in 3D) into one single nodal volume. In most cases, source terms may include gradients
that are obtained by using the larger element-based stencil.

The same reduction of gauss points is realized for the area vector. Consider the edge between nodes 5 and 6. In the
full CVFEM approach, subcontrol surfaces within the top element (5,6,9,8) and bottom element (2,3,6,5) are reduced

3.3. Discretization Approach 89

Nalu Documentation, Release 1.2.0

Fig. 3.2: Polynomial promotion for a canonical CVFEM quad element patch from 𝑃 = 1 to 𝑃 = 6.

90 Chapter 3. Sierra Low Mach Module: Nalu - Theory Manual

Nalu Documentation, Release 1.2.0

Fig. 3.3: A recent spectral convergence plot using the Method of Manufactured Solutions for 𝑃 = 1 through 𝑃 = 8.

3.3. Discretization Approach 91

Nalu Documentation, Release 1.2.0

Fig. 3.4: A control volume centered about a finite-element node in a collection of 2-D quadrilateral elements (from
[Dom06].)

92 Chapter 3. Sierra Low Mach Module: Nalu - Theory Manual

Nalu Documentation, Release 1.2.0

to a single area vector at the edge midpoint of nodes 5 and 6. Therefore, advection and diffusion is now done in a
manner very consistent with a cell centered scheme, i.e., classic “left”/“right” states.

The consolidation of time and source terms to nodal locations along with advection and diffusion at the edge mid-
point results in a canonical five-point stencil in 2D and seven in 3D. Note the ability to handle hybrid meshes is readily
peformed one nodal volume and edge area are pre-processed. Edges and nodes are the sole topology that are iterated,
thus making this scheme highly efficient, although inherantly limited to second order spatial order of accuracy.

In general, the edge-based scheme is second order spatially accurate. Formal verification has been done to evaluate the
accuracy of the EBVC relative to other implemented methods (Domino, [Dom14]). The edge-based scheme, which is
based on dual mesh post-processing, represents a commonly used finite volume method in gas dynamics applications.
The method also lends itself to psuedo-higher order methodologies by the blending of extrapolated values using the
projected nodal gradient and gauss point values (as does CVFEM). This provides a fourth order accurate diffusion and
advection operator on a structured mesh.

The use of a consistent mass matrix is less apparent in edge-based schemes. However, if desired, the full element-based
stencil can be used by iterating elements and assembling to the nodes.

The advantage of edge-based schemes over cell centered schemes is that the scheme naturally allows for a mixed
elemental discretization. Projected nodal gradients can be element- or edge-based. LES filters and nodal gradients
can also exploit the inherant elemental basis that exists in the pure CVFEM approach. In our experience, the optimal
scheme on high quality meshes uses the CVFEM for the continuity solve and EBVC discretization for all other equa-
tions. This combination allows for the full CVFEM diffusion operator for the pressure Poisson equation and the EBVC
approach for equations where inverse Reynolds scaling reduces the importance of the diffusion operator. This scheme
can be activated by the use of the use_edges: yes Realm line command in combination of the LowMachEOM
system line command, element_continuity_eqs: yes.

3.3.3 Projected Nodal Gradients

In the edge or element-based algorithm, projected nodal gradients are commonplace. Projected nodal gradients are
used in the fourth order pressure stabilization terms, higher order upwind methods, discontinuity capturing operators
(DCO) and turbulence source terms. For an edge-based scheme, they are also used in the diffusion term when non-
orthogonality of the mesh is noted.

There are many procedures for determining the projected nodal gradient ranging from element-based schemes to edge-
based approached. In general, the projected nodal gradient is viewed as an 𝐿2 minimization between the discontinuous
Gauss-point value and the continuous nodal value. The projected nodal gradient, in an 𝐿2 sence is given by,∫︁

𝑤𝐺𝑗𝜑𝑑𝑉 =

∫︁
𝜕𝜑

𝜕𝑥𝑗
𝑑𝑉 . (3.39)

Using integration-by-parts and a piece-wise constant test function, the above equation is written as,∫︁
𝑤𝐼𝐺𝑗𝜑𝑑𝑉 =

∫︁
𝜑𝑖𝑝𝑛𝑗𝑑𝑆. (3.40)

For a lumped L2 projected nodal gradient, the approach is based on a Green-Gauss integration,

𝐺𝑗𝜑 =

∫︀
𝜑𝑖𝑝𝐴𝑗

𝑑𝑉
. (3.41)

In the above lumped mass matrix approach, the value at the integration point can either be based on the CVFEM dual
mesh evaluated at the subcontrol surface, i.e., the line command option, element or the edge, which evaluates the
term at the edge midpoint using the assemble edge area vector. In all cases, the lumped mass matrix approach is
strickly second order accurate. When running higher order CVFEM, a consistent mass matrix appraoch is required to
maintain design order of the overall discretization. This is strickly due to the pressure stabilization whose accuracy
can be affected by the form of the projected nodal gradient (see the Nalu theory manual or a variety of SNL-based
publications).

3.3. Discretization Approach 93

Nalu Documentation, Release 1.2.0

In the description that follows, 𝐺𝑗𝜑 represent the average nodal gradient evaluated at the integration point of interest.

The choice of projected nodal gradients is specified in the input file for each dof. Keywords element or edge are
used to define the form of the projection. The forms of the projected nodal gradients is arbitrary relative to the choosed
underlying discretization. For strongly non-orthogonal meshes, it is recommended to use an element-based projected
nodal gradient for the continuity equation when the EBVC method is in use. In some limited cases, e.g., pressure,
mixture fraction and enthalpy, the manage-png line command can be used to solve the simple linear system for the
consistent mass matrix.

3.3.4 Time and Source Terms

Time and source terms also volumetric contributions and also use the dual nodal volume. In both discretization
approaches, this assembly is achieved as a simple nodal loop. In some cases, e.g., the 𝑘𝑠𝑔𝑠 partial differential equation,
the source term can use projected nodal gradients.∫︁

𝜕𝜌𝜑

𝜕𝑡
𝑑𝑉 =

∫︁
𝑆𝜑𝑑𝑉

3.3.5 Diffusion

As already noted, for the CVFEM method, the diffusion term at the subcontrol surface integration points use the the
elemental shape functions and derivatives. For the standard diffusion term, and using Eq. (3.38), the CVFEM diffusion
operator contribution at a given integration point (here simply demonstrated for a 2D edge with prescribed area vector)
is as follows,

−
∫︁

Γ
𝜕𝜑

𝜕𝑥𝑗
𝐴𝑗 = −Γ𝑖𝑝

[︃(︃
𝜕𝑁 𝑖𝑝

0

𝜕𝑥
𝜑0 +

𝜕𝑁 𝑖𝑝
1

𝜕𝑥
𝜑1

)︃
𝐴𝑥 +

(︃
𝜕𝑁 𝑖𝑝

0

𝜕𝑦
𝜑0 +

𝜕𝑁 𝑖𝑝
1

𝜕𝑦
𝜑1

)︃
𝐴𝑦

]︃

Standard Gauss point locations at the subcontrol surfaces can be shifted to the edge-midpoints for a more stable
(monotonic) diffusion operator that is better conditioned for high aspect ratio meshes.

For the edge-based diffusion operator, special care is noted as there is no ability to use the elemental basis to define the
diffusion operator. As with cell-centered schemes, non-orthogonal contributions for the diffusion operator arise due to
a difference in direction between the assembled edge area vector and the distance vector between nodes on an edge.
On skewed meshes, this non-orthogonality can not be ignored.

Following the work of Jasek, [Jas96], the over-relaxed approach is used. The form of any gradient for direction 𝑗 for
field 𝜑 is

𝜕𝜑

𝜕𝑥𝑗 𝑖𝑝

= 𝐺𝑗𝜑+
[︀
(𝜑𝑅 − 𝜑𝐿) −𝐺𝑙𝜑𝑑𝑥𝑙

]︀ 𝐴𝑗

𝐴𝑘𝑑𝑥𝑘
. (3.42)

In the above expression, we are iterating edges with a Left node 𝐿 and Right node 𝑅 along with edge-area vector,
𝐴𝑗 . The 𝐺𝑗𝜑 is simple averaging of the left and right nodes to the edge midpoint. In general, a standard edge-based
diffusion term is written as,

−
∫︁

Γ
𝜕𝜑

𝜕𝑥𝑗
𝐴𝑗 = −Γ𝑖𝑝

[︂(︀
¯𝐺𝑥𝜑𝐴𝑥 + ¯𝐺𝑦𝜑𝐴𝑦

)︀
+ (𝜑𝑅 − 𝜑𝐿)

𝐴𝑥𝐴𝑥 +𝐴𝑦𝐴𝑦

𝐴𝑥𝑑𝑥𝑥 +𝐴𝑦𝑑𝑥𝑦

−
(︀

¯𝐺𝑥𝜑𝑑𝑥𝑥 + ¯𝐺𝑦𝜑𝑑𝑥𝑦
)︀ 𝐴𝑥𝐴𝑥 +𝐴𝑦𝐴𝑦

𝐴𝑥𝑑𝑥𝑥 +𝐴𝑦𝑑𝑥𝑦

]︂
.

94 Chapter 3. Sierra Low Mach Module: Nalu - Theory Manual

Nalu Documentation, Release 1.2.0

Momentum Stress

The viscous stress tensor, 𝜏𝑖𝑗 is formed based on the standard gradients defined above for either the edge or element-
based discretization. The viscous force for component 𝑖 is given by,

−
∫︁
𝜏𝑖𝑗𝐴𝑗 = −

∫︁
𝜇𝑖𝑝

(︂
𝜕𝑢𝑖
𝜕𝑥𝑗

+
𝜕𝑢𝑗
𝜕𝑥𝑖

)︂
𝐴𝑗 .

For example, the x and y-component of viscous force is given by,

𝐹𝑥 = −𝜇𝑖𝑝

(︂
𝜕𝑢𝑥
𝜕𝑥

𝐴𝑥 +
𝜕𝑢𝑥
𝜕𝑦

𝐴𝑦

)︂
− 𝜇𝑖𝑝

(︂
𝜕𝑢𝑥
𝜕𝑥

𝐴𝑥 +
𝜕𝑢𝑦
𝜕𝑥

𝐴𝑦

)︂
,

𝐹𝑦 = −𝜇𝑖𝑝

(︂
𝜕𝑢𝑦
𝜕𝑥

𝐴𝑥 +
𝜕𝑢𝑦
𝜕𝑦

𝐴𝑦

)︂
− 𝜇𝑖𝑝

(︂
𝜕𝑢𝑥
𝜕𝑦

𝐴𝑥 +
𝜕𝑢𝑦
𝜕𝑦

𝐴𝑦

)︂
.

Note that the first part of the viscous stress is simply the standard diffusion term. Note that the so-called non-solonoidal
viscous stress contribution is frequently written in terms of projected nodal gradients. However, for CVFEM this
procedure is rarely used given the elemental basis definition. As such, the use of shape function derivatives is clear.

The viscous stress contribution at an integration point for CVFEM (again using the 2D example with variable area
vector) can be written as,

𝐹𝑥 = −Γ𝑖𝑝

[︃(︃
𝜕𝑁 𝑖𝑝

0

𝜕𝑥
𝑢𝑥0 +

𝜕𝑁 𝑖𝑝
1

𝜕𝑥
𝑢𝑥1

)︃
𝐴𝑥 +

(︃
𝜕𝑁 𝑖𝑝

0

𝜕𝑦
𝑢𝑥0 +

𝜕𝑁 𝑖𝑝
1

𝜕𝑦
𝑢𝑥1

)︃
𝐴𝑦

+

(︃
𝜕𝑁 𝑖𝑝

0

𝜕𝑥
𝑢𝑥0 +

𝜕𝑁 𝑖𝑝
1

𝜕𝑥
𝑢𝑥1

)︃
𝐴𝑥 +

(︃
𝜕𝑁 𝑖𝑝

0

𝜕𝑦
𝑢𝑦0 +

𝜕𝑁 𝑖𝑝
1

𝜕𝑥
𝑢𝑦1

)︃
𝐴𝑦

]︃
,

𝐹𝑦 = −Γ𝑖𝑝

[︃(︃
𝜕𝑁 𝑖𝑝

0

𝜕𝑥
𝑢𝑦0 +

𝜕𝑁 𝑖𝑝
1

𝜕𝑥
𝑢𝑦1

)︃
𝐴𝑥 +

(︃
𝜕𝑁 𝑖𝑝

0

𝜕𝑦
𝑢𝑦0 +

𝜕𝑁 𝑖𝑝
1

𝜕𝑦
𝑢𝑦1

)︃
𝐴𝑦

+

(︃
𝜕𝑁 𝑖𝑝

0

𝜕𝑦
𝑢𝑥0 +

𝜕𝑁 𝑖𝑝
1

𝜕𝑦
𝑢𝑥1

)︃
𝐴𝑥 +

(︃
𝜕𝑁 𝑖𝑝

0

𝜕𝑦
𝑢𝑦0 +

𝜕𝑁 𝑖𝑝
1

𝜕𝑥
𝑢𝑦1

)︃
𝐴𝑦

]︃
.

For the edge-based diffusion operator, the value of 𝜑 is substituted for the component of velocity, 𝑢𝑖 in the Eq. (3.42).

𝜕𝑢𝑖
𝜕𝑥𝑗 𝑖𝑝

= ¯𝐺𝑗𝑢𝑖 +
[︀
(𝑢𝑖𝑅 − 𝑢𝑖𝐿) − ¯𝐺𝑙𝑢𝑖𝑑𝑥𝑙

]︀ 𝐴𝑗

𝐴𝑘𝑑𝑥𝑘
.

Common approaches in the cell-centered community are to use the projected nodal gradients for the 𝜕𝑢𝑗

𝜕𝑥𝑖
stress com-

ponent. However, in Nalu, the above form of equation is used.

Substituting the relations of the velocity gradients for the x and y-componnet of force above provides the following
expression used for the viscous stress contribution:

𝐹𝑥 = −𝜇𝑖𝑝

[︂(︀
¯𝐺𝑥𝑢𝑥𝐴𝑥 + ¯𝐺𝑦𝑢𝑥𝐴𝑦

)︀
+ (𝑢𝑥𝑅 − 𝑢𝑥𝐿)

𝐴𝑥𝐴𝑥 +𝐴𝑦𝐴𝑦

𝐴𝑥𝑑𝑥+𝐴𝑦𝑑𝑦

−
(︀

¯𝐺𝑥𝑢𝑥𝑑𝑥+ ¯𝐺𝑦𝑢𝑥𝑑𝑦
)︀ 𝐴𝑥𝐴𝑥 +𝐴𝑦𝐴𝑦

𝐴𝑥𝑑𝑥+𝐴𝑦𝑑𝑦

]︂
− 𝜇𝑖𝑝

[︂
¯𝐺𝑥𝑢𝑥𝐴𝑥 + ¯𝐺𝑥𝑢𝑦𝐴𝑦 + (𝑢𝑥𝑅 − 𝑢𝑥𝐿)

𝐴𝑥𝐴𝑥

𝐴𝑥𝑑𝑥+𝐴𝑦𝑑𝑦

+
(︀
𝑢𝑦𝑅 − 𝑢𝑦𝐿

)︀ 𝐴𝑥𝐴𝑦

𝐴𝑥𝑑𝑥+𝐴𝑦𝑑𝑦

−
(︀

¯𝐺𝑥𝑢𝑥𝑑𝑥+ ¯𝐺𝑦𝑢𝑥𝑑𝑦
)︀ 𝐴𝑥𝐴𝑥

𝐴𝑥𝑑𝑥+𝐴𝑦𝑑𝑦

−
(︀

¯𝐺𝑥𝑢𝑦𝑑𝑥+ ¯𝐺𝑦𝑢𝑦𝑑𝑦
)︀ 𝐴𝑥𝐴𝑦

𝐴𝑥𝑑𝑥+𝐴𝑦𝑑𝑦

]︂
,

3.3. Discretization Approach 95

Nalu Documentation, Release 1.2.0

𝐹𝑦 = −𝜇𝑖𝑝

[︂(︀
¯𝐺𝑥𝑢𝑦𝐴𝑥 + ¯𝐺𝑦𝑢𝑦𝐴𝑦

)︀
+
(︀
𝑢𝑦𝑅 − 𝑢𝑦𝐿

)︀ 𝐴𝑥𝐴𝑥 +𝐴𝑦𝐴𝑦

𝐴𝑥𝑑𝑥+𝐴𝑦𝑑𝑦

−
(︀

¯𝐺𝑥𝑢𝑦𝑑𝑥+ ¯𝐺𝑦𝑢𝑦𝑑𝑦
)︀ 𝐴𝑥𝐴𝑥 +𝐴𝑦𝐴𝑦

𝐴𝑥𝑑𝑥+𝐴𝑦𝑑𝑦

]︂
− 𝜇𝑖𝑝

[︂
¯𝐺𝑦𝑢𝑥𝐴𝑥 + ¯𝐺𝑦𝑢𝑦𝐴𝑦 +

(︀
𝑢𝑦𝑅 − 𝑢𝑦𝐿

)︀ 𝐴𝑦𝐴𝑦

𝐴𝑥𝑑𝑥+𝐴𝑦𝑑𝑦

+ (𝑢𝑥𝑅 − 𝑢𝑥𝐿)
𝐴𝑦𝐴𝑥

𝐴𝑥𝑑𝑥+𝐴𝑦𝑑𝑦

−
(︀ ¯𝐺𝑥𝑢𝑦]𝑑𝑥+ ¯𝐺𝑦𝑢𝑦𝑑𝑦

)︀ 𝐴𝑦𝐴𝑦

𝐴𝑥𝑑𝑥+𝐴𝑦𝑑𝑦

−
(︀

¯𝐺𝑥𝑢𝑥𝑑𝑥+ ¯𝐺𝑦𝑢𝑥𝑑𝑦
)︀ 𝐴𝑦𝐴𝑥

𝐴𝑥𝑑𝑥+𝐴𝑦𝑑𝑦

]︂
,

where above, the first [] and second [] represent the 𝜕𝑢𝑖

𝜕𝑥𝑗
𝐴𝑗 and 𝜕𝑢𝑗

𝜕𝑥𝑖
𝐴𝑗 contributions, respectively.

One can use this expression to recognize the ideal LHS sensitivities for row and columns for component 𝑢𝑖.

3.4 Advection Stabilization

In general, advection for both the edge and element-based scheme is identical with standard exception of the location
of the integration points. The full advection term is simply written as,

𝐴𝐷𝑉𝜑 =

∫︁
𝜌𝑢𝑗𝜑𝑖𝑝𝐴𝑗 =

∑︁
�̇�𝜑𝑖𝑝, (3.43)

where 𝜑 is 𝑢𝑖, 𝑍, ℎ, etc.

The evaluation of 𝜑𝑖𝑝 defines the advection stabilization choice. In general, the advection choice is a cell Peclet
blending between higher order upwind (𝜑𝑢𝑝𝑤) and a generalized un-stabilized central (Galerkin) operator, 𝜑𝑔𝑐𝑑𝑠,

𝜑𝑖𝑝 = 𝜂𝜑𝑢𝑝𝑤 + (1 − 𝜂)𝜑𝑔𝑐𝑑𝑠. (3.44)

In the above equation, 𝜂 is a cell Peclet blending. The generalized central operator can take on a pure second order or
pseudo fourth order form (see below). For the classic Peclet number functional form (see Equation (3.45)) a hybrid
upwind factor, 𝛾, can be used to ensure that no stabilization is added (𝜂 = 0) or that full upwind stabilization is included
(as will be shown, even with limiter functions). The hybrid upwind factor allows one to modify the functional blending
function; values of unity result in the normal blending function response in Figure Fig. 3.5; values of zero yield a pure
central operator, i.e., blending function of zero; values >> unity result in a blending function value of unity, i.e., pure
upwind. The constant 𝐴 is implemented with a value of 5. The value of this constant can not be changed via the input
file. Note that this functional form is named the “classic” form within the input file.

The classic cell Peclet blending function is given by

𝜂 =
𝛾Pe2

5 + 𝛾Pe2
. (3.45)

The classic Peclet functional form makes it difficult to dial in the exact point at which the Peclet factor transitions from
pure upwind to pure central. Therefore, an alternative form is provided that has a hyperbolic tangeant functional form.
This form allows one to specify the transition point and the width of the transition (see Equation (3.46)). The general
tanh form is as follows,

𝜂 =
1

2
[(𝑎+ 𝑏) + (𝑏− 𝑎)𝑡𝑎𝑛ℎ(

Pe − ctrans
𝑐𝑤𝑖𝑑𝑡ℎ

)] (3.46)

Above, the constant 𝑐𝑡𝑟𝑎𝑛𝑠 represents the transition Peclet number while 𝑐𝑤𝑖𝑑𝑡ℎ represents the width of the transition.
The value of 𝜆 is simply the shift between of the raw tanh function from zero while 𝛿 is the difference between the

96 Chapter 3. Sierra Low Mach Module: Nalu - Theory Manual

Nalu Documentation, Release 1.2.0

max Peclet factor (unity) and the minimum value prior to normalization. This approach ensures that the function starts
at zero and asymptotes to unity,

𝜂 =
1

2
[1 + 𝑡𝑎𝑛ℎ(

Pe − ctrans
𝑐𝑤𝑖𝑑𝑡ℎ

)].

The cell-Peclet number is computed for each sub-face in the element from the two adjacent left (L) and right (R)
nodes,

Pe =
1
2 (𝑢𝑅,𝑖 + 𝑢𝐿,𝑖) (𝑥𝑅,𝑖 − 𝑥𝐿,𝑖)

𝜈
.

A dot-product is implied by repeated indices.

0.000	

0.100	

0.200	

0.300	

0.400	

0.500	

0.600	

0.700	

0.800	

0.900	

1.000	

0.000	 500.000	 1000.000	 1500.000	 2000.000	 2500.000	 3000.000	 3500.000	 4000.000	

Peclet	Factor	(Y-axis)	vs	Peclet	Number	(X-axis)	

Classic	hybrid	factor	=	1.0	 Classic	hybrid	factor	=	0.1	 Classic	hybrid	factor	=	0.01	 TanH	

Fig. 3.5: Cell-Peclet number blending function outlining classic (varying the hybrid factor 𝛾 from 1.0, 0.1 and 0.01;
again 𝐴 = 5) and tanh functional form (𝑐𝑡𝑟𝑎𝑛𝑠 = 2000 and 𝑐𝑤𝑖𝑑𝑡ℎ = 200).

The upwind operator, 𝜑𝑢𝑝𝑤 is computed based on a blending of the extrapolated state (using the projected nodal
gradient) and the linear interpolated state. Second or third order upwind is provided based on the value of 𝛼𝑢𝑝𝑤

blending

𝜑𝑢𝑝𝑤 = 𝛼𝑢𝑝𝑤𝜑
𝐿
𝑢𝑝𝑤 + (1 − 𝛼𝑢𝑝𝑤)𝜑𝑐𝑑𝑠; �̇� > 0,

𝛼𝑢𝑝𝑤𝜑
𝑅
𝑢𝑝𝑤 + (1 − 𝛼𝑢𝑝𝑤)𝜑𝑐𝑑𝑠; �̇� < 0.

(3.47)

The extrapolated value based on the upwinded left (𝜑𝐿) or right (𝜑𝑅) state,

𝜑𝐿𝑢𝑝𝑤 = 𝜑𝐿 + 𝑑𝐿𝑗
𝜕𝜑𝐿

𝜕𝑥𝑗
,

𝜑𝑅𝑢𝑝𝑤 = 𝜑𝑅 − 𝑑𝑅𝑗
𝜕𝜑𝑅

𝜕𝑥𝑗
.

(3.48)

The distance vectors are defined based on the distances between the L/R points and the integration point (for both edge
or element-based),

𝑑𝐿𝑗 = 𝑥𝑖𝑝𝑗 − 𝑥𝐿𝑗 ,

𝑑𝑅𝑗 = 𝑥𝑅𝑗 − 𝑥𝑖𝑝𝑗 .
(3.49)

3.4. Advection Stabilization 97

Nalu Documentation, Release 1.2.0

In the case of all transported quantities, a Van Leer limiter of the extrapolated value is supported and can be activated
within the input file (using the solution options “limiter” specification).

Second order central is simply written as a linear combination of the nodal values,

𝜑𝑐𝑑𝑠 =
∑︁

𝑁 𝑖𝑝
𝑘 𝜑𝑘. (3.50)

where 𝑁 𝑖𝑝
𝑘 is either evaluated at the subcontrol surface or edge midpoint. In the case of the edge-based scheme, the

edge midpoint evaluation provides for a skew symmetric form of the operator.

The generalized central difference operator is provided by blending with the extrapolated values and second order
Galerkin,

𝜑𝑔𝑐𝑑𝑠 =
1

2

(︁
𝜑𝐿𝑢𝑝𝑤 + 𝜑𝑅𝑢𝑝𝑤

)︁
, (3.51)

where,

𝜑𝐿𝑢𝑝𝑤 = 𝛼𝜑𝐿𝑢𝑝𝑤 + (1 − 𝛼)𝜑𝑐𝑑𝑠,

𝜑𝑅𝑢𝑝𝑤 = 𝛼𝜑𝑅𝑢𝑝𝑤 + (1 − 𝛼)𝜑𝑐𝑑𝑠.
(3.52)

The value of 𝛼 provides the type of psuedo fourth order stencil and is specified in the user input file.

The above set of advection operators can be used to define an idealized one dimensional stencil denoted by (𝑖 − 2,
𝑖− 1, 𝑖, 𝑖+ 1, 𝑖+ 2), where 𝑖 represents the particular row for the given transported variable. Below, in the table, the
stencil can be noted for each value of 𝛼 and 𝛼𝑢𝑝𝑤.

𝑖− 2 𝑖− 1 𝑖 𝑖+ 1 𝑖+ 2 𝛼 𝛼𝑢𝑝𝑤

0 − 1
2 0 + 1

2 0 0 n/a
+ 1

8 − 6
8 0 + 6

8 − 1
8

1
2 n/a

+ 1
12 − 8

12 0 + 8
12 − 1

12
2
3 n/a

+ 1
4 − 5

4 + 3
4 + 1

4 0 �̇� > 0 1
0 − 1

4 − 3
4 + 5

4 − 1
4 �̇� < 0 1

+ 1
6 − 6

6 + 3
6 + 2

6 0 �̇� > 0 1
2

0 − 2
6 − 3

6 + 6
6 − 1

6 �̇� < 0 1
2

It is noted that by varying these numerical parameters, both high quality, low dissipation operators suitable for LES
usage or limited, monotonic operators suitable for RANS modeling can be accomodated.

3.5 Pressure Stabilization

A number of papers describing the pressure stabilization approach that Nalu uses are in the open literature,
Domino, [Dom06], [Dom08], [Dom14]. Nalu supports an incremental fourth order approximate projection scheme
with time step scaling. By scaling, it is implied that a time scale based on either the physical time step or a combined
elemental advection and diffusion time scale based on element length along with advection and diffusional parameters.
An alternative to the approaximate projection concept is to view the method as a variational multiscale (VMS) method
wherebye the momentum residual augments the continuity equation. This allows for a diagonal entry for the pressure
degree of freedom.

Here, the fine-scale momentum residual is written in terms of a projected momentum residual evaluated at the Gauss
point,

R(𝑢𝑖) = (
𝜕𝑝

𝜕𝑥𝑗
−𝐺𝑗𝑝). (3.53)

98 Chapter 3. Sierra Low Mach Module: Nalu - Theory Manual

Nalu Documentation, Release 1.2.0

The above equation is derived simply by writing a fine-scale momentum equation at the Gauss-points and using the
nodal projected residual to reconstruct the individual terms. Therefore, the continuity equation solved, using the
VMS-based projected momentum residual, is∫︁

𝜕𝜌

𝜕𝑡
𝑑𝑉 +

∫︁ (︀
𝜌�̂�𝑖 + 𝜏𝐺𝑖𝑃

)︀
𝑛𝑖 𝑑𝑆 =

∫︁
𝜏
𝜕𝑃

𝜕𝑥𝑖
𝑛𝑖 𝑑𝑆.

Above, 𝐺𝑖𝑃 is defined as a L2 nodal projection of the pressure gradient. Note that the notion of a provisional velocity,
�̂�𝑖, is used to signify that this velocity is the product of the momentum solve. The difference between the projected
nodal gradient interpolated to the gauss point and the local gauss point pressure gradient provides a fourth order
pressure stabilization term. This term can also be viewed as an algebraic form for the momentum residual. For the
continuity equation only, a series of element-based options that shift the integration points to the edges of the iterated
element is an option.

3.5.1 The Role of �̇�

In all of the above equations, the advection term is written in terms of a linearized mass flow rate including a sum
over all subcontrol surface integration points, Eq (3.43). The mass flow rate includes the full set of stabilization terms
obtained from the continuity solve,

�̇� =

(︂
𝜌�̂�𝑖 + 𝜏𝐺𝑖𝑃 − 𝜏

𝜕𝑃

𝜕𝑥𝑖

)︂
𝑛𝑖 𝑑𝑆.

The inclusion of the pressure stabilization terms in the advective transport for the primitives is a required step for
ensuring that the advection velocity is mass conserving. In practice, the mass flow rate is stored at each integration
point in the mesh (edge midpoints for the edge-based scheme and subcontrol surfaces for the element-based scheme).
When the mixed CVFEM/EBVC scheme is used, the continuity equation solves for a subcontrol-surface value of the
mass flow rate. These values are assembled to the edge for use in the EBVC discretization approach. Therefore, the
storage for mass flow rate is higher.

3.6 RTE Stabilization

The RTE is solved using the method of discrete ordinates using the symmetric Thurgood quadrature set. The discrete
ordinates method is one in which discrete directions of the intensity are solved. The quadrature order, 𝑁 , defines the
number of ordinate directions that are solved in a given iteration. In the case of non-scattering media, this results is a set
of decoupled linear partial differential equations. For the symmetric Thurgood set, the number of ordinate directions is
given by 8𝑁2. Values of N that are required for suitable accuracy starts at 𝑁 = 2 with more than adequate resolution
at 𝑁 = 4.

For each ordinate direction, a weight is provided, 𝑤𝑘 (not to be confused with the test function 𝑤). For each intensity
ordinate direction, 𝐼𝑘, integrated quantities such as scalar flux and radiative heat flux are computed as,

𝐺 =
∑︁

𝐼𝑘𝑤𝑘

and,

𝑞𝑗 =
∑︁

𝐼𝑘𝑠𝑗𝑤𝑘.

The stabilization that is used in the RTE equation can be placed in the class of residual-based stabilization. In this
particular implementation, the scaled residual of the RTE equation is added. This implementation has its roots in the
classic variational multiscale (VMS).

3.6. RTE Stabilization 99

Nalu Documentation, Release 1.2.0

In the VMS framework, the degree of freedom is decomposed in terms of its resolved and fine scale, 𝐼 + 𝐼 ′. Without
specific definition of the test function, the weighted residual statement for the RTE within a VMS framework is given
by, ∫︁

𝑤

(︂
𝑠𝑖

𝜕

𝜕𝑥𝑖
(𝐼 (𝑠) + 𝐼 ′ (𝑠)) + (𝜇𝑎 + 𝜇𝑠) (𝐼 (𝑠) + 𝐼 ′ (𝑠)) − 𝜇𝑎𝜎𝑇

4

𝜋
− 𝜇𝑠

4𝜋
𝐺

)︂
d𝑉 = 0. (3.54)

Grouping resolved and fine scale terms results in an equation takes the form of a standard Galerkin contribution in
addition to the fine structure statement,∫︁

𝑤

(︂
𝑠𝑖

𝜕

𝜕𝑥𝑖
𝐼 (𝑠) + (𝜇𝑎 + 𝜇𝑠)𝐼 −

𝜇𝑎𝜎𝑇
4

𝜋
− 𝜇𝑠

4𝜋
𝐺

)︂
d𝑉

+

∫︁
𝑤

(︂
𝑠𝑖

𝜕

𝜕𝑥𝑖
𝐼 ′ (𝑠) + (𝜇𝑎 + 𝜇𝑠)𝐼

′
)︂

d𝑉 = 0.

(3.55)

Note that the isotropic source term has not contributed to the VMS framework other than through the right hand source
term.

In general, gradients in the fine scale quantity are to be avoided. Therefore, the first term in the second line of Eq. (3.55)
is integrated by parts to yield the following form (note the boundary term,

∫︀
Γ

that is shown below is frequently dropped)

∫︁
𝑤

(︂
𝑠𝑖

𝜕

𝜕𝑥𝑖
𝐼 (𝑠) + (𝜇𝑎 + 𝜇𝑠)𝐼 −

𝜇𝑎𝜎𝑇
4

𝜋
− 𝜇𝑠

4𝜋
𝐺

)︂
d𝑉

−
∫︁
𝐼 ′𝑠𝑖

𝜕𝑤

𝜕𝑥𝑖
d𝑉 +

∫︁
Γ

𝑤𝑠𝑖𝐼
′𝑛𝑖d𝑆 +

∫︁
𝑤(𝜇𝑎 + 𝜇𝑠)𝐼

′d𝑉 = 0.

(3.56)

The following ansatz, which now includes the classic stabilization parameter, 𝜏 , provides closure of the above fine
scale equation,

𝐼 ′ = −𝜏
(︂
𝑠𝑖

𝜕

𝜕𝑥𝑖
𝐼 (𝑠) + (𝜇𝑎 + 𝜇𝑠)𝐼 (𝑠) − 𝜇𝑎𝜎𝑇

4

𝜋
− 𝜇𝑠

4𝜋
𝐺

)︂
= −𝜏𝑅(𝑠) (3.57)

Substituting Eq. (3.57) into Eq. (3.56) yields,∫︁
𝑤

(︂
𝑠𝑖

𝜕

𝜕𝑥𝑖
𝐼 (𝑠) + (𝜇𝑎 + 𝜇𝑠)𝐼 −

𝜇𝑎𝜎𝑇
4

𝜋
− 𝜇𝑠

4𝜋
𝐺

)︂
d𝑉

+

∫︁
𝜏𝑠𝑖

𝜕𝑤

𝜕𝑥𝑖
𝑅(𝑠)d𝑉 −

∫︁
Γ

𝜏𝑤𝑅(𝑠)𝑠𝑖𝑛𝑖d𝑆 −
∫︁
𝜏𝑤(𝜇𝑎 + 𝜇𝑠)𝑅(𝑠)d𝑉 = 0.

(3.58)

In the above equation, the residual of the intensity equation for ordinate 𝑠 is denoted by 𝑅(𝑠). A compact form of the
equation is provided by defining a modified test function, �̃�, (again note retention of the stabilized boundary term)∫︁

�̃�

(︂
𝑠𝑖

𝜕

𝜕𝑥𝑖
𝐼 (𝑠) + (𝜇𝑎 + 𝜇𝑠)𝐼 −

𝜇𝑎𝜎𝑇
4

𝜋
− 𝜇𝑠

4𝜋
𝐺

)︂
d𝑉

−𝛽
∫︁
Γ

𝜏𝑤𝑅(𝑠)𝑠𝑖𝑛𝑖d𝑆 = 0.

(3.59)

where �̃� is simply equal to,

�̃� = 𝑤 + 𝜏

(︂
𝑠𝑗
𝜕𝑤

𝜕𝑥𝑗
+ 𝛼(𝜇𝑎 + 𝜇𝑠)𝑤

)︂
. (3.60)

When 𝛼 = −1, we have the above VMS derivation; for 𝛼 = 1, Galerkin Least Squares is realized; finally for 𝛼 = 0,
we have SUPG. For any formulation other than VMS, the residual contribution at the boundaries of the domain is
dropped (𝛽 = 0).

100 Chapter 3. Sierra Low Mach Module: Nalu - Theory Manual

Nalu Documentation, Release 1.2.0

The full residual-based equation is placed in divergence form,∫︁
�̃�

(︂
𝜕

𝜕𝑥𝑖
𝑠𝑖𝐼 (𝑠) + (𝜇𝑎 + 𝜇𝑠)𝐼 (𝑠) − 𝜇𝑎𝜎𝑇

4

𝜋
− 𝜇𝑠

4𝜋
𝐺

)︂
d𝑉

−𝛽
∫︁
Γ

𝜏𝑤𝑅(𝑠)𝑠𝑖𝑛𝑖d𝑆 = 0.

(3.61)

and split into its Galerkin and stabilized contributions,∫︁
𝑤

(︂
𝜕

𝜕𝑥𝑖
𝑠𝑖𝐼 (𝑠) + (𝜇𝑎 + 𝜇𝑠)𝐼 (𝑠) − 𝜇𝑎𝜎𝑇

4

𝜋
− 𝜇𝑠

4𝜋
𝐺

)︂
d𝑉

+

∫︁
𝜏𝑠𝑗

𝜕𝑤

𝜕𝑥𝑗
𝑅(𝑠)d𝑉

+𝛼

∫︁
𝜏𝑤(𝜇𝑎 + 𝜇𝑠)𝑅(𝑠)d𝑉

−𝛽
∫︁
Γ

𝜏𝑤𝑅(𝑠)𝑠𝑖𝑛𝑖d𝑆 = 0.

(3.62)

Note that the first term in the above equation is integrated by parts,∫︁
𝑤

𝜕

𝜕𝑥𝑖
𝑠𝑖𝐼 (𝑠) d𝑉 = −

∫︁
𝐼 (𝑠) 𝑠𝑖

𝜕𝑤

𝜕𝑥𝑖
d𝑉 +

∫︁
Γ

𝑤𝑠𝑖𝐼 (𝑠)𝑛𝑖d𝑆.

Again, the usage of Γ provides emphasis that the contribution is a boundary (exposed face) condition. Therefore, the
full VMS-based stabilized RTE equation is as follows,∫︁ (︂

−𝐼 (𝑠) 𝑠𝑖
𝜕𝑤

𝜕𝑥𝑖
+ (𝜇𝑎 + 𝜇𝑠)𝐼 (𝑠) − 𝜇𝑎𝜎𝑇

4

𝜋
− 𝜇𝑠

4𝜋
𝐺

)︂
d𝑉

+

∫︁
Γ

𝑤𝑠𝑖𝐼 (𝑠)𝑛𝑖d𝑆

+

∫︁
𝜏𝑠𝑗

𝜕𝑤

𝜕𝑥𝑗
𝑅(𝑠)d𝑉

+ 𝛼

∫︁
𝜏𝑤(𝜇𝑎 + 𝜇𝑠)𝑅(𝑠)d𝑉

− 𝛽

∫︁
Γ

𝜏𝑤𝑅(𝑠)𝑠𝑖𝑛𝑖d𝑆 = 0.

(3.63)

3.6.1 Definition of the test function

Following the work of Martinez, [Mar05], the test function is chosen to be a piecewise-constant value within the
control volume, 𝑤 = 𝑤𝐼 and zero outside of this control volume (Heaviside). A key property of this function, as
pointed out by Martinez, is that its gradient is a distribution of delta functions on the control volume boundary:

𝜕𝑤𝐼

𝜕𝑥𝑖
= −n𝐼𝛿(x− xΓ𝐼

) (3.64)

where Γ𝐼 is boundary of control volume 𝐼 and n𝐼 is the outward normal on that boundary. Substituting this relationship
into the residual equation provides the final form of vertex-centered finite volume RTE stabilized equation,∫︁

𝐼 (𝑠) 𝑠𝑖𝑛𝑖d𝑆 +

∫︁ (︂
(𝜇𝑎 + 𝜇𝑠)𝐼 (𝑠) − 𝜇𝑎𝜎𝑇

4

𝜋
− 𝜇𝑠

4𝜋
𝐺

)︂
d𝑉

+

∫︁
Γ

𝑠𝑖𝐼 (𝑠)𝑛𝑖d𝑆

−
∫︁
𝜏𝑅(𝑠)𝑠𝑖𝑛𝑖d𝑆 + 𝛼

∫︁
𝜏(𝜇𝑎 + 𝜇𝑠)𝑅(𝑠)d𝑉 − 𝛽

∫︁
Γ

𝜏𝑅(𝑠)𝑠𝑖𝑛𝑖d𝑆 = 0.

(3.65)

3.6. RTE Stabilization 101

Nalu Documentation, Release 1.2.0

Given this equation, either an edge-based or element-based scheme can be used. For 𝛼 = 0 and 𝛽 = 0, it is noted that
classic SUCV is obtained. The second line of Eq. (3.65) represents a boundary contribution. This is where the intensity
boundary condition (Eq. (3.125)) is applied. As noted in the RTE equation section, when 𝑠𝑗𝑛𝑗 is greater than zero, the
interpolated intensity based on the surface nodal values is used. However, when 𝑠𝑗𝑛𝑗 is less than zero, the intensity
boundary condition value is used. Since the original RTE equation was integrated by parts, a natural surface flux
contribution is applied. In alternative discretization approaches, e.g., the SUPG FEM-based Sierra Thermal Radiation
Module: Syrinx code, the RTE is not integrated by parts. Therefore, no boundary term exists, and, therefore, a dirichlet
bc is applied. At corner nodes, this approach can lead to non-intuitive approaches since the corner node might have
surface facets that are both incoming and outgoing. Weak integration of the flux term eliminated this complexity.

3.6.2 The form of 𝜏

The value of the stabilization parameter 𝜏 can take on a variety of forms. A classic derivation provides the form of 𝜏
to be broken out into two forms, 𝜏𝑎𝑑𝑣 = ℎ

2 and 𝜏𝑑𝑖𝑓𝑓 = 1
(𝜇𝑎+𝜇𝑠)

. An ad-hoc blending is given by,

𝜏 =

(︃
1

2
ℎ

2
+ (𝜇𝑎 + 𝜇𝑠)2

)︃ 1
2

(3.66)

Finally, the classic GFEM form of 𝜏 is given by use of the metric tensor for the element mapping is noted,

𝜏 = 𝛽*[𝑠𝑖𝑔𝑖𝑗𝑠𝑗]
− 1

2 , (3.67)

with 𝛽* equal to unity for SUCV and 2

15
1
2

for FEM.

3.6.3 Pure Edge-based Upwind Method

The residual-based stabilization apporach can lead to predicting negative intensities. This is simply due to the fact that
the stabilization approach (SUPG) is a linear approach. Extensions of this residual-based stabilization to include a dis-
continuity capturing operator (DCO) are underway. This adds a non-linear stabilization approach that will, hopefully,
eliminate negative intensity predictions.

Alternatively, a first order upwind approach has been implemented by using EBVC discretization. At this point, no
higher order upwind extensions have been implemented. For the upwind implementation, the equation solved is,∫︁

𝐼 (𝑠) 𝑠𝑖𝑛𝑖d𝑆 +

∫︁ (︂
(𝜇𝑎 + 𝜇𝑠)𝐼 (𝑠) − 𝜇𝑎𝜎𝑇

4

𝜋
− 𝜇𝑠

4𝜋
𝐺

)︂
d𝑉

+

∫︁
Γ

𝑠𝑖𝐼 (𝑠)𝑛𝑖d𝑆 = 0.

(3.68)

In the above equation, the “advection operator”, 𝐼 (𝑠) 𝑠𝑖𝑛𝑖d𝑆 is approximated as using the “upwind” intensity, e.g., if
𝑠𝑗𝑛𝑗 is greater than zero, the left nodal value is used.

3.6.4 Finite Element SUPG Form

For the FEM, the test function is the standard weighting. Assuming a pure SUPG formulation, i.e., 𝛼 = 𝛽 = 0 in
Equation (3.63), thereby reducing the final form to the following:∫︁ (︂

−𝐼 (𝑠) 𝑠𝑖
𝜕𝑤

𝜕𝑥𝑖
+ 𝑤[(𝜇𝑎 + 𝜇𝑠)𝐼 (𝑠) − 𝜇𝑎𝜎𝑇

4

𝜋
− 𝜇𝑠

4𝜋
𝐺]

)︂
d𝑉

+

∫︁
Γ

𝑤𝑠𝑖𝐼 (𝑠)𝑛𝑖d𝑆

+

∫︁
𝜏𝑠𝑗

𝜕𝑤

𝜕𝑥𝑗
𝑅(𝑠)d𝑉

(3.69)

102 Chapter 3. Sierra Low Mach Module: Nalu - Theory Manual

Nalu Documentation, Release 1.2.0

The weak boundary condition is applied in a similar manner as with the CVFEM and EBVC form, however, using the
appropriate FEM test test function definition. Finally, the form of 𝜏 follows the above CVFEM form.

3.7 Nonlinear Stabilization Operator (NSO)

An alternative to classic Peclet number blending is the usage of a discontinuity capturing operator (DCO), or in the
low Mach context a nonlinear stabilization operator (NSO). In this method, an artifical viscosity is defined that is a
function of the local residual and scaled computational gradients. Viable usages for the NSO can be advection/diffusion
problems in addition to the aforementioned RTE VMS approach.

The formal finite element kernel for a NSO approach is as follows,∑︁
𝑒

∫︁
Ω

𝜈(R)
𝜕𝑤

𝜕𝑥𝑖
𝑔𝑖𝑗

𝜕𝜑

𝜕𝑥𝑗
𝑑Ω, (3.70)

where 𝜈(R) is the artifical viscosity which is a function of the pde fine-scale residual and 𝑔𝑖𝑗 is the covariant metric
tensor).

For completeness, the covariant and contravarient metric tensor are given by,

𝑔𝑖𝑗 =
𝜕𝑥𝑖
𝜕𝜉𝑘

𝜕𝑥𝑗
𝜕𝜉𝑘

, (3.71)

and

𝑔𝑖𝑗 =
𝜕𝜉𝑘
𝜕𝑥𝑖

𝜕𝜉𝑘
𝜕𝑥𝑗

, (3.72)

where 𝜉 = (𝜉1, 𝜉2, 𝜉3)𝑇 . The form of 𝜈(R) currently used is as follows,

𝜈 =

√︃
RkRk

𝜕𝜑
𝜕𝑥𝑖

𝑔𝑖𝑗 𝜕𝜑
𝜕𝑥𝑗

. (3.73)

The classic paper by Shakib ([SHZ91]) represents the genesis of this method which was done in the accoustically
compressible context.

A residual for a classic advection/diffusion/source pde is simply the fine scale residual computed at the gauss point,

R̂ =
𝜕𝜌𝜑

𝜕𝑡
+

𝜕

𝜕𝑥𝑗
(𝜌𝑢𝑗𝜑− 𝜇𝑒𝑓𝑓 𝜕𝜑

𝜕𝑥𝑗
) − 𝑆 (3.74)

Note that the above equation requires a second derivative whose source is the diffusion term. The first derivative is
generally determined by using projected nodal gradients. As will be noted in the pressure stabilization section, the
advection term carries the pressure stabilization terms. However, in the above equation, these terms are not explicity
noted. Therefore, an option is to subtract the fine scale continuity equation to obtain the final general form of the
source term,

R = R̂− 𝜑(
𝜕𝜌

𝜕𝑡
+
𝜕𝜌𝑢𝑗
𝜕𝑥𝑗

). (3.75)

An alternative to the fine-scale PDE is a form that is found by differencing the linearized form of the residual from the
nonlinear residual,

R =
𝜕𝜌𝑢𝑗𝜑

𝜕𝑥𝑗
− (𝜑

𝜕𝜌𝑢𝑗
𝜕𝑥𝑗

+ 𝜌𝑢𝑗
𝜕𝜑

𝜕𝑥𝑗
). (3.76)

The above resembles a commutation error in the nonlinear advection term.

3.7. Nonlinear Stabilization Operator (NSO) 103

Nalu Documentation, Release 1.2.0

In general, the NSO-𝜈 is prone to percision issues when the gradients are very close to zero. As such, the value of 𝜈
is limited to a first-order like value. This parameter is proposed as follows: if an operator were written as a Galerkin
(un-stabilized) plus a diffusion operator, what is the value of the diffusion coefficient such that first-order upwind is
obtained for the combined operator? This upwind limited value of 𝜈 provides the highest value that this coefficient
can (or should) be. The current form of the limited upwind 𝜈 is as follows,

𝜈𝑢𝑝𝑤 = 𝐶𝑢𝑝𝑤(𝜌𝑢𝑖𝑔𝑖𝑗𝜌𝑢𝑗)
1
2 (3.77)

where 𝐶𝑢𝑝𝑤 is generally taked to be 0.1.

Using a piecewise-constant test function suitable for CVFEM and EBVC schemes (the reader is refered to the VMS
RTE section), Eq. (3.70) can be written as,

−
∑︁
𝑒

∫︁
Γ

𝜈(R)𝑔𝑖𝑗
𝜕𝜑

𝜕𝑥𝑗
𝑛𝑖𝑑𝑆. (3.78)

A fourth order form, which writes the stabilization as the difference between the Gauss-point gradient and the projected
nodal gradient interpolated to the Gauss-point, is also supported,

−
∑︁
𝑒

∫︁
Γ

𝜈(R)𝑔𝑖𝑗(
𝜕𝜑

𝜕𝑥𝑗
−𝐺𝑗𝜑)𝑛𝑖𝑑𝑆. (3.79)

3.7.1 NSO Based on Kinetic Energy Residual

An alternative formulation explored is to share the general kernal form shown in Equation (3.79), however, compute 𝜈
based on a fine-scale kinetic energy residual. In this formulation, the fine-scale kinetic energy residual is obtained from
the fine-scale momentum residual dotted with velocity. As with the continuity stabilization approach, the fine-scale
momentum residual is provided by Equation (3.80). Therefore, the fine-scale kinetic energy is written as,

R𝑘𝑒 =
𝑢𝑗(

𝜕𝑝
𝜕𝑥𝑗

−𝐺𝑗𝑝)

2
, (3.80)

while the denominator for 𝜈 now includes the gradient in ke,

𝜈 =

√︃
R𝑘𝑒R𝑘𝑒

𝜕𝑘𝑒
𝜕𝑥𝑖

𝑔𝑖𝑗 𝜕𝑘𝑒
𝜕𝑥𝑗

. (3.81)

The kinetic energy is simply given by,

𝑘𝑒 =
𝑢𝑘𝑢𝑘

2
(3.82)

The kinetic energy form of 𝜈 is used for all equation sets with transformation by usage of a turbulent Schmidt/Prandtl
number.

3.7.2 Local or Projected NSO Diffusive Flux Coefficient

While the NSO kernel is certainly evaluated at the subcontrol surfaces, the evaluation of 𝜈 can be computed by a
multitude of approaches. For example, the artificial diffusive flux coefficient can be computed locally (with local
residuals and local metric tensors) or can be projected to the nodes (via an 𝐿𝑜𝑜 or 𝐿2 projection) and re-interpolated
to the gauss points. The former results in a sharper local value while the later results in a more filtered-like value. The
code base only supports a local NSO 𝜈 calculation.

104 Chapter 3. Sierra Low Mach Module: Nalu - Theory Manual

Nalu Documentation, Release 1.2.0

3.7.3 General Findings

In general, the NSO approach seems to work best when running the fourth-order option as the second-order imple-
mentation still looks more diffuse. When compared to the standard MUSCL-limited scheme, the NSO is the preferred
choice. More work is underway to improve stabilization methods. Note that a limited set of NSOs are activated in
the code base with specific interest on scalar transport, e.g, momentum, mixture fraction and static enthalpy transport.
When using the 4𝑡ℎ order method, the consistent mass matrix approach for the projected nodal gradients is supported
for higher order.

3.7.4 NSO as a Turbulence Model

The kinetic energy residual form has been suggested to be used as a turbulence model (Guermond and Larios, 2015).
However, inspection of the above NSO kernel form suggests that the model form is not symmetric. Rather, in the
context of turbulence modeling, is closer to the metric tensor acting on the difference between the rate of strain and
antisymmetric tensor. As such, the theory developed, e.g., for eigenvalue perturbations of the stress tensor (see Jofre
and Domino, 2017) can not be applied. In this section, a new form of the NSO is provided in an effort to be used for
an LES closure.

In this proposed NSO formulation, the subgrid stress tensor, 𝜏𝑠𝑔𝑠𝑖𝑗 = 𝑢𝑖𝑢𝑗 − �̄�𝑖�̄�𝑗 , is given by,

𝜏𝑠𝑔𝑠𝑖𝑗 = −2𝜌𝜈𝑔𝑖𝑗(𝑆𝑖𝑗 −
1

3

𝜕𝑢𝑘
𝜕𝑥𝑘

𝛿𝑖𝑗) = −2𝜌𝜈𝑔𝑖𝑗𝑆*
𝑖𝑗 . (3.83)

Interestingly, the units of 𝜈 are of an inverse time scale while the product 2𝜌𝜈𝑔𝑖𝑗 can be viewed as an non-isotropic
eddy viscosity, 𝜇𝑡

𝑖𝑗 .

The first order clipping may be relaxed by defining 𝜈 as,

𝜈 =
|R𝑘𝑒|
||𝑘𝑒||∞

. (3.84)

The above form would be closer to what Guermond uses and would avoid the divide-by-zero noted in regions of
uniform flow.

3.8 Turbulence Modeling

Unlike a RANS approach which models most or all of the turbulent fluctuations, LES directly solves for all resolved
turbulent length scales and only models the smallest scales below the grid size. In this way, a majority of the problem-
dependent, energy-containing turbulent structure is directly solved in a model-free fashion. The subgrid scales are
closer to being isotropic than the resolved scales, and they generally act to dissipate turbulent kinetic energy cascaded
down from the larger scales in momentum-driven turbulent flows. Modeling of these small scales is generally more
straightforward than RANS approaches, and overall solutions are usually more tolerant to LES modeling errors be-
cause the subgrid scales comprise such a small portion of the overall turbulent structure. While LES is generally
accepted to be much more accurate than RANS approaches for complex turbulent flows, it is also significantly more
expensive than equivalent RANS simulations due to the finer grid resolution required. Additionally, since LES results
in a full unsteady solution, the simulation must be run for a long time to gather any desired time-averaged statistics.
The tradeoff between accuracy and cost must be weighed before choosing one method over the other.

The separation of turbulent length scales required for LES is obtained by using a spatial filter rather than the RANS
temporal filter. This filter has the mathematical form

𝜑(𝑥, 𝑡) ≡
∫︁ +∞

−∞
𝜑(𝑥′, 𝑡)𝐺(𝑥′ − 𝑥) d𝑥′, (3.85)

3.8. Turbulence Modeling 105

Nalu Documentation, Release 1.2.0

which is a convolution integral over physical space 𝑥 with the spatially-varying filter function 𝐺. The filter function
has the normalization property

∫︀ +∞
−∞ 𝐺(𝑥) d𝑥 = 1, and it has a characteristic length scale ∆ so that it filters out

turbulent length scales smaller than this size. In the present formulation, a simple “box filter” is used for the filter
function,

𝐺(𝑥′ − 𝑥) =

{︂
1/𝑉 : (𝑥′ − 𝑥) ∈ 𝒱
0 : otherwise

,

where 𝑉 is the volume of control volume 𝒱 whose central node is located at 𝑥. This is essentially an unweighted
average over the control volume. The length scale of this filter is approximated by ∆ = 𝑉

1
3 . This is typically called

the grid filter, as it filters out scales smaller than the computational grid size.

Similar to the RANS temporal filter, a variable can be represented in terms of its filtered and subgrid fluctuating
components as

𝜑 = 𝜑+ 𝜑′.

For most forms of the filter function 𝐺(𝑥), repeated applications of the grid filter to a variable do not yield the same
result. In other words, ¯̄𝜑 ̸= 𝜑 and therefore 𝜑′ ̸= 0, unlike with the RANS temporal averages.

As with the RANS formulation, modeling is much simplified in the presence of large density variations if a Favre-
filtered approach is used. A Favre-filtered variable 𝜑 is defined as

𝜑 ≡ 𝜌𝜑

𝜌

and a variable can be decomposed in terms of its Favre-filtered and subgrid fluctuating component as

𝜑 = 𝜑+ 𝜑′′.

Again, note that the useful identities for the Favre-filtered RANS variables do not apply, so that ¯̃
𝜑 ̸= 𝜑 and 𝜑′′ ̸= 0.

The Favre-filtered approach is used for all LES models in Nalu.

3.8.1 Standard Smagorinsky LES Model

The standard Smagorinsky LES closure model approximates the subgrid turbulent eddy viscosity using a mixing
length-type model, where the LES grid filter size ∆ provides a natural length scale. The subgrid eddy viscosity is
modeled simply as (Smagorinsky)

𝜇𝑡 = 𝜌 (𝐶𝑠∆)
2 |𝑆|, (3.86)

The constant coefficient 𝐶𝑠 typically varies between 0.1 and 0.24 and should be carefully tuned to match the problem
being solved (Rogallo and Moin, [RM84]). The default value of 0.17 is assigned in the code base.

Although this model is desirable due to its simplicity and efficiency, care should be taken in its application. It is
known to predict subgrid turbulent eddy viscosity proportional to the shear rate in the flow, independent of the local
turbulence intensity. Non-zero subgrid turbulent eddy viscosity is even predicted in completely laminar regions of the
flow, sometimes even preventing a natural transition to turbulence. The model also does not asymptotically replicate
near wall behavior without either dampening or a dynamic procedure.

3.8.2 Wall Adapting Local Eddy-Viscosity, WALE

The WALE model of Ducros el al., [DNP98], properly captures the asymptotic behavior for flows that are wall
bounded. In this model, the turbulent viscosity is given by,

𝜇𝑡 = 𝜌 (𝐶𝑤∆)
2

(︀
𝑆𝑑
𝑖𝑗𝑆

𝑑
𝑖𝑗

)︀3/2
(𝑆𝑖𝑗𝑆𝑖𝑗)

5/2
+
(︀
𝑆𝑑
𝑖𝑗𝑆

𝑑
𝑖𝑗

)︀5/4 , (3.87)

106 Chapter 3. Sierra Low Mach Module: Nalu - Theory Manual

Nalu Documentation, Release 1.2.0

with the constant 𝐶𝑤 of 0.325 and a standard filter, ∆ related to the volume, 𝑉
1
3 . The rate of strain tensor is defined

as,

𝑆𝑖𝑗 =
1

2

(︂
𝜕𝑢𝑖
𝜕𝑥𝑗

+
𝜕𝑢𝑗
𝜕𝑥𝑖

)︂
(3.88)

while 𝑆𝑑
𝑖𝑗 is,

𝑆𝑑
𝑖𝑗 =

1

2

(︀
𝑔2𝑖𝑗 + 𝑔2𝑗𝑖

)︀
. (3.89)

Finally, the velocity gradient squared ters are

𝑔2𝑖𝑗 =
𝜕𝑢𝑖
𝜕𝑥𝑘

𝜕𝑢𝑘
𝜕𝑥𝑗

(3.90)

and

𝑔2𝑗𝑖 =
𝜕𝑢𝑗
𝜕𝑥𝑘

𝜕𝑢𝑘
𝜕𝑥𝑖

. (3.91)

3.8.3 One Equation 𝑘𝑠𝑔𝑠

See 𝑘𝑠𝑔𝑠 PDE section.

3.8.4 SST RANS Model

As noted, Nalu does support a SST RANS-based model (the reader is referred to the SST equation set description).

3.8.5 UT-A Hybrid Turbulence Model

Work is in progress for implementing the UT-A hybrid turbulence model as initially described by S. Haering,
“Anisotropic hybrid turbulence modeling with specific application to the simulation of pulse-actuated dynamic stall
control” (Ph.D. thesis, University of Texas-Austin, 2015).

In this modeling approach, the eddy viscosity is defined as a tensor, 𝜇𝑡
𝑖𝑗 , to account for anisotropy present in the

underlying turbulence or introduced by the mesh. The SGS source term for Equation (3.1) becomes∫︁
𝛼𝜏𝑠𝑔𝑠𝑖𝑗 𝑛𝑗 d𝑆

where 𝛼 is an adaptivity parameter used to adjust the resolved and modeled fields in response to the ability of the mesh
to support the resolved turbulence. The SGS stress is then defined as

𝜏𝑠𝑔𝑠𝑖𝑗 = 𝜇𝑡
𝑖𝑘

𝜕̃︀𝑢𝑗
𝜕𝑥𝑘

+ 𝜇𝑡
𝑗𝑘

𝜕̃︀𝑢𝑖
𝜕𝑥𝑘

− 2

3
𝜌𝑘𝛿𝑖𝑗 .

3.8.6 Wall Models

Flows are either expected to be fully resolved or, alternatively, under-resolved where wall functions are used. A classic
law of the wall has been implemented in Nalu. Wall models to handle adverse pressure gradients are planned. For
more information of the form of wall models, please refer to the boundary condition section of this manual.

3.8. Turbulence Modeling 107

Nalu Documentation, Release 1.2.0

3.9 Supported Boundary Conditions

3.9.1 Inflow Boundary Condition

Continuity

Continuity uses a flux boundary condition with the incoming mass flow rate based on the user specified values for
velocity,

�̇�𝑐 = 𝜌𝑠𝑝𝑒𝑐𝑢𝑠𝑝𝑒𝑐𝑗 𝐴𝑗 .

As this is a vertex-based code, at inflow and Dirichlet wall boundary locations, the continuity equation uses the
specified velocity within the inflow boundary condition block.

Momentum, Mixture Fraction, Enthalpy, Species, 𝑘𝑠𝑔𝑠, k and 𝜔

These degree-of-freedoms (DOFs) each use a Dirichlet value with the specified user value. For all Dirichlet values,
the row is zeroed with a unity placed on the diagonal. The residual is zeroed and set to the difference between the
current value and user specified value.

3.9.2 Wall Boundary Conditions

Continuity

Continuity uses a no-op.

Momentum

When resolving the boundary layer, Momentum again uses a no-slip Dirichlet condition., e.g., 𝑢𝑖 = 0.

In the case of a wall model, a classic wall function is applied. The wall shear stress enters the discretization of the
momentum equations by the term ∫︁

𝜏𝑖𝑗𝑛𝑗𝑑𝑆 = −𝐹𝑤𝑖. (3.92)

Wall functions are used to prescribe the value of the wall shear stress rather than resolving the boundary layer within
the near-wall domain. The fundamental momentum law of the wall formulation, assuming fully-developed turbulent
flow near a no-slip wall, can be written as,

𝑢+ =
𝑢‖

𝑢𝜏
=

1

𝜅
ln
(︀
𝐸𝑦+

)︀
, (3.93)

where 𝑢+ is defined by the the near-wall parallel velocity, 𝑢‖, normalized by the wall friction velocity, 𝑢𝜏 . The wall
friction velocity is related to the turbulent kinetic energy by,

𝑢𝜏 = 𝐶1/4
𝜇 𝑘1/2. (3.94)

by assuming that the production and dissipation of turbulence is in local equilibrium. The wall friction velocity is also
computed given the density and wall shear stress,

𝑢𝜏 = (
𝜏𝑤
𝜌

)0.5.

108 Chapter 3. Sierra Low Mach Module: Nalu - Theory Manual

Nalu Documentation, Release 1.2.0

The normalized perpendicular distance from the point in question to the wall, 𝑦+, is defined as the following:

𝑦+ =
𝜌𝑌𝑝
𝜇

(︂
𝜏𝑤
𝜌

)︂1/2

=
𝜌𝑌𝑝𝑢𝜏
𝜇

. (3.95)

The classical law of the wall is as follows:

𝑢+ =
1

𝜅
ln(𝑦+) + 𝐶, (3.96)

where 𝜅 is the von Karman constant and 𝐶 is the dimensionless integration constant that varies based on authorship
and surface roughness. The above expression can be re-written as,

𝑢+ =
1

𝜅
ln(𝑦+) +

1

𝜅
ln(exp(𝜅𝐶)), (3.97)

or simplified to the following expression:

𝑢+ =
1

𝜅

(︀
ln(𝑦+) + ln(exp(𝜅𝐶))

)︀
=

1

𝜅
ln(𝐸𝑦+).

(3.98)

In the above equation, 𝐸, is referred to in the text as the dimensionless wall roughness parameter and is described by,

𝐸 = exp(𝜅𝐶). (3.99)

In Nalu, 𝜅 is set to the value of 0.42 while the value of 𝐸 is set to 9.8 for smooth walls (White suggests values of
𝜅 = 0.41 and 𝐸 = 7.768.). The viscous sublayer is assumed to extend to a value of 𝑦+ = 11.63.

The wall shear stress, 𝜏𝑤, can be expressed as,

𝜏𝑤 = 𝜌𝑢2𝜏 = 𝜌𝑢𝜏
𝑢‖

𝑢+
=

𝜌𝜅𝑢𝜏
ln (𝐸𝑦+)

𝑢‖ = 𝜆𝑤𝑢‖, (3.100)

where 𝜆𝑤 is simply the grouping of the factors from the law of the wall. For values of 𝑦+ less than 11.63, the wall
shear stress is given by,

𝜏𝑤 = 𝜇
𝑢‖

𝑌𝑝
. (3.101)

The force imparted by the wall, for the 𝑖𝑡ℎ component of velocity, can be written as,

𝐹𝑤,𝑖 = −𝜆𝑤𝐴𝑤𝑢𝑖‖, (3.102)

where 𝐴𝑤 is the total area over which the shear stress acts.

The use of a general, non-orthogonal mesh adds a slight complexity to specifying the force imparted on the fluid by
the wall. As shown in Equation (3.102), the velocity component parallel to the wall must be determined. Use of the
unit normal vector, 𝑛𝑗 , provides an easy way to determine the parallel velocity component by the following standard
vector projection:

Π𝑖𝑗 = [𝛿𝑖𝑗 − 𝑛𝑖𝑛𝑗] . (3.103)

Carrying out the projection of a general velocity, which is not necessarily parallel to the wall, yields the velocity vector
parallel to the wall,

𝑢𝑖‖ = Π𝑖𝑗𝑢𝑗 = 𝑢𝑖
(︀
1 − 𝑛𝑖

2
)︀
−

𝑛∑︁
𝑗=1;𝑗 ̸=𝑗

𝑢𝑗𝑛𝑖𝑛𝑗 . (3.104)

Note that the component that acts on the particular 𝑖𝑡ℎ component of velocity,

−𝜆𝑤𝐴𝑤 (1 − 𝑛𝑖𝑛𝑖)𝑢𝑖‖, (3.105)

provides a form that can be potentially treated implicitly; i.e., in a way to augment the diagonal dominance of the
central coefficient of the 𝑖𝑡ℎ component of velocity. The use of residual form adds a slight complexity to this implicit
formulation only in that appropriate right-hand-side source terms must be added.

3.9. Supported Boundary Conditions 109

Nalu Documentation, Release 1.2.0

Mixture Fraction

If a value is specified for each quantity within the wall boundary condition block, a Dirichlet condition is applied. If
no values are specified, a zero flux condition is applied.

Enthalpy

If the temperature is specified within the wall boundary condition block, a Dirichlet condition is always specified. Wall
functions for enthalpy transport have not yet been implemented.

The simulation tool supports multi-physics coupling via conjugate heat transfer and radiative heat transfer. Coupling
parameters required for the thermal boundary condition are post processed by the fluids or PMR Realm. For conjugate
and radiative coupling, the thermal solve provides the surface temperature. From the surface temperature, a wall
enthalpy is computed and used.

Thermal Heat Conduction

If a temperature is specified in the wall block, and the surface is not an interface condition, then a Dirichlet approach
is used. If conjugate heat transfer is included, then the boundary condition applied is as follows,

−𝜅 𝜕𝑇
𝜕𝑥𝑗

𝑛𝑗𝑑𝑆 = ℎ(𝑇 − 𝑇 𝑜)𝑑𝑆,

where ℎ is the heat transfer coefficient and 𝑇 𝑜 is the reference temperature. The details of how these quantities are
computed are currently omitted in this manual. In general, the quantities are post processed from the fluids temperature
field. A surface-based gradient is computed on the boundary face. Nodes on the face augment a heat transfer coefficient
field while nodes off the face contribute to a reference temperature.

For radiative heat transfer, the boundary condition applied is as follows:

−𝜅 𝜕𝑇
𝜕𝑥𝑗

𝑛𝑗𝑑𝑆 = 𝜖(𝜎𝑇 4 −𝐻)𝑑𝑆,

where 𝐻 is again the irradiation provided by the RTE solve.

If no temperature is specified or an adiabatic line command is used, a zero flux condition is applied.

Species

If a value is specified for each quantity within the wall boundary condition block, a Dirichlet condition is applied. If
no values are specified, a zero flux condition is applied.

3.9.3 Atmospheric Boundary Layer Surface Conditions

Monin-Obukhov Theory

Consider atmospheric flow over a flat but non-smooth surface; the coordinate system convention is that flow is along
the 𝑥-axis, while the 𝑧-axis is oriented normal to the surface. The surface layer is the relatively thin layer near the
surface where strong wind and temperature gradients exist. Turbulence within this layer can be generated through
mechanisms of both shear and thermal convection; the relative contributions of these two mechanisms is determined
by the stability state of the atmosphere. The stability state is characterized by the Monin-Obukhov length:

𝐿 = − 𝑢3𝜏𝜃𝑟𝑒𝑓

𝜅𝑔(𝑤′𝜃′)𝑠
;

110 Chapter 3. Sierra Low Mach Module: Nalu - Theory Manual

Nalu Documentation, Release 1.2.0

𝑢𝜏 is the friction velocity, defined as the square root of the magnitude of the Reynolds shear stress at the surface, or

𝑢𝜏 =
(︁
𝑤′𝑢′

2
+ 𝑤′𝑣′

2
)︁1/4

=

√︂
𝜏𝑠
𝜌𝑠

𝜃𝑟𝑒𝑓 is a reference (virtual potential) temperature associated with the air within the surface layer; for example, the
average temperature within the surface layer. 𝜅 ≈ 0.41 is the von Karman constant, and 𝑔 is the acceleration of
gravity. 𝑤′𝜃′𝑠 is the surface turbulent temperature flux. Both the turbulent shear stress and turbulent temperature flux
are approximately constant within the surface layer.

Applying a gradient diffusion model for the turbulent temperature flux leads to:

𝑤′𝜃′𝑠 = −𝑘𝑇
𝜕𝜃

𝜕𝑧

The sign of 𝐿 is then connected to the sign of the temperature gradient within the surface layer. Three regimes are
delineated:

• 1
𝐿 > 0, 𝜕𝜃

𝜕𝑧 > 0, stable stratification

• 1
𝐿 = 0, 𝜕𝜃

𝜕𝑧 = 0, neutral stratification

• 1
𝐿 < 0, 𝜕𝜃

𝜕𝑧 < 0, unstable stratification

Monin-Obukhov theory postulates the following similarity laws for mean velocity parallel to the surface and temper-
ature,

𝜅𝑧

𝑢𝜏

𝜕𝑢||

𝜕𝑧
= 𝜑𝑚

(︁ 𝑧
𝐿

)︁
, (3.106)

𝜅𝑧𝑢𝜏

𝑤′𝜃′𝑠

𝜕𝜃

𝜕𝑧
= 𝜑ℎ

(︁ 𝑧
𝐿

)︁
, (3.107)

where the forms of the non-dimensional functions 𝜑𝑚 and 𝜑ℎ are determined from empirical observations. Analytical
functions have been fit to the data; these are not given here, rather, we present the integrated form of ((3.106)) and
((3.107)), since these are the forms required by the code implementation.

For neutral stratification, 𝜑𝑚 = 1 and we recover the logarithmic profile for a “fully rough” surface,

𝑢||(𝑧) =
𝑢𝜏
𝜅

ln
𝑧

𝑧0
, (3.108)

where 𝑧0 is the characteristic roughness height. Note that viscous scaling involving surface viscosity and density
properties is not required with this form of the logarithmic profile, since the roughness height is large enough to
eliminate the presence of a laminar sublayer and buffer layer.

For stable stratification, the surface layer profiles take the form

𝑢||(𝑧) =
𝑢𝜏
𝜅

(︂
ln

𝑧

𝑧0
+ 𝛾𝑚

𝑧

𝐿

)︂
(3.109)

𝜃(𝑧) = 𝜃(𝑧0) +
𝜃*
𝜅

(︂
𝛼ℎ ln

𝑧

𝑧0
+ 𝛾ℎ

𝑧

𝐿

)︂
(3.110)

𝜃* is calculated from the temperature flux and friction velocity as 𝜃* = −𝑤′𝜃′
𝑠

𝑢𝜏
, and 𝛾𝑚, 𝛼ℎ, and 𝛾ℎ are constants

specified below.

For unstable stratification, the surface layer profiles take the form

𝑢||(𝑧) =
𝑢𝜏
𝜅

(︂
ln

𝑧

𝑧0
− 𝜓𝑚

(︁ 𝑧
𝐿

)︁)︂
(3.111)

3.9. Supported Boundary Conditions 111

Nalu Documentation, Release 1.2.0

𝜃(𝑧) = 𝜃(𝑧0) + 𝛼ℎ
𝜃*
𝜅

(︂
ln

𝑧

𝑧0
− 𝜓ℎ

(︁ 𝑧
𝐿

)︁)︂
(3.112)

where

𝜓𝑚

(︁ 𝑧
𝐿

)︁
= 2 ln

1 + 𝑥

2
+ ln

1 + 𝑥2

2
− 2 tan−1 𝑥+

𝜋

2
, 𝑥 =

(︁
1 − 𝛽𝑚

𝑧

𝐿

)︁1/4
, (3.113)

𝜓ℎ

(︁ 𝑧
𝐿

)︁
= ln

1 + 𝑦

2
, 𝑦 =

(︁
1 − 𝛽ℎ

𝑧

𝐿

)︁1/2
. (3.114)

The constants used in ((3.109)) – ((3.114)) are [Dye74]

𝜅 = 0.41, 𝛼ℎ = 1, 𝛽𝑚 = 16, 𝛽ℎ = 16, 𝛾𝑚 = 5.0, 𝛾ℎ = 5.0.

ABL Wall Function

The equations from the preceeding section can be used to formulate a wall function boundary condition for simulation
of atmospheric boundary layers. The user-specified inputs to this boundary condition are: roughness length, 𝑧0, and
surface heat flux, 𝑞𝑠 = 𝜌𝐶𝑝(𝑤′𝜃′)𝑠. The surface layer profile model is evaluated for each surface boundary flux
integration point; the wall-normal distance of the “first point off the wall” is taken to be one fourth of the length of the
nearest edge intersecting the boundary face. The boundary condition is specified weakly through the imposition of a
surface shear stress and surface heat flux.

The procedure for applying the boundary condition is as follows:

1. Determine the stratification state of the boundary layer by calculating the sign of the Monin-Obukhov length
scale.

2. Solve the appropriate profile equation, either ((3.108)), ((3.109)), or ((3.111)), for the friction velocity 𝑢𝜏 . For
the neutral case, 𝑢𝜏 can be solved for directly. For the stable and unstable cases, 𝑢𝜏 must be solved for iteratively
because 𝐿 appears in these equations and 𝐿 depends on 𝑢𝜏 .

3. The surface shear stress is calculated as 𝜏𝑠 = 𝜌𝑠𝑢
2
𝜏 . For calculating left-hand-side Jacobian entries, the form

(3.115) is used, where 𝜓′ is zero for a neutral profile, −𝛾𝑚𝑧/𝐿 for a stable profile, and 𝜓ℎ(𝑧/𝐿) for an unstable
profile. The Jacobian entries follow directly from this form.

4. The user specified surface heat flux is applied to the enthalpy equation. Evaluation of surface temperature is not
required for the boundary condition specification. However, if surface temperature is required for evaluation of
other quantities within the code, the appropriate surface layer temperature profile should be used, either ((3.110))
or ((3.112)).

𝜏𝑠𝑖 = 𝜆𝑠𝑢||𝑖 =
𝜅𝜌𝑢𝜏

log(𝑧/𝑧0) − 𝜓′(𝑧/𝐿)
, (3.115)

3.9.4 Turbulent Kinetic Energy, 𝑘𝑠𝑔𝑠 LES model

When the boundary layer is assumed to be resolved, the natural boundary condition is a Dirichlet value of zero,
𝑘𝑠𝑔𝑠 = 0.

When the wall model is used, a standard wall function approach is used with the assumption of equal production and
dissipation.

The turbulent kinetic energy production term is consistent with the law of the wall formulation and can be expressed
as,

𝑃𝑘𝑤 = 𝜏𝑤
𝜕𝑢‖

𝜕𝑦
. (3.116)

112 Chapter 3. Sierra Low Mach Module: Nalu - Theory Manual

Nalu Documentation, Release 1.2.0

The parallel velocity, 𝑢‖, can be related to the wall shear stress by,

𝜏𝑤
𝑢+

𝑦+
= 𝜇

𝑢‖

𝑌𝑝
. (3.117)

Taking the derivative of both sides of Equation (3.117), and substituting this relationship into Equation (3.116) yields,

𝑃𝑘𝑤 =
𝜏2𝑤
𝜇

𝜕𝑢+

𝜕𝑦+
. (3.118)

Applying the derivative of the law of the wall formulation, Equation (3.93), provides the functional form of 𝜕𝑢+/𝜕𝑦+,

𝜕𝑢+

𝜕𝑦+
=

𝜕

𝜕𝑦+

[︂
1

𝜅
ln
(︀
𝐸𝑦+

)︀]︂
=

1

𝜅𝑦+
. (3.119)

Substituting Equation (3.93) within Equation (3.118) yields a commonly used form of the near wall production term,

𝑃𝑘𝑤 =
𝜏𝑤

2

𝜌𝜅𝑢𝜏𝑌𝑝
. (3.120)

Assuming local equilibrium, 𝑃𝑘 = 𝜌𝜖, and using Equation (3.120) and Equation (3.94) provides the form of wall shear
stress is given by,

𝜏𝑤 = 𝜌𝐶1/2
𝜇 𝑘. (3.121)

Under the above assumptions, the near wall value for turbulent kinetic energy, in the absence of convection, diffusion,
or accumulation is given by,

𝑘 =
𝑢2𝜏

𝐶
1/2
𝜇

. (3.122)

This expression for turbulent kinetic energy is evaluated at the boundary faces of the exposed wall boundaries and is
area-assembled to the nodal value for use in a Dirichlet condition.

Turbulent Kinetic Energy and Specific Dissipation SST Low Reynolds Number Boundary conditions

For the turbulent kinetic energy equation, the wall boundary conditions follow that described for the 𝑘𝑠𝑔𝑠 model, i.e.,
𝑘 = 0.

A Dirichlet condition is also used on 𝜔. For this boundary condition, the 𝜔 equation depends only on the near-wall
grid spacing. The boundary condition is given by,

𝜔 =
6𝜈

𝛽1𝑦2
,

which is valid for 𝑦+ < 3.

Turbulent Kinetic Energy and Specific Dissipation SST High Reynolds Number Boundary conditions

The high Reynolds approach uses the law of the wall assumption and also follows the description provided in the wall
modeling section with only a slight modification in constant syntax,

𝑘 =
𝑢2𝜏√
𝛽* . (3.123)

3.9. Supported Boundary Conditions 113

Nalu Documentation, Release 1.2.0

In the case of 𝜔, an analytic expression is known in the log layer:

𝜔 =
𝑢𝜏√
𝛽*𝜅𝑦

,

which is independent of 𝑘. Because all these expressions require 𝑦 to be in the log layer, they should absolutely not
be used unless it can be guaranteed that 𝑦+ > 10, and 𝑦+ > 25 is preferable. Automatic blending is not currently
supported.

Solid Stress

The boundary conditions applied are either force provided by a static pressure,

𝐹𝑛
𝑖 =

∫︁
𝑃𝑛𝑖𝑑𝑆, (3.124)

or a Dirichlet condition, i.e., 𝑢𝑖 = 𝑢𝑠𝑝𝑒𝑐𝑖 , on the displacement field. Above, 𝐹𝑛
𝑖 is the force for component 𝑖 due to a

prescribed [static] pressure.

Intensity

The boundary condition for each intensity assumes a grey, diffuse surface as,

𝐼 (𝑠) =
1

𝜋

[︀
𝜏𝜎𝑇 4

∞ + 𝜖𝜎𝑇 4
𝑤 + (1 − 𝜖− 𝜏)𝐾

]︀
. (3.125)

3.9.5 Open Boundary Condition

Open boundary conditions require far more care. In general, open bcs are assembled by iterating faces and the bound-
ary integration points on the exposed face. The parent element is also required since oftentimes gradients are used (for
momentum). For an open boundary condition the flow can either leave or enter the domain depending on what the
computed mass flow rate at the exposed boundary integration point is.

Continuity

For continuity, the boundary mass flow rate must also be computed. This value is stored and used for the other
equations that require advection. The same formula is used for the pressure-stabilized mass flow rate. However,
the local pressure gradient for each boundary contribution is based on the difference between the interior integration
point and the user-specified pressure which takes on the boundary value. The interior integration point is determined
by linear interpolation. For CVFEM, full elemental averaging is used while in EBVC discretization, the midpoint
value between the nearest node and opposing node to the boundary integration point is used. In both discretization
approaches, non-orthogonal corrections are required. This procedure has been very important for stability for CVFEM
tet-based meshes where a natural non-orthogonality exists between the boundary and interior integration point.

For wind energy applications, the usage of the standard open boundary mass flow rate expression, which includes
pressure contributions, is not appropriate due to complex temperature/buoyancy specifications. In these cases, a global
correction algorithm is supported. Specifically, pressure terms are dropped at the open boundary mass flow rate
expression in favor or a pre-processing algorithm that uniformly distributes the continuity mass flow rate (and possible
density accumulation) “error” over the entire set of open boundary conditions. The global correction scheme may
perform well with single open boundary condition specification, e.g., multiple inflows with a single open location,
however, it is to be avoided if the flow leaving the domain is complex in that a simulation includes multiple open
boundary conditions. A complex situation might be an open jet with entrainment from the side (open boundary that
allows for inflow) and a top open that allows for outflow. However, a routine case might be a backward facing step

114 Chapter 3. Sierra Low Mach Module: Nalu - Theory Manual

Nalu Documentation, Release 1.2.0

with a single inflow, side periodic, top wall and open boundary. Not that the ability for the continuity solve to be well
conditioned may require an interior Dirichlet on pressure as the open pressure specification for the global correction
algorithm is lacking. In most cases, a Dirichlet condition is not actually required as the NULL-space of the continuity
system may not be found in the solve.

Momentum

For momentum, the normal component of the stress is subtracted out we subtract out the normal component of the
stress. The normal stress component for component i can be written as 𝐹𝑘𝑛𝑘𝑛𝑖. The tangential component for
component i is simply, 𝐹𝑖 − 𝐹𝑘𝑛𝑘𝑛𝑖. As an example, the tangential viscous stress for component x is,

𝐹𝑇
𝑥 = 𝐹𝑥 − (𝐹𝑥𝑛𝑥 + 𝐹𝑦𝑛𝑦)𝑛𝑥,

which can be written in general component form as,

𝐹𝑇
𝑖 = 𝐹𝑖(1 − 𝑛𝑖𝑛𝑖) −

∑︁
𝑖!=𝑗

𝐹𝑗𝑛𝑖𝑛𝑗 .

Finally, the normal stress contribution is applied based on the user specified pressure,

𝐹𝑁
𝑖 = 𝑃𝑆𝑝𝑒𝑐𝐴𝑖.

For CVFEM, the face gradient operators are used for the thermal stress terms. For EBVC discretization, from the
boundary integration point, the nearest node (the “Right” state) is used as well as the opposing node (the “Left” state).
The nearest node and opposing node are used to compute gradients required for any derivatives. This equation follows
the standard gradient description in the diffusion section with non-orthogonal corrections used. In this formulation,
the area vector is taken to be the exposed area vector. Non-orthogonal terms are noted when the area vector and edge
vector are not aligned.

For advection, If the flow is leaving the domain, we simply advect the nearest nodal value to the boundary integration
point. If the flow is coming into the domain, we simply confine the flow to be normal to the open boundary integration
point area vector. The value entrained can be the nearest node or an upstream velocity value defined by the edge
midpoint value.

Mixture Fraction, Enthalpy, Species, 𝑘𝑠𝑔𝑠, k and 𝜔

Open boundary conditions assume a zero normal gradient. When flow is entering the domain, the far-field user supplied
value is used. Far field values are used for property evaluations. When flow is leaving the domain, the flow is advected
out consistent with the choice of interior advection operator.

3.9.6 Symmetry Boundary Condition

Continuity, Mixture Fraction, Enthalpy, Species, 𝑘𝑠𝑔𝑠, k and 𝜔

Zero diffusion is applied at the symmetry bc.

Momentum

A symmetry boundary is one that is described by removal of the tangential stress. Therefore, only the normal compo-
nent of the stress is applied:

𝐹𝑛
𝑥 = (𝐹𝑥𝑛𝑥 + 𝐹𝑦𝑛𝑦)𝑛𝑥,

which can be written in general component form as,

𝐹𝑛
𝑖 = 𝐹𝑗𝑛𝑗𝑛𝑖.

3.9. Supported Boundary Conditions 115

Nalu Documentation, Release 1.2.0

Specified Boundary-Normal Temperature Gradient Option

The standard symmetry boundary condition applies zero diffusion at the boundary for scalar quantities, which effec-
tively results in those scalars having a zero boundary-normal gradient. There are situations, especially for atmospheric
flows in which the user may desire a finite boundary-normal gradient of temperature. For example, the atmospheric
boundary layer is often simulated with a stably stratified capping inversion in which the temperature linearly increases
with height all the way to the upper domain boundary. We apply symmetry conditions to this upper boundary for mo-
mentum, but we specify the boundary-normal temperature gradient on this boundary to match the capping inversion’s
gradient.

This is an option in the symmetry boundary condition specification, which appears in the input file as:

- symmetry_boundary_condition: bc_upper
target_name: upper
symmetry_user_data:
normal_temperature_gradient: -0.003

In this example, the temperature gradient normal to the symmetry boundary is set to -0.003 K/m, where the boundary-
normal direction is pointed into the domain.

Nalu does not solve a transport equation for temperature directly, but rather it solves one for enthalpy. Therfore, the
boundary-normal temperature gradient condition is applied internally in the code through application of a compatible
heat flux,

𝑞𝑛 = −𝜅𝑒𝑓𝑓𝑐𝑝
𝜕𝑇

𝜕𝑛

where 𝑞𝑛 is the heat flux at the boundary, 𝜅𝑒𝑓𝑓 is the effective thermal diffusivity (the molecular and turbulent parts),
𝑐𝑝 is the specific heat, and 𝜕𝑇/𝜕𝑛 is the boundary-normal temperature gradient.

3.9.7 Periodic Boundary Condition

A parallel multiple-periodic boundary condition is supported. Mappings are created between master/slave surface
node pairs. The node pairs are obtained from a parallel search and are expected to be unique. The node pairs are used
to map the slave global id to that of the master. This allows the linear system to include matrix rows for only a subset
of the overall set of nodes. Moreover, a periodic assembly for assembled quantities is managed via: 𝑚+ = 𝑠 and
𝑠 = 𝑚, where 𝑚 and 𝑠 are master/slave nodes, respectively. For each parallel assembled quantity, e.g., dual volume,
turbulence quantities, etc., this procedure is used. Periodic boxes and periodic couette and channel flow have been
simulated in this code base. Tow forms of parallel searches exist and are supported (one through the Boost TPL and
another through the STK Search module).

3.9.8 Non-conformal Boundary Condition

A surface-based approach based on a DG method has been discussed in the 2010 CTR summer proceedings by
Domino, [Dom10]. Both the edge- and element-based formulation currently exists in the code base using the CVFEM
and EBVC approaches.

Consider two domains,𝐴 and𝐵, which have a common interface, Γ𝐴𝐵 , and a set of interfaces not in common, Γ∖Γ𝐴𝐵

(see Figure Fig. 3.6), and assume that the solution of the time-dependent advection/diffusion equation is to be solved
in both domains. Each domain has a set of outwardly pointing normals. In this cartoon, the interface is well resolved,
although in practice this may not be the case.

An interior penalty approach is constructed at each integration point at the exposed surface set. The numerical flux for
a general scalar 𝜑 is constructed at the current integration point which is based on the current (𝐴) and opposing (𝐵)

116 Chapter 3. Sierra Low Mach Module: Nalu - Theory Manual

Nalu Documentation, Release 1.2.0

Fig. 3.6: Two-block example with one common surface, Γ𝐴𝐵 .

elemental contributions,∫︁
�̂�𝐴𝑑𝑆 =

∫︁
[
(𝑞𝐴𝑗 𝑛

𝐴
𝑗 − 𝑞𝐵𝑗 𝑛

𝐵
𝑗)

2
+ 𝜆𝐴(𝜑𝐴 − 𝜑𝐵)]𝑑𝑆𝐴 + �̇�𝐴 (𝜑𝐴 + 𝜑𝐵)

2
+ 𝜂

|�̇�𝐴|
2

(𝜑𝐴 − 𝜑𝐵), (3.126)

where 𝑞𝐴𝑗 and 𝑞𝐵𝑗 are the diffusive fluxes computed using the current and opposing elements and normals are outward
facing. The penalty coefficient 𝜆𝐴 contains the diffusive contributions averaged over the two elements,

𝜆𝐴 =
(Γ𝐴/𝐿𝐴 + Γ𝐵/𝐿𝐵)

2
. (3.127)

Above, Γ𝑘 is the diffusive flux coefficient evaluated at current and opposing element location, respectively, and 𝐿𝑘

is an elemental length scale normal to the surface (again for current and opposing locations, 𝐴 and :math‘B‘). When
upwinding is activated, the value of 𝜂 is unity.

As written in Equation (3.126), the default convection and diffusion term is a Galerkin approach, i.e., equally averaged
between the current and opposing face. The standard advection term is given by,∫︁

𝜌�̂�𝑗𝜑𝑛𝑗𝑑𝑆. (3.128)

For surface A, the form is as follows: ∫︁
𝜌�̂�𝐴𝑗 𝜑𝑛

𝐴
𝑗 𝑑𝑆

𝐴 = �̇�𝐴𝜑
𝐴 + 𝜑𝐵

2
, (3.129)

with the nonconformal mass flow rate given by,

�̇�𝐴 = [
(𝜌𝑢𝐴𝑗 + 𝛾(𝜏𝐺𝐴

𝑗 𝑝− 𝜏 𝜕𝑝𝐴

𝜕𝑥𝑗
))𝑛𝐴𝑗 − (𝜌𝑢𝐵𝑗 + 𝛾(𝜏𝐺𝐵

𝑗 𝑝− 𝜏 𝜕𝑝𝐵

𝜕𝑥𝑗
))𝑛𝐵𝑗

2
+ 𝜆𝐴(𝑝𝐴 − 𝑝𝐵)]𝑑𝑆𝐴. (3.130)

In the above set of expressions, the consistent definition of �̂�𝑗 , i.e., the convecting velocity including possible pressure
stabilization terms, is retained.

As with the interior advection scheme, the mass flow rate involves pressure stabilization terms. The value of 𝛾 defines
whether or not the full pressure stabilization terms are included in the mass flow rate expression. Equation (3.130)
also forms the continuity nonconformal boundary contribution.

3.9. Supported Boundary Conditions 117

Nalu Documentation, Release 1.2.0

With the substitution of 𝜂 to be unity, the effective convective term is as follows:∫︁
𝜌�̂�𝑗𝜑𝑛

𝐴
𝑗 𝑑𝑆

𝐴 =
(�̇�𝐴 + |�̇�𝐴|)𝜑𝐴 + (�̇�𝐴 − |�̇�𝐴|)𝜑𝐵

2
. (3.131)

Note that this form reduces to a standard upwind operator.

Since this algorithm is a dual pass approach, a numerical flux can be written for the integration point on block 𝐵,∫︁
�̂�𝐵𝑑𝑆 =

∫︁
[
(𝑞𝐵𝑗 𝑛

𝐵
𝑗 − 𝑞𝐴𝑗 𝑛

𝐴
𝑗)

2
+ 𝜆𝐵(𝜑𝐵 − 𝜑𝐴)]𝑑𝑆𝐴 + �̇�𝐵 (𝜑𝐵 + 𝜑𝐴)

2
+ 𝜂

|�̇�𝐵 |
2

(𝜑𝐵 − 𝜑𝐴). (3.132)

As with Equation (3.132), �̇�𝐵 (see Equation (3.133)) is of similar form to �̇�𝐴,

�̇�𝐵 = [
(𝜌𝑢𝐵𝑗 + 𝛾(𝜏𝐺𝐵

𝑗 𝑝− 𝜏 𝜕𝑝𝐵

𝜕𝑥𝑗
))𝑛𝐵𝑗 − (𝜌𝑢𝐴𝑗 + 𝛾(𝜏𝐺𝐴

𝑗 𝑝− 𝜏 𝜕𝑝𝐴

𝜕𝑥𝑗
))𝑛𝐴𝑗

2
+ 𝜆𝐴(𝑝𝐵 − 𝑝𝐴)]𝑑𝑆𝐵 . (3.133)

For low-order meshes with curved surface, faceting will occur. In this case, the outward facing normals may not be
(sign)-unity factors of each other. In this case, it may be adventageous to define the opposing outward normal as,
𝑛𝐵𝑗 = −𝑛𝐴𝑗 .

Domino, [Dom10] provided an overview of a FEM fluids implementation. In such a formulation, the interior penalty
term appears, i.e., ∫︁

Γ𝐴𝐵

𝜕𝑤𝐴

𝜕𝑥𝑗
𝑛𝑗𝜆(𝜑𝐴 − 𝜑𝐵)𝑑Γ,

and ∫︁
Γ𝐵𝐴

𝜕𝑤𝐵

𝜕𝑥𝑗
𝑛𝑗𝜆(𝜑𝐵 − 𝜑𝐴)𝑑Γ.

Although the sign of this term is often debated in the literature, the above set of expressions acts to increase penalty
term stencil to include the full element contribution. As the CVFEM uses a piecewise-constant test function, this term
is currently neglected.

Average fluxes are computed based on the current and opposing integration point locations. The appropriate DG terms
are assembled as boundary conditions first with block 𝐴 integration points as 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 (integrations points for block
B are 𝑜𝑝𝑝𝑜𝑠𝑖𝑛𝑔) and then with block 𝐵 integration points as 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 (surfaces for block A are, therefore, 𝑜𝑝𝑝𝑜𝑠𝑖𝑛𝑔).
Figure Fig. 3.6 graphically demonstrates the procedure in which integration point values of the flux and penalty term
are computed on the block 𝐴 surface and at the projected location of block 𝐵.

A parallel search is conducted to project the current integration point location to the opposing element exposed face.
The search, therefore, provides the isoparametric coordinates on the opposing element. Elemental shape functions and
shape function derivatives are used to construct the numerical flux for both the edge- and element-based scheme. The
location of the Gauss points on the current element are either the Gauss Labatto or Gauss Legendre locations (input
file specification). For each equation (momentum, continuity, enthalpy, etc.) the numerical flux is computed at each
exposed non-conformal surface.

As noted, for most equations other than continuity and heat condition, the numerical flux includes advection and
diffusion contributions. The diffusive contribution is easily provided using elemental shape function derivatives at the
current and opposing surface.

Above, special care is taken for the value of the mass flow rate at the non-conformal interface. Also, note that the above
written form does not upwind the advective flux, although the code allows for an upwinded approach. In general, the
advective term contains contributions from both elements identified at the interface, specifically.

The penalty coefficient for the mass flow rate at the non-conformal boundary points is again a function of the blended
inverse length scale at the current and opposing element surface location. The form of the mass flow rate above pro-
vides the continuity contribution and the form of the mass flow rate used in the scalar non-conformal flux contribution.

118 Chapter 3. Sierra Low Mach Module: Nalu - Theory Manual

Nalu Documentation, Release 1.2.0

Fig. 3.7: Description of the numerical flux calculation for the DG algorithm. The value of fluxes and penalty values
on the current block (𝐴) and the opposing block (𝐵) are used for the calculation of numerical fluxes. 𝜙 represents the
projected value.

The full connectivity for element integration and opposing elements is within the linear system. As such, for sliding
mesh configurations, the linear system connectivity graph changes each time step. Recent prototyping of the dG-based
and the overset scheme has allowed this method to be used across both disparate low-order topologies (see Figure Fig.
3.8 and Figure Fig. 3.9).

3.10 Overset

Nalu supports simulations using an overset mesh methodology to model complex geometries. Currently the codebase
supports two approaches to determine overset mesh connectivity:

1. Overset mesh hole-cutting algorithm based on native STK search routines, and

2. Hole-cutting and donor/reception determination using the TIOGA (Topology Independent Overset Grid Assem-
bly) TPL.

The native STK based overset grid assembly (OGA) requires no additional packages, but is limited to simple geome-
tries where the search and hole-cutting procedure works only simple rectangular boundaries (for the inner mesh) that
are aligned along the major axes. On the other hand, TIOGA based hole cutting is capable of performing overset
grid assembly on arbitrary mesh geometries and orientation, supports generalized mesh motion, and can determine
donor/recipient status with multiple meshes overlapping in the same space. A specific use-case for the need to perform
OGA on multiple meshes is the simulation of a wind turbine in an atmospheric boundary layer, where the turbine
blade, nacelle, and the background ABL mesh might all overlap near the rotor hub.

3.10.1 Overset Grid Assembly using Native STK Search

The overset descriptions begins with the basic background mesh (block 1) and overset mesh (block 2) depicted in
Figure Fig. 3.10. Also shown in this figure is the reduction outer surface of block 2 (light blue). Elements within
this reduced overset block will be determined by a parallel search. The collection of elements within this bounding
box will be skinned to form a surface on which orphan nodes are placed. Elements within this volume are set in a
new internally managed inactive block. These mesh entities are fully removed from the overall matrix for each dof.
Elements within this volume are provided a masking integer element varibale of unity to select out of the visualizattion

3.10. Overset 119

https://github.com/jsitaraman/tioga

Nalu Documentation, Release 1.2.0

Fig. 3.8: A low-order and high-order block interface (P=1 quad4 and P=2 quad9) for a MMS temperature solution.
In this image, the inset image is a close-up of the nodal Ids near the interface that highlights the quad4 and quad9
interface.

Fig. 3.9: Discontinuous Galerkin non-conformal interface mixed topology (hex8/tet4).

120 Chapter 3. Sierra Low Mach Module: Nalu - Theory Manual

Nalu Documentation, Release 1.2.0

Fig. 3.10: Two-block use case describing background mesh (block 1) and overset mesh (block 2).

tool. Therefore, orphan nodes live at the external boundary of block 2 and along the reduced surface. The parallel
search provides the mapping of orphan node and owning element from which the state can be constructed.

After the full search and overset initialization, this simple example yields the original block 1 and 2, the newly created
inactive block 3, the original surface of the overset mesh and the new skinned surface (101) of the inactive block
(Figure Fig. 3.11).

Fig. 3.11: Three-block and two surface, post over set initialization.

A simple heat conduction example is provided in Figure Fig. 3.12 where the circular boundary is set at a temperature
of 500 with all external boundaries set to adiabatic.

As noted before, every orphan node lies within an owning element. Sufficient overlap is required to make the system
well posed. A fully implicit procedure is provided by writing the orphan node value as a linear constraint of the owning
element (Figure Fig. 3.13).

For completeness, the constraint equation for any dof 𝜑𝑜 is simply,

𝜑𝑜 −
∑︁

𝑁𝑘𝜑𝑘 = 0. (3.134)

3.10. Overset 121

Nalu Documentation, Release 1.2.0

Fig. 3.12: A simple heat conduction example providing the overset mesh and donor orphan nodes.

Fig. 3.13: Orphan nodes for background and overset mesh for which a fully implicit constraint equation is written.

122 Chapter 3. Sierra Low Mach Module: Nalu - Theory Manual

Nalu Documentation, Release 1.2.0

As noted, full sensitivities are provided in the linear system by constructing a row entry with the columns of the nodes
within the owning element and the orphan node itself.

Finally, a mixed hex/tet mesh configuration example (overset mesh is tet while background is hex) is provided in
Figure Fig. 3.14.

Fig. 3.14: Flow past a three-dimensional sphere using a hybrid topology (hex/tet) mesh configuration.

3.10.2 Overset Grid Assembly using TIOGA

Topology Independent Overset Grid Assembler (TIOGA) is an open-source connectivity package that was developed
as an academic/research counterpart for PUNDIT (the overset grid assembler used in NASA/Army CREATE A/V
program and HELIOS). The base library has been modified to remove the limitation where each MPI rank could only
own one mesh block. The code has been extended to handle multiple mesh blocks per MPI rank to support Nalu’s
mesh decomposition strategies.

TIOGA uses a different nomenclature for overset mesh assembly. A brief description is provided here to familiarize
users with the differences in nomenclature used in the previous section. When determining overset connectivity,
TIOGA ends up assigning IBLANK values to the nodes in a mesh. The IBLANK field is an integer field that determines
the status of the node which can be one of three states:

field point

A field point is a node that behaves as a normal mesh point, i.e., the equations are solved on these nodes
and the linear system assembly proceeds as normal. The field points are indicated by an IBLANK value
of 1.

fringe point

3.10. Overset 123

Nalu Documentation, Release 1.2.0

A fringe point is a receptor on the receving mesh where the solution field is mapped from the donor
element. A fringe point is indicated by an IBLANK value of -1. Fringe points are how information is
transferred between the participating meshes. Note that fringe points are referred to as orphan points in
the STK based overset description.

hole point

A hole point is a node on a mesh that occurs inside a solid body being modeled in another mesh. These
points have no valid solution for the equations solved and should not participate in the linear system.

In addition to the IBLANK status, the following terms are useful when using TIOGA

donor element

The element that is used to interpolate field data from donor mesh to a recipient mesh. While TIOGA
provides flow interpolation routines, the current implementation in Nalu uses the MasterElement
classes in Nalu to maintain consistency between the STK and the TIOGA overset implementations.

orphan points

The term orphan point is used differently in TIOGA than the STK based overset implementation. TIOGA
refers to nodes as orphan points when there it cannot find a suitable donor element for those nodes that
are considered fringe points. This can happen when the nodes on the enclosing element are themselves
labeled fringe points.

Unlike the STK based hole cutting approach, that uses predefined bounding boxes to determine donor/receptor loca-
tions, TIOGA uses the element volume as the metric to determine the field and fringe points. The high level hole
cutting algorithm can be described in the following steps:

• Determine and tag hole points that are fully enclosed within solid bodies, tag neighboring points to be fringe
points.

• Determine and flag all mandatory fringe points, e.g., embedded boundaries of interior meshes.

• Determine fringe locations for the exterior meshes where information is transferred back from interior meshes
to the exterior/background mesh.

In the current integration, only the hole-cutting and donor/receptor information is processed by the TIOGA library.
The linear system assembly, specifically the constraint equations for the fringe points are managed by the same classes
that are used with the native STK hole-cutting approach.

Figure Fig. 3.15 shows the field and fringe points as determined by TIOGA during the hole-cutting process. The
central white region shows the mesh points of the interior mesh. The salmon colored region shows the overlapping
field points where the flow equations are solved on both participating meshes. The green-ish boundary shows the
mandatory fringe points for the interior mesh along its outer boundary. The interior boundary of the overlap region
are the fringe points for the background mesh where information is transferred from the interior mesh. The extent of
the overlap region is determined by the number of element layers necessary to ensure adequate separation between the
fringe boundaries on the participating meshes.

Figure tioga-overset-cyl shows the resulting overset assembly for cylinder mesh and a background mesh with
an intermediate refinement zone. The hole points (inside the cylinder) have been removed from the linear system for
both the intermediate and background mesh. The magenta region shows the overlap of field points of the cylinder and
the intermediate mesh. And the yellow region shows the overlap between the background and the intermediate mesh.

Figures Fig. 3.17 and Fig. 3.18 shown the velocity and vorticity contours for the flow past a cylinder simulated using
the overset mesh methodology with TIOGA overset connectivity.

124 Chapter 3. Sierra Low Mach Module: Nalu - Theory Manual

Nalu Documentation, Release 1.2.0

Fig. 3.15: TIOGA overset hole cutting for a rotated internal mesh configuration showing the field and fringe locations.

Fig. 3.16: Overset mesh configuration for simulating flow past a cylinder using a three mesh setup: near-body, body-
fitted cylinder mesh, intermediate refined mesh, and coarse background mesh.

3.10. Overset 125

Nalu Documentation, Release 1.2.0

Fig. 3.17: Velocity field for a flow past cylinder simulating using an overset mesh methodology with TIOGA mesh
connectivity approach.

Fig. 3.18: Vorticity field for a flow past cylinder simulating using an overset mesh methodology with TIOGA mesh
connectivity approach.

126 Chapter 3. Sierra Low Mach Module: Nalu - Theory Manual

Nalu Documentation, Release 1.2.0

3.11 Property Evaluations

Property specification is provided in the material model section of the input file. Unity Lewis number assumptions for
diffusive flux coefficients for mass fraction and enthalpy are assumed.

3.11.1 Density

At present, property evaluation for density is given by constant, single mixture fraction-based, HDF5 tables, or ideal
gas. For ideal gas, we support a non-isothermal, non-uniform and even an acoustically compressible form.

3.11.2 Viscosity

Property evaluation for viscosity is given by constant, single mixture fraction-based, simple tables or Sutherland’s
three coefficient as a function of temperature. When mixtures are used, either by reference or species transport, only a
mass fraction-weighed approach is used.

3.11.3 Specific Heat

Property evaluation for specific heat is either constant of two-band standard NASA polynomials; again species com-
position weighting are used (either transported or reference).

3.11.4 Lame Properties

Lame constants are either of type constant or for use in mesh motion/smoothing geometric whereby the values are
inversely proportional to the dual volume.

3.12 Coupling Approach

The classic low Mach implementation uses an incremental approximate pressure projection scheme in which nonlinear
convergence is obtained using outer Picard loops. Recently a full study on coupling approaches has been conducted
using ASC Algorithm funds. In this project, coupling methods ranging from fully implicit, fully coupled equal order
pressure/velocity interpolation with pressure stabilization to explicit advection/diffusion pressure projection schemes.
A brief summary of the results follows.

Specifically, five algorithms were considered and are as follows:

1. A monolithic scheme in which advection and diffusion are implicit using full analytical sensitivities,

2. Monolithic momentum solve with implicit advection/diffusion in the context of a fourth order stabilized incre-
mental pressure projection scheme,

3. Monolithic momentum solve with explicit advection; implicit diffusion in the context of a fourth order stabilized
incremental pressure projection scheme,

4. Segregated momentum solve with implicit advection/diffusion in the context of a fourth order stabilized incre-
mental pressure porjectin scheme, and

5. Explicit momementum advection/diffusion predictor/corrector scheme in the context of a second order stabilized
pressure-free approximate projection scheme.

3.11. Property Evaluations 127

Nalu Documentation, Release 1.2.0

Each of the above algorithms has been run in the context of a transient uniform flow low Mach flow. The emphasis of
this project is transient flows. As such, the numbers below are to be cast in this context. If steady flows are desired,
conclusions may be different. The slowdown of each implementation is relative to the core low Mach algorith, i.e.,
algorithm (4) above. Numbers less than unity represent a speed-up whereas numbers greater than unity represent a
slow down: 1) 3.4x, 2) 1.2x, 3) 0.6x, 4) 1.0x, 5) 0.7x.

The above runs were made using a time step that corresponded to a CFL of slightly less than unity. In this particlar
flow, a transitionally turbulent open jet, the diffusion time scale stability limit was not a factor. In other words, there
existed no detailed boundary layer at the wall bounded flow at the ground plane. Results for a Reynolds number of
45000 back step also are similar to the above jet results.

In general, although a mixture of implicit diffusion and explicit advection seem to be the winning combination, this
scheme is very sensitive to time step and must be used by an educated user. In general, the conclusions are, thus far,
that the standard segregated pressure projection scheme is preferred.

The algorithm implemented in Nalu is a fourth order approximate projection scheme with monolithic momentum
coupling. Evaluation of a predictor/corrector approach for reating flow is anticipated in the late FY15 time frame.

3.12.1 Errors due to Splitting and Stabilization

As noted in many of our papers, the error in the above method can be written in block form (let’s relax the variable
density nuance - or simple fold these extra terms into our operators). Here we specifically partition error into both
splitting (the pressure projection aspect of the alg that factorizes the fully coupled system) and pressure stabilization.
Note that when we run fully coupled simulation with the same pressure stabilization algorithm, the answers converge
to the same result.

Below, also forgive the specific definitions of 𝜏 . In general, they represent a choice of projection and stabilization time
scales. Finally, the Laplace operator, e.g., L2, have the 𝜏 ‘s built into them.[︂

A G
D 0

]︂ [︂
u𝑛+1

𝑝𝑛+1

]︂
=

[︂
f
0

]︂
+

[︂
(I− 𝜏A)G(𝑝𝑛+1 − 𝑝𝑛)
𝜖(Li, 𝜏𝑖,D,G)

]︂
(3.135)

where the error term that appears for the discrete continuity solve is given by,

𝜖(Li, 𝜏𝑖,D,G) = ((L1 −D𝜏3G)

−(L2 −D𝜏2G))(𝑝𝑛+1 − 𝑝𝑛)

+(L2 −D𝜏2G)𝑝𝑛+1

(3.136)

For the sake of this write-up, let L1 = L2 and 𝜏2 = 𝜏3.

3.13 Time discretization

Time integrators range from simple backward Euler or a second order three state scheme, BDF2.

A general time discretization approach can be written as,∫︁
𝜕𝜌𝜑

𝜕𝑡
𝑑𝑉 =

∫︁
(𝛾1𝜌

𝑛+1𝜑𝑛+1 + 𝛾2𝜌
𝑛𝜑𝑛 + 𝛾3𝜌

𝑛−1𝜑𝑛−1)

∆𝑡
𝑑𝑉

where 𝛾𝑖 represent the appropriate factors for either Backward Euler or a three-point BDF2 scheme. In both discretiza-
tion approaches, the value for density and other dofs are evaluated at the node. As such, the time contribution is a
lumped mass scheme with the volume simply the dual volume. The topology over one loops to assemble system is
simply the node. Although CVFEM affords the use of a consistent mass matrix, this scheme is not used at present.

128 Chapter 3. Sierra Low Mach Module: Nalu - Theory Manual

Nalu Documentation, Release 1.2.0

3.14 Multi-Physics

The equation set required to support the energy sector is already represented as a multiphysics application. However,
in some common cases of coupling including conjugate heat transfer and coupling to participating media radiation,
an operator split method may be preferred. The general concept is to define multiple Nalu Realms that each own the
mesh on which the particular physics is solved. Surface- and volume-based couplings are supported through linear
interpolation of the coupling parameters.

A typical CHT application involves the coupling of a thermal response and fluid transport. The coupling occurs
between the surface that shares the thermal equation and static enthalpy equation. Moreover, coupling to a PMR solve
is a volume-based coupling. Multiple Realms are supported with multiple transfers.

In Nalu, the method to achieve coupling in CHT or RTE coupled systems is through the usage of the STK Transfer
module. This allows for linear interpolation between disparate meshes. Advanced conservative transfers are being
evaluated, however, are not yet implemented in the code base. In general, the STK Transfer interface allows for this
design point.

For FSI, the usage of the transfer module is also expected.

3.15 Wind Energy Modeling

Wind energy analysis is the primary application area for the Nalu development team. This section describes the
theoretical basis of Nalu from a wind energy perspective, using nomenclature familiar to wind energy experts and
mapping it to Nalu concepts and nomenclature described in previous sections. Hopefully, this will provide an easier
transition for users familiar with WRF and SOWFA to Nalu.

In order to evaluate the energy output and the structural loading on wind turbines, the code must model: 1. the in-
coming turbulent wind field across the entire wind farm, and 2. the evolution of turbine wakes in turbulent inflow
conditions and their interaction with the downstream turbines. First, the governing equations with all the terms neces-
sary to model a wind farm are presented with links to implementation and verification details elsewhere in the theory
and/or verification manuals. A brief description of Nalu’s numerical discretization schemes is presented next. This
is followed by a brief discussion of the boundary conditions used to model atmospheric boundary layer (ABL) flows
with or without wind turbines (currently modeled as actuator sources within the flow domain).

Currently Nalu supports two types of wind simulations:

Precursor simulations

Precursor simulations are used in wind applications to generate time histories of turbulent ABL inflow
profiles that are used as inlet conditions in subsequent wind farm simulations. The primary purpose of
these simulations are to trigger turbulence generation and obtain velocity and temperature profiles that
have converged to a stastitic equilibrium.

Wind farm simulation with turbines as actuator sources

In this case, the wind turbine blades and tower are modeled as actuator source terms by coupling to the
OpenFAST libraries. Velocity fields are sampled at the blade and tower control points within the Nalu
domain and the blade positions and blade/tower loading is provided by OpenFAST to be used as source
terms within the momentum equation.

3.15.1 Governing Equations

We begin with a review of the momentum and enthalpy conservation equations within the context of wind farm mod-
eling [CLM+12]. Equation (3.137) shows the Favre-filtered momentum conservation equation (Eq. (3.1)) reproduced

3.14. Multi-Physics 129

https://openfast.readthedocs.io/en/master/

Nalu Documentation, Release 1.2.0

here with all the terms required to model a wind farm.

𝜕

𝜕𝑡
(𝜌 ̃︀𝑢𝑖)⏟ ⏞
I

+
𝜕

𝜕𝑥𝑗
(𝜌 ̃︀𝑢𝑖̃︀𝑢𝑗)⏟ ⏞
II

= − 𝜕𝑝′

𝜕𝑥𝑗
𝛿𝑖𝑗⏟ ⏞

III

− 𝜕𝜏𝑖𝑗
𝜕𝑥𝑗⏟ ⏞
IV

− 2𝜌 𝜖𝑖𝑗𝑘 Ω𝑗𝑢𝑘⏟ ⏞
V

+ (𝜌− 𝜌∘) 𝑔𝑖⏟ ⏞
VI

+ 𝑆𝑢
𝑖⏟ ⏞

VII

+ 𝑓𝑇𝑖⏟ ⏞
VIII

(3.137)

Term I represents the time rate of change of momentum (inertia);

Term II represents advection;

Term III represents the pressure gradient forces (deviation from hydrostatic and horizontal mean gradient);

Term IV represents stresses (both viscous and sub-filter scale (SFS)/Reynolds stresses);

Term V describes the influence Coriolis forces due to earth’s rotation – see Sec. Section 3.2.2;

Term VI describes the effects of buoyancy using the Boussinesq approximation – see Section 3.2.2;

Term VII represents the source term used to drive the flow to a horizontal mean velocity at desired height(s) – see
Section 3.2.7; and

Term VIII is an optional term representing body forces when modeling turbine with actuator disk or line representa-
tions – see Section 3.15.6.

In wind energy applications, the energy conservation equation is often written in terms of the Favre-filtered potential
temperature, 𝜃, equation, as shown below

𝜕

𝜕𝑡

(︁
𝜌 ̃︀𝜃)︁+

𝜕

𝜕𝑡

(︁
𝜌 ̃︀𝑢𝑗̃︀𝜃)︁ = − 𝜕

𝜕𝑥𝑗
𝑞𝑗 (3.138)

where, 𝑞𝑗 represents the temperature transport due to molecular and SFS turbulence effects. Due to the high Reynolds
number associated with ABL flows, the molecular effects are neglected everywhere except near the terrain. Potential
temperature is related to absolute temperature by the following equation

𝜃 = 𝑇

(︂
𝑝

𝑝∘

)︂−
(︁

𝑅
𝑐𝑝

)︁

Under the assumption of ideal gas conditions and constant 𝑐𝑝, the gradients in potential temperature are proportional
to the gradients in absolute temperature, i.e.,[︂

𝜕𝑇

𝜕𝑡
,
𝜕𝑇

𝜕𝑥
,
𝜕𝑇

𝜕𝑦

]︂
=

(︂
𝑝

𝑝∘

)︂(︁
𝑅
𝑐𝑝

)︁
[𝜕𝜃
𝜕𝑡 ,

𝜕𝜃
𝜕𝑥 , 𝜕𝜃

𝜕𝑦]

Furthermore, ignoring the pressure and viscous work terms in Eq. (3.12) and assuming constant density (incom-
pressible flow), it can be shown that solving the enthalpy equation is equivalent to solving the potential temperature
equation. The enthalpy equation solved in wind energy problems is shown below

𝜕

𝜕𝑡

(︁
𝜌 ̃︀𝑇)︁+

𝜕

𝜕𝑡

(︁
𝜌 ̃︀𝑢𝑗 ̃︀𝑇)︁ = − 𝜕

𝜕𝑥𝑗
𝑞𝑗 (3.139)

It is noted here that the terms 𝑞𝑗 (Eq. (3.138)) and 𝑞𝑗 (Eq. (3.139)) are not equivalent and must be scaled appropriately.
User can still provide the appropriate initial and boundary conditions in terms of potential temperature field. Under
these assumptions and conditions, the resulting solution can then be interpreted as the variation of potential temperature
field in the computational domain.

3.15.2 Turbulence Modeling

LES turbulence closure is provided by the Subgrid-Scale Kinetic Energy One-Equation LES Model or the standard
Smagorinsky model for wind farm applications.

130 Chapter 3. Sierra Low Mach Module: Nalu - Theory Manual

Nalu Documentation, Release 1.2.0

3.15.3 Numerical Discretization & Stabilization

Nalu provides two dicretization approaches

Control Volume Finite Element Method (CVFEM)

Nalu uses a dual mesh approach (see Section 3.3.1) where the control volumes are constructed around the
nodes of the finite elements within the mesh – see Fig. 3.19. The equations are solved at the integration
points on the sub-control surfaces and/or the sub-control volumes.

Edge-Based Vertex Centered Scheme

The edge-based scheme is similar to the finite-volume approach used in SOWFA with the nodes at the
cell center of the dual mesh.

Fig. 3.19: Schematic of HEX-8 mesh showing the finite elements, nodes, and the associated control volume dual mesh.

The numerical discretization approach is covered in great detail in Section 3.3, the advection and pressure stabilization
approaches are documented in Section 3.4 and Section 3.5 respectively. Users are strongly urged to read those sections
to gain a thorough understanding of the discretization scheme and its impact on the simulations.

3.15.4 Time stepping scheme

The time stepping method in Nalu is described in the Fuego theory manual [Tea16] for the backward Euler time
discretization. The implementation details of the BDF2 time stepping scheme used in Nalu is described here. The
Navier-Stokes equations are written as

F𝑖(𝜌
𝑛+1, 𝑢𝑛+1

𝑖 , 𝑃𝑛+1) −
∫︁

𝜕𝜌𝑢𝑖
𝜕𝑡

⃒⃒⃒⃒𝑛+1

d𝑉 = 0,

F𝑖(𝜌
𝑛+1, 𝑢𝑛+1

𝑖 , 𝑃𝑛+1) − (𝛾1𝜌
𝑛+1𝑢𝑖

𝑛+1 + 𝛾2𝜌
𝑛𝑢𝑖

𝑛 + 𝛾3𝜌
𝑛𝑢𝑖

𝑛−1)

∆𝑡
∆𝑉 = 0,

(3.140)

3.15. Wind Energy Modeling 131

Nalu Documentation, Release 1.2.0

where

F𝑖(𝜌
𝑛+1𝑢𝑛+1

𝑖) = −
∫︁
𝜌𝑛+1𝑢𝑛+1

𝑖 𝑢𝑛+1
𝑗 𝑛𝑗d𝑆 +

∫︁
𝜏𝑛+1
𝑖𝑗 𝑛𝑗d𝑆 −

∫︁
𝑃𝑛+1𝑛𝑖d𝑆 −

∫︁ (︀
𝜌𝑛+1 − 𝜌∘

)︀
𝑔𝑖d𝑉,

= −
∫︁
𝑢𝑛+1
𝑖 �̇�𝑛+1 +

∫︁
𝜏𝑛+1
𝑖𝑗 𝑛𝑗d𝑆 −

∫︁
𝑃𝑛+1𝑛𝑖d𝑆 −

∫︁ (︀
𝜌𝑛+1 − 𝜌∘

)︀
𝑔𝑖d𝑉.

and 𝛾𝑖 are factors for BDF2 time discretization scheme (see Section 3.13). As is typical of incompressible flow solvers,
the mass flow rate through the sub-control surfaces is tracked independent of the velocity to maintain conservation of
mass. The following conventions are used:

𝜑* = Predicted value of 𝜑 at 𝑛+ 1 time step before linear solvê︀𝜑 = 𝜑** = Predicted value of 𝜑 at 𝑛+ 1 time step after linear solve

The Newton’s method is used along with a linearization procedure to predict a solution to the Navier-Stokes equations
at time step 𝑛+ 1 as

A𝑖𝑗 𝛿𝑢𝑗 = F*
𝑖 −

(𝛾1𝜌
*𝑢𝑖

* + 𝛾2𝜌
𝑛𝑢𝑖

𝑛 + 𝛾3𝜌
𝑛𝑢𝑖

𝑛−1)

∆𝑡
∆𝑉,

where 𝛿𝑢𝑗 = 𝑢**𝑖 − 𝑢*𝑖 ,

A𝑖𝑗 =

(︂
𝛾1𝜌

*

∆𝑡
∆𝑉 𝛿𝑖𝑗 −

𝜕𝐹𝑖

𝜕𝑢𝑗

⃒⃒⃒⃒*)︂
,

and F*
𝑖 = −

∫︁
𝑢*𝑖 �̇�

* +

∫︁
𝜏*𝑖𝑗𝑛𝑗d𝑆 −

∫︁
𝑃 *𝑛𝑖d𝑆 −

∫︁
(𝜌* − 𝜌∘) 𝑔𝑖d𝑉.

(3.141)

After each Newton or outer iteration, 𝜑** is a better approximation to 𝜑𝑛+1 compared to 𝜑*. 𝜌* and �̇�* are retained
constant through each outer iteration. F(𝜌*𝑢**𝑖) is linear in 𝑢*𝑖 and hence

F*
𝑖 =

𝜕𝐹𝑖

𝜕𝑢𝑗

⃒⃒⃒⃒*
𝑢*𝑗 −

∫︁
𝑃 *𝑛𝑖d𝑆 −

∫︁
(𝜌* − 𝜌∘) 𝑔𝑖d𝑉 (3.142)

Applying Eq. (3.142) to Eq. (3.141), we get the linearized momentum predictor equation solved in Nalu.

A𝑖𝑗 𝛿𝑢𝑗 =
𝜕𝐹𝑖

𝜕𝑢𝑗

⃒⃒⃒⃒*
𝑢*𝑗 −

∫︁
𝑃 *𝑛𝑖d𝑆 −

∫︁
(𝜌* − 𝜌∘) 𝑔𝑖d𝑉

− (𝛾1𝜌
*𝑢𝑖

* + 𝛾2𝜌
𝑛𝑢𝑖

𝑛 + 𝛾3𝜌
𝑛−1𝑢𝑖

𝑛−1)

∆𝑡
∆𝑉

A𝑖𝑗 𝛿𝑢𝑗 =

(︂
𝛾1𝜌

*

∆𝑡
∆𝑉 𝛿𝑖𝑗 −

𝜕𝐹𝑖

𝜕𝑢𝑗

⃒⃒⃒⃒*)︂
𝑢𝑗

* −
∫︁
𝑃 *𝑛𝑖d𝑆 −

∫︁
(𝜌* − 𝜌∘) 𝑔𝑖d𝑉

− (𝛾2𝜌
𝑛𝑢𝑖

𝑛 + 𝛾3𝜌
𝑛−1𝑢𝑖

𝑛−1)

∆𝑡
∆𝑉

A𝑖𝑗 𝛿𝑢𝑗 = A𝑖𝑗 𝑢
*
𝑗 −

∫︁
𝑃 *𝑛𝑖d𝑆 −

∫︁
(𝜌* − 𝜌∘) 𝑔𝑖d𝑉

− (𝛾2𝜌
𝑛𝑢𝑖

𝑛 + 𝛾3𝜌
𝑛−1𝑢𝑖

𝑛−1)

∆𝑡
∆𝑉

(3.143)

𝑢**𝑖 will not satisfy the continuity equation. A correction step is performed at the end of each outer iteration to make
𝑢**𝑖 satisfy the continuity equation as

𝑢𝑛+1
𝑖 = 𝑢**𝑖 − 𝜏3

𝜌
G∆𝑃 **

where ∆𝑃 ** = 𝑃 ** − 𝑃 *

As described in Section 3.12.1, the continuity equation to be satisfied along with the splitting and stabilization errors
is

D𝜌𝑢** = 𝑏+ (L1 −D𝜏3G) ∆𝑃 ** + (L2 −D𝜏2G)𝑃 * (3.144)

132 Chapter 3. Sierra Low Mach Module: Nalu - Theory Manual

Nalu Documentation, Release 1.2.0

where 𝑏 contains any source terms when the velocity field is not divergence free and the other terms are the errors
due to pressure stabilization as shown by Domino [Dom06]. The final pressure Poisson equation solved to enforce
continuity at each outer iteration is

𝑢𝑛+1 = 𝑢** − 𝜏3
𝜌
G∆𝑃 **

𝑏+ (L1 −D𝜏3G) ∆𝑃 ** + (L2 −D𝜏2G)𝑃 *

= D(𝜌𝑢𝑛+1) = D(𝜌̂︀𝑢) −D(𝜏3G∆𝑃 **)

𝑏+ L1∆𝑃 ** = D(𝜌̂︀𝑢) − (L2 −D𝜏2G)𝑃 *

−L1∆𝑃 ** = D𝜌̂︀𝑢+ D𝜏2G𝑃
* − L2𝑃

*

−L1∆𝑃 ** = −D𝜌̂︀𝑢−D𝜏2G𝑃
* + L2𝑃

* + 𝑏

(3.145)

Thus, the final set of equations solved at each outer iteration is

A𝑖𝑗 𝛿𝑢𝑗 = A𝑖𝑗 𝑢
*
𝑗 −

∫︁
𝑃 *𝑛𝑖d𝑆 −

∫︁
(𝜌* − 𝜌∘) 𝑔𝑖d𝑉

− (𝛾2𝜌
𝑛𝑢𝑖

𝑛 + 𝛾3𝜌
𝑛−1𝑢𝑖

𝑛−1)

∆𝑡
∆𝑉

−L1∆𝑃 ** = −D𝜌̂︀𝑢−D𝜏2G𝑃
* + L2𝑃

* + 𝑏

𝑢𝑛+1
𝑖 = 𝑢**𝑖 − 𝜏3

𝜌
G∆𝑃 **

3.15.5 Initial & Boundary Conditions

This section briefly describes the boundary conditions available in Nalu for modeling wind farm problems. The terrain
and top boundary conditions are described first as they are common to precusor and wind farm simulations.

Initial conditions

Nalu has the ability to initialize the internal flow fields to uniform conditions for all pressure, velocity, temperature, and
TKE (𝑘) in the input file. Nalu also provides a user function to add perturbations to the velocity field to trigger
turbulence generation during precursor simulations. To specify more complex flow field conditions, a temperature
profile with a capping inversion for example, users are referred to pre-processing utilities available in NaluWindUtils
library.

Terrain (Wall) boundary condition

Users are referred to Section 3.9.3 for the treatment of the terrain BC using roughness models. For enthalpy, users can
provide a surface heat flux for modeling stratified flows.

Top boundary condition

For momentum, a symmetry BC is used when modeling wind farm problems. For enthalpy equation, a normal tem-
perature gradient can be specified to drive the flow to a desired temperaure profile, e.g., capping inversion temperature
profile.

Inlet conditions

Time histories of inflow velocity and temperaure profiles can be provided as inputs (via I/O transfer) to drive the wind
farm simulation with the desired flow conditions. See Section 4.8.3 for more details on this capability. Driving a wind

3.15. Wind Energy Modeling 133

http://naluwindutils.readthedocs.io/en/latest/

Nalu Documentation, Release 1.2.0

farm simulation using velocity and temperature fields from a mesoscale (WRF) simulation would require an additional
pre-processing steps with the wrftonalu utility.

Outlet conditions

See the description of open BC for detailed description of the outlet BC implementation. For wind energy problems,
it is necessary to activate the global mass correction as a single value of pressure across the boundary layer is not
apprpriate in the presence of buoyancy effects. It might also be necessary to fix the reference pressure at an interior
node in order to ensure that the Pressure Poisson solver is well conditioned.

3.15.6 Wind Turbine Modeling

Wind turbine rotor and tower aerodynamic effects are modeled using actuator source representations. Compared to
resolving the geometry of the turbine, actuator modeling alleviates the need for a complex body-fitted meshes, can
relax time step restrictions, and eliminates the need for turbulence modeling at the turbine surfaces. This comes at the
expense of a loss of fine-scale detail, for example, the boundary layers of the wind turbine surfaces are not resolved.
However, actuator methods well represent wind turbine wakes in the mid to far downstream regions where wake
interactions are important.

Actuator methods usually fall within the classes of disks, lines, surface, or some blend between the disk and line (i.e.,
the swept actuator line). Most commonly, the force over the actuator is computed, and then applied as a body-force
source term, 𝑓𝑖 (Term VIII), to the Favre-filtered momentum equation (Eq. (3.137)).

The body-force term 𝑓𝑖 is volumetric and is a force per unit volume. The actuator forces, 𝐹 ′
𝑖 , are not volumetric.

They exist along lines or on surfaces and are force per unit length or area. Therefore, a projection function, 𝑔, is used
to project the actuator forces into the fluid volume as volumetric forces. A simple and commonly used projection
function is a uniform Gaussian as proposed by Sorensen and Shen [SrensenS02],

𝑔(�⃗�) =
1

𝜋3/2𝜖3
𝑒−(|�⃗�|/𝜖)2 ,

where �⃗� is the position vector between the fluid point of interest to a particular point on the actuator, and 𝜖 is the width
of the Gaussian, that determines how diluted the body force become. As an example, for an actuator line extending
from 𝑙 = 0 to 𝐿, the body force at point (𝑥, 𝑦, 𝑧) due to the line is given by

𝑓𝑖(𝑥, 𝑦, 𝑧) =

∫︁ 𝐿

0

𝑔 (�⃗� (𝑙))𝐹 ′
𝑖 (𝑙) d𝑙. (3.146)

Here, the projection function’s position vector is a function of position on the actuator line. The part of the line nearest
to the point in the fluid at (𝑥, 𝑦, 𝑧) has most weight.

The force along an actuator line or over an actuator disk is often computed using blade element theory, where it is
convenient to discretize the actuator into a set of elements. For example, with the actuator line, the line is broken into
discrete line segments, and the force at the center of each element, 𝐹 𝑘

𝑖 , is computed. Here, 𝑘 is the actuator element
index. These actuator points are independent of the fluid mesh. The point forces are then projected onto the fluid
mesh using the Gaussian projection function, 𝑔(�⃗�), as described above. This is convenient because the integral given
in Equation (3.146) can become the summation

𝑓𝑖(𝑥, 𝑦, 𝑧) =

𝑁∑︁
𝑘=0

𝑔(�⃗�𝑘)𝐹 𝑘
𝑖 . (3.147)

This summation well approximates the integral given in Equation (3.146) so long as the ratio of actuator element size
to projection function width 𝜖 does not exceed a certain threshold.

Presently, Nalu uses an actuator line representation to model the effects of turbine on the flow field; however, the class
hierarchy is designed with the potential to add other actuator source terms such as actuator disk, swept actuator line

134 Chapter 3. Sierra Low Mach Module: Nalu - Theory Manual

http://naluwindutils.readthedocs.io/en/latest/user/wrftonalu.html

Nalu Documentation, Release 1.2.0

and actuator surface capability in the future. The ActuatorLineFAST class couples Nalu with NREL’s OpenFAST
for actuator line simulations of wind turbines. OpenFAST is a aero-hydro-servo-elastic tool to model wind turbine
developed by the National Renewable Energy Laboratory (NREL). The ActuatorLineFAST class allows Nalu to
interface as an inflow module to OpenFAST by supplying the velocity field information.

Nalu – OpenFAST Coupling Algorithm

The actuator line implementation allows for flexible blades that are not necessarily straight (prebend and sweep). The
current implementation requires a fixed time step when coupled to OpenFAST, but allows the time step in Nalu to be
an integral multiple of the OpenFAST time step. At present, a simple time lagged FSI model is used to interface Nalu
with the turbine model in OpenFAST:

• The velocity at time step at time step 𝑛 is sampled at the actuator points and sent to OpenFAST,

• OpenFAST advances the turbines upto the next Nalu time step 𝑛+ 1,

• The body forces at the actuator points are converted to the source terms of the momentum equation to advance
Nalu to the next time step 𝑛+ 1.

This FSI algorithm is expected to be only first order accurate in time. We are currently working on improving the FSI
coupling scheme to be second order accurate in time.

3.16 Topological Support

The currently supported elements are as follows: hex, tet, pyramid, wedge, quad, and tri. In general, hybrid meshes
are fully supported for the edge-based scheme. For CVFEM, hybrid meshes are also supported, however, wedge and
pyramid elements are not permitted at exposed open or symmetry boundaries. The remedy to the CVFEM constraint
is to simply implement the exposed face gradient operators.

3.17 Adaptivity

Adaptivity is supported through usage of the Percept module. However, this code base has not yet been deployed to
the open sector. As such, ifdef guards are placed within the code base. A variety of choices exist for the manner by
which hanging nodes are removed in a vertex-centered code base.

A typical h-adapted patch of elements is shown in Figure Fig. 3.20. The “hanging nodes” do not have control volumes
associated with them. Rather, they are constrained to be a linear combination of the two parent edge nodes. There is
no element assembly procedure to compute fluxes for the “hanging sub-faces” associated with the hanging nodes that
occur along the parent-child element boundary.

In general, for a vertex-centered scheme, the h-adaptive scheme is driven at the element level. Refinement occurs
within the element and the topology of refined elements is the same as the parent element.

Aftosmis [Aft94] describes a vertex-centered finite-volume scheme on unstructured Cartesian meshes. A transitional
set of control volumes are formed about the hanging nodes, shown in Figure Fig. 3.21. on unstructured meshes. This
approach would require a series of specialized master elements to deal with the different transition possibilities.

Kallinderis [KB89] describes a vertex-centered finite-volume scheme on unstructured quad meshes. Hanging nodes
are treated with a constraint condition. The flux construction for a node on a refinement boundary is based on the
unrefined parent elements, leading to a non-conservative scheme.

Kallinderis [KV93] also describes a vertex-centered finite-volume scheme on unstructured tetrahedral meshes. Hang-
ing nodes are removed by splitting the elements on the “unrefined” side of the refinement boundary. Mavriplis [Mav00]
uses a similar technique, however, extends it to a general set of heterogeneous elements, shown in Figure Fig. 3.22.

3.16. Topological Support 135

Nalu Documentation, Release 1.2.0

Use linear
constraints for
nodal condition,

Subfaces have
no fluxes

Fig. 3.20: Control volume definition on an h-adapted mesh with hanging nodes. (Four-patch of parent elements with
refinement in bottom-right element.)

The future deployment of Percept will use the procedure of Mavriplis whereby hanging nodes are removed by neighbor
topological changes. A variety of error indicators exists and a prototyped error transport equation appraoch for the
one-equation 𝑘𝑠𝑔𝑠 model has been tested for classic jet-in-crossflow configurations.

3.17.1 Prolongation and Restriction

Nodal variables are interpolated between levels of the h-adapted mesh hierarchy using the traditional prolongation and
restriction operators defined over an element. The prolongation operation is used to compute values for new nodes that
arise from element sub-division. The parent element shape functions are used to interpolate values from the parent
nodes to the sub-divided nodes.

Prolongation and restriction operators for element variables and face variables are required to maintain mass flow rates
that satisfy continuity. When adaptivity takes place, a code option to reconstruct the mass flow rates must be used.
Whether or not a Poisson system must be created has been explored. More work is required to understand the nuances
associated with prolongation, specifically with respect to possible dispersion errors.

3.18 Code Abstractions

The Nalu code base is a c++ code-base that significantly leverages the Sierra Toolkit and Trilinos infrastructure. This
section is designed to provide a high level overview of the underlying abstractions that the code base exercises. For
more detailed code information, the developer is referred to the Trilinos project (github.com). In the sections that
follow, only a high level overview is provided.

The developer might also find useful examples in the NaluUnit github repository as it contains a number of specialized
implementations that are very small in nature. In fact, the Nalu code base emerged as a small testbed unit test to
evaluate the STK infrastructure. Interestingly, the first “algorithm” implementation was a simple 𝐿2 projected nodal
gradient. This effort involved reading in a mesh, registering a nodal (vector) field, iterating elements and exposed

136 Chapter 3. Sierra Low Mach Module: Nalu - Theory Manual

Nalu Documentation, Release 1.2.0

Fig. 3.21: Control volume definition on an h-adapted mesh with transition control volumes about the hanging nodes.
(Four-patch of parent elements with refinement in bottom-right element.)

3.18. Code Abstractions 137

Nalu Documentation, Release 1.2.0

Fig. 3.22: Control volume definition on a heterogeneous h-adapted mesh with no hanging nodes. (Four-patch of parent
elements with refinement in bottom-right element and splitting in adjacent parent elements.)

138 Chapter 3. Sierra Low Mach Module: Nalu - Theory Manual

Nalu Documentation, Release 1.2.0

surfaces to assemble the projected nodal gradient to the nodes of the mesh (in parallel). When evaluating kokkos, this
algorithm was also used to learn about the parallel NGP abstraction provided.

3.18.1 Sierra Toolkit Abstractions

Consider a typical mesh that consists of nodes, sides of elements and elements. Such a mesh, when using the Exodus
standard, will liekly be represented by a collection of “element blocks”, “sidesets” and, possibly, “nodesets”. The
definition of the mesh (generated by the user through commercial meshing packages such as pointwise or ICM-CFD)
will provide the required spatial definitions of the volume physics and the required boundary conditions.

An element block is a homegeneous collection of elements of the same underlying topology, e.g., HEXAHEDRAL-
8. A sideset is a set of exposed element faces on which a boundary condition is to be applied. Finally, a nodeset
is a collection of nodes. In general, nodesets are possibly output entities as the code does not exercise enforcing
physics or boundary conditions on nodesets. Although Nalu supports an edge-based scheme, an edge, which is an
entity connecting two nodes, is not part of the Exodus standard and must be generated within the STK infrastructure.
Therefore, a particular discretization choice may require stk::mesh::Entity types of element, face (or side),
edge and node.

Once the mesh is read in, a variety of routine operations are generally required. For example, a low-Mach physics
equation set may want to be applied to block_1while inflow, open, symmetry, periodic and wall boundary conditions
can be applied to a variety of sidesets. For example, surface_1 might be of an “inflow” type. Therefore, the high
level set of requirements on a mesh infrastructure might be to allow one to iterate parts of the mesh and, in the end,
assemble a quantity to a nodal or elemental field.

Meta and Bulk Data

Meta and Bulk data are simply STK containers. MetaData is used to extract parts, extract ownership status, determine
the side rank, field declaration, etc. BulkData is used to extract buckets, extract upward and downward connectivities
and determine node count for a given entity.

Parallel Rules

In STK, elements are locally owned by a single rank. Elements may be ghosted to other parallel ranks through
STK custom ghosting. Exposed faces are locally owned by the lower parallel rank. Nodes are also locally owned
by the lower parallel rank and can also be shared by all parallel ranks touching them. Edges and internal faces
(element:face:element connectivity) have the same rule of locally owned/shared and can also be ghosted. Again,
edges and internal faces must be created by existing STK methods should the physics algorithm require them. In Nalu,
the choice of element-based or edge-based is determined within the input file.

Connectivity

In an unstructured mesh, connectivity must be built from the mesh and can not be assumed to follow an assumed “i-j-
k” data layout, i.e., structured. In general, one speaks of downward and upward relationships between the underlying
entities. For example, if one has a particular element, one might like to extract all of the nodes connected to the
element. Likewise, this represents a common opporation for faces and edges. Such examples are those in which
downward relationships are required. However, one might also have a node and want to extract all of the connected
elements to this node (consider some sort of patch recovery algorithm). STK provides the ability to extract such
connectivities. In general, full downward and upward connectivities are created.

For example, consider an example in which one has a pointer to an element and wants to extract the nodes of this
element. At this point, the developer has not been exposed to abstractions such as buckets, selectors, etc. As such,
this is a very high level overview with more details to come in subsequent sections. Therefore, the scope below is to

3.18. Code Abstractions 139

Nalu Documentation, Release 1.2.0

assume that from an element-k of a “bucket”, b[k] (which is a collection of homogeneous RANK-ed entities) we will
extract the nodes of this element using the STK bulk data.

// extract element from this bucket
stk::mesh::Entity elem = b[k];

// extract node relationship from bulk data
stk::mesh::Entity const * node_rels = bulkData_.begin_nodes(elem);
int num_nodes = bulkData_.num_nodes(elem);

// iterate nodes
for (int ni = 0; ni < num_nodes; ++ni) {
stk::mesh::Entity node = node_rels[ni];

// set connected nodes
connected_nodes[ni] = node;

// gather some data, e.g., density at state Np1,
// into a local workset pointer to a std::vector
p_density[ni] = *stk::mesh::field_data(densityNp1, node);

}

Parts

As noted before, a stk::mesh::Part is simply an abstraction that describes a set of mesh entities. If one has the
name of the part from the mesh data base, one may extract the part. Once the part is in hand, one may iterate the
underlying set of entities, walk relations, assemble data, etc.

The following example simply extracts a part for each vector of names that lives in the vector targetNames and
provides this part to all of the underlying equations that have been created for purposes of nodal field registration. Parts
of the mesh that are not included within the targetNames vector would not be included in the field registration and,
as such, if this missing part was used to extract the data, an error would occur.

for (size_t itarget = 0; itarget < targetNames.size(); ++itarget) {
stk::mesh::Part *targetPart = metaData_.get_part(targetNames[itarget]);

// check for a good part
if (NULL == targetPart) {
throw std::runtime_error("Trouble with part " + targetNames[itarget]);

}
else {
EquationSystemVector::iterator ii;
for(ii=equationSystemVector_.begin(); ii!=equationSystemVector_.end(); ++ii)

(*ii)->register_nodal_fields(targetPart);
}

}

Selectors

In order to arrive at the precise parts of the mesh and entities on which one desires to operate, one needs to “select”
what is useful. The STK selector infrastructure provides this.

In the following example, it is desired to obtain a selector that contains all of the parts of interest to a physics algorithm
that are locally owned and active.

140 Chapter 3. Sierra Low Mach Module: Nalu - Theory Manual

Nalu Documentation, Release 1.2.0

// define the selector; locally owned, the parts I have served up and active
stk::mesh::Selector s_locally_owned_union = metaData_.locally_owned_part()

& stk::mesh::selectUnion(partVec_)
& !(realm_.get_inactive_selector());

Buckets

Once a selector is defined (as above) an abstraction to provide access to the type of data can be defined. In STK, the
mechanism to iterate entities on the mesh is through the stk::mesh::bucket interface. A bucket is a homoge-
neous collection of stk::mesh::Entity.

In the below example, the selector is used to define the bucket of entities that are provided to the developer.

// given the defined selector, extract the buckets of type ``element''
stk::mesh::BucketVector const& elem_buckets
= bulkData_.get_buckets(stk::topology::ELEMENT_RANK,

s_locally_owned_union);

// loop over the vector of buckets
for (stk::mesh::BucketVector::const_iterator ib = elem_buckets.begin();

ib != elem_buckets.end() ; ++ib) {
stk::mesh::Bucket & b = **ib ;
const stk::mesh::Bucket::size_type length = b.size();

// extract master element (homogeneous over buckets)
MasterElement *meSCS = sierra::nalu::get_surface_master_element(b.topology());

for (stk::mesh::Bucket::size_type k = 0 ; k < length ; ++k) {

// extract element from this bucket
stk::mesh::Entity elem = b[k];

// etc...
}

}

The look-and-feel for nodes, edges, face/sides is the same, e.g.,

∙ for nodes:

// given the defined selector, extract the buckets of type ``node''
stk::mesh::BucketVector const& node_buckets
= bulkData_.get_buckets(stk::topology::NODE_RANK,

s_locally_owned_union);

// loop over the vector of buckets

∙ for edges:

// given the defined selector, extract the buckets of type ``edge''
stk::mesh::BucketVector const& edge_buckets
= bulkData_.get_buckets(stk::topology::EDGE_RANK,

s_locally_owned_union);

// loop over the vector of buckets

∙ for faces/sides:

3.18. Code Abstractions 141

Nalu Documentation, Release 1.2.0

// given the defined selector, extract the buckets of type ``face/side''
stk::mesh::BucketVector const& face_buckets
= bulkData_.get_buckets(metaData_.side_rank(),

s_locally_owned_union);

// loop over the vector of buckets

Field Data Registration

Given a part, we would like to declare the field and put the field on the part of interest. The developer can register
fields of type elemental, nodal, face and edge of desired size.

∙ nodal field registration:

void
LowMachEquationSystem::register_nodal_fields(

stk::mesh::Part *part)
{

// how many states? BDF2 requires Np1, N and Nm1
const int numStates = realm_.number_of_states();

// declare it
density_
= &(metaData_.declare_field<ScalarFieldType>(stk::topology::NODE_RANK,

"density", numStates));

// put it on this part
stk::mesh::put_field(*density_, *part);

}

∙ edge field registration:

void
LowMachEquationSystem::register_edge_fields(

stk::mesh::Part *part)
{

const int nDim = metaData_.spatial_dimension();
edgeAreaVec_
= &(metaData_.declare_field<VectorFieldType>(stk::topology::EDGE_RANK,

"edge_area_vector"));
stk::mesh::put_field(*edgeAreaVec_, *part, nDim);

}

∙ side/face field registration:

void
MomentumEquationSystem::register_wall_bc(

stk::mesh::Part *part,
const stk::topology &theTopo,
const WallBoundaryConditionData &wallBCData)

{
// Dirichlet or wall function bc
if (wallFunctionApproach) {
stk::topology::rank_t sideRank

= static_cast<stk::topology::rank_t>(metaData_.side_rank());
GenericFieldType *wallFrictionVelocityBip

= &(metaData_.declare_field<GenericFieldType>

142 Chapter 3. Sierra Low Mach Module: Nalu - Theory Manual

Nalu Documentation, Release 1.2.0

(sideRank, "wall_friction_velocity_bip"));
stk::mesh::put_field(*wallFrictionVelocityBip, *part, numIp);

}
}

Field Data Access

Once we have the field registered and put on a part of the mesh, we can extract the field data anytime that we have the
entity in hand. In the example below, we extract nodal field data and load a workset field.

To obtain a pointer for a field that was put on a node, edge face/side or element field, the string name used for
declaration is used in addition to the field template type,

VectorFieldType *velocityRTM
= metaData_.get_field<VectorFieldType>(stk::topology::NODE_RANK,

"velocity");
ScalarFieldType *density

= metaData_.get_field<ScalarFieldType>(stk::topology::NODE_RANK,
"density");}

VectorFieldType *edgeAreaVec
= metaData_.get_field<VectorFieldType>(stk::topology::EDGE_RANK,

"edge_area_vector");

GenericFieldType *massFlowRate
= metaData_.get_field<GenericFieldType>(stk::topology::ELEMENT_RANK,

"mass_flow_rate_scs");

GenericFieldType *wallFrictionVelocityBip_
= metaData_.get_field<GenericFieldType>(metaData_.side_rank(),

"wall_friction_velocity_bip");

State

For fields that require state, the field should have been declared with the proper number of states (see field declaration
section). Once the field pointer is in hand, the specific field with state is easily extracted,

ScalarFieldType *density
= metaData_.get_field<ScalarFieldType>(stk::topology::NODE_RANK,

"density");
densityNm1_ = &(density->field_of_state(stk::mesh::StateNM1));
densityN_ = &(density->field_of_state(stk::mesh::StateN));
densityNp1_ = &(density->field_of_state(stk::mesh::StateNP1));

With the field pointer already in hand, obtaining the particular data is field the field data method.

∙ nodal field data access:

// gather some data (density at state Np1) into a local workset pointer
p_density[ni] = *stk::mesh::field_data(densityNp1, node);

∙ edge field data access: (from an edge bucket loop with the same selector as defined above)

stk::mesh::BucketVector const& edge_buckets
= bulkData_.get_buckets(stk::topology::EDGE_RANK, s_locally_owned_union);

3.18. Code Abstractions 143

Nalu Documentation, Release 1.2.0

for (stk::mesh::BucketVector::const_iterator ib = edge_buckets.begin();
ib != edge_buckets.end() ; ++ib) {

stk::mesh::Bucket & b = **ib ;
const stk::mesh::Bucket::size_type length = b.size();

// pointer to edge area vector and mdot (all of the buckets)
const double * av = stk::mesh::field_data(*edgeAreaVec_, b);
const double * mdot = stk::mesh::field_data(*massFlowRate_, b);

for (stk::mesh::Bucket::size_type k = 0 ; k < length ; ++k) {
// copy edge area vector to a pointer
for (int j = 0; j < nDim; ++j)

p_areaVec[j] = av[k*nDim+j];

// save off mass flow rate for this edge
const double tmdot = mdot[k];

}
}

3.18.2 High Level Nalu Abstractions

Realm

A realm holds a particular physics set, e.g., low-Mach fluids. Realms are coupled loosely through a transfer operation.
For example, one might have a turbulent fluids realm, a thermal heat conduction realm and a PMR realm. The realm
also holds a BulkData and MetaData since a realm requires fields and parts to solve the desired physics set.

EquationSystem

An equation system holds the set of PDEs of interest. As Nalu uses a pressure projection scheme with split PDE
systems, the pre-defined systems are, LowMach, MixtureFraction, Enthalpy, TurbKineticEnergy, etc. New monolithic
equation system can be easily created and plugged into the set of all equation systems.

In general, the creation of each equation system is of arbitrary order, however, in some cases fields required for
MixtureFraction, e.g., mass_flow_rate might have only been registered on the low-Mach equation system. As
such, if MixtureFraction is created before LowMachEOS, an error might be noted. This can be easily resolved by
cleaning the code base such that each equation system is “autonomous”.

Each equation system has a set of virtual methods expected to be implemented. These include, however, are not limited
to registration of nodal fields, edge fields, boundary conditions of fixed type, e.g., wall, inflow, symmetry, etc.

144 Chapter 3. Sierra Low Mach Module: Nalu - Theory Manual

CHAPTER 4

Sierra Low Mach Module: Nalu - Verification Manual

The SIERRA Low Mach Module: Nalu (henceforth referred to as Nalu, developed at Sandia, represents a generalized
unstructured, massively parallel, variable density turbulent flow capability designed for energy applications. This code
base began as an effort to prototype Sierra Toolkit, [EWS+10], usage along with direct parallel matrix assembly to the
Trilinos, [HBH+03], Epetra and Tpetra data structure. However, the simulation tool has evolved as a tool to support
a variety of research projects germane to the energy sector including wind aerodynamic prediction and traditional
gas-phase combustion applications.

4.1 Introduction

The methodology used to evaluate the accuracy of each proposed scheme will be the method of manufactured solutions.
The objective of code verification is to reveal coding mistakes that affect the order of accuracy and to determine if the
governing discretized equations are being solved correctly. Quite often, the process of verification reveals algorithmic
issues that would otherwise remain unknown.

In practice, a variety of comparison techniques exist for verification. For example, benchmark and code-to-code
comparison are not considered rigorous due to the errors that exist in other code solutions, such as from discretization
and iteration. Analytic solutions and the method of manufactured solutions remain the most powerful methods for
code verification, since they provide a means to obtain quantitative error estimations in space and time.

Roache has made the distinction between code verification and calculation verification, where calculation verification
involves grid refinement required for every problem solution to assess the magnitude, not order, of the discretization
error. Discretization error, distinguished from modeling and iteration errors, is defined as the difference between the
exact solution to the continuum governing equations and the solution to the algebraic systems representation due to
discretization of the continuum equations. The order of accuracy can be determined by comparing the discretization
error on successively refined grids. Thus, it is desirable to have an exact solution for comparision to determine the
discretization errors.

145

Nalu Documentation, Release 1.2.0

4.2 2D Unsteady Uniform Property: Convecting Decaying Taylor Vor-
tex

Verification of first-order and second-order temporal accuracy for the CVFEM and EBVC formulation in Nalu is
performed using the method of manufactured solution (MMS) technique. For the unsteady isothermal, uniform laminar
physics set, the exact solution of the convecting, decaying Taylor vortex is used.

𝑢 = 𝑢𝑜 − 𝑐𝑜𝑠(𝜋(𝑥− 𝑢𝑜𝑡))𝑠𝑖𝑛(𝜋(𝑦 − 𝑣𝑜𝑡))𝑒
−2.0𝜔𝑡 (4.1)

𝑣 = 𝑣𝑜 + 𝑠𝑖𝑛(𝜋(𝑥− 𝑢𝑜𝑡))𝑐𝑜𝑠(𝜋(𝑦 − 𝑣𝑜𝑡))𝑒
−2.0𝜔𝑡 (4.2)

𝑝 = −𝑝𝑜
4

(𝑐𝑜𝑠(2𝜋(𝑥− 𝑢𝑜𝑡)) + 𝑐𝑜𝑠(2𝜋(𝑦 − 𝑣𝑜𝑡)))𝑒
−4𝜔𝑡 (4.3)

In this study, the constants 𝑢𝑜, 𝑣𝑜, and 𝑝𝑜 are all assigned values of 1.0, and the viscosity 𝜇 is set to a constant value
of 0.001. The value of 𝜔 is 𝜋2𝜇. This particular viscosity value results in a maximum cell reynolds number of twenty.

4.2.1 Temporal Order Of Accuracy Results

The temporal order of accuracy for the first order backward Euler and second order BDF2 are outlined in Figure Fig.
4.1 and Figure Fig. 4.2. Each of these simulations used a hybrid factor of zero to ensure pure second order central
usage. A fixed Courant number of two was used for each of the three meshes (100x100, 200x200 and 400x400).
The simulation was run out to 0.2 seconds and 𝐿2 error norms were computed. The standard fourth order pressure
stabilization scheme with time step scaling is used. This scheme is also known as the standard incremental pressure,
approximate pressure projection scheme.

Two other pressure projection schemes have been evaluated in this study. Each represent a simplification of the
standard pressure projection scheme. Figure Fig. 4.3 outlines three projection schemes: the first is when the projected
nodal gradient appearing in the fourth-order pressure stabilization is lagged while the second is the classic pressure-
free pressure approximate projection scheme with second order pressure stabilization. The third is the baseline fourth-
order incremental pressure projection scheme. The error plots demonstrate that lagging the projected nodal gradient
for pressure retains second order accuracy. However, as expected the pressure free pressure projection scheme is
confirmed to be first order accurate given the first order splitting error noted in this fully implicit momentum solve.

The Steady Taylor Vortex will be used to verify the spatial accuracy for the full set of advection operators supported
in Nalu.

4.3 Higher Order 2D Steady Uniform Property: Taylor Vortex

A higher order unstructured CVFEM method has been developed by Domino [Dom14]. A 2D structured mesh study
demonstrating second order time and third order in space scheme has been demonstrated. The below work has empha-
sis on unstructured meshes.

4.3.1 Source Term Quadrature

Higher order accuracy is only demonstrated on solutions with source terms when a fully integrated approach is used.
Lumping the source term evaluation is a second order error and is fully noted in the MMS study (not shown).

146 Chapter 4. Sierra Low Mach Module: Nalu - Verification Manual

Nalu Documentation, Release 1.2.0

1/timeStep

ln
(L

2E
rr

or
)

1 1.5 2 2.5 3 3.5 4

0.002

0.004

0.006

0.008

0.01

First Order
Elem_U_fst
Elem_V_fst
Edge_U_fst
Edge_V_fst

Fig. 4.1: Error norms as a function of timestep size for the 𝑢 and 𝑣 component of velocity using fourth order pressure
stabilization with timestep scaling, backward Euler

4.3. Higher Order 2D Steady Uniform Property: Taylor Vortex 147

Nalu Documentation, Release 1.2.0

1/timeStep

ln
(L

2E
rr

or
)

1 1.5 2 2.5 3 3.5 4

0.0001

0.0002

0.0003
0.0004
0.0005 Second Order

Elem_U_2nd
Elem_V_2nd
Edge_U_2nd
Edge_V_2nd
First Order

Fig. 4.2: Error norms as a function of timestep size for the 𝑢 and 𝑣 component of velocity using fourth order pressure
stabilization with timestep scaling, BDF2

148 Chapter 4. Sierra Low Mach Module: Nalu - Verification Manual

Nalu Documentation, Release 1.2.0

1.0/timeStep

ln
(L

2E
rr

or
)

1 1.5 2 2.5 3 3.5 4

10-5

10-4

10-3

10-2

10-1 Elem_U_2nd
Elem_V_2nd
Elem_U_2nd_Lag
Elem_V_2nd_Lag
First Order
Second Order
Elem_U_2nd_pf
Elem_V_2nd_pf

Fig. 4.3: Error norms as a function of timestep size for the 𝑢 and 𝑣 component of velocity using the lagged projected
nodal pressure gradient and pressure-free pressure projection scheme; all with with timestep scaling, BDF2

4.3. Higher Order 2D Steady Uniform Property: Taylor Vortex 149

Nalu Documentation, Release 1.2.0

4.3.2 Projected nodal gradients

Results show that one must use design order projected nodal gradients. Figure Fig. 4.4 demonstrates a code verification
result for a steady thermal manufactured solution comparing lumped and consistent mass matrix approaches for the
projected nodal gradient on a quadratic tquad mesh. In the lumped approach, a simple explicit algorithm is processed
while for the consistent approach, a simple mass matrix inversion equation must be solved. The lumped approach is
first order while the consistent approach retains the expected second order as the projected nodal gradient is expected
to be order 𝑃 . Both Dirichlet and periodic domains display the same order of convergence.

4.3.3 Momentum and Pressure

The steady taylor vortex exact solution was run on a quadratic tquad mesh. Figure Fig. 4.5 demonstrates the order of
accuracy for projected nodal gradients (pressure) and the velocity field (x-component). Second order accuracy for the
projected nodal gradient (pressure) and third order for the velocity field is realized when the consistent mass matrix
approach is used for the projected nodal pressure gradient. Note that this term is used in the pressure stabilization
approach. However, order of convergence for the projected nodal pressure gradient and velocity field is compromised
when the lumped mass matrix approach is used for the pressure stabilization term. Note that both approaches use the
fully integrated pressure gradient term in the momentum equation (i.e.,

∫︀
𝑝𝑛𝑖𝑑𝑆). Therefore, the reduced order of

integration for the projected nodal pressure gradient has consequence on the velocity field order of convergence.

Again, dirichlet (inflow) and periodic domains display the same order of convergence.

4.4 3D Steady Non-isothermal with Buoyancy

Building from the basic functional form of the Taylor Vortex, a non-isothermal solution (momentum, pressure and
static enthalpy) is manufactured as follows:

𝑢 = −𝑢𝑜𝑐𝑜𝑠(𝑎𝜋𝑥)𝑠𝑖𝑛(𝑎𝜋𝑦)𝑠𝑖𝑛(𝑎𝜋𝑧)

𝑣 = +𝑣𝑜𝑠𝑖𝑛(𝑎𝜋𝑥)𝑐𝑜𝑠(𝑎𝜋𝑦)𝑠𝑖𝑛(𝑎𝜋𝑧)

𝑤 = −𝑤𝑜𝑠𝑖𝑛(𝑎𝜋𝑥)𝑠𝑖𝑛(𝑎𝜋𝑦)𝑐𝑜𝑠(𝑎𝜋𝑧)

𝑝 = −𝑝𝑜
4

(𝑐𝑜𝑠(2𝑎𝜋𝑥) + 𝑐𝑜𝑠(2𝑎𝜋𝑦) + 𝑐𝑜𝑠(2𝑎𝜋𝑧))

ℎ = +ℎ𝑜𝑐𝑜𝑠(𝑎ℎ𝜋𝑥)𝑐𝑜𝑠(𝑎ℎ𝜋𝑦)𝑐𝑜𝑠(𝑎ℎ𝜋𝑧)

(4.4)

The equation of state is simply the ideal gas law,

𝜌 =
𝑃 𝑟𝑒𝑓𝑀

𝑅𝑇
(4.5)

The simulation is run on a three-dimensional domain ranging from -0.05:+0.05 with constants
𝑎, 𝑎ℎ,𝑀,𝑅,𝐶𝑝, 𝑃

𝑟𝑒𝑓 , 𝑇𝑟𝑒𝑓 , 𝑃 𝑟, 𝜇 equal to (20, 10, 30, 10, 0.01, 100, 300, 0.8, 0.00125), respectively.

At reference conditions, the density is unity. The effects of buoyancy are also provided by an arbitrary gravity vector
of magnitude of approximately ten, 𝑔𝑖 = (−5, 6, 7)𝑇 . On this domain, the enthalpy ranges from zero to unity. Given
the reference values, the temperature field ranges from 300K to 400K which is designed to mimic a current LES
non-isothermal validation suite.

Edge- and element-based discretization (P=1) demonstrate second order convergence in the 𝐿2 norm for u, v, w and
temperature. This test is captured within the variableDensityMMS regression test suite.

150 Chapter 4. Sierra Low Mach Module: Nalu - Verification Manual

Nalu Documentation, Release 1.2.0

Fig. 4.4: Error norms as a function of mesh size for a CMM and LMM projected nodal gradient on a quadratic tquad
mesh.

4.4. 3D Steady Non-isothermal with Buoyancy 151

Nalu Documentation, Release 1.2.0

Normalized Mesh Spacing

E
rr

o
r

0.4 0.6 0.8 1

10
9

10
8

10
7

10
6

10
5

10
4

10
3

10
2

Ux_CMM

Ux_LMM

dpdx_CMM

dpdx_LMM

TO

SO

Fig. 4.5: Error norms as a function of mesh size for the Steady Taylor Vortex momentum and pressure gradient field.

152 Chapter 4. Sierra Low Mach Module: Nalu - Verification Manual

Nalu Documentation, Release 1.2.0

4.5 3D Steady Non-uniform with Buoyancy

Building from the basic functional form of the Taylor Vortex, a non-uniform solution (momentum, pressure and mix-
ture fraction) is manufactured as follows:

𝑢 = −𝑢𝑜𝑐𝑜𝑠(𝑎𝜋𝑥)𝑠𝑖𝑛(𝑎𝜋𝑦)𝑠𝑖𝑛(𝑎𝜋𝑧)

𝑣 = +𝑣𝑜𝑠𝑖𝑛(𝑎𝜋𝑥)𝑐𝑜𝑠(𝑎𝜋𝑦)𝑠𝑖𝑛(𝑎𝜋𝑧)

𝑤 = −𝑤𝑜𝑠𝑖𝑛(𝑎𝜋𝑥)𝑠𝑖𝑛(𝑎𝜋𝑦)𝑐𝑜𝑠(𝑎𝜋𝑧)

𝑝 = −𝑝𝑜
4

(𝑐𝑜𝑠(2𝑎𝜋𝑥) + 𝑐𝑜𝑠(2𝑎𝜋𝑦) + 𝑐𝑜𝑠(2𝑎𝜋𝑧))

𝑧 = +𝑧𝑜𝑐𝑜𝑠(𝑎𝑧𝜋𝑥)𝑐𝑜𝑠(𝑎𝑧𝜋𝑦)𝑐𝑜𝑠(𝑎𝑧𝜋𝑧)

(4.6)

The equation of state is simply the standard inverse mixture fraction property expression for density,

𝜌 =
1

𝑧
𝑟ℎ𝑜𝑃

+ 1−𝑧
𝑟ℎ𝑜𝑆

(4.7)

The simulation is run on a three-dimensional domain ranging from -0.05:+0.05 with constants 𝑎, 𝑎𝑧, 𝜌𝑝, 𝜌𝑠, 𝑆𝑐, 𝜇 equal
to (20, 10, 0.1, 1.0, 0.8, 0.001), respectively.

At reference conditions, the density is that of the primary condition (0.1). The effects of buoyancy are also provided
by an arbitrary gravity vector of magnitude of approximately ten, 𝑔𝑖 = (−5, 6, 7)𝑇 . On this domain, the mixture
fraction ranges from zero to unity. This test case is designed to support the helium plume DNS study with primary and
secondary density values of helium and air, respectively.

Edge- and element-based discretization (P=1) demonstrate second order convergence in the 𝐿2 norm for u, v, w and
mixture fraction. This test is captured within the variableDensityMMS regression test suite.

4.6 2D Steady Laplace Operator

The evaluation of the low-Mach Laplace (or diffusion operator) is of great interest to the core supported application
space. Although the application space for Nalu is characterized by a highly turbulent flow, the usage of an approximate
pressure projection scheme always makes the chosen Laplace form important. Although the element-based scheme is
expected to be accurate, it can be problematic on high aspect ratio meshes as element-based schemes are not gauranteed
to be monotonic for aspect ratios as low as

√
2 for FEM-based schemes and

√
3 for CVEM-based approaches (both

when using standard Gauss point locations). Conversely, while the edge-based operator is accurate on high aspect ratio
meshes, it suffers on skewed meshes due to both quadrature error and the inclusion of a non orthogonal correction
(NOC).

In order to assess the accuracy of the Laplace operator, a the two-dimensional MMS temperature solution is used. The
functional temperature field takes on the following form:

𝑇 =
𝜆

4
(𝑐𝑜𝑠(2𝑎𝜋𝑥) + 𝑐𝑜𝑠(2𝑎𝜋𝑦)). (4.8)

The above manufactured solution is run on three meshes of domain size of 1x1. The domain was first meshed as a
triangular mesh and then converted to a tquad4 mesh. Therefore, non orthogonal correction (NOC) effects are expected
for the edge-based scheme. In this study, both 𝜆 and 𝑎 are unity. Either periodic or Dirichlet conditions are used for
boundary conditions.

A brief overview of the diffusion operator tested is now provided. For more details, consult the theory manual. The
general diffusion kernel is as follows:

−
∫︁

Γ
𝜕𝜑

𝜕𝑥𝑗
𝐴𝑗 . (4.9)

4.5. 3D Steady Non-uniform with Buoyancy 153

Nalu Documentation, Release 1.2.0

The choice of the gradient operator at the integration point is a functin of the underlying method. For CVFEM, the
gradient operator is provided by the standard shape function derivatives,

𝜕𝜑𝑖𝑝
𝜕𝑥𝑗

=
∑︁ 𝜕𝑁 𝑖𝑝

𝑗,𝑘

𝜕𝑥𝑗
𝜑𝑘. (4.10)

For the edge-based scheme, a blending of an orthogonal gradient along the edge and a NOC is employed,

𝜕𝜑𝑖𝑝
𝜕𝑥𝑗

= 𝐺𝑗𝜑+
[︀
(𝜑𝑅 − 𝜑𝐿) −𝐺𝑙𝜑𝑑𝑥𝑙

]︀ 𝐴𝑗

𝐴𝑘𝑑𝑥𝑘
. (4.11)

In the above equation, 𝐺𝑗𝜑 is a projected nodal gradient. The general equation for this quantity is∫︁
𝑤𝐼𝐺𝑗𝜑𝑑𝑉 =

∫︁
𝑤𝑖

𝜕𝜑

𝜕𝑥𝑗
𝑑𝑉 . (4.12)

Possible forms of this include either lumped or consistent mass (the later requires a global equation solve) with either
the full CVFEM stencil or the edge-based (reduced) stencil. The above equation can even be applied within the
element itself for a simple, local integration step that provides a piecewise constant gradient over the element.

The simulation study is run with the following diffusion operators: 1) the standard CVFEM operator, 2) the edge-based
operator with CVFEM projected nodal gradients (NOC), 3) the edge-based operator with edge-based projected nodal
gradients (NOC), 4) the edge-based operator without NOC correction, 5) the CVFEM operator with shifted integration
points to the edge, and, lastly, 6) a mixed edge/element scheme in which the orthogonal diffuion operator is edge-based
while the NOC terms are based on the elemental CVFEM gradient (either evaluated at the given integration point or
integrated over the element for a piecewise constant form).

The last operator is interesting in that it represents a candidate operator for the CVFEM pressure Poisson system when
high aspect ratio meshes are used. Figure Fig. 4.6 outlines the convergence of the five above operators; shown are all
of the standard norms (∞, 1 and 2) for the R0, R1 and R2 mesh refinements. The results in the left side of the figure
indicate that the edge-based scheme with NOC retains second-order convergence for all norms when the more accurate
CVFEM projected nodal gradient is used (lumped only tested given its good results). Convergence is degraded with the
edge-based scheme when NOC terms are either neglected or use the reduced edge-based projected nodal gradient. The
CVFEM-based methods are second order accurate in the 𝐿1 and 𝐿2 norms, however, questionable results are noted
in the 𝐿∞ norm for all methods that include any shape function derivative for local or elemental piecwise constant
gradient operators. Shifting the Gauss points from the standard subcontrol surface to the edges of the element (while
still using shape function derivatives) is only problematic in the 𝐿∞ norm (just as the standard CVFEM approach).
The use of the mixed-approach with a piecewise constant gradient over the element demonstrates the same behavior
as when using the integration point CVFEM gradient operator. Figure Fig. 4.7 outlines two more refinement meshes
for the CVFEM operator (R3 and R4). Results indicate that the 𝐿∞ norm is approaching second order accuracy.

An inspection of the magnitude of error between the exact and computed temperature for the R3 mesh is shown in
Figure Fig. 4.8. Results show that the CVFEM error is highest at the corner mesh nodes that form a reduced stencil.
The edge-based scheme shows increased error at the higher aspect ratio dual mesh.

4.7 3D Steady Laplace Operator with Nonconformal Interface

A three dimensional element-based verification study is provided to evaluate the DG-based CVFEM approach.

𝑇 =
𝜆

4
(𝑐𝑜𝑠(2𝑎𝜋𝑥) + 𝑐𝑜𝑠(2𝑎𝜋𝑦) + 𝑐𝑜𝑠(2𝑎𝜋𝑧)). (4.13)

Figure Fig. 4.9 represents the MMS field for temperature. The simulation study includes uniform refinement of a first-
and second-order CVFEM basis. Both temperature field and projected nodal gradient norms are of interest.

Figure Fig. 4.10 outlines the linear and quadratic basis. For P1, the CVFEM temperature field predicts between second
and first order while for P2, third order is recovered. When using a consistent mass matrix for the projected nodal
gradient, second order is noted, see Figure Fig. 4.11.

154 Chapter 4. Sierra Low Mach Module: Nalu - Verification Manual

Nalu Documentation, Release 1.2.0

Fig. 4.6: Error norms for tquad4 refinement study. R0, R1, and R2 refinement.

Fig. 4.7: Error norms for tquad4 refinement study. R0, R1, R2, R3, R4, and R4 refinementError for CVFEM.

4.7. 3D Steady Laplace Operator with Nonconformal Interface 155

Nalu Documentation, Release 1.2.0

Fig. 4.8: Magnitude of the 𝐿∞ temperature norm comparing the edge-based CVFEM (NOC) and standard CVFEM
operators on the R3 mesh.

156 Chapter 4. Sierra Low Mach Module: Nalu - Verification Manual

Nalu Documentation, Release 1.2.0

Fig. 4.9: MMS temperature field for nonconformal algorithm.

4.7. 3D Steady Laplace Operator with Nonconformal Interface 157

Nalu Documentation, Release 1.2.0

Fig. 4.10: MMS order of accuracy for nonconformal algorithm. Temperature norms for P1 and P2 elements.

Fig. 4.11: MMS order of accuracy for nonconformal algorithm. Projected nodal gradient norms for P1 and P2 ele-
ments.

158 Chapter 4. Sierra Low Mach Module: Nalu - Verification Manual

Nalu Documentation, Release 1.2.0

dof 𝐿∞ L1 L2
temperature 3.33067e-16 2.30077e-17 4.68103e-17
dTdx 4.13225e-13 9.06848e-15 1.98249e-14
dTdy 4.15668e-13 1.11256e-14 2.15065e-14
dTdz 4.31211e-13 9.60785e-15 1.97517e-14

Given the order of accuracy results for the P1 implementation, a linear patch test was run. The temperature solution
was simply, 𝑇 (𝑥, 𝑦, 𝑧) = 𝑥 + 𝑦 + 𝑧; all analytical temperature gradients are unity. Table Table 4.7 demonstrates the
successful patch test results for a P1 CVFEM implementation.

4.8 Precursor-based Simulations

In the field of turbulent flow modeling and simulation, often times simulations may require sophisticated boundary
conditions that can only be obtained from previously run high-fidelity simulations. For example, consider a typical
turbulent jet simulation in which the experimental inlet condition was preceeded by a turbulent pipe entrance region.
Furthermore, in most cases the ability to adequately predict the developing jet flow regime may be highly sensitive
to proper inlet conditions. Figure Fig. 4.12 and Figure Fig. 4.13 outline a process in which a high fidelity large-
eddy simulation of a periodic pipe was used to determine a representative inlet condition for a turbulent round jet.
Specifically, a precursor pipe flow simulation is run with velocity provided to an output file. This output file serves as
the inlet velocity profile for the subsequent simulation.

In the above use case, as with most general simulation studies, the mesh resolution for the precursor simulation may be
different from the subsequent simulation. Moreover, the time scale for the precursor simulation may be much shorter
than the subsequent simulation. Finally, the data required for the subsequent simulation will likely be at different time
steps unless an overly restrictive rule is enforced, i.e., a fixed timestep for each simulation.

In order to support such use cases, extensive usage of the the Sierra Toolkit infrastructure is expected, most notably
within the IO and Transfer modules. The IO module can be used to interpolate the precursor simulation boundary
data to the appropriate time required by the subsequent simulation. Specifically, the IO module linearly interpolates
between the closest data interval in the precursor data set. A recycling offset factor is included within the IO interface
that allows for the cycling of data over the full time scale of interest within the subsequent simulation. For typical
statistically stationary turbulent flows, this is useful to ensure proper statistics are captured in subsequent runs.

After the transient data set from the precursor simulation is interpolated to the proper time, the data is spatially
interpolated and transferred to the subsequent simulation mesh using the STK Transfer module. Efficient coarse
parallel searches (point/bounding box) provide the list of candidate owning elements on which the fine-scale search
operates to determine the best search candidate. The order of spatial interpolation depends on the activated numerical
discretization. Therefore, by combining the two STK modules, the end use case to support data transfers of boundary
data is supported.

As noted, there are many other use cases in addition to the overviewed turbulent jet simulation that require such tempo-
ral/spatial interpolation capabilities. For example, in typical wind farm simulation applications, a proper atmospheric
boundary layer (ABL) configuration is required to capture a given energy state of the boundary layer. In this case, a
periodic precusor ABL is run with the intent of providing the inlet condition to the subsequent wind farm domain. As
with the previous description, the infrustructure requirements remain the same.

Finally, the general creation of an “input_output” region can be useful in validation cases where data are provided
at a subset of the overall simulation domain. Such is the case in PIV and PLIF experimental data sets. Although the
temporal interpolation is not required, the transfer of this data at high time step frequency is useful for post-processing.

In this verification section, a unit test approach will be referenced that is captured within the STK module test suite.
This foundational test coverage provides confidence in the underlying IO and parallel search/interpolation processes.
In addition to briefly describing the infrastructure testing, application tests are provided as further evidence of correct-

4.8. Precursor-based Simulations 159

Nalu Documentation, Release 1.2.0

Fig. 4.12: Precursor periodic pipe flow large-eddy simulation that will serve as the inlet boundary condition for a
subsequent turbulent jet simulation.

160 Chapter 4. Sierra Low Mach Module: Nalu - Verification Manual

Nalu Documentation, Release 1.2.0

Fig. 4.13: Subsequent turbulent jet simulation using the precursor data obtained by a periodic pipe flow.

4.8. Precursor-based Simulations 161

Nalu Documentation, Release 1.2.0

ness. The application test first is based on the convecting Taylor vortex verification case while the second is the ABL
precursor application space demonstration.

4.8.1 Infrastructure Unit Test

As noted above, the Nalu application code leverages the STK unit tests within the IO and transfer modules. Interested
parties may peruse the STK product under a cloned Trilinos cloned project, i.e., Trilinos/packages/stk/stk_doc_test.
Under the STK product, a variety of search, transfer and input/output tests exist. For example, interpolation in time
using the IO infrastructure is captured in addition to a variety of search and transfer use cases.

4.8.2 Application Verification Test; Convecting Taylor Vortex

Although the foundational infrastructure tests are useful, the application must adequately interface the IO and Trans-
fer modules to support the end use case. In this section, two tests will be demonstrated that illustrate the precur-
sor/subsequent simulation use case.

The first test considered will be the convecting Talor vortex. In this configuration, a very fine mesh simulation is
run with boundary conditions specified in the input file to be of type, “convecting_taylor_vortex”. This specifies
the analytical function for the x-component of velocity as provided in Equation (4.1). The simulation is run while
providing output to a Realm of type “input_output” using a transfer objective, “input_output”. The transient data is
then used for a series of mesh refinement studies. The viscosity is set at 0.001 while the domain is 1x1. In this study,
the edge-based scheme is activated, however, the precursor interpolation methodology is not sensitive to the underlying
numerical method.

In Figure Fig. 4.14, a plot between the analytical x-component of velocity and a nodal query of the outputted velocity
component is provided. Although not immediately apparent, the values are exactly the same. This finding confirms
that the data set output is consistent with the nodal exact value.

With the precursor data base containing the full transient data, a refinement study can be accomplished to determine
numerical errors. Although the full machinery for temporal and spatial interpolation is active, the data requirement at
the coarse simulations are represented as the subsets of the full data - both in space and time. As such, no numerical
degradation of second-order accuracy is expected. The subsequent simulations are run with an “external_data” transfer
objective and a Realm of type, “external_data_provider”.

In Figure Fig. 4.15, a plot of 𝐿2 norms of the x-component of velocity are shown for the subsequent set of simulations
that use the precursor data. Results of this study verify both the second-order temporal accuracy of the underlying
numerical scheme and the process of using both space and time interpolation.

4.8.3 Application Verification Test; ABL Precursor/Subsequent

The second, and final application test is an ABL-based simulation that first runs a precursor periodic solution in order
to capture an appropriate ABL specification. The boundary data saved from the precursor simulation are then used as
an inflow boundary condition for the subsequent ABL simulation. As the precurosr is run for a smaller time frame
than the subsequent simulation, the usage of data cycling is active. This full integration test is captured within the
regression test suite. The simulation is described as a non-isothermal turbulent flow.

In Figure Fig. 4.16, the transient recycling of the ABL thermal inflow boundary condition is captured at an arbitrary
nodal location very near the wall boundary condition. The subsequent simulation reads the precursor data set for time
zero seconds until 3000 seconds at which time it recylces the inlet condition back to the initial precursor simulation
time, i.e., zero seconds. An interesting note in this study is the fact that the precursor periodic simulation, which
was run at the same Courant number, was using time steps approximately three times greater than the subsequent
inflow/open configuration.

162 Chapter 4. Sierra Low Mach Module: Nalu - Verification Manual

Nalu Documentation, Release 1.2.0

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 0 0.2 0.4 0.6 0.8 1

U
x

Time (s)

analytical
precursor

Fig. 4.14: Temporal plot of the exact x-velocity component and precursor output.

4.8. Precursor-based Simulations 163

Nalu Documentation, Release 1.2.0

 1e-05

 0.0001

 0.001

 10000 100000

N
or

m

Number of nodes

Second-order
p1EBVC

Fig. 4.15: Temporal accuracy plot of the x-velocity component norms using the precursor data.

164 Chapter 4. Sierra Low Mach Module: Nalu - Verification Manual

Nalu Documentation, Release 1.2.0

 300

 301

 302

 303

 304

 305

 306

 307

 308

 309

 310

 0 500 1000 1500 2000 2500 3000 3500 4000 4500

Bo
un

da
ry

 T
em

pe
ra

tu
re

 (K
)

Time (s)

Fig. 4.16: Transient recycling of the temperature inflow boundary condition for the subsequent ABL simulation. After
3000 seconds, the inflow boundary condition is recycled from the begining of the precursor simulation.

4.8. Precursor-based Simulations 165

Nalu Documentation, Release 1.2.0

In Figure Fig. 4.17, (left) the subsequent simulation inflow temperature field and full profile over the full domain is
captured at approximately 4620 seconds. On the right of the figure, the temperature boundary condition data that
originated from the precursor simulation, which was read into the subsequent “external_field_provider” Realm, is
shown (again at approximately 4620 seconds).

Fig. 4.17: Subsequent simulation showing the full temperature domain (left) and on the precursor inflow temperature
boundary condition field obtained from the perspective of the subsequent “external_field_provider” Realm (right).

4.9 Boussinesq Verification

4.9.1 Unit tests

Unit-level verification was performed for the Boussinesq body force term (3.9) with a nodal source appropriate to
the edge-based scheme (MomentumBoussinesqSrcNodeSuppAlg.single_value) as well as a separate unit test for the
element-based “consolidated” Boussinesq source term (MomentumKernelHex8Mesh.buoyancy_boussinesq). Proper
volume integration with different element topologies is also tested (the “volume integration” tests in the MasterElement
and HOMasterElement test cases).

4.9.2 Stratified MMS

A convergence study using the method of manufactured solutions (MMS) was also performed to assess the integration
of the source term into the governing equations. An initial condition of a Taylor-Green vortex for velocity, a zero-
gradient pressure field, and a linear enthalpy profile in the z-direction are imposed.

𝑢 = −1

2
𝑐𝑜𝑠(2𝜋𝑥)𝑠𝑖𝑛(2𝜋𝑦)𝑠𝑖𝑛(2𝜋𝑧)

𝑣 = 𝑠𝑖𝑛(2𝜋𝑥)𝑐𝑜𝑠(2𝜋𝑦)𝑠𝑖𝑛(2𝜋𝑧)

𝑤 = −1

2
𝑠𝑖𝑛(2𝜋𝑥)𝑠𝑖𝑛(2𝜋𝑦)𝑐𝑜𝑠(2𝜋𝑧)

𝑝 = 0

ℎ = 𝑧.

(4.14)

166 Chapter 4. Sierra Low Mach Module: Nalu - Verification Manual

Nalu Documentation, Release 1.2.0

The simulation is run on a three-dimensional domain ranging from -1/2:+1/2 with reference density, reference tem-
perature and the thermal expansion coefficient to equal to 1, 300, and 1, respectively. 𝛽 is much larger than typical
(1/𝑇ref) so that the buoyancy term is a significant term in the MMS in this configuration.

The Boussinesq buoyancy model uses a gravity vector of magnitude of ten in the z-direction opposing the enthalpy
gradient, 𝑔𝑖 = (0, 0,−10)𝑇 . The temperature for this test ranges between 250K and 350K. The test case was run with
a regular hexahedral mesh, using the edge-based vertex centered finite volume scheme. Each case was run with a fixed
maximum Courant number of 0.8 relative to the specified solution.

Table 4.1: Error in x-component of velocity
h 𝐿∞ L1 L2 Order
1/32 8.91e-3 1.12e-3 1.77e-3 NA
1/64 2.03e-3 3.04e-4 4.27e-4 2.05
1/128 4.65e-4 7.64e-5 1.05e-4 2.03

Table 4.2: Error in y-component of velocity
h 𝐿∞ L1 L2 Order
1/32 1.78e-2 2.31e-3 3.47e-3 NA
1/64 4.18e-3 5.92e-4 8.23e-4 2.06
1/128 9.70e-4 1.50e-4 2.02e-4 2.03

Table 4.3: Error in z-component of velocity
h 𝐿∞ L1 L2 Order
1/32 8.68e-2 1.17e-3 1.73e-3 NA
1/64 2.00e-3 2.99e-4 4.22e-4 2.04
1/128 4.64e-4 7.63e-5 1.05e-4 2.00

Table 4.4: Error in temperature
h 𝐿∞ L1 L2 Order
1/32 1.09e-2 1.46e-3 2.10e-3 NA
1/64 2.06e-3 3.13e-4 4.19e-4 2.32
1/128 4.18e-4 7.54e-5 1.00e-4 2.06

This test is added to Nalu’s nightly test suite, testing that the convergence rate between the 1/32 and 1/64 element sizes
is second order.

4.10 3D Hybrid 1x2x10 Duct: Specified Pressure Drop

In this section, a specified pressure drop in a simple 1x2x10 configuration is run with a variety of homogeneous
blocks of the following topology: hexahedral, tetrahedral, wedge, and thexahedral. This analytical solution is given
by an infinite series and is coded as the “1x2x10” user function. The simulation is run with an outer wall boundary
condition with two open boundary conditions. The specified pressure drop is 0.016 over the 10 cm duct. The density
and viscosity are 1.0e-3 and 1.0e-4, respectively. The siumulation study is run a fixed Courant numbers with a mesh
spacing ranging from 0.2 to 0.025. Figure Fig. 4.18 provides the standard velocity profile for the structured hexahedral
and unstructured tetrahedral element type.

The simulation study employed a variety of elemental topologies of uniform mesh spacing as noted above. Figure Fig.
4.19 outlines the convergence in the𝐿2 norm using the low-order elemental CVFEM implementation using the recently
changed tetrahedral and wedge element quadrature rules. Second-order accuracy is noted. Interestingly, the hexahedral

4.10. 3D Hybrid 1x2x10 Duct: Specified Pressure Drop 167

Nalu Documentation, Release 1.2.0

Fig. 4.18: Streamwise velocity profile for specified pressure drop flow; tetrahedral and hexahedral topology.

and wedge topology provided nearly the same accuracy. Also, the tetrahedral accuracy was approximately four tiomes
greater. Finally, the Thexahedral topology proved to be second-order, however, provided very poor accuracy results.

4.11 3D Hybrid 1x1x1 Cube: Laplace

The standard Laplace operator is evalued on the full set of low-order hybrid topologies (not inlcuding the pyramid).
In this example, the temperature field is again,

𝑇 =
𝜆

4
(𝑐𝑜𝑠(2𝑎𝜋𝑥) + 𝑐𝑜𝑠(2𝑎𝜋𝑦) + 𝑐𝑜𝑠(2𝑎𝜋𝑧)). (4.15)

Figure Fig. 4.20 represents the MMS field for temperature on a variety of mesh topologies. The thexahedral mesh is
obtained from the standard uniform spacing tetrahedral mesh (not shown). The tetrahedral mesh shown is a tet-based
conversion of the standard structured hexahedral mesh. This approach ensures that the number of nodes between the
hexahedral and tetrahedral mesh are the same.

Figure Fig. 4.21 provides the 𝐿2 norms, all of which are showing second-order accuracy. In Figure Fig. 4.22, the
𝐿𝑜 error is shown. As indicated from the convergence plot, slight degradation in order-of-accuracy is noted for the
thexahedral topology.

4.12 Actuator line simulations coupled to OpenFAST

We test the implementation of the actuator line algorithm in Nalu coupled to OpenFAST by performing a simulation
of a flow past an elliptic wing at a constant angle of attack. We compare the solution from the coupled simulation to
that using lifting line theory [KP02].

The elliptic wing is modeled using OpenFAST, a aero-hydro-servo-elastic tool to model wind turbines developed by
the National Renewable Energy Laboratory (NREL). A static wind turbine model was created in OpenFAST with just
one elliptic wing and all other systems including structural deformation, controls, etc. are turned off. The elliptic wing
simulated in this work is an infinitesimally thin wing with a maximum chord (𝑐0) of 1𝑚 and an aspect ratio (𝑏/𝑐0) of
10.0. The lift-curve slope (𝑑𝐶𝑙/𝑑𝛼) of all airfoil sections on the wing is assumed to be 2𝜋 with no pressure or viscous

168 Chapter 4. Sierra Low Mach Module: Nalu - Verification Manual

Nalu Documentation, Release 1.2.0

 0.0001

 0.001

 0.01

 0.1

 100 1000 10000 100000 1e+06 1e+07

N
or

m

Number of nodes

Second-order
Hex8

THex8
Tet4

Wedge6

Fig. 4.19: 𝐿2 error for the CVFEM scheme on a variety of element types.

4.12. Actuator line simulations coupled to OpenFAST 169

Nalu Documentation, Release 1.2.0

Fig. 4.20: Temperature shadings for hexahedral, thexahedral, wedge, and tetrahedral topologies (clockwise from the
upper left).

drag. Using lifting line theory [KP02], the loads on the elliptic wing are

Area 𝑆 =

𝜋
𝑐0
2

𝑏

2
,

Maximum circulation Γmax =

2𝑏𝑈∞(𝛼− 𝛼𝐿0)

1 + 4𝑏/2𝜋𝑐0
,

Lift coefficient 𝐶𝐿 ≡
𝐿

0.5𝜌𝑈2
∞𝑆

=
𝜋

2

𝑏

𝑆

Γmax

𝑈∞
,

Lift coefficient 𝐶𝐷 ≡
𝐷

0.5𝜌𝑈2
∞𝑆

=
𝜋

4𝑆

Γ2
max

𝑈2
∞
,

Constant induced downwash 𝑤𝑖 =

Γmax

2𝑏
.

Span 𝑏 = 10𝑚

Max chord 𝑐0 = 1.0𝑚

Angle of attack 𝛼 = 7∘

𝑈∞ = 10.0𝑚/𝑠

𝑅𝑒𝑦𝑛𝑜𝑙𝑑𝑠 number based on chord = 0.66𝑀

Number of actuator points across span = 50

(4.16)

170 Chapter 4. Sierra Low Mach Module: Nalu - Verification Manual

Nalu Documentation, Release 1.2.0

 0.0001

 0.001

 0.01

 100 1000 10000 100000 1e+06 1e+07

N
or

m

Number of nodes

Second-order
Hex8

THex8
Tet4

Wedge6

Fig. 4.21: 𝐿2 norms for the full set of hybrid Laplace MMS study.

4.12. Actuator line simulations coupled to OpenFAST 171

Nalu Documentation, Release 1.2.0

 0.0001

 0.001

 0.01

 100 1000 10000 100000 1e+06 1e+07

N
or

m

Number of nodes

Second-order
Hex8

THex8
Tet4

Wedge6

Fig. 4.22: 𝐿𝑜 norms for the full set of hybrid Laplace MMS study.

172 Chapter 4. Sierra Low Mach Module: Nalu - Verification Manual

Nalu Documentation, Release 1.2.0

The flow past the elliptic wing is simulated in a domain of size 4𝑏 × 3𝑏 × 3𝑏. Some parameters of the simulation are
described in equation (4.16). As described in the section Wind Turbine Modeling, the actuator line algorithm solves
the momentum equation with a body force term spread to the nodes where 𝜖 is the spreading width. It is necessary to
maintain a constant 𝜖 to observe convergence of the solution with grid refinement. However, we do expect the solution
from the actuator line algorithm to be closer to that from lifting line theory with reducing 𝜖. Hence, we perform five
numerical simulations with grid resolutions as shown in table shown below. Simulations a,b,c use 𝜖 = 1𝑚 and d,e
use 𝜖 = 0.5𝑚. We expect to see grid convergence with simulations a,b,c while we expect simulations d,e to predict a
solution closer to the lifting line solution compared to simulations a,b,c.

Case ∆𝑥/𝑐0 ∆𝑡 𝜖/∆
a 0.125 0.00125 8.0
b 0.25 0.0025 4.0
c 0.5 0.005 2.0
d 0.125 0.00125 4.0
e 0.25 0.0025 2.0

The data shown in Fig. 4.23 - Fig. 4.27 are computed purely using output from OpenFAST. Unfortunately OpenFAST
can only output data at a maximum of 9 stations along the blade. For this specific work, I had designed the aerody-
namics module (AeroDyn) inside OpenFAST to use 18 stations to compute the forces along the blade. However, the
mesh mapping algorithm in OpenFAST is used to interpolate the forces per unit length along the blade into discrete
point forces at 50 actuator points along the blade as described in equation (4.16).

Fig. 4.23-Fig. 4.24 shows the comparsion of lift and drag coefficient predicted by the actuator line simulations to the
solution from lifting line theory. Simulations d and e are closer to the lifting line solution compared to a,b,c because
of the smaller 𝜖. Simulations a,b,c show grid convergence since they use the same 𝜖. Fig. 4.25-Fig. 4.26 show similar
results through the span wise distribution of the lift and drag per unit length along the blade. Fig. 4.27 shows the
comparison of the predicted angle of attack on the blade to the constant angle attack predicted by the lifting line
theory. As expected, the agreement with the lifting line theory is much better near the mid-span region compared to
the wing tips.

4.13 Open Boundary Condition With Outflow Thermal Stratification

In situations with significant thermal stratification at the outflow of the domain, the standard open boundary condition
alone is not adequate because it requires the specification of motion pressure at the boundary, and this is not known
a priori. Two solutions to this problem are: 1) to use the global mass flow rate correction option, or 2) to use the
standard open boundary condition in which the buoyancy term uses a local time-averaged reference value, rather than
a single reference value.

We test these open boundary condition options on a simplified stratified flow through a channel with slip walls. The
flow entering the domain is non-turbulent and uniformly 8 m/s. The temperature linearly varies from 300 K to 310
K from the bottom to top of the channel with compatible, opposite-sign heat flux on the two walls to maintain this
profile. The Boussinesq buoyancy option is used, and the density is set constant to 1.17804 kg/m 3. This density is
compatible with the reference pressure of 101325 Pa and a reference temperature of 300 K. The viscosity is set to
1.0e-5 Pa-s. The flow should keep its inflow velocity and temperature profiles throughout the length of the domain.

The domain is 3000 m long, 1000 m tall, and 20 m wide with 300 x 100 x 2 elements. The upper and lower boundaries
are symmetry with the specified normal gradient of temperature option used such that the gradient matches the initial
temperature profile with its gradient of 0.01 K/m. Flow enters from the left and exits on the right. The remaining
boundaries are periodic.

We test the problem on three configurations: 1) using the standard open boundary condition, 2) using the global-mass-
flow-rate-correction option, and 3) using the standard open boundary condition with a local moving-time-averaged
reference temperature in the Boussinesq buoyancy term.

4.13. Open Boundary Condition With Outflow Thermal Stratification 173

Nalu Documentation, Release 1.2.0

source/verification/figures/ew_LiftCoeff.pdf

Fig. 4.23: Comparison of lift coefficient 𝐶𝐿 for an elliptic wing simulated using actuator line algorithm to solution
using lifting line theory.

174 Chapter 4. Sierra Low Mach Module: Nalu - Verification Manual

Nalu Documentation, Release 1.2.0

source/verification/figures/ew_DragCoeff.pdf

Fig. 4.24: Comparison of drag coefficient 𝐶𝐷 for an elliptic wing simulated using actuator line algorithm to solution
using lifting line theory.

4.13. Open Boundary Condition With Outflow Thermal Stratification 175

Nalu Documentation, Release 1.2.0

source/verification/figures/ew_LiftForcePerUnitLength.pdf

Fig. 4.25: Comparison of lift coefficient 𝐶𝐿 for an elliptic wing simulated using actuator line algorithm to solution
using lifting line theory. Results are only shown at 9 different stations along the blade that are output from OpenFAST.

176 Chapter 4. Sierra Low Mach Module: Nalu - Verification Manual

Nalu Documentation, Release 1.2.0

source/verification/figures/ew_DragForcePerUnitLength.pdf

Fig. 4.26: Comparison of drag coefficient 𝐶𝐷 for an elliptic wing simulated using actuator line algorithm to solution
using lifting line theory. Results are only shown at 9 different stations along the blade that are output from OpenFAST.

4.13. Open Boundary Condition With Outflow Thermal Stratification 177

Nalu Documentation, Release 1.2.0

0 2 4 6 8 10
Span location (m)

6.0

6.4

6.8

7.2

7.6

8.0

A
ng

le
of

A
tta

ck
(d

eg
re

es
)

∆/c0 = 0.5

∆/c0 = 0.25

∆/c0 = 0.125

∆/c0 = 0.25, ε = 0.5

∆/c0 = 0.125, ε = 0.5

Lifting line

Fig. 4.27: Comparison of angle of attack distribution on an elliptic wing simulated using actuator line algorithm to
solution using lifting line theory. Results are only shown at 9 different stations along the blade that are output from
OpenFAST.

178 Chapter 4. Sierra Low Mach Module: Nalu - Verification Manual

Nalu Documentation, Release 1.2.0

Figure Fig. 4.28 shows the across-channel profile of outflow streamwise velocity. It is clear that in configuration 1, the
velocity is significantly distorted from the correct solution. Configurations 2 and 3 remedy the problem. However, if
we reduce the range of the x-axis, as shown in Figure Fig. 4.29, we see that configuration 3, the use of the standard
open boundary condition with a local moving-time-averaged Boussinesq reference temperature, provides a superior
solution in this case. In Figure, Fig. 4.30, we also see that configuration 1 significantly distorts the temperature from
the correct solution.

Fig. 4.28: Outflow velocity profiles for the thermally stratified slip-channel flow.

We also verify that the global mass-flow-rate correction of configuration 2 is correcting the outflow mass flow rate
properly. The output from Nalu showing the correction is correct and is shown as follows:

Mass Balance Review:
Density accumulation: 0
Integrated inflow: -188486.0356751138
Integrated open: 188486.035672821
Total mass closure: -2.29277e-06
A mass correction of: -2.86596e-09 occurred on: 800 boundary integration points:
Post-corrected integrated open: 188486.0356751139

4.14 Specified Normal Temperature Gradient Boundary Condition

The motivation for adding the ability to specify the boundary-normal temperature gradient is atmospheric boundary
layer simulation in which the upper portion of the domain often contains a stably stratified layer with a temperature
gradient that extends all the way to the upper boundary. The desire is for the simulation to maintain that gradient
throughout the simulation duration.

Our test case is a laminar infinite channel with slip walls. In this case, the flow velocity is zero so the problem is simply
a heat conduction through fluid. The density is fixed as constant, and there are no source terms including buoyancy.

4.14. Specified Normal Temperature Gradient Boundary Condition 179

Nalu Documentation, Release 1.2.0

Fig. 4.29: Outflow velocity profiles for the thermally stratified slip-channel flow considering only the case with the
global mass-flow-rate correction and the standard open boundary with the local moving-time-averaged Boussinesq
reference value.

Fig. 4.30: Outflow temperature profiles for the thermally stratified slip-channel flow.

180 Chapter 4. Sierra Low Mach Module: Nalu - Verification Manual

Nalu Documentation, Release 1.2.0

This problem has an the analytical solution for the temperature profile across the channel:

𝑇 (𝑡, 𝑧) = 𝑇 (𝑡0, 𝑧0) +
−𝑔𝐻 − 𝑔0

𝐻
𝜅𝑒𝑓𝑓 (𝑡− 𝑡0) + 𝑔0(𝑧 − 𝑧0) +

−𝑔𝐻 − 𝑔0
2𝐻

(𝑧 − 𝑧0)2, (4.17)

where 𝑡0 is the initial time; 𝑧0 is the height of the lower channel wall; 𝐻 is the channel height; 𝑔0 and 𝑔𝐻 are the wall-
normal gradients of temperature at the lower and upper walls, respectively; 𝜅𝑒𝑓𝑓 is the effective thermal diffusivity;
and 𝑧 is the distance in the cross-channel direction. The sign of the temperature gradients assumes that boundary
normal points inward from the boundary. For this solution to hold, the initial solution must be that of (4.17) with
𝑡 = 𝑡0.

For all test cases, we use a domain that is 10 m x 10 m in the periodic (infinite) directions, and 100 m in the cross-
channel (z) direction. We specify a constant density of 1 kg/m 3, zero velocity, no buoyancy source term, a viscosity
of 1 Pa-s, and a laminar Prandtl number of 1. No turbulence model is used. The value of 𝑇 (𝑡0, 𝑧0) is 300 K.

4.14.1 Simple Linear Temperature Profile: Equal and Opposite Specified Tempera-
ture Gradients

A simple verification test that is representative of a stable atmospheric capping inversion is to compute the simple
thermal channel with equal and opposite specified temperature gradients on each wall. By setting 𝑔𝐻 = −𝑔0 in
Equation (4.17), we are left with

𝑇 (𝑧) = 𝑇 (𝑧0) + 𝑔0(𝑧 − 𝑧0). (4.18)

In other words, if we set the initial temperature profile to that of (4.18), with 𝑔𝐻 = −𝑔0, the profile should remain
fixed for all time. In this case, we set 𝑔0 = 0.01 K/m and 𝑔𝐻 = −0.01 K/m.

We use a mesh that 2 elements wide in the periodic directions and 20 elements across the channel. We simulate a long
time period of 25,000 s. Figure Fig. 4.31 shows that the computed and analytical solutions agree.

4.14.2 Parabolic Temperature Profile: Equal Specified Temperature Gradients

Next, we verify the specified normal temperature gradient boundary condition option by computing the simple thermal
channel with equal specified temperature gradients, which yields the full time-dependent solution of Equation (4.17).
Here, we set 𝑔0 = 𝑔𝐻 = 0.01 K/m.

We use meshes that are 2 elements wide in the periodic directions and 20, 40, and 80 elements across the channel.
We simulate a long time period of 25,000 s. Figure Fig. 4.32 shows that the computed and analytical solutions agree.
There is no apparent overall solution degradation on the coarser meshes.

4.14. Specified Normal Temperature Gradient Boundary Condition 181

Nalu Documentation, Release 1.2.0

Fig. 4.31: The analytical (black solid) and computed (red dashed) temperature profile from the case with 𝑔𝐻 = −𝑔0
at 𝑡 = 25,000 s.

Fig. 4.32: The analytical (black solid) and computed (colored) temperature profile from the case with 𝑔𝐻 = 𝑔0 at 𝑡 =
25,000 s.

182 Chapter 4. Sierra Low Mach Module: Nalu - Verification Manual

Bibliography

[McAl1991] McAlister, K. W. and R. K. Takahashi. NACA 0015 Wing Pressure and Trailing Vortex Measurements,
NASA Technical Paper 3151. 1991.

[Aft94] M. Aftosmis. Upwind method for simulation of viscous flow on adaptively refined meshes. AIAA Journal,
32(2):268–277, 1994.

[CLM+12] M. J. Churchfield, S. Lee, P. K. Moriarty, L. A. Martinez, S. Leonardi, G. Vijayakumar, and J. G. Brasseur.
A large-eddy simulatiion of wind-plant aerodynamics. In Proceedings of the 50th AIAA Aerospace Sciences Meet-
ing including the New Horizons Forum and Aerospace Exposition. 9–12 Jan. 2012.

[Dav97] L. Davidson. Large-eddy simulations: a note on the derivation of the equations for the subgrid turbulent kintic
energies. Technical Report, Chalmers University of Technology, Department of Thermo and Fluid Dynamics,
1997.

[Dom06] S. Domino. Towards verification of formal time accuracy for a family of approximate projection methods
using the method of manufactured solutions. In Center for Turbulence Research Summer Proceedings. 2006.

[Dom08] S. Domino. A comparison of various equal-order interpolation methodologies using the method of manu-
factured solutions. In Center for Turbulence Research Summer Proceedings. 2008.

[Dom10] S. Domino. Towards verification of sliding mesh algorithms for complex applications using mms. In Center
for Turbulence Research Summer Proceedings. 2010.

[Dom14] S. Domino. A comparison between low order and higher order low mach discretization approaches. In
Center for Turbulence Research Summer Proceedings. 2014.

[DNP98] F. Ducors, F. Nicoud, and T. Poinsot. Wall-adapting local eddy-viscosity models for simulations in complex
geometries. In International Conference on Computational Conference, volume 50. 1998.

[Dye74] A. J. Dyer. A review of flux-profile relationships. Boundary-Layer Meteorology, 7:363–372, 1974.

[EWS+10] H. Edwards, A. Williams, G. Sjaardema, D. Baur, and W. Cochran. Sierra toolkit computational mesh com-
putational model. Technical Report SAND-20101192, Sandia National Laboratories, Albuquerque, NM, 2010.

[HBH+03] M. Heroux, R. Bartlett, V. Howle, R. Hoekstra, J. Hu, T. Kolda, R. Lehoucq, K. Long, R. Pawlowski,
E. Phipps, A. Salinger, J. Thornquist, R. Tuminaro, J. Willenbring, and A. Williams. An overview of trilinos.
Technical Report SAND-20032927, Sandia National Laboratories, Albuquerque, NM, 2003.

[Jas96] H. Jasek. Error analysis and estimation for the finite volume menthod with applications to fluid flow. In Ph.D.
Thesis, Imperial College. 1996.

183

Nalu Documentation, Release 1.2.0

[KV93] Y. Kallinderis and P. Vijayan. Adaptive refinement-coarsening scheme for three-dimensional unstructured
meshes. AIAA Journal, 31(8):1440–1447, 1993.

[KB89] Y. G. Kallinderis and J. R. Baron. Adaptive methods for a new navier-stokes algorithm. AIAA Journal,
27(1):37–43, 1989.

[KP02] Joseph Katz and Allen Plotkin. Low Speed Aerodynamics. Cambridge University Press, second edition, 2002.

[Mar05] M. Martinez. Comparison of galerkin and control volume finite element for advection-diffusion problems.
Int. J. Num. Meth. Fluids, 50(3):347–376, 2005.

[Mav00] D. J. Mavriplis. Adaptive meshing techniques for viscous flow calculations on mixed element unstructured
meshes. International Journal for Numerical Methods in Fluids, 34(2):93–111, 2000.

[MKL03] F. R. Menter, M. Kuntz, and R. Langtry. Ten years of industrial experience with the sst turbulence model.
Turb, Heat and Mass Trans, 2003.

[Moe84] C.-H. Moeng. A large-eddy-simulation model for the study of planetary boundary-layer turbulence. J. Atmos.
Sci., 41(13):2052–2062, 1984.

[Pao82] S. Paolucci. On the filtering of sound waves from the navier-stokes equations. Technical Report SAND-
828257, Sandia National Laboratories, Livermore, CA, December 1982.

[RB78] R. G. Rehm and H. R. Baum. The equations of motion for thermally driven buoyant flows. Journal of Research
of the National Bureau of Standards, 83:279, 1978.

[RM84] R. Rogallo and P. Moin. Numerical simulation of turbulent flows. Annual Review of Fluid Mechanics,
16:99–137, 1984.

[SR87] G. Schneider and M. Raw. Control volume finite element method for heat transfer and fluid flow using colo-
cated variables - 1. computational procedure. Numerial Heat Transfer, 11(4):363–390, 1987.

[SHZ91] F. Shakib, T. J. R. Hughes, and J. Zdenek. A new finite element formulation for computational fluids dy-
namics: the compressible euler and navier stokes equations. Comp. Meth. in App. Mech and Engr., 89:141–219,
1991.

[SrensenS02] Jens Nørkær Sørensen and Wen Zhong Shen. Numerical modeling of wind turbine wakes. Journal of
Fluids Engineering, 124(2):393–399, 05 2002. URL: http://dx.doi.org/10.1115/1.1471361.

[Tea16] SIERRA Thermal/Fluid Development Team. Sierra low mach module: fuego theory manual - version 4.42.
Technical Report SAND2016-10163, Sandia National Laboratories, October 2016.

[TDB05] S. Tieszen, S. Domino, and A. Black. Validation of a simple turbulence model suitable for closure of
temporally-filtered navier-stokes equations using a helium plume. Technical Report SAND-20053210, Sandia
National Laboratories, Albuquerque, NM, June 2005.

184 Bibliography

http://dx.doi.org/10.1115/1.1471361

Index

Symbols
-D, –debug

naluX command line option, 16
-h, –help

naluX command line option, 15
-i, –input-deck

naluX command line option, 15
-o, –log-file

naluX command line option, 15
-p, –pprint

naluX command line option, 16
-v, –version

naluX command line option, 15

A
abl_forcing

Nalu Input File Parameter, 37
abl_forcing.momentum.computed

Nalu Input File Parameter, 39
abl_forcing.momentum.heights

Nalu Input File Parameter, 39
abl_forcing.momentum.relaxation_factor

Nalu Input File Parameter, 39
abl_forcing.momentum.target_part_format

Nalu Input File Parameter, 39
abl_forcing.momentum.velocity_x

Nalu Input File Parameter, 39
abl_forcing.momentum.velocity_y

Nalu Input File Parameter, 39
abl_forcing.momentum.velocity_z

Nalu Input File Parameter, 39
abl_forcing.output_frequency

Nalu Input File Parameter, 38
abl_forcing.search_expansion_factor

Nalu Input File Parameter, 38
abl_forcing.search_method

Nalu Input File Parameter, 38
abl_forcing.search_tolerance

Nalu Input File Parameter, 38

abl_forcing.temperature.temperature
Nalu Input File Parameter, 39

activate_aura
Nalu Input File Parameter, 22

activate_memory_diagnostic
Nalu Input File Parameter, 22

actuator
Nalu Input File Parameter, 31

actuator.debug
Nalu Input File Parameter, 32

actuator.dry_run
Nalu Input File Parameter, 32

actuator.dt_fast
Nalu Input File Parameter, 33

actuator.epsilon
Nalu Input File Parameter, 33

actuator.FAST_input_filename
Nalu Input File Parameter, 33

actuator.n_every_checkpoint
Nalu Input File Parameter, 33

actuator.n_turbines_glob
Nalu Input File Parameter, 32

actuator.num_force_pts_blade
Nalu Input File Parameter, 33

actuator.num_force_pts_tower
Nalu Input File Parameter, 33

actuator.restart_filename
Nalu Input File Parameter, 33

actuator.search_method
Nalu Input File Parameter, 32

actuator.simStart
Nalu Input File Parameter, 32

actuator.t_end
Nalu Input File Parameter, 32

actuator.t_max
Nalu Input File Parameter, 32

actuator.t_start
Nalu Input File Parameter, 32

actuator.turb_id
Nalu Input File Parameter, 33

185

Nalu Documentation, Release 1.2.0

actuator.turbine_base_pos
Nalu Input File Parameter, 33

actuator.type
Nalu Input File Parameter, 32

automatic_decomposition_type
Nalu Input File Parameter, 22

B
balance_node_iterations

Nalu Input File Parameter, 23
balance_node_target

Nalu Input File Parameter, 23
balance_nodes

Nalu Input File Parameter, 22
bc.target_name

Nalu Input File Parameter, 25
bc.wall_user_data

Nalu Input File Parameter, 25
boundary_conditions

Nalu Input File Parameter, 25

D
data_probes

Nalu Input File Parameter, 35
data_probes.output_frequency

Nalu Input File Parameter, 36
data_probes.search_expansion_factor

Nalu Input File Parameter, 36
data_probes.search_method

Nalu Input File Parameter, 36
data_probes.search_tolerance

Nalu Input File Parameter, 36
data_probes.specifications

Nalu Input File Parameter, 36
data_probes.specifications.from_target_part

Nalu Input File Parameter, 36
data_probes.specifications.line_of_site_specifications

Nalu Input File Parameter, 36
data_probes.specifications.name

Nalu Input File Parameter, 36
data_probes.specifications.output_variables

Nalu Input File Parameter, 36
dtctrl.target_courant

Nalu Input File Parameter, 31
dtctrl.time_step_change_factor

Nalu Input File Parameter, 31

E
equation_systems

Nalu Input File Parameter, 23
equation_systems.max_iterations

Nalu Input File Parameter, 23
equation_systems.name

Nalu Input File Parameter, 23

equation_systems.solver_system_specification
Nalu Input File Parameter, 23

equation_systems.systems
Nalu Input File Parameter, 23

ExampleClass (C++ class), 70
ExampleClass::~ExampleClass (C++ function), 71
ExampleClass::AnotherMethod (C++ function), 71
ExampleClass::DoNothing (C++ function), 71
ExampleClass::DoSomething (C++ function), 71
ExampleClass::ExampleClass (C++ function), 71
ExampleClass::fAnswer (C++ member), 72
ExampleClass::fQuestion (C++ member), 72
ExampleClass::SomeProtectedMethod (C++ function),

72
ExampleClass::VeryUsefulMethod (C++ function), 71

I
initial_conditions

Nalu Input File Parameter, 24
initial_conditions.constant

Nalu Input File Parameter, 24
initial_conditions.target_name

Nalu Input File Parameter, 24
initial_conditions.user_function

Nalu Input File Parameter, 24

L
linear_solvers.bamg_coarsen_type

Nalu Input File Parameter, 20
linear_solvers.bamg_cycle_type

Nalu Input File Parameter, 20
linear_solvers.bamg_max_levels

Nalu Input File Parameter, 20
linear_solvers.bamg_num_sweeps

Nalu Input File Parameter, 20
linear_solvers.bamg_output_level

Nalu Input File Parameter, 20
linear_solvers.bamg_relax_order

Nalu Input File Parameter, 20
linear_solvers.bamg_relax_type

Nalu Input File Parameter, 20
linear_solvers.bamg_strong_threshold

Nalu Input File Parameter, 20
linear_solvers.kspace

Nalu Input File Parameter, 19
linear_solvers.max_iterations

Nalu Input File Parameter, 19
linear_solvers.method

Nalu Input File Parameter, 19
linear_solvers.muelu_xml_file_name

Nalu Input File Parameter, 19
linear_solvers.name

Nalu Input File Parameter, 19
linear_solvers.output_level

186 Index

Nalu Documentation, Release 1.2.0

Nalu Input File Parameter, 19
linear_solvers.preconditioner

Nalu Input File Parameter, 19
linear_solvers.recompute_preconditioner

Nalu Input File Parameter, 19
linear_solvers.reuse_preconditioner

Nalu Input File Parameter, 19
linear_solvers.summarize_muelu_timer

Nalu Input File Parameter, 19
linear_solvers.tolerance

Nalu Input File Parameter, 19
linear_solvers.type

Nalu Input File Parameter, 19
linear_solvers.write_matrix_files

Nalu Input File Parameter, 19

M
material_properties

Nalu Input File Parameter, 27
material_properties.constant_specification

Nalu Input File Parameter, 27
material_properties.reference_quantities

Nalu Input File Parameter, 28
material_properties.specifications

Nalu Input File Parameter, 28
material_properties.specifications.name

Nalu Input File Parameter, 28
material_properties.specifications.type

Nalu Input File Parameter, 28
material_properties.target_name

Nalu Input File Parameter, 27
mesh

Nalu Input File Parameter, 22

N
Nalu Input File Parameter

abl_forcing, 37
abl_forcing.momentum.computed, 39
abl_forcing.momentum.heights, 39
abl_forcing.momentum.relaxation_factor, 39
abl_forcing.momentum.target_part_format, 39
abl_forcing.momentum.velocity_x, 39
abl_forcing.momentum.velocity_y, 39
abl_forcing.momentum.velocity_z, 39
abl_forcing.output_frequency, 38
abl_forcing.search_expansion_factor, 38
abl_forcing.search_method, 38
abl_forcing.search_tolerance, 38
abl_forcing.temperature.temperature, 39
activate_aura, 22
activate_memory_diagnostic, 22
actuator, 31
actuator.debug, 32
actuator.dry_run, 32

actuator.dt_fast, 33
actuator.epsilon, 33
actuator.FAST_input_filename, 33
actuator.n_every_checkpoint, 33
actuator.n_turbines_glob, 32
actuator.num_force_pts_blade, 33
actuator.num_force_pts_tower, 33
actuator.restart_filename, 33
actuator.search_method, 32
actuator.simStart, 32
actuator.t_end, 32
actuator.t_max, 32
actuator.t_start, 32
actuator.turb_id, 33
actuator.turbine_base_pos, 33
actuator.type, 32
automatic_decomposition_type, 22
balance_node_iterations, 23
balance_node_target, 23
balance_nodes, 22
bc.target_name, 25
bc.wall_user_data, 25
boundary_conditions, 25
data_probes, 35
data_probes.output_frequency, 36
data_probes.search_expansion_factor, 36
data_probes.search_method, 36
data_probes.search_tolerance, 36
data_probes.specifications, 36
data_probes.specifications.from_target_part, 36
data_probes.specifications.line_of_site_specifications,

36
data_probes.specifications.name, 36
data_probes.specifications.output_variables, 36
dtctrl.target_courant, 31
dtctrl.time_step_change_factor, 31
equation_systems, 23
equation_systems.max_iterations, 23
equation_systems.name, 23
equation_systems.solver_system_specification, 23
equation_systems.systems, 23
initial_conditions, 24
initial_conditions.constant, 24
initial_conditions.target_name, 24
initial_conditions.user_function, 24
linear_solvers.bamg_coarsen_type, 20
linear_solvers.bamg_cycle_type, 20
linear_solvers.bamg_max_levels, 20
linear_solvers.bamg_num_sweeps, 20
linear_solvers.bamg_output_level, 20
linear_solvers.bamg_relax_order, 20
linear_solvers.bamg_relax_type, 20
linear_solvers.bamg_strong_threshold, 20
linear_solvers.kspace, 19

Index 187

Nalu Documentation, Release 1.2.0

linear_solvers.max_iterations, 19
linear_solvers.method, 19
linear_solvers.muelu_xml_file_name, 19
linear_solvers.name, 19
linear_solvers.output_level, 19
linear_solvers.preconditioner, 19
linear_solvers.recompute_preconditioner, 19
linear_solvers.reuse_preconditioner, 19
linear_solvers.summarize_muelu_timer, 19
linear_solvers.tolerance, 19
linear_solvers.type, 19
linear_solvers.write_matrix_files, 19
material_properties, 27
material_properties.constant_specification, 27
material_properties.reference_quantities, 28
material_properties.specifications, 28
material_properties.specifications.name, 28
material_properties.specifications.type, 28
material_properties.target_name, 27
mesh, 22
name, 22
output, 29
output.compression_level, 30
output.output_data_base_name, 29
output.output_forced_wall_time, 30
output.output_frequency, 30
output.output_node_set, 30
output.output_start, 30
output.output_variables, 30
periodic_user_data, 27
polynomial_order, 22
post_processing, 36
post_processing.frequency, 37
post_processing.output_file_name, 37
post_processing.parameters, 37
post_processing.physics, 37
post_processing.target_name, 37
post_processing.type, 37
restart, 30
restart.compression_level, 30
restart.max_data_base_step_size, 30
restart.restart_data_base_name, 30
restart.restart_forced_wall_time, 30
restart.restart_frequency, 30
restart.restart_node_set, 30
restart.restart_start, 30
restart.restart_time, 30
search_target_part, 32
simulations, 39
solve_frequency, 22
support_inconsistent_multi_state_restart, 22
time_int.name, 20
time_int.realms, 21
time_int.second_order_accuracy, 21

time_int.start_time, 21
time_int.termination_step_count, 20
time_int.termination_time, 20
time_int.time_step, 21
time_int.time_step_count, 21
time_int.time_stepping_type, 21
Time_Integrators, 20
time_step_control, 31
transfers, 39
turbulence_averaging, 33
turbulence_averaging.averaging_type, 34
turbulence_averaging.forced_reset, 34
turbulence_averaging.specifications, 34
turbulence_averaging.specifications.compute_favre_stress,

35
turbulence_averaging.specifications.compute_favre_tke,

35
turbulence_averaging.specifications.compute_lambda_ci,

35
turbulence_averaging.specifications.compute_q_criterion,

35
turbulence_averaging.specifications.compute_resolved_stress,

34
turbulence_averaging.specifications.compute_reynolds_stress,

34
turbulence_averaging.specifications.compute_sfs_stress,

34
turbulence_averaging.specifications.compute_temperature_resolved_flux,

34
turbulence_averaging.specifications.compute_temperature_sfs_flux,

35
turbulence_averaging.specifications.compute_tke,

34
turbulence_averaging.specifications.compute_vorticity,

35
turbulence_averaging.specifications.favre_average_variables,

34
turbulence_averaging.specifications.name, 34
turbulence_averaging.specifications.reynolds_average_variables,

34
turbulence_averaging.specifications.target_name, 34
turbulence_averaging.time_filter_interval, 34
use_edges, 22

naluX command line option
-D, –debug, 16
-h, –help, 15
-i, –input-deck, 15
-o, –log-file, 15
-p, –pprint, 16
-v, –version, 15

name
Nalu Input File Parameter, 22

188 Index

Nalu Documentation, Release 1.2.0

O
output

Nalu Input File Parameter, 29
output.compression_level

Nalu Input File Parameter, 30
output.output_data_base_name

Nalu Input File Parameter, 29
output.output_forced_wall_time

Nalu Input File Parameter, 30
output.output_frequency

Nalu Input File Parameter, 30
output.output_node_set

Nalu Input File Parameter, 30
output.output_start

Nalu Input File Parameter, 30
output.output_variables

Nalu Input File Parameter, 30

P
periodic_user_data

Nalu Input File Parameter, 27
polynomial_order

Nalu Input File Parameter, 22
post_processing

Nalu Input File Parameter, 36
post_processing.frequency

Nalu Input File Parameter, 37
post_processing.output_file_name

Nalu Input File Parameter, 37
post_processing.parameters

Nalu Input File Parameter, 37
post_processing.physics

Nalu Input File Parameter, 37
post_processing.target_name

Nalu Input File Parameter, 37
post_processing.type

Nalu Input File Parameter, 37

R
restart

Nalu Input File Parameter, 30
restart.compression_level

Nalu Input File Parameter, 30
restart.max_data_base_step_size

Nalu Input File Parameter, 30
restart.restart_data_base_name

Nalu Input File Parameter, 30
restart.restart_forced_wall_time

Nalu Input File Parameter, 30
restart.restart_frequency

Nalu Input File Parameter, 30
restart.restart_node_set

Nalu Input File Parameter, 30

restart.restart_start
Nalu Input File Parameter, 30

restart.restart_time
Nalu Input File Parameter, 30

S
search_target_part

Nalu Input File Parameter, 32
sierra::nalu::Actuator (C++ class), 65
sierra::nalu::ActuatorLineFAST (C++ class), 65
sierra::nalu::AuxFunction (C++ class), 65
sierra::nalu::BoundaryLayerPerturbationAuxFunction

(C++ class), 66
sierra::nalu::ContinuityEquationSystem (C++ class), 55
sierra::nalu::ConvectingTaylorVortexPressureAuxFunction

(C++ class), 66
sierra::nalu::ConvectingTaylorVortexPressureGradAuxFunction

(C++ class), 66
sierra::nalu::ConvectingTaylorVortexVelocityAuxFunction

(C++ class), 66
sierra::nalu::DataProbePostProcessing (C++ class), 68
sierra::nalu::EnthalpyEquationSystem (C++ class), 52
sierra::nalu::EnthalpyEquationSystem::post_iter_work_dep

(C++ function), 53
sierra::nalu::EnthalpyEquationSystem::solve_and_update

(C++ function), 53
sierra::nalu::EquationSystem (C++ class), 50
sierra::nalu::EquationSystem::post_iter_work (C++ func-

tion), 51
sierra::nalu::EquationSystem::post_iter_work_dep (C++

function), 51
sierra::nalu::EquationSystem::postIterAlgDriver_ (C++

member), 52
sierra::nalu::EquationSystem::pre_iter_work (C++ func-

tion), 51
sierra::nalu::EquationSystem::preIterAlgDriver_ (C++

member), 52
sierra::nalu::EquationSystem::solve_and_update (C++

function), 51
sierra::nalu::EquationSystems (C++ class), 55
sierra::nalu::EquationSystems::post_iter_work (C++

function), 56
sierra::nalu::EquationSystems::postIterAlgDriver_ (C++

member), 56
sierra::nalu::EquationSystems::pre_iter_work (C++ func-

tion), 56
sierra::nalu::EquationSystems::preIterAlgDriver_ (C++

member), 56
sierra::nalu::EquationSystems::solve_and_update (C++

function), 56
sierra::nalu::HeatCondEquationSystem (C++ class), 54
sierra::nalu::HeatCondEquationSystem::solve_and_update

(C++ function), 54
sierra::nalu::Hex27SCS (C++ class), 64

Index 189

Nalu Documentation, Release 1.2.0

sierra::nalu::Hex27SCV (C++ class), 64
sierra::nalu::Hex8FEM (C++ class), 64
sierra::nalu::HexSCS (C++ class), 63
sierra::nalu::HexSCV (C++ class), 63
sierra::nalu::HigherOrderHexSCS (C++ class), 64
sierra::nalu::HigherOrderHexSCV (C++ class), 64
sierra::nalu::HigherOrderQuad2DSCS (C++ class), 64
sierra::nalu::HigherOrderQuad2DSCV (C++ class), 64
sierra::nalu::HypreDirectSolver (C++ class), 61
sierra::nalu::HypreDirectSolver::destroyLinearSolver

(C++ function), 62
sierra::nalu::HypreDirectSolver::getType (C++ function),

62
sierra::nalu::HypreDirectSolver::parMat_ (C++ member),

62
sierra::nalu::HypreDirectSolver::parRhs_ (C++ member),

62
sierra::nalu::HypreDirectSolver::parSln_ (C++ member),

62
sierra::nalu::HypreDirectSolver::solve (C++ function), 62
sierra::nalu::HypreLinearSolverConfig (C++ class), 63
sierra::nalu::HypreLinearSolverConfig::load (C++ func-

tion), 63
sierra::nalu::HypreLinearSystem (C++ class), 57
sierra::nalu::HypreLinearSystem::applyDirichletBCs

(C++ function), 59
sierra::nalu::HypreLinearSystem::buildDirichletNodeGraph

(C++ function), 58
sierra::nalu::HypreLinearSystem::HypreLinearSystem

(C++ function), 58
sierra::nalu::HypreLinearSystem::loadComplete (C++

function), 59
sierra::nalu::HypreLinearSystem::prepareConstraints

(C++ function), 59
sierra::nalu::HypreLinearSystem::resetRows (C++ func-

tion), 59
sierra::nalu::HypreLinearSystem::solve (C++ function),

59
sierra::nalu::HypreLinearSystem::sumInto (C++ func-

tion), 58, 59
sierra::nalu::HypreLinearSystem::zeroSystem (C++ func-

tion), 58
sierra::nalu::InputOutputRealm (C++ class), 48
sierra::nalu::KovasznayPressureAuxFunction (C++

class), 67
sierra::nalu::KovasznayPressureGradientAuxFunction

(C++ class), 67
sierra::nalu::KovasznayVelocityAuxFunction (C++

class), 67
sierra::nalu::LinearRampMeshDisplacementAuxFunction

(C++ class), 67
sierra::nalu::LinearSolver (C++ class), 49, 60
sierra::nalu::LinearSolver::activeMueLu (C++ function),

49, 60

sierra::nalu::LinearSolver::destroyLinearSolver (C++
function), 49, 60

sierra::nalu::LinearSolver::get_timer_precond (C++
function), 49, 60

sierra::nalu::LinearSolver::getConfig (C++ function), 49,
60

sierra::nalu::LinearSolver::getType (C++ function), 49,
60

sierra::nalu::LinearSolver::name_ (C++ member), 50, 60
sierra::nalu::LinearSolver::recomputePreconditioner

(C++ function), 49, 60
sierra::nalu::LinearSolver::reusePreconditioner (C++

function), 49, 60
sierra::nalu::LinearSolver::zero_timer_precond (C++

function), 49, 60
sierra::nalu::LinearSolverConfig (C++ class), 63
sierra::nalu::LinearSolvers (C++ class), 62
sierra::nalu::LinearSolvers::create_solver (C++ function),

62
sierra::nalu::LinearSolvers::load (C++ function), 62
sierra::nalu::LinearSolvers::sim_ (C++ member), 63
sierra::nalu::LinearSolvers::solverHypreConfig_ (C++

member), 63
sierra::nalu::LinearSolvers::solvers_ (C++ member), 63
sierra::nalu::LinearSolvers::solverTpetraConfig_ (C++

member), 63
sierra::nalu::LinearSystem (C++ class), 48, 57
sierra::nalu::LinearSystem::buildDirichletNodeGraph

(C++ function), 49, 57
sierra::nalu::LinearSystem::resetRows (C++ function),

49, 57
sierra::nalu::LowMachEquationSystem (C++ class), 52
sierra::nalu::LowMachEquationSystem::pre_iter_work

(C++ function), 52
sierra::nalu::LowMachEquationSystem::solve_and_update

(C++ function), 52
sierra::nalu::MassFractionEquationSystem (C++ class),

54
sierra::nalu::MassFractionEquationSystem::solve_and_update

(C++ function), 54
sierra::nalu::MasterElement (C++ class), 63
sierra::nalu::MixtureFractionEquationSystem (C++

class), 54
sierra::nalu::MixtureFractionEquationSystem::solve_and_update

(C++ function), 55
sierra::nalu::MomentumEquationSystem (C++ class), 55
sierra::nalu::ProjectedNodalGradientEquationSystem

(C++ class), 55
sierra::nalu::ProjectedNodalGradientEquationSystem::solve_and_update

(C++ function), 55
sierra::nalu::PyrSCS (C++ class), 64
sierra::nalu::PyrSCV (C++ class), 64
sierra::nalu::Quad3DSCS (C++ class), 64
sierra::nalu::Quad42DSCS (C++ class), 64

190 Index

Nalu Documentation, Release 1.2.0

sierra::nalu::Quad42DSCV (C++ class), 64
sierra::nalu::Quad93DSCS (C++ class), 64
sierra::nalu::Realm (C++ class), 47
sierra::nalu::Realm::bcPartVec_ (C++ member), 48
sierra::nalu::Realm::check_job (C++ function), 48
sierra::nalu::Realm::hypreGlobalId_ (C++ member), 48
sierra::nalu::Realm::hypreILower_ (C++ member), 48
sierra::nalu::Realm::hypreIsActive_ (C++ member), 48
sierra::nalu::Realm::hypreIUpper_ (C++ member), 48
sierra::nalu::Realm::hypreNumNodes_ (C++ member),

48
sierra::nalu::Realm::set_hypre_global_id (C++ function),

47
sierra::nalu::Realms (C++ class), 48
sierra::nalu::ShearStressTransportEquationSystem (C++

class), 53
sierra::nalu::ShearStressTransportEquationSystem::solve_and_update

(C++ function), 53
sierra::nalu::Simulation (C++ class), 47
sierra::nalu::SinMeshDisplacementAuxFunction (C++

class), 67
sierra::nalu::SolutionNormPostProcessing (C++ class),

68
sierra::nalu::SpecificDissipationRateEquationSystem

(C++ class), 55
sierra::nalu::SteadyTaylorVortexGradPressureAuxFunction

(C++ class), 66
sierra::nalu::SteadyTaylorVortexMomentumSrcElemSuppAlg

(C++ class), 66
sierra::nalu::SteadyTaylorVortexMomentumSrcNodeSuppAlg

(C++ class), 66
sierra::nalu::SteadyTaylorVortexPressureAuxFunction

(C++ class), 66
sierra::nalu::SteadyTaylorVortexVelocityAuxFunction

(C++ class), 66
sierra::nalu::SteadyThermal3dContactAuxFunction (C++

class), 67
sierra::nalu::SteadyThermal3dContactDtDxAuxFunction

(C++ class), 67
sierra::nalu::SteadyThermal3dContactSrcElemKernel

(C++ class), 67
sierra::nalu::SteadyThermal3dContactSrcElemKernel::execute

(C++ function), 67
sierra::nalu::SteadyThermal3dContactSrcElemSuppAlgDep

(C++ class), 67
sierra::nalu::SteadyThermalContact3DSrcNodeSuppAlg

(C++ class), 67
sierra::nalu::SteadyThermalContactAuxFunction (C++

class), 67
sierra::nalu::SteadyThermalContactSrcElemSuppAlg

(C++ class), 67
sierra::nalu::SteadyThermalContactSrcNodeSuppAlg

(C++ class), 67
sierra::nalu::SurfaceForceAndMomentAlgorithm (C++

class), 68
sierra::nalu::SurfaceForceAndMomentWallFunctionAlgorithm

(C++ class), 68
sierra::nalu::TetSCS (C++ class), 64
sierra::nalu::TetSCV (C++ class), 63
sierra::nalu::TimeIntegrator (C++ class), 48
sierra::nalu::TpetraLinearSolver (C++ class), 60
sierra::nalu::TpetraLinearSolver::destroyLinearSolver

(C++ function), 61
sierra::nalu::TpetraLinearSolver::getType (C++ func-

tion), 61
sierra::nalu::TpetraLinearSolver::residual_norm (C++

function), 61
sierra::nalu::TpetraLinearSolver::setMueLu (C++ func-

tion), 61
sierra::nalu::TpetraLinearSolver::solve (C++ function),

61
sierra::nalu::TpetraLinearSolver::TpetraLinearSolver

(C++ function), 61
sierra::nalu::TpetraLinearSolverConfig (C++ class), 63
sierra::nalu::TpetraLinearSystem (C++ class), 50, 57
sierra::nalu::TpetraLinearSystem::resetRows (C++ func-

tion), 50, 57
sierra::nalu::Transfer (C++ class), 50
sierra::nalu::Transfers (C++ class), 50
sierra::nalu::Tri32DSCS (C++ class), 64
sierra::nalu::Tri32DSCV (C++ class), 64
sierra::nalu::Tri3DSCS (C++ class), 64
sierra::nalu::TurbKineticEnergyEquationSystem (C++

class), 53
sierra::nalu::TurbKineticEnergyEquationSystem::solve_and_update

(C++ function), 53
sierra::nalu::TurbulenceAveragingPostProcessing (C++

class), 68
sierra::nalu::TurbulenceAveragingPostProcessing::AveragingType

(C++ type), 68
sierra::nalu::TurbulenceAveragingPostProcessing::MOVING_EXPONENTIAL

(C++ enumerator), 68
sierra::nalu::TurbulenceAveragingPostProcessing::NALU_CLASSIC

(C++ enumerator), 68
sierra::nalu::WedSCS (C++ class), 64
sierra::nalu::WedSCV (C++ class), 64
sierra::nalu::WindEnergyAuxFunction (C++ class), 67
simulations

Nalu Input File Parameter, 39
solve_frequency

Nalu Input File Parameter, 22
support_inconsistent_multi_state_restart

Nalu Input File Parameter, 22

T
time_int.name

Nalu Input File Parameter, 20
time_int.realms

Index 191

Nalu Documentation, Release 1.2.0

Nalu Input File Parameter, 21
time_int.second_order_accuracy

Nalu Input File Parameter, 21
time_int.start_time

Nalu Input File Parameter, 21
time_int.termination_step_count

Nalu Input File Parameter, 20
time_int.termination_time

Nalu Input File Parameter, 20
time_int.time_step

Nalu Input File Parameter, 21
time_int.time_step_count

Nalu Input File Parameter, 21
time_int.time_stepping_type

Nalu Input File Parameter, 21
Time_Integrators

Nalu Input File Parameter, 20
time_step_control

Nalu Input File Parameter, 31
transfers

Nalu Input File Parameter, 39
turbulence_averaging

Nalu Input File Parameter, 33
turbulence_averaging.averaging_type

Nalu Input File Parameter, 34
turbulence_averaging.forced_reset

Nalu Input File Parameter, 34
turbulence_averaging.specifications

Nalu Input File Parameter, 34
turbulence_averaging.specifications.compute_favre_stress

Nalu Input File Parameter, 35
turbulence_averaging.specifications.compute_favre_tke

Nalu Input File Parameter, 35
turbulence_averaging.specifications.compute_lambda_ci

Nalu Input File Parameter, 35
turbulence_averaging.specifications.compute_q_criterion

Nalu Input File Parameter, 35
turbulence_averaging.specifications.compute_resolved_stress

Nalu Input File Parameter, 34
turbulence_averaging.specifications.compute_reynolds_stress

Nalu Input File Parameter, 34
turbulence_averaging.specifications.compute_sfs_stress

Nalu Input File Parameter, 34
turbulence_averaging.specifications.compute_temperature_resolved_flux

Nalu Input File Parameter, 34
turbulence_averaging.specifications.compute_temperature_sfs_flux

Nalu Input File Parameter, 35
turbulence_averaging.specifications.compute_tke

Nalu Input File Parameter, 34
turbulence_averaging.specifications.compute_vorticity

Nalu Input File Parameter, 35
turbulence_averaging.specifications.favre_average_variables

Nalu Input File Parameter, 34
turbulence_averaging.specifications.name

Nalu Input File Parameter, 34
turbulence_averaging.specifications.reynolds_average_variables

Nalu Input File Parameter, 34
turbulence_averaging.specifications.target_name

Nalu Input File Parameter, 34
turbulence_averaging.time_filter_interval

Nalu Input File Parameter, 34

U
use_edges

Nalu Input File Parameter, 22

192 Index

	User Manual
	Building Nalu
	Running Nalu

	Developer Manual
	Testing Nalu
	Source Code Documentation
	Writing Developer Documentation
	Writing User Documentation
	Building the Documentation
	Developer Workflow
	Nalu Style Guide
	Contributing to Nalu

	Sierra Low Mach Module: Nalu - Theory Manual
	Low Mach Number Derivation
	Supported Equation Set
	Discretization Approach
	Advection Stabilization
	Pressure Stabilization
	RTE Stabilization
	Nonlinear Stabilization Operator (NSO)
	Turbulence Modeling
	Supported Boundary Conditions
	Overset
	Property Evaluations
	Coupling Approach
	Time discretization
	Multi-Physics
	Wind Energy Modeling
	Topological Support
	Adaptivity
	Code Abstractions

	Sierra Low Mach Module: Nalu - Verification Manual
	Introduction
	2D Unsteady Uniform Property: Convecting Decaying Taylor Vortex
	Higher Order 2D Steady Uniform Property: Taylor Vortex
	3D Steady Non-isothermal with Buoyancy
	3D Steady Non-uniform with Buoyancy
	2D Steady Laplace Operator
	3D Steady Laplace Operator with Nonconformal Interface
	Precursor-based Simulations
	Boussinesq Verification
	3D Hybrid 1x2x10 Duct: Specified Pressure Drop
	3D Hybrid 1x1x1 Cube: Laplace
	Actuator line simulations coupled to OpenFAST
	Open Boundary Condition With Outflow Thermal Stratification
	Specified Normal Temperature Gradient Boundary Condition

	Bibliography

