n6sdk Documentation
Release 0.6.1

NASK

April 27, 2016

Contents

1 né6sdk: Server-side Software Development Kit for n6
1.1 BasicReferences
1.2 Copyright, License and Authors
2 Tutorial
2.1 Setting up the development environment
2.2 Data processing and architecture overview . . .
2.3 Dataspecificationclass
2.4 Implementing the data backend API
2.5 Custom authentication policy
2.6 Gluingittogether.
2.7 Installation for production (using Apache server)
3 n6sdk_api_test: API testing tool
3.1 Overviewo
32 Installation
3.3 Configuration andusage
4 Library Reference
41 Coremodules.
4.2 Helpermodules.
5 Release Notes
51 0.6.1(2015-10-21)o vl
52 0.6.0(2015-10-13)
53 05.0(2015-04-18)
54 04.02014-12-23)o
55 03.0(2014-08-12)o ...
5.6 0.2.0(2014-08-08)
57 0.0.1(2014-04-25)l
6 Indices and tables
Python Module Index

CHAPTER 1

n6sdk: Server-side Software Development Kit for n6

n6 (Network Security Incident eXchange) is a system to collect, manage and distribute security information on a large
scale (see: http://www.cert.pl/projekty/langswitch_lang/en). Distribution is realized through a simple REST API that
authorized users can use to receive various types of data, in particular information on threats to their networks.

The n6sdk library was created to foster exchange of information across organizations. The library makes it easier to
implement an n6-like REST API that provides access to your own source of security-related data.

1.1 Basic References

* Home page: https://github.com/CERT-Polska/n6sdk

* Documentation: http://n6sdk.readthedocs.org/

1.2 Copyright, License and Authors

1.2.1 Basic Legal Information
Copyright (c) 2013-2015 Naukowa i Akademicka Sie¢ Komputerowa (Research and Academic Computer Network).
All rights reserved. See also: the Supplementary Attributions section below.

The n6sdk library is free software; you can redistribute it and/or modify it under the terms of the GNU General Public
License, Version 2, as published by the Free Software Foundation.

This software is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the
implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General
Public License, Version 2, for more details.

You should have received a copy of the GNU General Public License, Version 2, along with this software (see: the
LICENSE. txt file in the source code directory). If not, see: http://www.gnu.org/licenses/gpl-2.0.html#SECI.

1.2.2 Main Authors

The developers of n6sdk are:
¢ Jan Kaliszewski,
e Mateusz Kukawski,

¢ L.ukasz Michalak,

http://www.cert.pl/projekty/langswitch_lang/en
https://github.com/CERT-Polska/n6sdk
http://n6sdk.readthedocs.org/
http://www.nask.pl
http://www.gnu.org/licenses/gpl-2.0.html#SEC1

n6sdk Documentation, Release 0.6.1

¢ Marcin Ptak,
* Mariusz Szot,
NASK, Software Development Department.
The project is developed for CERT Polska. Contact us via e-mail: n6 @cert.pl.

1.2.3 Supplementary Attributions

Small portions of the software have been created and are copyrighted by other parties; appropriate notes are placed in
the concerned source code files.

Moreover,

* major portions of the n6sdk/scaffolds/basic_né6sdk_scaffold/+_tmpl files were generated by
the tools provided by the Pyramid web framework;

* major portions of the docs/Makefile and docs/source/conf.py files were generated by the Sphinx
documentation tool.

1.2.4 Acknowledgements

This work is partially supported by the Strategic International Collaborative R&D Promotion Project of the Ministry of
Internal Affairs and Communication, Japan, and by the European Union Seventh Framework Programme (FP7/2007—
2013) under grant agreement No. 608533 (NECOMA).

For more information on the NECOMA project see: http://www.necoma-project.eu/

2 Chapter 1. n6sdk: Server-side Software Development Kit for n6

http://www.cert.pl/
mailto:n6@cert.pl
http://docs.pylonsproject.org/projects/pyramid/en/latest/
http://sphinx-doc.org/
http://www.necoma-project.eu/

CHAPTER 2

Tutorial

This tutorial describes how to use the n6sdk library to implement an n6-like REST API that provides access to your
own network incident data source.

2.1 Setting up the development environment

2.1.1 Prerequisites

You need to have:

* A Linux system + the bash shell used to interact with it + basic Unix-like OS tools such as mkdir, cat etc. (other
platforms and tools could also be used — but this tutorial assumes using the aforementioned ones) + your favorite
text editor installed;

e the Python 2.7 language interpreter installed (on Debian GNU/Linux it can be installed with the command:
sudo apt—get install python2.7);

» The git version control system installed (on Debian GNU/Linux it can be installed with the command: sudo
apt—-get install git);

e the virtualenv tool installed (see: http://virtualenv.readthedocs.org/en/latest/virtualenv.html; on Debian
GNU/Linux it can be installed with the command: sudo apt-get install python-virtualenv);

¢ Internet access.

2.1.2 Obtaining the n6sdk source code

We will start with creating the “workbench” directory for all our activities:

’$ mkdir <the workbench directory>

(Of course, <the workbench directory> needs to be replaced with the actual name (absolute path) of the
directory you want to create.)

Then, we need to clone the n6sdk source code repository:

$ cd <the workbench directory>
$ git clone https://github.com/CERT-Polska/n6sdk.git

Now, inthe <the workbench directory>/n6sdk/ subdirectory we have the source code of the n6sdk library.

http://virtualenv.readthedocs.org/en/latest/virtualenv.html

n6sdk Documentation, Release 0.6.1

2.1.3 Installing the necessary stuff

Next, we will create and activate our Python virtual environment:

$ virtualenv dev-venv
$ source dev-venv/bin/activate

Then, we can install the n6sdk library:

$ cd n6sdk
$ python setup.py install

Then, we need to create our project:

$ cd ..
$ pcreate -s né6sdk Using_ N6SDK

— where Using_N6SDK is the name of our new n6sdk-based project. Obviously, when creating your real project you
will want to pick another name. Anyway, for the rest of this tutorial we will use Using_N6SDK as the project name
(and, consequently, using_n6sdk as the “technical” package name, automatically derived from the given project
name).

Now, we have the skeleton of our new project. You may want to customize some details in the newly created files,
especially the version and description fields in Using_N6SDK/setup.py.

Then, we need to install our new project for development:

$ cd Using_N6SDK
$ python setup.py develop
$ cd ..

We can check whether everything up to now went well by running the Python interpreter...

$ python

...and trying to import some of the installed components:

>>> import nésdk

>>> import né6sdk.data_spec.fields

>>> né6sdk.data_spec.fields.Field
<class 'né6sdk.data_spec.fields.Field'>
>>> import using né6sdk

>>> exit ()

2.2 Data processing and architecture overview

When a client sends a HIT'TP request to the n6 REST API, the following data processing is performed on the server
side:

1. Receiving the HTTP request

n6sdk uses the Pyramid library (see: http://docs.pylonsproject.org/projects/pyramid/en/1.5-branch/) to per-
form processing related to HTTP communication, request data (for example, extracting query parame-
ters from the URL’s query string) and routing (deciding what function shall be invoked with what ar-
guments depending on the given URL) — however there are the n6sdk-specific wrappers and helpers
used to adjust some important factors: né6sdk.pyramid_commons.DefaultStreamViewBase,
n6sdk.pyramid_commons.HttpResource and n6sdk.pyramid_commons.ConfigHelper (see

4 Chapter 2. Tutorial

http://docs.pylonsproject.org/projects/pyramid/en/1.5-branch/

n6sdk Documentation, Release 0.6.1

below: Gluing it together). These three classes can be customized by subclassing them and extending selected
methods, however it is beyond the scope of this tutorial.

2. Authentication

Authentication is performed using a mechanism provided by the Pyramid li-
brary: authentication policies. The simplest policy is implemented as the
n6sdk.pyramid_commons.AnonymousAuthenticationPolicy class (it is a dummy policy:
all clients are identified as "anonymous"); it can be replaced with a custom one (see below: Custom
authentication policy).

The result is an object containing authentication data.
3. Cleaning query parameters provided by the client

Here “cleaning” means: validation and adjustment (normalization) of the parameters (already extracted from
the request’s URL).

An instance of a data specification class (see below: Data specification class) is responsible for doing that.
The result is a dictionary containing the cleaned query parameters.
4. Retrieving result data from the data backend API

The data backend API, responsible for interacting with the actual data storage, needs to be implemented as a
class (see below: Implementing the data backend API).

For a client request (see above: 1. Receiving the HTTP request), an appropriate method of the sole instance
of this class is called with the authentication data (see above: 2. Authentication) and the cleaned client query
parameters dictionary (see above: 3. Cleaning query parameters...) as call arguments.

The result of the call is an iterator which yields dictionaries, each containing the data of one network incident.
5. Cleaning the result data

Each of the yielded dictionaries is cleaned. Here “cleaning” means: validation and adjustment (normalization)
of the result data.

An instance of a data specification class (see below: Data specification class) is responsible for doing that.
The result is another iterator (which yields dictionaries, each containing cleaned data of one network incident).
6. Rendering the HTTP response

The yielded cleaned dictionaries are processed to produce consecutive fragments of the HTTP response which
are successively sent to the client. The key component responsible for transforming the dictionaries into the
response body is a renderer. Note that n6sdk renderers (being a custom n6sdk concept, different from Pyramid
renderers) are able to process data in an iterator (“stream-like””) manner, so even if the resultant response body
is huge it does not have to fit as a whole in the server’s memory.

The n6sdk library provides two standard renderers: json (to render JSON-formatted responses) and s json
(to render responses in a format similar to JSON but more convenient for “stream-like” or “pipeline” data
processing).

Implementing and registering custom renderers is possible, however it is beyond the scope of this tutorial.

2.3 Data specification class

2.3.1 Basics

A data specification determines:

2.3. Data specification class 5

n6sdk Documentation, Release 0.6.1

* how query parameters (already extracted from the query string part of the URL of a client HTTP request) are
cleaned (before being passed in to the data backend API) — that is:

— what are the legal parameter names;
— whether particular parameters are required or optional;

— what are valid values of particular parameters (e.g.: a time.min value must be a valid ISO-8601-
formatted date and time);

— whether, for a particular parameter, there can be many alternative values or only one value (e.g.:
time.min can have only one value, and ip can have multiple values);

— how particular parameter values are normalized (e.g.: a time.min value is always transformed to a
Python datetime.datet ime object, converting any time zone information to UTC);

* how result dictionaries (each containing data of one incident) yielded by the data backend API are cleaned
(before being passed in to a response renderer) — that is:

— what are the legal result keys;
— whether particular items are required or optional;

— what are valid types and values of particular items (e.g.: a time value must be either a
datetime.datetime object or a string being a valid ISO-8601-formatted date and time);

— how particular items are normalized (e.g.: a time value is always transformed to a Python
datetime.datetime object, converting any time zone information to UTC).

The declarative way of defining a data specification is somewhat similar to domain-specific languages known from
ORMs (such as the SQLAIchemy‘s or Django‘s ones): a data specification class (n6sdk.data_spec.DataSpec
or some subclass of it) looks like an ORM “model” class and particular query parameter and result item specifications
(being instances of n6sdk .data_spec.fields.Field or of subclasses of it) are declared similarly to ORM
“fields” or “columns”.

For example, consider the following simple data specification class:

class MyDataSpecFromScratch (n6sdk.data_spec.BaseDataSpec) :

id = UnicodelimitedField(
in_params='optional',
in_result='required',
max_length=64,

time = DateTimeField(
in_params=None,
in_result='required',

extra_params=dict (

min=DateTimeField (# ‘time.min’
in_params='optional',
single_param=True,

)

max=DateTimeField (# “time.max’
in_params='optional',
single_param=True,

) r

until=DateTimeField (# “time.until’
in_params='optional',
single_param=True,

),

6 Chapter 2. Tutorial

http://docs.python.org/library/datetime.html#datetime.datetime
http://docs.python.org/library/datetime.html#datetime.datetime
http://docs.python.org/library/datetime.html#datetime.datetime

n6sdk Documentation, Release 0.6.1

),

address = ExtendedAddressField (
in_params=None,
in_result='optional',

ip = IPv4Field(
in_params='optional',
in_result=None,

extra_params=dict (
net=IPv4NetField(# “ip.net’
in_params='optional',
)I
)V

asn = ASNField(
in_params='optional',
in_result=None,

cc = CCField(
in_params='optional',
in_result=None,

count = IntegerField(
in_params=None,
in_result='optional',
min_value=0,
max_value=(2 % 15 - 1),

Note: In a real project you should inherit from DataSpec rather than from BaseDataSpec. See the following
sections, especially Your first data specification class.

What do we see in the above listing is that:

1. id is a text field: its values are strings, not longer than 64 characters (as its declaration is an in-
stance of n6sdk.data_spec.fields.UnicodeLimitedField created with the constructor argument
max_length set to 64). It is optional as a query parameter and required (obligatory) as an item of a result
dictionary.

2. time is a date-and-time field (as its declaration is an instance of
n6sdk.data_spec.fields.DateTimeField). Itis not a legal query parameter, and it is required as
an item of a result dictionary.

3. time.min, time.max and time.until are date-and-time fields (as their declarations are instances of
n6sdk.data_spec.fields.DateTimeField). They are optional as query parameters, and they are
not legal items of a result dictionary. Unlike most of other fields, these three fields do not allow to specify
multiple query parameter values (note the constructor argument single_param set to True).

4. address is a field whose values are lists of dictionaries containing ip and optionally asn and cc (as the
declaration of address is an instance of n6sdk.data_spec.fields.AddressField). Itis not a

2.3. Data specification class 7

n6sdk Documentation, Release 0.6.1

legal query parameter, and it is optional as an item of a result dictionary.

5. ipisan IPv4 address field (as its declaration is an instance of n6sdk .data_spec.fields.IPv4Field).
It is optional as a query parameter and it is not a legal item of a result dictionary (note that in a result dictionary
the address field contains the corresponding data).

6. ip.net is an IPv4 network definition (as its declaration is an instance of
n6sdk.data_spec.fields.IPv4NetField). It is optional as a query parameter and it is not a
legal item of a result dictionary.

7. asn is an autonomous system number (ASN) field (as its declaration is an instance of
n6sdk.data_spec.fields.ASNField). It is optional as a query parameter and it is not a legal
item of a result dictionary (note that in a result dictionary the address field contains the corresponding data).

8. cc is 2-letter country code field (as its declaration is an instance of
n6sdk.data_spec.fields.CCField). It is optional as a query parameter and it is not a legal
item of a result dictionary (note that in a result dictionary the address field contains the corresponding data).

9. count is an integer field: its values are integer numbers, not less than 0 and not greater than 32767 (as the
declaration of count is an instance of n6sdk.data_spec.fields.IntegerField created with the
constructor arguments: min_value set to 0 and max_value set to 32767). It is not a legal query parameter, and it
is optional as an item of a result dictionary.

To create your data specification class you will, most probably, want to inherit from
n6sdk.data_spec.DataSpec. Inits subclass you can:

* add new field specifications as well as modify (extend), replace or remove (mask) field specifications defined in
DataSpec;

« extend the DataSpec"s cleaning methods.

(See comments in Using_N6SDK/using_né6sdk/data_spec.py as well as descriptions in the following sec-
tions of this tutorial.)

You may also want to subclass né6sdk.data_spec.fields.Field (or any of its subclasses, such as
UnicodelLimitedField, IPv4Field or IntegerField) to create new kinds of fields whose instances can
be used as field specifications in your data specification class (see below...).

2.3.2 Your first data specification class

Let us open the <the workbench directory>/Using_N6SDK/using_né6sdk/data_spec.py file
with our favorite text editor and uncomment the following lines in it (within the body of the
UsingN6sdkDataSpec class):

id = Ext (in_params='optional')
source = Ext (in_params='optional')
restriction = Ext (in_params='optional')
confidence = Ext (in_params='optional')
category = Ext (in_params='optional')
time = Ext (

extra_params=EXxt (

min=Ext (in_params='optional'), # search for >= than...

max=Ext (in_params='optional'), # search for <= than...
until=Ext (in_params='optional'), # search for < than...

8 Chapter 2. Tutorial

n6sdk Documentation, Release 0.6.1

)y

ip = Ext(
in_params='optional',

)

url = Ext (
in_params='optional',

)

Our UsingNé6sdkDataSpec data specification class is a subclass of n6sdk .data_spec.DataSpec which, by
default, has all query parameters disabled — so here we enabled some of them by uncommenting these lines. (We can
remove the rest of commented lines.)

Note: You should always ensure that you do not enable in your data specification class any query parameters that are
not supported by your data backend API (see: Implementing the data backend API).

Apart from changing (extending) inherited field specifications, we can also add some new fields. For example, let us
add, near the beginning of our data specification class definition, a new field specification: mac_address.

from nésdk.data_spec import DataSpec, Ext
from nésdk.data_spec.fields import UnicodeRegexField # remember to add this line

class UsingN6sdkDataSpec (DataSpec) :

mmn

The data specification class for the "Using N6SDK' project.

mmon

mac_address = UnicodeRegexField (
in_params='optional', # #can* be in query params
in_result='optional', # #*canx* be in result data

regex=r'" (?: [0-9A-F1 {2} (2:[:-]119)){6}S",
error_msg_template=u'"{}" is not a valid MAC address',

)

(Of course, we do not remove the lines uncommented earlier.)

2.3.3 More knowledge about data specification...

The data specification’s cleaning methods
The most important methods of any data specification (typically, an instance of n6sdk.data_spec.DataSpec
or of its subclass) are:
* clean_param_dict () —used to clean client query parameters;
e clean_result_dict () —used to clean results yielded by the data backend API.
Normally, these methods are called automatically by the n6sdk machinery.

Each of these methods takes exactly one positional argument which is respectively:

2.3. Data specification class 9

n6sdk Documentation, Release 0.6.1

e for clean_param_dict () — a dictionary of query parameters (representing one client request); the dic-
tionary maps field names (query parameter names) to lists of their raw values (lists — because, as it was said,
for most fields there can be more than one query parameter value);

e forclean_result_dict () —asingle result dictionary (representing one network incident); the dictionary
maps field names (result keys) to their raw values.

(Here “raw” is a synonym of “uncleaned”.)
Each of these methods also accepts the following optional keyword-only arguments:

* ignored_keys — an iterable (e.g., a set or a list) of keys that will be completely ignored (i.e., the processed
dictionary that has been given as the positional argument will be treated as it did not contain any of these keys;
therefore, the resultant dictionary will not contain them either);

e forbidden_keys — an iterable of keys that must not apperar in the processed dictionary;
* extra_required_keys — an iterable of keys that must appear in the processed dictionary;

* discarded_keys — an iterable of keys that will be removed (discarded) after validation of the processed dictionary
keys (but before cleaning the values).

If a raw value is not valid and cannot be cleaned (see below: The field’s cleaning methods) or any other data speci-
fication constraint is violated (including those specified with the forbidden_keys and extra_required_keys arguments
mentioned above) an exception — respectively: ParamKeyCleaningError of ParamValueCleaningError,
or ResultKeyCleaningError,or ResultValueCleaningError —is raised.

Otherwise, a new dictionary is returned (the input dictionary given as the positional argument is not modified). Re-
garding returned dictionaries:

* a dictionary returned by clean_param dict () maps field names (query parameter names) to lists of
cleaned query parameter values;

* adictionary returned by clean_result_dict () (containing cleaned data of exactly one network incident)
maps field names (result keys) to cleaned result values.

The field’s cleaning methods
The most important methods of any field (an instance of n6sdk .data_spec.fields.Field or of its subclass)
are:
* clean_param_value () —called to clean a single query parameter value;
* clean_result_value () — called to clean a single result value.
Each of these methods takes exactly one positional argument: a single uncleaned (raw) value.
Each of these methods returns a single value: a cleaned one.
These methods are called by the data specification machinery in the following way:

* The data specification’s method clean_param_dict () (described above in the The data specification’s
cleaning methods section) calls the clean_param_value () method of the appropriate field — separately for
each element of each of the raw value lists taken from the dictionary passed as the argument.

If the field’s method raises (or propagates) an exception being an instance/subclass of Exception (i.e., prac-
tically any exception, excluding KeyboardInterrupt, SystemExit and a few others), the data specifica-
tion’s method clean_param_dict () catches and collects it (doing the same for any such exceptions raised
for other values, possibly for other fields) and then raises ParamValueCleaningError.

10 Chapter 2. Tutorial

http://docs.python.org/library/exceptions.html#exceptions.Exception
http://docs.python.org/library/exceptions.html#exceptions.KeyboardInterrupt
http://docs.python.org/library/exceptions.html#exceptions.SystemExit

n6sdk Documentation, Release 0.6.1

Note: If the exception raised (or propagated) by the field’s method is FieldValueError (or any other
exception derived from _ErrorwithPublicMessageMixin)its public _message will be included in
the ParamValueCleaningError‘s public_message).

the data specification’s method clean_result_dict () (described above in the The data specification’s
cleaning methods section) calls the clean_result_value () method of the appropriate field — for each
raw value from the dictionary passed as the argument.

If the field’s method raises (or propagates) an exception being an instance/subclass of Exception (i.e., prac-
tically any exception, excluding KeyboardInterrupt, SystemExit and a few others), the data specifi-
cation’s method clean_result_dict () catches and collects it (doing the same for any such exceptions
raised for other fields) and then raises ResultValueCleaningError.

Note: Unlike ParamValueCleaningError raised by clean_param_dict (), the
ResultValueCleaningError exception raised by clean_result_dict () in reaction to ex-
ception(s) from clean_result_value () does not include in its public_message any information
from the underlying exception(s) (instead of that, ResultValueCleaningError‘s public_message
is set to the safe default: u"Internal error.").

The rationale for this behaviour is that any exceptions related to result cleaning are strictly internal (contrary to
those related to query parameter cleaning).

Thanks to this behaviour, much of the code of field classes that is related to parameter value cleaning can also be
used for result value cleaning without concern about disclosing some sensitive details in public_message
of ResultValueCleaningError.

Warning: For security sake, when extending n6sdk .data_spec.BaseDataSpec.clean_result_
ensure that your implementation behaves in the same way as described in this note.

Overview of the basic data specification classes

The n6sdk.data_spec.DataSpec and n6sdk.data_spec.AllSearchableDataSpec classes are two
variants of a base class for your own data specification class.

Each of them defines all standard n6-like REST API fields — but:

e DataSpec — has all query parameters disabled. This makes the class suitable for most n6sdk
uses: in your subclass of DataSpec you will need to enable (typically, with a <field name> =
Ext (in_params='optional’) declaration) only those query parameters that your data backend supports.

e AllSearchableDataSpec — has all query parameters enabled. This makes the class suitable for
cases when your data backend supports all or most of standard n6 query parameters. In your sub-
class of AllSearchableDataSpec you will need to disable (typically, with a <field name> =
Ext (in_params=None) declaration) those query parameters that your data backend does not support.

The following list describes briefly all field specifications defined in these two classes.

¢ basic event data fields:

— id:
% in params: optional in Al1SearchableDataSpec, None in DataSpec

* in result: required

2.3. Data specification class 11

ict ()

http://docs.python.org/library/exceptions.html#exceptions.Exception
http://docs.python.org/library/exceptions.html#exceptions.KeyboardInterrupt
http://docs.python.org/library/exceptions.html#exceptions.SystemExit

n6sdk Documentation, Release 0.6.1

* field class: UnicodeLimitedField
x specific field constructor arguments: max_length=64
* param/result cleaning example:
- raw value: "abcDEF. .. \xc5\x81"
- cleaned value: u"abcDEF... \u0141"
Unique incident identifier being an arbitrary text. Maximum length: 64 characters (after cleaning).
- source:
* in params: optional in A11SearchableDataSpec, None in DataSpec
* in result: required
* field class: SourceField
s« param/result cleaning example:
- raw value: "some—-org.some—-type"
- cleaned value: u"some-org.some—-type"

Incident data source identifier. Consists of two parts separated with a dot (.). Allowed characters (apart
from the dot) are: ASCII lower-case letters, digits and hyphen (-). Maximum length: 32 characters (after
cleaning).

— restriction:
* in params: optional in Al11SearchableDataSpec, None in DataSpec
* in result: required
* field class: UnicodeEnumField
x specific field constructor arguments: enum_values=n6sdk.data_spec.RESTRICTION_ENUMS
* param/result cleaning example:
- raw value: "public"
- cleaned value: u"public"
Data distribution restriction qualifier. One of: "public", "need-to-know" or "internal".
— confidence:
* in params: optional in A11SearchableDataSpec, None in DataSpec
% Iin result: required
* field class: UnicodeEnumField
x specific field constructor arguments: enum_values=n6sdk.data_spec.CONFIDENCE_ENUMS
* param/result cleaning example:
- raw value: "medium"
- cleaned value: u"medium"
Data confidence qualifier. One of: "high", "medium" or "low".
— category:
% in params: optional in Al11SearchableDataSpec, None in DataSpec

* in result: required

12 Chapter 2. Tutorial

n6sdk Documentation, Release 0.6.1

* field class: UnicodeEnumField
* specific field constructor arguments: enum_values=n6sdk.data_spec.CATEGORY_ENUMS
* param/result cleaning example:
- raw value: "bots"
- cleaned value: u"bots"
Incident category label (some examples: "bots", "phish", "scanning"...).
- time
* in params: N/A
* in result: required
* field class: DateTimeField
x result cleaning examples:
- example synonymous raw values:
- "2014-11-05T23:13:00.000000" or
- "2014-11-06 01:13402:00" or
- datetime.datetime (2014, 11, 5, 23, 13, 0) or

- datetime.datetime (2014, 11, 6, 1, 13, 0, 0, <tzinfo with UTC
offset 2h>)

- cleaned value: datetime.datetime (2014, 11, 5, 23, 13, 0)

Incident occurrence time (not when-entered-into-the-database). Value cleaning includes conversion to
UTC time.

— time.min:

% in params: optional in AllSearchableDataSpec, None in DataSpec, marked as sin-
gle_param in both

x in result: N/A

x field class: DateTimeField

% param cleaning examples:
- example synonymous raw values:
- "2014-11-06T01:13402:00" or
- u"2014-11-05 23:13:00.000000"
- cleaned value: datetime.datetime (2014, 11, 5, 23, 13, 0)

The earliest time the queried incidents occurred at. Value cleaning includes conversion to UTC time.
— time.max:

% in params: optional in AllSearchableDataSpec, None in DataSpec, marked as sin-
gle_param in both

* in result: N/A
* field class: DateTimeField

x param cleaning examples:

2.3. Data specification class 13

n6sdk Documentation, Release 0.6.1

- example synonymous raw values:
- u"2014-11-06T01:13+02:00" or
- "2014-11-05 23:13:00.000000"
- cleaned value: datetime.datetime (2014, 11, 5, 23, 13, 0)
The latest time the queried incidents occurred at. Value cleaning includes conversion to UTC time.

— time.until:

in params: optional in AllSearchableDataSpec, None in DataSpec, marked as sin-
gle_param in both

in result: N/A
* field class: DateTimeField
x param cleaning examples:
- example synonymous raw values:
- u"2014-11-06T01:13+02:00" or
- "2014-11-05 23:13:00.000000"
- cleaned value: datetime.datetime (2014, 11, 5, 23, 13, 0)

The time the queried incidents occurred before (i.e., exclusive; a handy replacement for t ime .max in
some cases). Value cleaning includes conversion to UTC time.

* address-related fields:
— address
% in params: N/A
% In result: optional
x field class: ExtendedAddressField
% result cleaning examples:

- example synonymous raw values:

[{"ipve": "i:1"}, {"ip": "123.10.234.169", "asn":
9999981} 1] or
[{u"ipve": "::0001"}, {"ip": "123.10.234.169",
u"asn": "999998"}] or
[{"ipv6e": "0000:0000::0001"}, {u"ip":
"123.10.234.169", u"asn": "15.16958"}]

- cleaned value: [{u"ipv6e": u"::1"}, {u"ip":
"123.10.234.169", u"asn": 9999981}]

Set of network addresses related to the returned incident (e.g., for malicious web sites: taken
from DNS A or AAAA records; for sinkhole/scanning: communication source addresses) — in
the form of a list of dictionaries, each containing:

% obligatorily:

- either "ip" (IPv4 address in quad-dotted decimal notation, cleaned using a sub-
field being an instance of IPv4Field)

14 Chapter 2. Tutorial

n6sdk Documentation, Release 0.6.1

- or "ipve" (IPv6 address in the standard text representation, cleaned using a
subfield being an instance of IPv6Field)

—but not both "ip" and "ipve";
% plus optionally — all or some of:

- "asn" (autonomous system number in the form of a number or two numbers
separated with a dot, cleaned using a subfield being an instance of ASNField),

- "cc" (two-letter country code, cleaned using a subfield being an instance of
CCField),

- "dir" (the indicator of the address role in terms of the direction of the network
flow in layers 3 or 4; one of: "src", "dst"; cleaned using a subfield being an
instance of DirField),

- "rdns" (the domain name from the PTR record of the . in-addr—-arpa do-
main associated with the IP address, without the trailing dot; cleaned using a
subfield being an instance of DomainNameField).

Note: The cleaned IPv6 addresses is in the “condensed” form — in contrast to the “exploded”
form used for param cleaning of ipv6 and ipv6.net. .

- ip:
% in params: optional in Al11SearchableDataSpec, None in DataSpec
% in result: N/A
x field class: TPv4Field
* param cleaning example:
- raw value: "123.10.234.168"
- cleaned value: u"123.10.234.168"
IPv4 address (in quad-dotted decimal notation) related to the queried incidents.
- ip.net:
% in params: optional in A11SearchableDataSpec, None in DataSpec
% in result: N/A
* field class: TPv4NetField
* param cleaning example:
- raw value: "123.10.234.0/24"
- cleaned value: (u"123.10.234.0", 24)
IPv4 network (in CIDR notation) containing IP addresses related to the queried incidents.
- ipvé:
% in params: optional in Al11SearchableDataSpec, None in DataSpec
in result: N/A
* field class: IPv6Field

* param cleaning examples:

2.3. Data specification class 15

n6sdk Documentation, Release 0.6.1

- example synonymous raw values:

- u"abcd::1" or

- "ABCD::1" or

- u"ABCD:0000:0000:0000:0000:0000:0000:0001"

- "abcd:0000:0000:0000:0000:0000:0000:0001" or

- cleaned value: u"abcd:0000:0000:0000:0000:0000:0000:0001"

IPv6 address (in the standard text representation) related to the queried incidents.

Note: Cleaned values are in the “exploded” form — in contrast to the “condensed” form used
for result cleaning of address.

- ipv6.net:
% in params: optional in Al11SearchableDataSpec, None in DataSpec
in result: N/A
* field class: TPv6NetField
« param cleaning examples:
- example synonymous raw values:
- "abcd::1/128" or
- u"ABCD::1/128" or
- "ABCD:0000:0000:0000:0000:0000:0000:0001/128"
- u"abcd:0000:0000:0000:0000:0000:0000:0001/128" or

- cleanedvalue: (u"abcd:0000:0000:0000:0000:0000:0000:0001",
128)

IPv6 network (in CIDR notation) containing IPv6 addresses related to the queried incidents.

Note: The address part of each cleaned value is in the “exploded” form — in contrast to the
“condensed” form used for result cleaning of address.

- asn:
= in params: optional in A11SearchableDataSpec, None in DataSpec
% In result: N/A
x field class: ASNField
* param cleaning examples:
- example synonymous raw values:
- u"999998" or
-u"1l5.16958"
- cleaned value: 999998

Autonomous system number of IP addresses related to the queried incidents; in the form of a
number or two numbers separated with a dot (see the examples above).

16 Chapter 2. Tutorial

n6sdk Documentation, Release 0.6.1

% in params: optional in A11SearchableDataSpec, None in DataSpec
* in result: N/A
x field class: CCField
x param cleaning example:
- raw value: "US"
- cleaned value: v"US"
Two-letter country code related to IP addresses related to the queried incidents.
* fields related to black list events:
— expires:
* in params: N/A
* in result: optional
x field class: DateTimeField
result cleaning examples:
- example synonymous raw values:
- "2014-11-05T23:13:00.000000" or
- "2014-11-06 01:13+02:00" or
- datetime.datetime (2014, 11, 5, 23, 13, 0) or

- datetime.datetime (2014, 11, o6, 1, 13, 0, 0, <tzinfo with UTC
offset 2h>)

- cleaned value: datetime.datetime (2014, 11, 5, 23, 13, 0)
Black list item expiry time. Value cleaning includes conversion to UTC time.
— active.min:

% in params: optional in AllSearchableDataSpec, None in DataSpec, marked as sin-
gle_param in both

in result: N/A
* field class: DateTimeField
* param cleaning examples:
- example synonymous raw values:
- "2014-11-05T23:13:00.000000" or
- "2014-11-06 01:13+02:00"
- cleaned value: datetime.datetime (2014, 11, 5, 23, 13, 0)

The earliest expiry-or-occurrence time of the queried black list items. Value cleaning includes conversion
to UTC time.

— active.max:

* in params: optional in AllSearchableDataSpec, None in DataSpec, marked as sin-
gle_param in both

. Data specification class 17

n6sdk Documentation, Release 0.6.1

in result: N/A
x field class: DateTimeField
* param cleaning examples:
- example synonymous raw values:
-u"2014-11-05T23:13:00.000000" or
- u"2014-11-06 01:13+02:00"
- cleaned value: datetime.datetime (2014, 11, 5, 23, 13, 0)

The latest expiry-or-occurrence time of the queried black list items. Value cleaning includes conversion
to UTC time.

— active.until:

% in params: optional in AllSearchableDataSpec, None in DataSpec, marked as sin-
gle_param in both

in result: N/A
x field class: DateTimeField
* param cleaning examples:
- example synonymous raw values:
- u"2014-11-06T01:13402:00" or
- "2014-11-05 23:13:00.000000"
- cleaned value: datetime.datetime (2014, 11, 5, 23, 13, 0)

The time the queried incidents expired or occurred before (i.e., exclusive; a handy replacement for
active.max in some cases). Value cleaning includes conversion to UTC time.

— replaces:
* in params: optional in Al1SearchableDataSpec, None in DataSpec
% in result: optional
* field class: UnicodeLimitedField
x specific field constructor arguments: max_length=64
x param/result cleaning example:
- raw value: "abcDEF"
- cleaned value: u"abcDEF"

id of the black list item replaced by the queried/returned one. Maximum length: 64 characters (after
cleaning).

— status:
% in params: optional in A11SearchableDataSpec, None in DataSpec
* in result: optional
* field class: UnicodeEnumField
x specific field constructor arguments: enum_values=n6sdk.data_spec.STATUS_ENUMS

x param/result cleaning example:

18 Chapter 2. Tutorial

n6sdk Documentation, Release 0.6.1

- raw value: "active"
- cleaned value: u"active"

Black list item status qualifier. One of: "active" (item currently in the list), "delisted" (item
removed from the list), "expired" (item expired, so treated as removed by the n6 system) or
"replaced" (e.g.: IP address changed for the same URL).

* fields related to aggregated (high frequency) events
- count:
* in params: N/A

* in result: optional

*

field class: IntegerField

*

specific field constructor arguments: min_value=0, max_value=32767

*

result cleaning examples:
- example synonymous raw values: 42 or 42 .0 or "42"
- cleaned value: 42

Number of events represented by the returned incident data record. It must be a positive integer number
not greater than 32767.

— until:
* in params: N/A
% in result: optional
* field class: DateTimeField
x result cleaning examples:
- example synonymous raw values:
- "2014-11-05T23:13:00.000000" or
- "2014-11-06 01:13402:00" or
- datetime.datetime (2014, 11, 5, 23, 13, 0) or

- datetime.datetime (2014, 11, 6, 1, 13, 0, 0, <tzinfo with UTC
offset 2h>)

- cleaned value: datetime.datetime (2014, 11, 5, 23, 13, 0)

The occurrence time of the latest [newest] aggregated event represented by the returned incident data
record (note: time is the occurrence time of the first [oldest] aggregated event). Value cleaning includes
conversion to UTC time.

¢ the rest of the standard »6 fields:
- action:
% in params: optional in A11SearchableDataSpec, None in DataSpec
% in result: optional
% field class: UnicodeLimitedField
specific field constructor arguments: max_length=32

% param/result cleaning example:

2.3. Data specification class 19

n6sdk Documentation, Release 0.6.1

- raw value: "Some Text"
- cleaned value: u"Some Text"

Action taken by malware (e.g. "redirect", "screen grab"...). Maximum length: 32
characters (after cleaning).

— adip:
% in params: N/A
% in result: optional
x field class: AnonymizedIPv4Field
% result cleaning example:
- raw value: "x .X.234.168"
- cleaned value: u"x .x.234.168"

Anonymized destination IPv4 address: in quad-dotted decimal notation, with one or more
segments replaced with "x", for example: "x.168.0.1" or "x.x.x.1" (note: at least
the leftmost segment must be replaced with "x").

- dip:
% in params: optional in Al11SearchableDataSpec, None in DataSpec
% in result: optional
* field class: IPv4Field
% param/result cleaning example:
- raw value: "123.10.234.168"
- cleaned value: u"123.10.234.168"

Destination IPv4 address (for sinkhole, honeypot etc.; does not apply to malicious web sites)
in quad-dotted decimal notation.

— dport:
% in params: optional in Al11SearchableDataSpec, None in DataSpec
% In result: optional
x field class: PortField
* param cleaning example:
- raw value: "80"
- cleaned value: 80
x result cleaning examples:
- example synonymous raw values: 80 or 80 .0 or u"80"
- cleaned value: 80
TCP/UDP destination port (non-negative integer number, less than 65536).
- email
% In params: optional in Al11SearchableDataSpec, None in DataSpec

% In result: optional

20 Chapter 2. Tutorial

n6sdk Documentation, Release 0.6.1

x field class: EmailSimplifiedField
* param/result cleaning example:
- raw value: "Fool@example.com"
- cleaned value: u"Foo@example.com"
E-mail address associated with the threat (e.g. source of spam, victim of a data leak).
- fgdn:
% in params: optional in A11SearchableDataSpec, None in DataSpec
% in result: optional
* field class: DomainNameField
* param/result cleaning examples:
- example synonymous raw values:
- W"WWW.ZODKA.ORG.EXAMPLE" or
- "WWW.\xc5\x81\xc3\x93DKA.ORG.EXAMPLE" or
- u"wwW. ré6dka.org.Example" or
- "www.\xc5\x82\xc3\xb3dka.org.Example" or
- u"www.xn-—-dka-fna80b.org.example" or
- "www.xn--dka-fna80b.example.org"
- cleaned value: u"www.xn—--dka-fna80b.example.org"

Fully qualified domain name related to the queried/returned incidents (e.g., for malicious
web sites: from the site’s URL; for sinkhole/scanning: the domain used for communication).
Maximum length: 255 characters (after cleaning).

Note: During cleaning, the IDNA encoding 1is applied (see:
https://docs.python.org/2.7/library/codecs.html#module-encodings.idna and
http://en.wikipedia.org/wiki/Internationalized_domain_name; see also the above exam-
ples), then all remaining upper-case letters are converted to lower-case.

— fgdn.sub:
% in params: optional in A11SearchableDataSpec, None in DataSpec
% in result: N/A
x field class: DomainNameSubstringField
« param cleaning example:
- raw value: "mple.c"
- cleaned value: u"mple.c"

Substring of fully qualified domain names related to the queried incidents. Maximum length:
255 characters (after cleaning).

See also:
The above fgdn description.

— iban

. Data specification class 21

https://docs.python.org/2.7/library/codecs.html#module-encodings.idna
http://en.wikipedia.org/wiki/Internationalized_domain_name

n6sdk Documentation, Release 0.6.1

% in params: optional in Al11SearchableDataSpec, None in DataSpec

% in result: optional
field class: IBANSimplifiedField

% param/result cleaning example:

- raw value: "gB82weST12345698765432"
- cleaned value: uW"GB82WEST12345698765432"

International Bank Account Number associated with fraudulent activity.

— injects:
in params: N/A
% In result: optional

% field class: ListOfDictsField

List of dictionaries containing data that describe a set of injects performed by banking trojans
when a user loads a targeted website. (Exact structure of the dictionaries is dependent on

malware family and not specified at this time.)

— mdb:

% in params: optional in Al11SearchableDataSpec, None in DataSpec

% in result: optional
* field class: MD5Field

% param/result cleaning example:

- raw value: "b555773768bcla672947d7£41£9c247£E"

- cleaned value: u"b555773768bcla672947d7£41£9c247£"

MDS5 hash of the binary file related to the (queried/returned) incident. In the form of a string

of 32 hexadecimal digits.
— modified
in params: N/A
* In result: optional
% field class: DateTimeField
x result cleaning examples:

- example synonymous raw values:

- "2014-11-05T23:13:00.000000" or
- "2014-11-06 01:13+402:00" or
- datetime.datetime (2014,

- datetime.datetime (2014,

with UTC offset 2h>)

- cleaned value: datetime.datetime (2014,

0) or

0, <tzinfo

23, 13, 0)

The time when the incident data was made available through the API or modified. Value

cleaning includes conversion to UTC time.

— modified.min:

22

Chapter 2. Tutorial

n6sdk Documentation, Release 0.6.1

% in params: optional in Al1SearchableDataSpec, None in DataSpec, marked
as single_param in both

* in result: N/A
% fleld class: DateTimeField
« param cleaning examples:
- example synonymous raw values:
- "2014-11-06T01:13+02:00" or
-u"2014-11-05 23:13:00.000000"
- cleaned value: datetime.datetime (2014, 11, 5, 23, 13, 0)

The earliest time the queried incidents were made available through the API or modified at.
Value cleaning includes conversion to UTC time.

— modified.max:

% in params: optional in Al1SearchableDataSpec, None in DataSpec, marked
as single_param in both

% in result: N/A
% field class: DateTimeField
* param cleaning examples:
- example synonymous raw values:
-u"2014-11-06T01:134+02:00" or
- "2014-11-05 23:13:00.000000"
- cleaned value: datetime.datetime (2014, 11, 5, 23, 13, 0)

The latest time the queried incidents were made available through the API or modified at.
Value cleaning includes conversion to UTC time.

— modified.until:

% In params: optional in Al11SearchableDataSpec, None in DataSpec, marked
as single_param in both

% in result: N/A
x field class: DateTimeField
* param cleaning examples:
- example synonymous raw values:
-u"2014-11-06T01:13402:00" or
- "2014-11-05 23:13:00.000000"
- cleaned value: datetime.datetime (2014, 11, 5, 23, 13, 0)

The time the queried incidents were made available through the API or modified before (i.e.,
exclusive; a handy replacement for modi fied.max in some cases). Value cleaning includes
conversion to UTC time.

— name:

% in params: optional in A11SearchableDataSpec, None in DataSpec

23.

Data specification class

23

n6sdk Documentation, Release 0.6.1

% in result: optional
% field class: UnicodeLimitedField
* specific field constructor arguments: max_length=255
« param/result cleaning example:
- raw value: "LoremIpsuM"
- cleaned value: u"LoremIpsuM"

Threat’s exact name, such as "virut", "Potential SSH Scan" or any other... Maxi-
mum length: 255 characters (after cleaning).

— origin:
% in params: optional in A11SearchableDataSpec, None in DataSpec
% In result: optional
% field class: UnicodeEnumField
x specific field constructor arguments: enum_values=n6sdk.data_spec.ORIGIN_ENUMS
* param/result cleaning example:
- raw value: "honeypot"
- cleaned value: u"honeypot"

Incident origin label (some examples: "p2p-crawler", "sinkhole",
"honeypot"...).

— phone
% in params: optional in Al11SearchableDataSpec, None in DataSpec
% In result: optional
* field class: UnicodeLimitedField
x specific field constructor arguments: max_length=20
Telephone number (national or international). Maximum length: 20 characters (after clean-
ing).
- proto:
% in params: optional in Al11SearchableDataSpec, None in DataSpec
% in result: optional
* field class: UnicodeEnumField
x specific field constructor arguments: enum_values=n6sdk.data_spec.PROTO_ENUMS
x param/result cleaning example:
- raw value: "tcp"
- cleaned value: u"tcp"
Layer #4 protocol label — one of: "tcp", "udp", "icmp".
— registrar
% in params: optional in A11SearchableDataSpec, None in DataSpec

% in result: optional

24 Chapter 2. Tutorial

n6sdk Documentation, Release 0.6.1

% field class: UnicodeLimitedField
% specific field constructor arguments: max_length=100
Name of the domain registrar. Maximum length: 100 characters (after cleaning).
- shal:

% in params: optional in A11SearchableDataSpec, None in DataSpec

% In result: optional

* field class: SHA1Field

« param/result cleaning example:
- raw value: u"7362d67c4£32ba5cd9096dcefc81b28cal04465b1"
- cleaned value: 1" 7362d67c4£32ba5cd9096dcefc81b28cal04465b1"

SHA-1 hash of the binary file related to the (queried/returned) incident. In the form of a string
of 40 hexadecimal digits.

— sport:
% in params: optional in A11SearchableDataSpec, None in DataSpec
« in result: optional
x field class: PortField
* param cleaning example:
- raw value: u" 80"
- cleaned value: 80
x result cleaning examples:
- example synonymous raw values: 80 or 80.0 or "80"
- cleaned value: 80
TCP/UDP source port (non-negative integer number, less than 65536).
- target:
% in params: optional in A11SearchableDataSpec, None in DataSpec
% in result: optional
% field class: UnicodeLimitedField
x specific field constructor arguments: max_length=100
% param/result cleaning example:
- raw value: "LoremIpsuM"
- cleaned value: u"LoremIpsuM"

Name of phishing target (organization, brand etc.). Maximum length: 100 characters (after
cleaning).

- url:
% in params: optional in Al11SearchableDataSpec, None in DataSpec
% in result: optional

% field class: URLField

23.

Data specification class 25

n6sdk Documentation, Release 0.6.1

« param/result cleaning examples:
- example synonymous raw values:
- "ftp://example.com/non-utf8-\xdd" or
-u"ftp://example.com/non-utf8-\udcdd" or
- "ftp://example.com/non-ut f8-\xed\xb3\x9d"
- cleaned value: u" ftp://example.com/non—-utf8-\udcdd"

URL related to the queried/returned incidents. Maximum length: 2048 characters (after
cleaning).

Note: Cleaning involves decoding byte strings using the
surrogateescape error handler backported from Python 3.x (see:
né6sdk.encoding _helpers.provide_surrogateescape()).

— url.sub:
= in params: optional in A11SearchableDataSpec, None in DataSpec
% in result: N/A
% field class: URLSubstringField
* param cleaning example:
- raw value: " /example.c"
- cleaned value: u" /example.c"

Substring of URLSs related to the queried incidents. Maximum length: 2048 characters (after
cleaning).

See also:
The above url description.
— url_pattern
% in params: optional in Al11SearchableDataSpec, None in DataSpec
* In result: optional
% field class: UnicodeLimitedField

* specific field constructor arguments: max_length=255,
disallow_empty=True

Wildcard pattern or regular expression triggering injects used by banking trojans. Maximum
length: 255 characters (after cleaning).

— username
= in params: optional in A11SearchableDataSpec, None in DataSpec
% in result: optional
% field class: UnicodelLimitedField
x specific field constructor arguments: max_length=64
Local identifier (login) of the affected user. Maximum length: 64 characters (after cleaning).

- x509fp_shal

26

Chapter 2. Tutorial

n6sdk Documentation, Release 0.6.1

% in params: optional in Al11SearchableDataSpec, None in DataSpec
% in result: optional
* field class: SHA1Field
« param/result cleaning example:
- raw value: u"7362d67c4£32ba5cd9096dcefc81b28cal04465b1"
- cleaned value: u"7362d67c4£32ba5cd9096dcefc81b28ca04465b1"

SHA-1 fingerprint of an SSL certificate. In the form of a string of 40 hexadecimal digits.

Note: Generally, byte strings (if any), when converted to Unicode strings, are — by default — decoded using the
ut £-8 encoding.

Adding, modifying, replacing and getting rid of particular fields...
As you already now, typically you create your own data specification class by subclassing
n6sdk.data_spec.DataSpec or, alternatively, n6sdk .data_spec.AllSearchableDataSpec.

For variety’s sake, this time we will subclass A11SearchableDataSpec (it has all relevant fields marked as legal
query parameters).

Let us prepare a temporary module for our experiments:

$ cd <the workbench directory>/Using_N6SDK/using_né6sdk
$ touch experimental_data_spec.py

Then, we can open the newly created file (experimental_data_spec.py) with our favorite text editor and place
the following code in it:

from n6sdk.data_spec import AllSearchableDataSpec
from né6sdk.data_spec.fields import UnicodeEnumField

class ExperimentalDataSpec (AllSearchableDataSpec) :

weekday = UnicodeEnumField(
in_result='optional',
enum_values= (
'Monday', 'Tuesday', 'Wednesday', 'Thursday',
'Friday', 'Saturday', 'Sunday'),
) 14
)

We just made a new data specification class — very similar to A11SearchableDataSpec but with one additional
field specification: weekday.

We could also modify (extend) within our subclass some of the field specifications inherited from
AllSearchableDataSpec. For example:

from né6sdk.data_spec import (
AllSearchableDataSpec,
Ext,

class ExperimentalDataSpec (AllSearchableDataSpec) :

2.3. Data specification class 27

n6sdk Documentation, Release 0.6.1

#

id = Ext(
here: changing the "max_length’ property
of the "id' field -- from 64 to 32

max_length=32,

)

time = Ext (
here: enabling bare "time’ as a query parameter
(in AllSearchableDataSpec, by default, the ‘time.min’,
‘time.max’, ‘time.until’ query params are enabled but
bare ‘time’ 1s not)
in_params='optional',

here: making ‘time.min’ a required query parameter
(#*required+ —— that is: a client xmust+ specify it
or they will get HTTP-400)
extra_params=Ext (

min=Ext (in_params='required'),

),

Please note how n6sdk .data_spec.Ext is used above to extend existing (inherited) field specifications (see also:
the Your first data specification class section).

It is also possible to replace existing (inherited) field specifications with completely new definitions...

oo,
from nésdk.data_spec.fields import MD5Field
#

class ExperimentalDataSpec (AllSearchableDataSpec) :
o
id = MD5Field(
in_params='optional',
in_result='required',
)
#

...as well as to remove (mask) them:

#

class ExperimentalDataSpec (AllSearchableDataSpec) :
#
count = None

You can also extend the clean_param_dict () and/or clean_result_dict () method:

#

def _is_april fools_day():
now = datetime.datetime.utcnow ()
return now.month == 4 and now.day == 1

class ExperimentalDataSpec (AllSearchableDataSpec) :

def clean_param_dict (self, params, ignored_keys=(), =**kwargs):

28 Chapter 2. Tutorial

n6sdk Documentation, Release 0.6.1

if _is_april_fools_day():
ignored_keys = set (ignored_keys) | {'joke'}

return super (ExperimentalDataSpec, self).clean_param_dict (

params,
ignored_keys=ignored_keys,
xxkwargs)

def clean_result_dict(self, result, =xxkwargs):
if _is_april_fools_day () :
result(['time'] = '1810-03-01T13:13"

return super (ExperimentalDataSpec, self).clean_result_dict(

result,
**xkwargs)

Note: Manipulating the optional keyword-only arguments (ignored_keys, forbidden_keys, extra_required_keys, dis-
carded_keys — see above: The data specification’s cleaning methods) of these methods can be useful, for example,
when you need to implement some authentication-driven data anonymization or param/result-key-focused access rules
(however, in such a case you may also need to add some additional keyword-only arguments to the signatures of these
methods, e.g. auth_data; then you will also need to extend the get_clean_param_dict_kwargs () and/or
get_clean_result_dict_kwargs () methods of your custom subclass of DefaultStreamViewBase;

generally that matter is beyond the scope of this tutorial).

Standard né6sdk field classes

The following list briefly describes all field classes defined in the n6sdk .data_spec.fields module:

e Field:
The top-level base class for field specifications.

e DateTimeField:

— raw (uncleaned) result value type: str/unicode or datetime.datetime

— cleaned value type: datetime.datetime

— example cleaned value: datetime.datetime (2014, 11, 6,

For date-and-time (timestamp) values, automatically normalized to UTC.
* UnicodeField:

— base classes: Field

— most useful constructor arguments or subclass attributes:
x encoding (default: "utf-8")
+ decode_error_handling (default: "strict™")
+ disallow_empty (default: True)

— raw (uncleaned) result value type: str or unicode

— cleaned value type: unicode

— example cleaned value: u"Some text value. Zazdicé gesla jazn."

For arbitrary text data.

* HexDigestField:

13,

30,

1)

2.3. Data specification class

29

http://docs.python.org/library/functions.html#str
http://docs.python.org/library/datetime.html#datetime.datetime
http://docs.python.org/library/datetime.html#datetime.datetime
http://docs.python.org/library/functions.html#str

n6sdk Documentation, Release 0.6.1

base classes: UnicodeField

obligatory constructor arguments or subclass attributes:
+ num_of_characters (exact number of characters)

+ hash_algo_descr (hash algorithm label, such as "MD5" or "SHA256"...)

raw (uncleaned) result value type: str or unicode

cleaned value type: unicode
For hexadecimal digests (hashes), such as MD5, SHA256 or any other...
e MD5Field:

— base classes: HexDigestField

raw (uncleaned) result value type: str or unicode

cleaned value type: unicode

example cleaned value: u"b555773768bcla672947d7f41£9c247£t"
For hexadecimal MDS5 digests (hashes).

* SHAlField:

base classes: HexDigestField

raw (uncleaned) result value type: str or unicode

cleaned value type: unicode

example cleaned value: u"7362d67c4f32ba5cd9096dcefc81b28cal4465b1"
For hexadecimal SHA-1 digests (hashes).
* UnicodeEnumField:
— base classes: UnicodeField
— obligatory constructor arguments or subclass attributes:
+ enum_values (a sequence or set of strings)
— raw (uncleaned) result value type: str or unicode
— cleaned value type: unicode
— example cleaned value: u"Some selected text value"
For text data limited to a finite set of possible values.
* UnicodelimitedField:

— base classes: UnicodeField

obligatory constructor arguments or subclass attributes:

* max_length (maximum number of characters)

raw (uncleaned) result value type: str or unicode

cleaned value type: unicode

example cleaned value: u"Some not-too-long text value"
For text data with limited length.

* UnicodeRegexField:

30

Chapter 2

. Tutorial

http://docs.python.org/library/functions.html#str
http://docs.python.org/library/functions.html#str
http://docs.python.org/library/functions.html#str
http://docs.python.org/library/functions.html#str
http://docs.python.org/library/functions.html#str

n6sdk Documentation, Release 0.6.1

base classes: UnicodeField

obligatory constructor arguments or subclass attributes:

* regex (regular expression — as a string or compiled regular expression object)

raw (uncleaned) result value type: str or unicode

cleaned value type: unicode

example cleaned value: u"Some matching text value"
For text data limited by the specified regular expression.
* SourceField:

— base classes: UnicodeLimitedField, UnicodeRegexField

raw (uncleaned) result value type: str or unicode

cleaned value type: unicode

example cleaned value: u" some-organization.some-type"
For dot-separated source specifications, such as organization.type.

e TPv4Field:

base classes: UnicodeLimitedField, UnicodeRegexField

raw (uncleaned) result value type: str or unicode

cleaned value type: unicode

example cleaned value: u"123.10.234.168"
For IPv4 addresses (in decimal dotted-quad notation).

e ITPv6Field:

base classes: UnicodeField

raw (uncleaned) result value type: str or unicode

cleaned value type: unicode

example cleaned values:

+ cleaned param value: u"abcd:0000:0000:0000:0000:0000:0000:0001 [note the “ex-
ploded” form]

% cleaned result value: u"abcd: : 1" [note the “condensed” form]
For IPv6 addresses (in the standard text representation).

e AnonymizedIPv4Field:

base classes: UnicodelLimitedField, UnicodeRegexField

raw (uncleaned) result value type: str or unicode

cleaned value type: unicode

example cleaned value: u"x.10.234.168"

For anonymized IPv4 addresses (in decimal dotted-quad notation, with the leftmost octet — and possibly any
other octets — replaced with "x").

e TPv4NetField:

— base classes: UnicodeLimitedField, UnicodeRegexField

2.3. Data specification class 31

http://docs.python.org/library/functions.html#str
http://docs.python.org/library/functions.html#str
http://docs.python.org/library/functions.html#str
http://docs.python.org/library/functions.html#str
http://docs.python.org/library/functions.html#str

n6sdk Documentation, Release 0.6.1

raw (uncleaned) result value type: st r/lunicode or 2-tuple: (<str/unicode>, <int>)

cleaned value types:
+ of cleaned param values: 2-tuple: (<unicode>, <int>)
of cleaned result values: unicode

example cleaned values:
* cleaned param value: (u"123.10.0.0", 16)

% cleaned result value: u"123.10.0.0/16"

For IPv4 network specifications (in CIDR notation).

e TPv6NetField:

base classes: UnicodeField
raw (uncleaned) result value type: st r/lunicode or 2-tuple: (<str/unicode>, <in
cleaned value types:

+ of cleaned param values: 2-tuple: (<unicode>, <int>)

x of cleaned result values: unicode

example cleaned values:

t>)

* cleaned param value: (u"abcd:0000:0000:0000:0000:0000:0000:0001, 128)

[note the “exploded” form of the address part]

cleaned result value: (u"abcd::1", 128) [note the “condensed” form of the address part]

For IPv6 network specifications (in CIDR notation).

e CCField:

base classes: UnicodeLimitedField, UnicodeRegexField
raw (uncleaned) result value type: str or unicode
cleaned value type: unicode

example cleaned value: u" JP"

For 2-letter country codes.

e URLSubstringField:

base classes: UnicodelLimitedField
most useful constructor arguments or subclass attributes:
+ decode_error_handling (default: ' surrogateescape’)
raw (uncleaned) result value type: str or unicode
cleaned value type: unicode

example cleaned value: u" /xyz .example.c"

For substrings of URLSs.

* URLField:

base classes: URLSubstringField

most useful constructor arguments or subclass attributes:

32

Chapter 2

. Tutorial

http://docs.python.org/library/functions.html#str
http://docs.python.org/library/functions.html#str
http://docs.python.org/library/functions.html#str
http://docs.python.org/library/functions.html#str

n6sdk Documentation, Release 0.6.1

+ decode_error_handling (default: ' surrogateescape’)
— raw (uncleaned) result value type: str or unicode
— cleaned value type: unicode
— example cleaned value: u"http://xyz.example.com/path?query=foo#bar"
For URLs.
* DomainNameSubstringField:

— base classes: UnicodeLimitedField

raw (uncleaned) result value type: str or unicode

cleaned value type: unicode
— example cleaned value: u"xample.or"
For substrings of domain names, automatically IDNA-encoded and lower-cased.

e DomainNameField:

base classes: DomainNameSubstringField, UnicodeRegexField

raw (uncleaned) result value type: str or unicode

cleaned value type: unicode

example cleaned value: u"www.xn—--w-ugalv8h.example.org"
For domain names, automatically IDNA-encoded and lower-cased.
* EmailSimplifiedField:

— base classes: UnicodeLimitedField, UnicodeRegexField

raw (uncleaned) result value type: str or unicode

cleaned value type: unicode

example cleaned value: u"FooRexample.com"
For e-mail addresses (validation is rather rough).

e ITBANSimplifiedField:

base classes: UnicodelLimitedField, UnicodeRegexField

raw (uncleaned) result value type: str or unicode

cleaned value type: unicode
— example cleaned value: W"GB82WEST12345698765432"
For International Bank Account Numbers.
* IntegerField:

— base classes: Field

most useful constructor arguments or subclass attributes:
+ min_value (optional minimum value)

+ max_value (optional maximum value)

raw (uncleaned) result value type: st r/unicode or an integer number of any numeric type

cleaned value type: int or (for bigger numbers) long

2.3. Data specification class

33

http://docs.python.org/library/functions.html#str
http://docs.python.org/library/functions.html#str
http://docs.python.org/library/functions.html#str
http://docs.python.org/library/functions.html#str
http://docs.python.org/library/functions.html#str
http://docs.python.org/library/functions.html#str
http://docs.python.org/library/functions.html#int
http://docs.python.org/library/functions.html#long

n6sdk Documentation, Release 0.6.1

— example cleaned value: 42
For integer numbers (optionally with minimum/maximum limits defined).

ASNField:

base classes: IntegerField

raw (uncleaned) result value type: st r/unicode or int/long

cleaned value type: int or (possibly, for bigger numbers) 1ong

example cleaned value: 123456789
For autonomous system numbers, such as 12345 or 123456789, or 12345.65432.

PortField:

base classes: IntegerField

raw (uncleaned) result value type: st r/unicode or an integer number of any numeric type

cleaned value type: int

example cleaned value: 12345
For TCP/UDP port numbers.
ResultListFieldMixin:
— base classes: Field
— most useful constructor arguments or subclass attributes:
+ allow_empty (default: False which means that an empty sequence causes a cleaning error)

A mix-in class for fields whose result values are supposed to be a sequence of values and not single values.
Its clean_result_value () checks that its argument is a non-string sequence (1ist or tuple, or any
other collections.Sequence not being st r or unicode) and performs result cleaning (as defined in a
superclass) for each item of it.

See also:
The ListOfDictsField description below.
DictResultField:

base classes: Field

most useful constructor arguments or subclass attributes:

« key_to_subfield_factory (None or a dictionary that maps subfield names to field classes or field
factory functions)

raw (uncleaned) result value type: collections.Mapping

cleaned value type: dict

A base class for fields whose result values are supposed to be dictionaries (their structure can be constrained by
specifying the key_to_subfield_factory property, described above).

Note: This is a result-only field class, i.e. its clean_param_value () raises TypeError.

See also:

The ListOfDictsField description below.

34

Chapter 2. Tutorial

http://docs.python.org/library/functions.html#str
http://docs.python.org/library/functions.html#int
http://docs.python.org/library/functions.html#long
http://docs.python.org/library/functions.html#int
http://docs.python.org/library/functions.html#long
http://docs.python.org/library/functions.html#str
http://docs.python.org/library/functions.html#int
http://docs.python.org/library/functions.html#list
http://docs.python.org/library/collections.html#collections.Sequence
http://docs.python.org/library/functions.html#str
http://docs.python.org/library/constants.html#None
http://docs.python.org/library/collections.html#collections.Mapping
http://docs.python.org/library/stdtypes.html#dict
http://docs.python.org/library/exceptions.html#exceptions.TypeError

n6sdk Documentation, Release 0.6.1

e ListOfDictsField:
— base classes: ResultListFieldMixin,DictResultField

— raw (uncleaned) result value type: collections.Sequence of collections.Mapping in-
stances

— cleaned value type: 11st of dict instances
— example cleaned values:
cleaned param value: N/A (clean_param_value () raises TypeError)
% cleaned result value: [{u"a": u"b", u"c": 4, u"e": [1, 2, 311}1]
For lists of dictionaries containing arbitrary values.
See also:
The AddressField and ExtendedAddressField descriptions below.
* AddressField:
— base classes: ListOfDictsField

— raw (uncleaned) result value type: collections.Sequence of collections.Mapping in-
stances

— cleaned value type: 11st of dict instances
— example cleaned values:
* cleaned param value: N/A (clean_param_value () raises TypeError)

cleaned result value: [{u"ip": u"123.10.234.169", u"cc": u"UA",
u"asn": 12345}]

For lists of dictionaries — each containing "ip" and optionally "cc" and/or "asn".

e DirField:

base classes: UnicodeEnumField

raw (uncleaned) result value type: str or unicode

cleaned value type: unicode

the only possible cleaned values: u"src" or u"dst"

For dir values in items cleaned by of ExtendedAddressField instances (dir marks role of the address
in terms of the direction of the network flow in layers 3 or 4).

e ExtendedAddressField:

base classes: ListOfDictsField

raw (uncleaned) result value type: collections.Sequence of collections.Mapping in-
stances

cleaned value type: 1ist of dict instances

example cleaned values:
+ cleaned param value: N/A (clean_param_value () raises TypeError)

% cleaned result value: [{u"ipv6e": u"abcd::1", u"cc": u"PL", u"asn":
12345, u"dir": u"dst"}]

2.3. Data specification class 35

http://docs.python.org/library/collections.html#collections.Sequence
http://docs.python.org/library/collections.html#collections.Mapping
http://docs.python.org/library/functions.html#list
http://docs.python.org/library/stdtypes.html#dict
http://docs.python.org/library/exceptions.html#exceptions.TypeError
http://docs.python.org/library/collections.html#collections.Sequence
http://docs.python.org/library/collections.html#collections.Mapping
http://docs.python.org/library/functions.html#list
http://docs.python.org/library/stdtypes.html#dict
http://docs.python.org/library/exceptions.html#exceptions.TypeError
http://docs.python.org/library/functions.html#str
http://docs.python.org/library/collections.html#collections.Sequence
http://docs.python.org/library/collections.html#collections.Mapping
http://docs.python.org/library/functions.html#list
http://docs.python.org/library/stdtypes.html#dict
http://docs.python.org/library/exceptions.html#exceptions.TypeError

n6sdk Documentation, Release 0.6.1

For lists of dictionaries — each containing either "ip" or "ipv6" (but not both), and optionally all or some of:
HCC" "asn" "dir" "rdnsll'

Note: Generally —
* constructor arguments, when specified, must be provided as keyword arguments;

e “constructor argument or a subclass attribute” means that a certain field property can be specified in two al-
ternative ways: either when creating a field instance (using a keyword argument for the constructor) or when
subclassing the field class (using an attribute of the subclass; see below: Custom field classes);

* raw (uncleaned) parameter value type is always st r/unicode;

e all these classes are cooperative-inheritance-friendly (i.e., super () in subclasses’
clean_param _value () and clean_result_value() will work properly, also with multiple
inheritance).

See also:

The Overview of the basic data specification classes section above.

Custom field classes

You may want to subclass any of the n6sdk field classes (described above in the Standard n6sdk field classes section):
¢ to override class attributes,
e to extend the clean_param_value () and/or clean_result_value () method.

Please, consider the beggining of our <the workbench directory>/Using_N6SDK/using_né6sdk/data_spec
file:

from n6sdk.data_spec import DataSpec, Ext
from nésdk.data_spec.fields import UnicodeRegexField

class UsingNé6sdkDataSpec (DataSpec) :

mmn

The data specification class for the "Using N6SDK' project.

mmn

mac_address = UnicodeRegexField (
in_params='optional', # xcan* be in query params
in_result='optional', # *can* be 1in result data

regex=r'" (?: [0-9A-F] {2} (?2:[:=]11$)){6}s",
error_msg_template=u'"{}" is not a valid MAC address',

)

It can be rewritten in a more self-documenting and code-reusability-friendly way:

from n6ésdk.data_spec import DataSpec, Ext
from nésdk.data_spec.fields import UnicodeRegexField

class MacAddressField (UnicodeRegexField) :

36 Chapter 2. Tutorial

-PY

http://docs.python.org/library/functions.html#str
http://docs.python.org/library/functions.html#super

n6sdk Documentation, Release 0.6.1

regex = r' " (?2:[0-9A-F]{2}(?:[:=11%)){6}s"’
error_msg_template = u'"{}" is not a valid MAC address'

class UsingNé6sdkDataSpec (DataSpec) :

mmn

The data specification class for the "Using N6SDK' project.

mmon

mac_address = MacAddressField(
in_params='optional', # #can* be Iin query params
in_result='optional', # *can# be 1in result data

Another technique — extending the value cleaning methods (see above: The field’s cleaning methods) — offers more
possibilities. For example, we could create an integer number field that accepts parameter values with such suffixes as
"m" (meters), "kg" (kilograms) and "s" (seconds), ignoring the suffixes:

from n6sdk.data_spec.fields import IntegerField
class SuffixedIntegerField (IntegerField):

the ‘legal_ suffixes’' class attribute we create here

can be overridden with a ‘legal_suffixes' constructor
argument or a ‘legal_ suffixes subclass attribute
legal_suffixes = 'm', 'kg', 's'

def clean_param_value(self, wvalue):
>>> SuffixedIntegerField().clean_param value('123 kg')
123
value = value.strip()
for suffix in self.legal_suffixes:
if value.endswith (suffix) :

value = value[: (-len(suffix))]
break
value = super (SuffixedIntegerField,

self) .clean_param_value (value)
return value

If — in your implementation of clean_param value () or clean_result_value () — you need to raise a
cleaning error (to signal that a value is invalid and cannot be cleaned) just raise any exception being an instance of stan-
dard Except ion (or of its subclass); it can (but does not have to)be n6sdk . exceptions.FieldValueError.

When subclassing n6sdk field classes, please do not be afraid to look into the source code of the
n6sdk.data_spec.fields module.

2.4 Implementing the data backend API

2.4.1 The interface

The network incident data can be stored in various ways: using text files, in an SQL database, using some distributed
storage such as Hadoop etc. Implementation of obtaining data from any of such backends is beyond the scope of this

2.4. Implementing the data backend API 37

http://docs.python.org/library/exceptions.html#exceptions.Exception

n6sdk Documentation, Release 0.6.1

document. What we do concern here is the API the n6sdk‘s machinery needs to use to get the data.

Therefore, for the purposes of this tutorial, we will assume that our network incident data is stored in the simplest
possible way: in one file in the JSON format. You will have to replace any implementation details related to this
particular way of keeping and querying for data with an implementation appropriate for the data store you use (file
reads, SQL queries or whatever is needed for the particular storage backend) — see the next section: Guidelines for the

real implementation.

First, we will create the example JSON data file:

$ cat << EOF > /tmp/our-data.json
[

"id". "1i",
"address": [
{
"ip": "11.22.33.44"
by
{

asn": 12345,

"ce": "ys",
"ip": "123.124.125.126"
}
1y
"category": "phish",
"confidence": "low",
"mac_address": "00:11:22:33:44:55",
"restriction": "public",
"source": "test.first",
"time": "2015-04-01 10:00:00",
"url": "http://example.com/?spam=ham"
}V
{
"id". "2",
"adip": "x.2.3.4",
"category": "server-exploit",
"confidence": "medium",
"restriction": "need-to-know",
"source": "test.first",
"time": "2015-04-01 23:59:59"
}V
{
"id": "3",
"address": [
{
"ip": "11.22.33.44"

b
{

"asn": 87654321,

"cc": "PL",

"ip": "111.122.133.144"
}

1y

"category": "server—-exploit",
"confidence": "high",

"restriction": "public",

"source": "test.second",

"time": "2015-04-01 23:59:59",

"url": "http://example.com/?spam=ham"

38

Chapter 2. Tutorial

n6sdk Documentation, Release 0.6.1

EOF

Then, we need to open the file <the workbench directory>/Using_N6SDK/using_n6sdk/data_backend_api.py
with our favorite text editor and modify it so that it will contain the following code (however, it is recommented

not to remove the comments and docstrings the file already contains — as they can be valuable hints for future code

maintainers):

import json
from nésdk.class_helpers import singleton

from nésdk.datetime helpers import parse_iso_datetime_to_utc
from né6sdk.exceptions import AuthorizationError

@singleton
class DataBackendAPI (object) :

def _ _init__ (self, settings):

[...existing docstring + comments...]
Implementation for our example JSON-file-based "storage":
with open(settings|['json_data_file path']) as f:

self.data = json.load(f)
[...existing comments...]

def generate_incidents(self, auth_data, params):
[...existing docstring + comments...]
This 1is a nalive Implementation for our example
JSON-file-based "storage" (some efficient database
query needs to be performed instead, in case of any
real-world implementation...):
for incident in self.data:
for key, value_list in params.items () :
if key == 'ip':
address_seq = incident.get ('address', [1)
if not any(addr.get (key) in value_list
for addr in address_seq) :

break # incident does not match the query params
elif key in ('time.min', 'time.max', 'time.until'):
[param_val] = value_list # must be exactly one value
db_val = parse_iso_datetime_to_utc(incident['time'])
if not ((key == 'time.min' and db_val >= param_val) or
(key == 'time.max' and db_val <= param_val) or
(key == '"time.until' and db_val < param_val)):
break # incident does not match the query params
elif incident.get (key) not in value_list:
break # incident does not match the query params

else:
(the inner for loop has not been broken)
yield incident # incident smatches* the query params

What is important:

1. The constructor of the class is supposed to be called exactly once per application run. The constructor must take
exactly one argument:

2.4. Implementing the data backend API 39

n6sdk Documentation, Release 0.6.1

2.

* settings — a dictionary containing settings from the ».ini file (e.g., development.ini or
production.ini).

The class can have one or more data query methods, with arbitrary names (in the above example there is only
one: generate_incidents (); to learn how URLs are mapped to particular data query method names —
see below: Gluing it together).

Each data query method must take two positional arguments:

* auth_data — authentication data, relevant only if you need to implement in your data query methods some
kind of authorization based on the authentication data; its type and format depends on the authentication
policy you use (see below: Custom authentication policy);

* params — a dictionary containing cleaned (validated and normalized with clean_param_dict ())
client query parameters; the dictionary maps parameter names (strings) to lists of parameter values (see
above: Data specification class).

. Each data query method must be a generator (see: https://docs.python.org/2/glossary.html#term-generator) or

any other callable that returns an iferator (see: https://docs.python.org/2/glossary.html#term-iterator). Each of
the generated items should be a dictionary containing the data of one network incident (the n6sdk machinery
will use it as the argument for the clean_result_dict () data specification method).

2.4.2 Guidelines for the real implementation

Typically, the following activities are performed in the __init__ () method of the data backend API class:

1.

2.

Get the storage backend settings from the seftings dictionary (apropriate items should have been placed in the
[app:main] section of the x . ini file — see below: Gluing it together).

Configure the storage backend (for example, create the database connection).

Typically, the following activities are performed in a data query method of the data backend API class:

1.

If needed: do any authorization checks based on the auth_data and params arguments; raise
nesdk.exceptions.AuthorizationError on failure.

Translate the contents of the params argument to some storage-specific queries. (Obviously, when doing the
translation you may need, for example, to map params keys to some storage-specific keys...).

Note: If the data specification includes dotted “extra params” (such as time.min, time.max,
time.until, fgdn.sub, ip.net etc.) their semantics should be implemented carefully.

If needed: perform a necessary storage-specific maintenance activity (e.g., re-new the database connection).
Perform a storage-specific query (or queries).

Sometimes you may want to limit the number of allowed results - then, raise
nésdk.exceptions.TooMuchDataError if the limit is exceeded.

. Translate the results of the storage-specific query (queries) to result dictionaries and yield each of these dictio-

naries (each of them should be a dictionary ready to be passed to the clean_result_dict () method of
data specification).

(Obviously, when doing the translation, you may need, for example, to map some storage-specific keys to the
result keys accepted by the clean_result_dict () method of your data specificaton class...)

If there are no results — just do not yield any items (the caller will obtain an empty iterator).

In case of an internal error, do not be afraid to raise an exception — any instance of Exception (or of its
subclass) will be handled automatically by the n6sdk machinery: logged (including the traceback) using the

40

Chapter 2. Tutorial

https://docs.python.org/2/glossary.html#term-generator
https://docs.python.org/2/glossary.html#term-iterator
http://docs.python.org/library/exceptions.html#exceptions.Exception

n6sdk Documentation, Release 0.6.1

n6sdk.pyramid_commons logger and transformed into pyramid.httpexceptions.HTTPServerError
which will break generation of the HTTP response body (note, however, that there will be no HTTP-500 response —
because it is not possible to send such an “error response” when some parts of the body of the “data response” have
already been sent out).

It is recommended to decorate your data backend API class with the n6sdk.class_helpers.singleton ()
decorator (it ensures that the class is instantiated only once; any attempt to repeat that causes TypeError).

2.5 Custom authentication policy

A description of the concept of Pyramid authentication policies is beyond the scope of this tutorial.
Please read the appropriate paragraph and example from the documentation of the Pyramid library:
http://docs.pylonsproject.org/projects/pyramid/en/1.5-branch/narr/security.html#creating-your-own-authentication-
policy (you may also want to search the Pyramid documentation for the term authentication policy).

The n6sdk library requires that the authentication policy class has the additional static (decorated with
staticmethod ()) method get_auth_data () that takes exactly one positional argument: a Pyramid request
object. The method is expected to return a value that is not None in case of authentication success, and None other-
wise. Apart from this simple rule there are no constraints what exactly the return value should be — the implementer
decides about that. The return value will be available as the auth_data attribute of the Pyramid request as well as
is passed into data backend API methods as the auth_data argument.

Typically, the authenticated_userid() method implementation makes use of the request’s attribute
auth_data (being return value of get_auth_data()), and the get_auth_data() implementa-
tion makes some use of the request’s attribute unauthenticated_userid (being return value of
the unauthenticated_userid() policy method). It is possible because get_auth_data() is
called (by the Pyramid machinery) after the unauthenticated_userid() method and before the
authenticated_userid () method.

The n6sdk library provides n6sdk.pyramid_commons.BaseAuthenticationPolicy — an authentication
policy base class that makes it easier to implement your own authentication policies. Please consult its source code.

2.6 Gluing it together

We can inspect the __init__ .py file of our application (<the workbench
directory>/Using_N6SDK/using_né6sdk/_ _init__ .py) with our favorite text editor. It contains a
lot of useful comments that suggest how to customize the code — however, if we omitted them, the actual Python code
would be:

from né6sdk.pyramid_ commons import (
AnonymousAuthenticationPolicy,
ConfigHelper,
HttpResource,

from .data_spec import UsingNé6sdkDataSpec
from .data_backend api import DataBackendAPI

(this is how we map URLs to particular data query methods...)
RESOURCES = [
HttpResource (
resource_id='/incidents"',

2.5. Custom authentication policy 41

http://docs.python.org/library/exceptions.html#exceptions.TypeError
http://docs.pylonsproject.org/projects/pyramid/en/1.5-branch/narr/security.html#creating-your-own-authentication-policy
http://docs.pylonsproject.org/projects/pyramid/en/1.5-branch/narr/security.html#creating-your-own-authentication-policy
http://docs.python.org/library/functions.html#staticmethod
http://docs.python.org/library/constants.html#None
http://docs.python.org/library/constants.html#None

n6sdk Documentation, Release 0.6.1

url_pattern='/incidents. {renderer}',
renderers=('Jjson', 'sjson'),
data_spec=UsingN6sdkDataSpec (),
data_backend_api_method="'generate_ incidents',

def main(global_config, =**settings):

helper = ConfigHelper (
settings=settings,
data_backend_api_class=DataBackendAPI,
authentication_policy=AnonymousAuthenticationPolicy (),
resources=RESOURCES,

)

return helper.make_wsgi_app ()

(In the context of descriptions the previous sections contain, this boilerplate code should be
rather self-explanatory. If not, please consult the comments in the actual <the workbench
directory>/Using N6SDK/using_n6sdk/__init__ .py file.)

Now, yet another important step needs to be completed: customization of the settings in the <the workbench
directory>/Using_N6SDK/x*.1ini files: development.ini and production.ini — to match the envi-
ronment, database configuration (if any) etc.

Warning: You should net place any sensitive settings (such as real database passwords) in these files — as they
are still just configuration templates (which your will want, for example, to add to your version control system)
and not real configuration files for production.

See also:

The Installation for production (using Apache server) section.

In case of our naive JSON-file-based data backend implementation (see above: The interface) we need to add
the following line in the [app:main] section of each of the two settings files (development.ini and
production.ini):

json_data_file_path = /tmp/our-data.json

Finally, let us run the application (still in the development environment):

$ cd <the workbench directory>
$ source dev-venv/bin/activate # ensuring the virtualenv is active
$ pserve Using_N6SDK/development.ini

Our application should be being served now. Try visiting the following URLs (with any web browser or, for example,
with the wget command-line tool):

e http://127.0.0.1:6543/incidents. json

e http://127.0.0.1:6543/incidents. json?ip=11.22.33.44

e http://127.0.0.1:6543/incidents. json?ip=11.22.33.44&time.min=2015-04-01T23:00:00
e http://127.0.0.1:6543/incidents. json?category=phish

e http://127.0.0.1:6543/incidents. json?category=server-exploit

* http://127.0.0.1:6543/incidents. json?category=server—exploité&ip=11.22.33.44

e http://127.0.0.1:6543/incidents. json?category=bots&category=server—-exploit

42 Chapter 2. Tutorial

n6sdk Documentation, Release 0.6.1

http:
http:
http:
http:
http:
http:
http:
http:

http:

//127.
//127.
//127.
//127.
//127.
//127.
//127.
//127.
//127.

O O o o o o o o

.0.

o O o o o o o

:6543/incidents.
:6543/incidents.
:6543/incidents.
:6543/incidents.
:6543/incidents.
:6543/incidents.
:6543/incidents.

:6543/incidents.

0.0.1:6543/incidents.

...as well as those causing (expected) errors:

http:
http:
http:
http:
http:
http:
http:
http:
http:
http:
http:
http:

http:

//127.
//127.
//127.
//127.
//127.
//127.
//127.
//127.
//127.
//127.
//127.
//127.
//127.

0.0.1:6543/incidents

0.0.1:6543/incidents.

0.

0.

o O o o o o o o o

0.

1:

0.1

O O O o o o o o o

e e

.1
.1
1

6543/incidents.

:6543/incidents.
:6543/incidents.
:6543/incidents.
:6543/incidents.
:6543/incidents.
:6543/incidents.
:6543/incidents.
:6543/incidents.

:6543/incidents.

6543/incidents.

json?category=bots,dos—-attacker,phish, server-exploit
sjson?mac_address=00:11:22:33:44:55
sjson?source=test.first

sjson?source=test.second
sjson?source=some.non-existent
Sjson?source=some.non-existenté&source=test.second
sjson?time.min=2015-04-01T23:00
sjson?time.max=2015-04-01T23:59:59&confidence=medium, 1

sjson?time.until=2015-04-01T23:59:59

jsonnn

Jjson?some-illegal-key=l&another-one=foo
json?category=wrong

json?category=bots, wrong
json?category=bots&category=wrong
json?ip=11.22.33.44.55
sjson?mac_address=00:11:123456:33:44:55
sjson?time.min=2015-04-01T23:00,2015-04-01T23:30
sjson?time.min=2015-04-01T23:00&time.min=2015-04-01T23
sjson?time.min=blablabla
sjson?time.max=blablabla&ip=11.22.33.444
sjson?time.until=2015-04-01T23:59:59&1p=11.22.33.444

Now, it can be a good idea to try the helper script for automatized basic API testing.

2.7 Installation for production (using Apache server)

Warning: This section is intended to be a brief and rough explanation how you can glue relevant configuration
stuff together. It is not intended to be used as a step-by-step recipe for a secure production configuration. The
final configuration (including but not limited to file access permissions) should always be carefully reviewed
by an experienced system administrator - BEFORE it is deployed on a publicly available server.

Prerequisites are similar to those concerning the development environment, listed near the beginning of this tutorial.
The same applies to the way of obtaining the source code of n6sdk.

See also:

The sections: Prerequisites and ref:obtaining_source_code.

2.7. Installation for production (using Apache server) 43

n6sdk Documentation, Release 0.6.1

The Debian GNU/Linux operating system in the version 7.9 or newer is recommended to follow the guides presented
below. Additional prerequisite is that the Apache2 HTTP server is installed and configured together with mod_wsgi
(the apache? and 1ibapache2-mod-wsgi Debian packages).

First, we will create a directory structure and a virtualenv for our server, e.g. under /opt:

sudo mkdir /opt/myn6-srv

cd /opt/myné6-srv

sudo virtualenv prod-venv

sudo chown -R $(echo SUSER) prod-venv
source prod-venv/bin/activate

v v

Then, let us install the necessary packages:

cd <the workbench directory>/n6sdk
python setup.py install

cd <the workbench directory>/Using_N6SDK
python setup.py install

Ly W r

(Of course, <the workbench directory>/n6sdk needs to be replaced with the actual name (ab-
solute path) of the directory containing the source code of the n6sdk library; and <the workbench
directory>/Using_N6SDK needs to be replaced with the actual name (absolute path) of the directory containing
the source code of our n6sdk-based project.)

Now, we will copy the template of the configuration file for production:

$ cd /opt/myné6-srv
$ sudo cp <the workbench directory>/Using_N6SDK/production.ini ./

For security sake, let us restrict access to the production.ini file before we will place any real passwords and
other sensitive settings in it:

$ sudo chown root ./production.ini
$ sudo chmod 600 ./production.ini

We need to ensure that the Apache’s user group has read-only access to the file. On Debian GNU/Linux it can be done
by executing:

$ sudo chgrp www-data ./production.ini
$ sudo chmod g+r ./production.ini

You may want to customize the settings that the file contains, especially to match your production environment,
database configuration etc. Just edit the /opt /myn6-srv/production.ini file.

Then, we will create the WSGI script:

$ cat << EOF > prod-venv/myné6-app.wsgi
from pyramid.paster import get_app, setup_logging

ini_path = '/opt/myn6-srv/production.ini'
setup_logging (ini_path)

application = get_app(ini_path, 'main')
EOF

...and provide the directory for the egg cache:

$ sudo mkdir /opt/myn6-srv/.python-eggs

44 Chapter 2. Tutorial

n6sdk Documentation, Release 0.6.1

We need to ensure that the Apache’s user has write access to it. On Debian GNU/Linux it can be done by executing:

$ sudo chown www-data /opt/myné6-srv/.python-eggs

Now, we need to adjust the Apache configuration. On Debian GNU/Linux it can be done by executing:

$ cat << EOF > prod-venv/myné6.apache

<VirtualHost *:80>
Only one Python sub-interpreter should be used
(multiple ones do not cooperate well with C extensions).
WSGIApplicationGroup %{GLOBAL}

Remove the following line if you use native Apache authorization.
WSGIPassAuthorization On

WSGIDaemonProcess myné6_srv \\
python-path=/opt/myn6-srv/prod-venv/lib/python2.7/site-packages \\
python-eggs=/opt/myn6-srv/.python-eggs

WSGIScriptAlias /myn6 /opt/myn6-srv/prod-venv/myné6—app.wsgi

<Directory /opt/myn6-srv/prod-venv>
WSGIProcessGroup myn6_srv
Order allow,deny
Allow from all

</Directory>

Logging of errors and other events:

ErrorLog \S${APACHE_LOG_DIR}/error.log

Possible values for the LogLevel directive include:

debug, info, notice, warn, error, crit, alert, emerg.
LogLevel warn

Logging of client requests:
CustomLog \${APACHE_LOG_DIR}/access.log combined

It is recommended to uncomment and adjust the following line.
#ServerAdmin webmaster@yourserver.example.com

</VirtualHost>

EOF

$ sudo chmod 640 prod-venv/myné6.apache

$ sudo chown root:root prod-venv/myné.apache

$ sudo mv prod-venv/myné6.apache /etc/apache2/sites-available/myn6é

$ cd /etc/apache2/sites-enabled

$ sudo 1n -s ../sites-available/myn6 001-myn6

You may want or need to adjust the contents of the newly created @ file
(/etc/apache2/sites—available/myn6) — especially regarding the following directives (see the comments
accompanying them in the file):

* WSGIPassAuthorization,
e ErrorLog and LogLevel,
¢ CustomLog,
* ServerAdmin.
See also:

* About general configuration of Apache: http://httpd.apache.org/docs/2.2/configuring.html

2.7. Installation for production (using Apache server) 45

http://httpd.apache.org/docs/2.2/configuring.html

n6sdk Documentation, Release 0.6.1

* About modwsgi-specific configuration: http://code.google.com/p/modwsgi/wiki/ConfigurationGuidelines

If we have the default Apache configuration on Debian, we need to disable the default site by removing the symbolic
link:

$ rm 000-default

Finally, let us restart the Apache daemon. On Debian GNU/Linux it can be done by executing:

$ sudo service apache2 restart

Our application should be being served now. Try visiting the following URL (with any web browser or, for example,
with the wget command-line tool):

http://<your apache server address>/myn6/incidents. json

(Of course, <your apache server address> needs tobe replaced with the actual host address of your Apache
server, for example 127.0.0.1 or localhost.)

46 Chapter 2. Tutorial

http://code.google.com/p/modwsgi/wiki/ConfigurationGuidelines

CHAPTER 3

n6sdk_api_test: API testing tool

3.1 Overview

The n6sdk_api_test script is a simple tool to perform basic validation of your n6sdk-based REST API.
In the current version of the tool, validation consist of the following steps:
1. inferring basic information about the tested API + testing essential compliance with the general 16 specification;
2. testing a query containing two (randomly selected) legal parameters;
3. testing queries containing some illegal parameters;
4. testing queries containing (single) legal parameters;
5. testing queries containing one parameter, using various values of it.

API testing tool provides feedback printed in a plain text format. The report is structured in sections for every test case
category. The output is more informative when the ——verbose option is used.

The test data set is prepared automatically; how is it done depends on the query parameters placed in the tool’s config
file. Hence, it is the user’s responsibility to select the base URL containing such query parameters that the response
will reflect the internal structure of data records from the database as well as possible. In other words, the user is
responsible for selecting a query that allows to pick out the most diverse data sample.

Because of simplicity of the n6sdk_api_test tool — and considering that the script employs a lot of ran-
domization — it may be worth running the tool more than once. Experimenting with different settings in the
[constant_params] section of the tool’s config can also be a good idea.

3.2 Installation

The script is automatically installed in the appropriate place when you install n6sdk by running python setup.py
. .. (see: Installing the necessary stuff or Installation for production (using Apache server)).

3.3 Configuration and usage

To use n6sdk_api_test follow these steps:

1. Generate the config file base:

47

n6sdk Documentation, Release 0.6.1

$ né6sdk_api_test --generate-config > config.ini

2. Adjust the generated config. ini file:
* provide the base URL of the tested API resource;
* specify mandatory query parameters (t ime . min etc.; see the comment in the generated config file);

* specify SSL certificate/key paths in case of SSL-based method of authentication, or username/password
in case of basic HTTP authentication (if required by the tested API).

3. Run the script, e.g.:

$ né6sdk_api_test -c config.ini

Note that the resultant report is printed to the standard output so one can easily write it to a file:

$ n6sdk_api_test -c config.ini > report.txt

To see the available options:

$ n6sdk_api_test -h

48 Chapter 3. né6sdk_api_test: API testing tool

CHAPTER 4

Library Reference

4.1 Core modules

4.1.1 n6sdk.data_spec
4.1.2 n6sdk.data_spec.fields

4.1.3 n6sdk.exceptions

class n6sdk.exceptions._ErrorWithPublicMessageMixin (*args, **kwargs)
Bases: object

A mix-in class that provides the public_message property.

The value of this property is a unicode string. It is taken either from the public_message constructor keyword
argument (which should be a unicode string or an UTF-8-decodable str string) or — if the argument was not
specified — from the value of the default_public _message attribute (which should also be a unicode
string or an UTF-8-decodable str string).

The public message should be a complete sentence (or several sentences): first word capitalized (if not being an
identifier that begins with a lower case letter) + the period at the end.

Warning: Generally, the message is intended to be presented to clients. Ensure that you do not disclose
any sensitive details in the message.

See also:
The documentation of the public exception classes provided by this module.

The st r and unicode conversions that are provided by the class use the value of public_message:

>>> class SomeError (_ErrorWithPublicMessageMixin, Exception):
pass

>>> str (SomeError('a', 'b')) # using attribute default_public_message
'Internal error.'

>>> str(SomeError('a', 'b', public_message="'Sp\xc4\x85m."))

'Sp\xc4\x85m. "'

>>> str (SomeError('a', 'b', public_message=u'Sp\u01l05m."))

'Sp\xc4\x85m. "'

>>> unicode (SomeError ('a', 'b')) # using attribute default_public_message

49

http://docs.python.org/library/functions.html#object
http://docs.python.org/library/functions.html#str

n6sdk Documentation, Release 0.6.1

u'Internal error.'

>>> unicode (SomeError('a', 'b', public_message='Sp\xc4\x85m."))
u'Sp\u0105m. "'

>>> unicode (SomeError('a', 'b', public_message=u'Sp\u01l05m."))
u'Sp\u0105m. "'

The repr () conversion results in a programmer-readable representation (containing the class name, repr () -
formatted constructor arguments and the public_message property):

>>> SomeError('a', 'b'") # using class's default_public_message
<SomeError: args=('a', 'b'); public_message=u'lInternal error.'>
>>> SomeError('a', 'b', public_message='Spam.'")

<SomeError: args=('a', 'b'); public_message=u'Spam.'>

default_public_message = u’Internal error.’
(overridable in subclasses)

public_message
The aforementioned property.

class n6sdk.exceptions._KeyCleaningErrorMixin (illegal_keys, missing_keys)

Bases: object
Mix-in for key cleaning-related exception classes.

Each instance of such a class:
eshould be initialized with two (positional or keyword) arguments: illegal_keys and missing_keys that
should be sets of — respectively — illegal or missing keys (each key being a string);
eexposes these arguments as the 11legal_keys and missing_keys attributes (for possible later in-
spection).

class n6sdk.exceptions._ValueCleaningErrorMixin (error_info_seq)

Bases: object
Mix-in for value cleaning-related exception classes.

Each instance of such a class:
eshould be initialized with one argument being a list of (<key>, <offending value or list of offending
values>, <actual exception>) tuples — where <actual exception> is the exception instance that caused the
error (e.g. aValueError or an instance of some _ErroriWithPublicMessageMixin subclass);
eexposes that argument as the error_info_seq attribute (for possible later inspection).

exception n6sdk .exceptions.FieldValueError (*args, **kwargs)

Bases: n6sdk.exceptions._ ErrorWithPublicMessageMixin,exceptions.ValueError

Intended to be raised in clean_param_value () and clean_result_value () methods of
n6sdk.data_spec.fields.Field subclasses.

When using it in a clean_param_value () ‘s implementation it is recommended (though not required) to
insantiate the exception specifying the public_message keyword argument.

Typically, this exception (as any other Except ion subclass/instance raised in a field’s clean_*_value ()
method) is caught by the n6sdk machinery — then, appropriately, ParamValueCleaningError
(with public_message including public_message of this exception - see: the
ParamValueCleaningError documentation) or ResultValueCleaningError (with public
message being just the default and safe "Internal error.")is raised.

See also:

_ErrorWithPublicMessageMixin as well as the ParamValueCleaningError and
ResultValueCleaningError documentation.

50

Chapter 4. Library Reference

http://docs.python.org/library/functions.html#repr
http://docs.python.org/library/functions.html#repr
http://docs.python.org/library/functions.html#object
http://docs.python.org/library/functions.html#object
http://docs.python.org/library/exceptions.html#exceptions.ValueError
http://docs.python.org/library/exceptions.html#exceptions.ValueError
http://docs.python.org/library/exceptions.html#exceptions.Exception

n6sdk Documentation, Release 0.6.1

exception n6sdk .exceptions.FieldValueTooLongError (*args, **kwargs)
Bases: n6sdk.exceptions.FieldValueError

Intended to be raised when the length of the given value is too big.

Instances must be initialized with the following keyword-only arguments:
ofield (n6sdk.data_spec.fields.Field instance): the field whose method raised the exception;
schecked_value: the value which caused the exception (possibly already partially processed by methods of
field);
*max_length: the length limit that was exceeded (what caused the exception).

They become attributes of the exception instance — respectively: field, checked_value, max_length.

>>> exc = FieldValueTooLongError (
field='sth', checked_value=['foo'], max_length=42)
>>> exc.field
'sth'
>>> exc.checked_value
["foo']
>>> exc.max_length
42

>>> FieldValueTooLongError (
. checked_value=['foo'], max_length=42)
Traceback (most recent call last):

TypeError: __init__ () needs keyword-only argument field

>>> FieldValueTooLongError (
field="'sth', max_length=42)
Traceback (most recent call last):

TypeError: __init__ () needs keyword-only argument checked_value

>>> FieldValueTooLongError (
field='sth', checked_value=['foo'])
Traceback (most recent call last):

TypeError: __init__ () needs keyword-only argument max_length

exception n6sdk .exceptions.DataAPIError (*args, **kwargs)
Bases: n6sdk.exceptions._ErrorWithPublicMessageMixin, exceptions.Exception

The base class for client-data-or-backend-API-related exceptions.

(They are not intended to be raised in clean_x_value () of Field subclasses —use FieldValueError

instead.)

>>> exc = DataAPIError('a', 'b'")

>>> exc.args

(lal , lbl)

>>> exc.public_message # using attribute default_public_message

u'Internal error.'
>>> unicode (exc)
u'Internal error.'
>>> str (exc)
'Internal error.'

>>> u'{}'.format (exc)

4.1. Core modules 51

http://docs.python.org/library/exceptions.html#exceptions.Exception

n6sdk Documentation, Release 0.6.1

u'Internal error.'

>>> '"{}'. format (exc)

'Internal error.'

>>> exc = DataAPIError('a', 'b', public_message='Spam.")
>>> exc.args

(ta', 'b")

>>> exc.public_message # the message passed into constructor
u'Spam. '

>>> unicode (exc)

u'Spam.'

>>> str (exc)

'Spam. '

>>> u'{}'.format (exc)

u'Spam. '

>>> '{}'.format (exc)

'Spam. '

exception n6sdk .exceptions.AuthorizationError (*args, **kwargs)
Bases: n6sdk.exceptions.DataAPIError

Intended to be raised by data backend API to signal authorization problems.
default_public_message = u’Access not allowed.’

exception n6sdk .exceptions.TooMuchDataError (*args, **kwargs)
Bases: n6sdk.exceptions.DataAPIError

Intended to be raised by data backend API when too much data have been requested.
default_public_message = u’Too much data requested.’

exception n6sdk .exceptions.ParamCleaningError (*args, **kwargs)
Bases: n6sdk.exceptions.DataAPIError

The base class for exceptions raised when query parameter cleaning fails.
Instances of its subclasses are raised by the data specification machinery.
default_public_message = u’Invalid parameter(s).”

exception n6sdk .exceptions.ParamKeyCleaningError (illegal_keys, missing_keys)
Bases: n6sdk.exceptions._KeyCleaningErrorMixin,nésdk.exceptions.ParamCleaningError

This exception should be raised by the data specification machinery (in particular, it is raised in
n6sdk.data_spec.BaseDataSpec.clean_param_dict ()) when some client-specified parameter
keys (names) are illegal and/or missing.

This exception class provides default_public_message(see: _ErrorWithPublicMessageMixin)
as a property whose value is a nice, user-readable message that includes all illegal and missing keys.

>>> try:
raise ParamKeyCleaningError ({'zz', 'x'}, {'E', 'b'})
except ParamCleaningError as exc:
pass

>>> exc.public_message == (

u'Illegal query parameters: "x", "zz". ' +
.. u'Required but missing query parameters: "\\u0118", "b".'")
True
>>> exc.illegal_keys == {'zz', 'x'}

52 Chapter 4. Library Reference

n6sdk Documentation, Release 0.6.1

True
>>> exc.missing_keys == {'E', 'b'}
True

illegal_keys_msg_template = u’lllegal query parameters: {}.’
missing_keys_msg_template = u’Required but missing query parameters: {}.’

default_public_message
The aforementioned property.

exception n6sdk .exceptions.ParamValueCleaningError (error_info_seq)
Bases: n6sdk.exceptions._ValueCleaningErrorMixin,n6sdk.exceptions.ParamCleaningError

Raised when query parameter value(s) cannot be cleaned (are not valid).

Especially, this exception should be raised by the data specification machinery (in particular, it is
raised in n6sdk.data_spec.BaseDataSpec.clean_param_dict ()) when any Exception sub-
class(es)/instance(s) (possibly, F'ieldValueError)have been caught after being raised by data specification
fields’ clean_param_value ().

This exception class provides default_public_message(see: _ErrorWithPublicMessageMixin)
as a property whose value is a nice, user-readable message that includes, for each contained exception: the key,
the offending value(s) and the public_message attribute of that contained exception (the latter only for
instances of _ ErrorWithPublicMessageMixin subclasses).

>>> errl = TypeError('foo', 'bar')
>>> err2 = FieldValueError ('foo', 'bar', public_message='Message."')
>>> try:
raise ParamValueCleaningError ([
("k1', '"t-1', errl),
("k2'", ["t-2', 'xyz'], err2),

1)
except ParamCleaningError as exc:
pass

>>> exc.public_message == (

u'Problem with value(s) ("\\u0142-1") of query parameter "k1". ' +
u'Problem with value(s) ("\\u0l42-2", "xyz")' +
u' of query parameter "k2" (Message).')
True
>>> exc.error_info_seq == |
("k1'", "1-1', errl),
("k2', ['*-2'", 'xyz'], err2),
1
True

msg_template = u’Problem with value(s) ({values_repr}) of query parameter “{key}’{optional_exc_public_message}.’

default_public_message
The aforementioned property.

exception n6sdk .exceptions.ResultCleaningError (*args, **kwargs)
Bases: n6sdk.exceptions.DataAPIError

The base class for exceptions raised when result data cleaning fails.
Instances of its subclasses are raised by the data specification machinery.

exception n6sdk .exceptions.ResultKeyCleaningError (illegal_keys, missing_keys)
Bases: n6sdk.exceptions._KeyCleaningErrorMixin,né6sdk.exceptions.ResultCleaningError

4.1. Core modules 53

http://docs.python.org/library/exceptions.html#exceptions.Exception

n6sdk Documentation, Release 0.6.1

This exception should be raised by the data specification machinery (in particular, it is raised in
n6sdk.data_spec.BaseDataSpec.clean_result_dict ()) when some keys in a data-backend-
API-produced result dictionary are illegal and/or missing.

Note: default_public_message (see: _ErroriWithPublicMessageMixin) is consciously left as
the default and safe u’ Internal error.’.

exception n6sdk .exceptions.ResultValueCleaningError (error_info_seq)

Bases: n6sdk.exceptions._ValueCleaningErrorMixin,né6sdk.exceptions.ResultCleaningError
Raised when result item value(s) cannot be cleaned (are not valid).

Especially, this exception should be raised by the data specification machinery (in particular,
it is raised in n6sdk.data_spec.BaseDataSpec.clean_result_dict()) when any
Exception subclass(es)/instance(s) have been caught after being raised by data specification fields’
clean_result_value().

Note: default_public_message (see: ErrorWithPublicMessageMixin)is consciously left as
the default and safe u’ Internal error.’ —so (unlike for ParamValueCleaningError and fields’
clean_param_value ()) no information from underlying FieldValueError or other exceptions raised
in fields’ clean_result_value () is disclosed in the default_public_message value.

4.1.4 n6sdk.pyramid_commons

4.1.5 n6sdk.pyramid_commons.renderers

4.2 Helper modules

4.2.1 n6sdk.addr_helpers

n6sdk.addr_helpers.ip_network_as_tuple (ip_network_str)

>>> ip_network_as_tuple('10.20.30.40/24")
('10.20.30.40", 24)

n6sdk.addr_helpers.ip_network_tuple_to_min_max_ip (ip_network_tuple)

>>> ip_network_tuple_to_min_max_ip(('10.20.30.41"', 24))
(169090560, 169090815)

>>> ip_network_tuple_to_min _max_ip(('10.20.30.41", 32))
(169090601, 169090601)

>>> ip_network_tuple_to_min_max_1ip(('10.20.30.41', 0))
(0, 4294967295)

n6sdk.addr_helpers.ip_str_to_int (ip_str)

>>> ip_str_to_int ('10.20.30.41")
169090601

54

Chapter 4. Library Reference

http://docs.python.org/library/exceptions.html#exceptions.Exception

n6sdk Documentation, Release 0.6.1

4.2.2 n6sdk.class_helpers

né6sdk.class_helpers.attr_required (*attr_names, **kwargs)

A method decorator: provides a check for presence of specified attributes.

Some positional args: Names of attributes that are required to be present and not to be the dummy_placeholder
object (see below) when the decorated method is called.

Kwargs:
dummy_placeholder (default: None): The object that is not treated as a required value.

Raises:
NotImplementedError: When at least one of the specified attributes is set to the

dummy_placeholder object or does not exist.

>>> class XX (object):
a =1

@attr_required('a')
def meth_a(self):
print 'OK'

@Qattr_required('a', 'b'")
def meth_ab(self):
print 'Excellent'

@attr_required('z', dummy_placeholder=NotImplemented)
def meth_z (self):
print 'Nice'

>>> x = XX()

>>> x.meth_a ()

OK

>>> x.meth_ab ()

Traceback (most recent call last):

NotImplementedError:

>>> x.b = 42
>>> x.meth_ab ()
Excellent

>>> del XX.a
>>> x.meth_ab ()
Traceback (most recent call last):

NotImplementedError:

>>> XX.a = None

>>> x.meth_ab ()

Traceback (most recent call last):

NotImplementedError:
>>> x.meth_z ()

Traceback (most recent call last):

NotImplementedError:

>>> x.z = None

>>> x.meth_z () # OK as here “dummy_placeholder’ 1is not None
Nice

>>> x.z = NotImplemented

>>> x.meth_z ()
Traceback (most recent call last):

4.2. Helper modules 55

http://docs.python.org/library/constants.html#None
http://docs.python.org/library/exceptions.html#exceptions.NotImplementedError

n6sdk Documentation, Release 0.6.1

NotImplementedError:

n6sdk.class_helpers.singleton (cls)

A class decorator ensuring that the class can be instantiated only once.

Args: cls: the decorated class.

Returns: The same class (cls).

Trying to instantiate the decorated class more than once causes RuntimeError — unless, during provious
instantiations, __init__ () of the decorated class did not succeed (caused an exception).

Subclasses are also bound by this restriction (i.e. the decorated class and its subclasses are “counted” as one
entity) — unless their __init__ () is overridden in such a way thatthe __init__ () of the decorated class
is not called.

The check is thread-safe (protected with a lock).

>>> @singleton
class X (object):

pass
>>> o = X|()
>>> o0 = X()

Traceback (most recent call last):

RuntimeError:

>>> @singleton
class X2 (object):
def _ init_ (self, exc=None):
if exc is not None:
raise exc

>>> o0 = X2 (ValueError ('foo'))
Traceback (most recent call last):

ValueError: foo

>>> o0 = X2()

>>> o = X2()

Traceback (most recent call last):

RuntimeError:
>>> o = X2 (ValueError ('foo'))

Traceback (most recent call last):

RuntimeError:

>>> @singleton
class Y (object):
def _ init_ (self, a, b, c=42):
print a, b, c

>>> class Z(Y):
pass

>>> class ZZZ(Y) :
def _ init_ (self, a, b):
will #not# call Y. _init
print 'zzz', a, b

56

Chapter 4. Library Reference

http://docs.python.org/library/exceptions.html#exceptions.RuntimeError

n6sdk Documentation, Release 0.6.1

>>> o0 = Y('spam', b="'ham')

spam ham 42

>>> o = Y('spam', b='ham')
Traceback (most recent call last):

RuntimeError:
>>> o = Z('spam', b="'ham')
Traceback (most recent call last):

RuntimeError:
>>> o = ZZZ('spam', b='ham')
zzz spam ham

>>> (@singleton
class Y2 (object) :
def _ init_ (self, a, b, c=42):
print a, b, c

>>> class Z2(Y2):
pass

>>> class ZZZZZ (Y) :
def _ init_ (self, a, b):
will call Y.__init_
super (22227, self).__init__ (a, b=b)

>>> o = Z2('spam', b="'ham')

spam ham 42
>>> o0 = Z2('spam', b='ham')

Traceback (most recent call last):

RuntimeError:
>>> o0 = Y2 ('spam', b='ham')
Traceback (most recent call last):

RuntimeError:
>>> o = ZZZZ2Z('spam', b='ham'")

Traceback (most recent call last):

RuntimeError:

>>> class A(object):
def _ init_ (self, a, b, c=42):
print a, b, c

>>> @singleton
class B(A):
pass

>>> o = A('spam', b='ham')

spam ham 42

>>> o = B('spam', b="ham')

spam ham 42

>>> o = B('spam', b='ham')
Traceback (most recent call last):

4.2. Helper modules 57

n6sdk Documentation, Release 0.6.1

RuntimeError:

>>> o = A('spam', b="ham')

spam ham 42

>>> o = B('spam', b="ham')
Traceback (most recent call last):

RuntimeError:

4.2.3 n6sdk.datetime_helpers

class n6sdk.datetime_helpers.FixedOffsetTimezone (offset)
Bases: datetime.tzinfo

TZ-info to represent fixed offset in minutes east from UTC.

The source code of the class has been copied from http://docs.python.org/2.7/library/datetime.html#tzinfo-

objects, then adjusted, enriched and documented.

>>> tz = FixedOffsetTimezone (180)
>>> tz
FixedOffsetTimezone (180)

>>> import copy

>>> tz is copy.copy (tz)
True

>>> tz is copy.deepcopy (tz)
True

>>> dt = datetime.datetime (2014, 5, 31, 1, 2, 3, tzinfo=tz)

>>> dt.utcoffset ()

datetime.timedelta (0, 10800)

>>> dt.dst ()

datetime.timedelta (0)

>>> dt.tzname ()

'<UTC Offset: +180>"

>>> dt.astimezone (FixedOffsetTimezone (-60))

datetime.datetime (2014, 5, 30, 21, 2, 3, tzinfo=FixedOffsetTimezone (-60))

dst (dr)
tzname (dt)
utcoffset (dt)

n6sdk.datetime_helpers.date_by_isoweekday (isoyear, isoweek, isoweekday)
Returns: An equivalent datetime.date instance (see: http://en.wikipedia.org/wiki/ISO_week_date).

n6sdk.datetime_helpers.date_by ordinalday (year, ordinalday)
Returns: An equivalent datetime.date instance.

n6sdk.datetime_helpers.datetime_to_utc_timestamp (dt)
Convert a datetime.datetime to a UTC timestamp.
Args: dt: A datetime.datet ime instance (naive or TZ-aware).
Returns: The equivalent timestamp as a £ Loat number.

58 Chapter 4. Library Reference

http://docs.python.org/library/datetime.html#datetime.tzinfo
http://docs.python.org/2.7/library/datetime.html#tzinfo-objects
http://docs.python.org/2.7/library/datetime.html#tzinfo-objects
http://docs.python.org/library/datetime.html#datetime.date
http://en.wikipedia.org/wiki/ISO_week_date
http://docs.python.org/library/datetime.html#datetime.date
http://docs.python.org/library/datetime.html#datetime.datetime
http://docs.python.org/library/datetime.html#datetime.datetime
http://docs.python.org/library/functions.html#float

n6sdk Documentation, Release 0.6.1

>>> naive_dt = datetime.datetime (2013, 6, 6, 12, 13, 57, 251211)
>>> t = datetime_to_utc_timestamp (naive_dt)

>>> t

1370520837.251211

>>> datetime.datetime.utcfromtimestamp (t)
datetime.datetime (2013, 6, 6, 12, 13, 57, 251211)

>>> tzinfo = FixedOffsetTimezone (120)

>>> tz_aware_dt = datetime.datetime (2013, 6, 6, 14, 13, 57, 251211,
C. tzinfo=tzinfo)

>>> t2 = datetime_to_utc_timestamp (tz_aware_dt)

>>> t2 ==

True

>>> utc_naive_dt = datetime.datetime.utcfromtimestamp (t2)
>>> utc_tzinfo = FixedOffsetTimezone (0) # just UTC

>>> utc_tz_aware_dt = utc_naive_dt.replace(tzinfo=utc_tzinfo)
>>> utc_tz_aware_dt.hour

12

>>> tz_aware_dt.hour

14

>>> utc_tz_aware_dt == tz_aware_dt

True

n6sdk.datetime_helpers.datetime_utc_normalize (df)
Normalize a datetime.datet ime to a naive UTC one.
Args: dt: A datetime.datet ime instance (naive or TZ-aware).
Returns: An equivalent datetime.datet ime instance (a naive one).

>>> naive_dt = datetime.datetime (2013, 6, 6, 12, 13, 57, 251211)
>>> datetime_utc_normalize (naive_dt)
datetime.datetime (2013, 6, 6, 12, 13, 57, 251211)

>>> tzinfo = FixedOffsetTimezone (120)

>>> tz_aware_dt = datetime.datetime (2013, 6, 6, 14, 13, 57, 251211,
C tzinfo=tzinfo)

>>> datetime_utc_normalize (tz_aware_dt)

datetime.datetime (2013, 6, 6, 12, 13, 57, 251211)

n6sdk.datetime_helpers.is_datetime_format_normalized (s)

>>> is_datetime_format_normalized('2013-06-13 10:02:00")

True

>>> 1s _datetime_format_normalized('2013-06-13 10:02:00.123400")
True

>>> is_datetime_format_normalized('2013-06-13 10:02")

False

>>> 1s _datetime_format_normalized('2013-06-13 10:02:00.000000")
False

>>> is_datetime_format_normalized('2013-06-13 10:02:00.1234")
False

>>> is_datetime_format_normalized ('2013-06-13 10:02:00.12345678")
False

>>> 1s datetime_format_normalized('2013-06-13T10:02:00")

False

4.2. Helper modules 59

http://docs.python.org/library/datetime.html#datetime.datetime
http://docs.python.org/library/datetime.html#datetime.datetime
http://docs.python.org/library/datetime.html#datetime.datetime

n6sdk Documentation, Release 0.6.1

>>> 1is datetime_format_normalized('2013-06-13 10:02:002")
False

n6sdk.datetime_helpers.parse_iso_date (s, prestrip=True)
Parse ISO-8601-formatted date.
Args: s: ISO-8601-formatted date as a string.
Kwargs:
prestrip (default: True): Whether the strip () method should be called on the input string before
performing the actual processing.
Returns: A datetime.date instance.
Raises: ValueError for invalid input.
Intentional limitation: specified date must include unambiguous day specification (inputs such as * 2013-05"
or /2013’ are not supported).

>>> parse_iso_date ('2013-06-12")
datetime.date (2013, 6, 12)

>>> parse_iso_date ('99991231")
datetime.date (9999, 12, 31)

>>> parse_iso_date ('2013-W24-3")

datetime.date (2013, 6, 12)

>>> datetime.date (2013, 6, 12).isocalendar () # checking this was OK...
(2013, 24, 3)

>>> parse_iso_date ('2013-W01-1")

datetime.date (2012, 12, 31)

>>> datetime.date (2012, 12, 31).isocalendar () # checking this was OK...
(2013, 1, 1)

>>> parse_iso_date ('2011-W52-7")

datetime.date (2012, 1, 1)

>>> datetime.date (2012, 1, 1).isocalendar () # checking this was OK...
(2011, 52, 7)

>>> parse_iso_date ('2013-001")

datetime.date (2013, 1, 1)

>>> parse_iso_date ('2013-365")

datetime.date (2013, 12, 31)

>>> parse_iso_date ('2012-366") # 2012 was a leap year
datetime.date (2012, 12, 31)

>>> parse_iso_date ('0000-01-01")
Traceback (most recent call last):

ValueError:
>>> parse_iso_date ('13-01-01")
Traceback (most recent call last):

ValueError:
>>> parse_iso_date('01-01-2013")

Traceback (most recent call last):

ValueError:

60 Chapter 4. Library Reference

http://docs.python.org/library/constants.html#True
http://docs.python.org/library/datetime.html#datetime.date
http://docs.python.org/library/exceptions.html#exceptions.ValueError

n6sdk Documentation, Release 0.6.1

>>> parse_iso_date ('2013-6-01")
Traceback (most recent call last):

ValueError:
>>> parse_iso_date ('2013-02-31")
Traceback (most recent call last):

ValueError:
>>> parse_iso_date ('2013-W54-1")
Traceback (most recent call last):

ValueError:
>>> parse_iso_date ('2013-W22-8")
Traceback (most recent call last):

ValueError:
>>> parse_iso_date ('2013-Wl1-1")
Traceback (most recent call last):

ValueError:
>>> parse_iso_date ('2013-wW01-01")
Traceback (most recent call last):

ValueError:
>>> parse_iso_date ('2013-000")
Traceback (most recent call last):

ValueError:
>>> parse_iso_date ('2013-366")
Traceback (most recent call last):

ValueError:
>>> parse_iso_date ('2013-1")

Traceback (most recent call last):

ValueError:

nésdk.datetime_helpers.parse_iso_datetime (s, prestrip=True)

Parse ISO-8601-formatted combined date and time.

Args: s: ISO-8601-formatted combined date and time — as a string.

Kwargs:
prestrip (default: True): Whether the strip () method should be called on the input string before

performing the actual processing.

Returns: A datetime.datet ime instance (a TZ-aware one if the input does include time zone information,
otherwise a naive one).

Raises: exceptions.ValueError for invalid input.

For notes about some limitations — see parse iso _date () and parse_iso_time ().

nésdk.datetime_helpers.parse_iso_datetime_to_utc (s, prestrip=True)
Parse 1SO-8601-formatted combined date and time, and normalize it to UTC.
Args: s: ISO-8601-formatted combined date and time — as a string.
Kwargs:
prestrip (default: True): Whether the strip () method should be called on the input string before
performing the actual processing.
Returns: A datetime.datet ime instance (a naive one, normalized to UTC).
Raises: exceptions.ValueError forinvalid input.
This function processes input by calling parse_iso_datetime () and datetime_utc_normalize ().

4.2. Helper modules 61

http://docs.python.org/library/constants.html#True
http://docs.python.org/library/datetime.html#datetime.datetime
http://docs.python.org/library/exceptions.html#exceptions.ValueError
http://docs.python.org/library/constants.html#True
http://docs.python.org/library/datetime.html#datetime.datetime
http://docs.python.org/library/exceptions.html#exceptions.ValueError

n6sdk Documentation, Release 0.6.1

>>> parse_iso_datetime_to_utc('2013-06-13T10:022")
datetime.datetime (2013, 6, 13, 10, 2)

>>> parse_iso_datetime_to_utc('2013-06-13 10:02")
datetime.datetime (2013, 6, 13, 10, 2)

>>> parse_iso_datetime_to_utc('2013-06-13 10:02+02:00")
datetime.datetime (2013, 6, 13, 8, 2)

>>> parse_iso_datetime_to_utc ('2013-06-13T22:02:04.1234-07:00")
datetime.datetime (2013, 6, 14, 5, 2, 4, 123400)

>>> parse_iso_datetime_to_utc('2013-06-13 10:02:04.12345678972")
datetime.datetime (2013, 6, 13, 10, 2, 4, 123456)

>>> parse_iso_datetime_to_utc (' 2013-06-13T10:022 ")
datetime.datetime (2013, 6, 13, 10, 2)

>>> parse_iso_datetime_to_utc ('’ 2013-06-13T10:0272 ', prestrip=False)
Traceback (most recent call last):

ValueError:

n6sdk.datetime_helpers.parse_iso_time (s, prestrip=True)

Parse 1SO-8601-formatted time.

Args: s: ISO-8601-formatted time as a string.

Kwargs:
prestrip (default: True): Whether the strip() method should be called on the input string before per-

forming the actual processing.

Returns: A datetime.time instance (a TZ-aware one if the input does include time zone information,
otherwise a naive one).

Raises: exceptions.ValueError forinvalid input.

Intentional limitation: specified time must include at least hour and minute. Second, microsecond and timezone

information are optional.

1SO-8601-enabled “leap second” (60) is accepted but silently converted to 59 seconds + 999999 microseconds.

The optional fractional-part-of-second part can be specified with bigger or smaller precision — it will always be
transformed to microseconds.

né6sdk.datetime_helpers.parse_python formatted datetime (s)

A limited version of parse iso _datetime (): accepts only a string in the format: $Y-%m-%d
$H:3M:%Sor $Y-%m—-%d $H:%M:%S.%f interms of datetime.datetime.strptime ().

4.2.4 n6sdk.encoding_helpers

class n6sdk.encoding_helpers.AsciiMixIn

Bases: object

A mix-in class that providesthe __str__ (),__unicode__ () and __format__ () special methods based
onascii_str().

62

Chapter 4. Library Reference

http://docs.python.org/library/constants.html#True
http://docs.python.org/library/datetime.html#datetime.time
http://docs.python.org/library/exceptions.html#exceptions.ValueError
http://docs.python.org/library/datetime.html#datetime.datetime.strptime
http://docs.python.org/library/functions.html#object

n6sdk Documentation, Release 0.6.1

>>> class SomeBase (object) :
def _ str_ (self):
return 'Costam-costam'
def _ format_ (self, fmt):
return 'N6 i ' + fmt

>>> class MyClass (AsciiMixIn, SomeBase):
pass

>>> obj = MyClass ()

>>> str (obj)
'Co\\u01l5btam—co\\uOl5btam"
>>> unicode (obj)
u'Co\\uOl5btam-co\\uOl5btam’
>>> format (obj)

"NA\xf3 i '

>>> '0Oto {0:5}'.format (ob7j)

'Oto N\\xf3 i \\u0l5b'

>>> u'Oto {0:\\u015b}'.format (ob7j) # unicode format string
u'oto N\\xf3 i \\uOl5b'

>>> 'Oto {0!s}'.format (ob7j)

'Oto Co\\uOl5btam-co\\uOl5btam’

>>> 'Oto $s' % obj
'Oto Co\\uOl5btam-co\\uOl5btam’
>>> u'Oto %s' % obj # unicode format string

u'Oto Co\\uOl5btam-co\\uOl5btam’

né6sdk.encoding_helpers.as_unicode (0bj)
Convert the given object to a unicode string.

Unlike ascii_str (), this function is not decoding-error-proof and does not apply any escaping.

The function requires that the given object is one of the following:
*a unicode string,
*a UTF-8-decodable st r string,
e*an object that produces one of the above kinds of strings when converted using unicode or str, or
repr () (the conversions are tried in this order);
if not — UnicodeDecodeError is raised.

>>> as_unicode(u'"'")

[}

u

>>> as_unicode('")

u"

>>> as_unicode (u'0\u0142\xf3wek') == u'0O\u0142\x£f3wek'

True

>>> as_unicode ('O\xc5\x82\xc3\xb3wek') == u'0\u0142\x£f3wek'

True

>>> as_unicode (ValueError (u'0\u0142\x£f3wek')) == u'0\u01l42\xf3wek'
True

>>> as_unicode (ValueError ('O\xc5\x82\xc3\xb3wek')) == u'O\u0142\xf3wek'
True

4.2. Helper modules 63

http://docs.python.org/library/functions.html#str
http://docs.python.org/library/functions.html#str
http://docs.python.org/library/functions.html#repr
http://docs.python.org/library/exceptions.html#exceptions.UnicodeDecodeError

n6sdk Documentation, Release 0.6.1

>>> class Hard (object):

def _ str__ (self): raise UnicodeError
def _ unicode__ (self): raise UnicodeError
def _ repr_ (self): return 'foo'

>>> as_unicode (Hard())
u'foo’

>>> as_unicode ('\xdd')
Traceback (most recent call last):

UnicodeDecodeError:

n6sdk.encoding_helpers.ascii_str (0bj)
Safely convert the given object to an ASCII-only string.

This function does its best to obtain a pure-ASCII string representation (possibly st r/unicode () -like, though
repr () can also be used as the last-resort fallback) — not raising any encoding/decoding exceptions.

The result is an ASCII str, with non-ASCII characters escaped using Python literal notation (\x. .., \u. ..
\U...).

>>> ascii_str('")
T

>>> ascii_str(u'')

T

>>> ascii_str('Ala ma kota\nA kot?\n2=2 ') # pure ASCII str => unchanged
'Ala ma kota\nA kot?\n2=2 '

>>> ascii_str(u'Ala ma kota\nA kot?\n2=2 ')

'Ala ma kota\nA kot?\n2=2 '

>>> ascii_str(ValueError ('Ech, ale btad!')) # UTF-8 str => decoded
'Ech, ale b\\u0142\\u0105d!"

>>> ascii_str(ValueError (u'Ech, ale b\u0142\u0105d!"'))

'Ech, ale b\\u0142\\u0105d!"

>>> ascii_str('\xee\xdd \t jazn') # non-UTF-8 str => using surrogateescape
"\\udcee\\udcdd \t ja\\u0l7a\\u0144"'

>>> ascii_str (u'\udcee\udedd \t ja\u0l7a\u0144')

"\\udcee\\udcdd \t ja\\u0l7a\\u0144'

>>> class Nasty (object):

def = str_ (self): raise UnicodeError
def _ unicode_ (self): raise UnicodeError
def _ repr__ (self): return 'really nas\xc5\xa7y! \xaa'

>>> ascii_str (Nasty())
'really nas\\u01l67y! \\udcaa'

n6sdk.encoding_helpers.provide_surrogateescape ()
Provide the surrogateescape error handler for bytes-to-unicode decoding.

The source code of the function has been copied from https://bitbucket.org/haypo/misc/src/d76f4{f5d27¢746c¢883d40160c8b4fb08¢
and then adjusted, optimized and commented. Original code was created by Victor Stinner and released by him
under the Python license and the BSD 2-clause license.

64 Chapter 4. Library Reference

http://docs.python.org/library/functions.html#str
http://docs.python.org/library/functions.html#unicode
http://docs.python.org/library/functions.html#repr
https://bitbucket.org/haypo/misc/src/d76f4ff5d27c746c883d40160c8b4fb0891e79f2/python/surrogateescape.py?at=default

n6sdk Documentation, Release 0.6.1

The surrogateescape error handler is provided out-of-the-box in Python 3 but not in Python 2. It can be
used to convert arbitrary binary data to Unicode in a practically non-destructive way.

See also:
https://www.python.org/dev/peps/pep-0383.

This implementation (for Python 2) covers only the decoding part of the handler, i.e. the st r-to-unicode con-
version. The encoding (unicode-to-str) part is not implemented. Note, however, that once we transformed
a binary data into a surrogate-escaped Unicode data we can (in Python 2) freely encode/decode it (unicode-
to/from-st r), not using surrogateescape anymore, €.g.:

>>> # We assume that the function has already been called —-
>>> # as it is imported and called in N6SDK/n6sdk/__init__.py

>>> b = 'oldéwek \xee\xdd' # utf-8 text + some non-utf-8 mess
>>> Db

'o\xc5\x82\xc3\xb3wek \xee\xdd'

>>> u = b.decode('utf-8"', 'surrogateescape')

>>> U

u'o\u0142\xf3wek \udcee\udcdd'

>>> b2 = u.encode ('utf-8")

>>> b2 # now all stuff is utf-8 encoded

'o\xc5\x82\xc3\xb3wek \xed\xb3\xae\xed\xb3\x9d'
>>> u2 = b2.decode('utf-8")

>>> u2 == u

True

>>> u.encode('latin2',
C. 'surrogateescape') # does not work for #encodingx
Traceback (most recent call last):

TypeError: don't know how to handle UnicodeEncodeError in error callback

This function is idempotent (i.e., it can be called safely multiple times — because if the handler is already
registered the function does not try to register it again) though it is not thread-safe (typically it does not matter
as the function is supposed to be called somewhere at the begginning of program execution).

Note: This function is called automatically on first import of n6sdk module or any of its submodules.

Warning: In Python 3 (if you were using a Python-3-based application or script to handle data produced
with Python 2), the ut £-8 codec (as well as other ut £—. .. codecs) does not decode surrogate-escaped
data encoded to bytes with the Python 2’s ut £-8 codec unless the surrogatepass error handler is used
for decoding (on the Python 3 side).

4.2.5 n6sdk.regexes

This module contains several regular expression objects (most of them are used in other parts of the n6sdk library).

n6sdk.regexes.CC_SIMPLE_REGEX = <_sre.SRE_Pattern object>

Two-character country code.

Used by n6sdk .data_spec.fields.CCField.

4.2. Helper modules 65

https://www.python.org/dev/peps/pep-0383
http://docs.python.org/library/functions.html#str
http://docs.python.org/library/functions.html#str
http://docs.python.org/library/functions.html#str

n6sdk Documentation, Release 0.6.1

n6sdk.regexes.DOMAIN_ASCII_LOWERCASE_REGEX = <_sre.SRE_Pattern object>
Domain name — with the underscore character allowed (as life is more eventful than RFCs, especially when it
comes to maliciously constructed domain names).

Usedby n6sdk.data_spec.fields.DomainNameFieldandné6sdk.data_spec.fields.DomainNameSubstr:

n6sdk.regexes.DOMAIN ASCII_LOWERCASE_STRICT_REGEX = <_sre.SRE_Pattern object at 0x3032¢30>
Domain name — more strict (hopefully RFC-compliant) variant.

n6sdk.regexes.EMAIL_SIMPLIFIED_ REGEX = <_sre.SRE_Pattern object>
E-mail address (very rough validation).

Used by n6sdk.data_spec.fields.EmailSimplifiedField.

n6sdk.regexes.IBAN_REGEX = <_sre.SRE_Pattern object>
International Bank Account Number.

Used by n6sdk.data_spec.fields.IBANSimplifiedField.

n6sdk.regexes.IPv4_ANONYMIZED_ REGEX = <_sre.SRE_Pattern object at 0x3096¢f0>
Anonymized IPv4 address.

Used by n6sdk.data_spec.fields.AnonymizedIPv4Field.

n6sdk.regexes.IPv4_CIDR_NETWORK_ REGEX = <_sre.SRE_Pattern object at 0x305e5b0>
IPv4 network specification in CIDR notation.

Used by n6sdk.data_spec.fields.IPv4NetField.

n6sdk.regexes.IPv4_STRICT_DECIMAL_REGEX = <_sre.SRE_Pattern object at 0x30586d0>
IPv4 address in decimal dotted-quad notation.

Used by n6sdk.data_spec.fields.IPv4Field.

66 Chapter 4. Library Reference

CHAPTER 5

Release Notes

5.1 0.6.1 (2015-10-21)

Documentation-related changes:

* The 0.6.0 release made the contents of the examples/BasicExample directory out-of-date. Now, the
directory has been completely removed and relevant documentation parts have been adjusted.

Note: to generate a (richly commented) template for your n6sdk-based project you can use the pcreate -s
n6sdk YourProjectName command (within the virtualenv in which n6sdk has been installed). See also:
the Tutorial.

» Several documentation fixes and improvements (including fixes and rearrangements in these release notes).

5.2 0.6.0 (2015-10-13)

Significant or backward incompatible changes:

¢ Documentation: some security-related fixes in the Installation for production... and Gluing it together sections
of the Tutorial — especially, related to necessary access restrictions on production. ini file.

* A new utility script added: n6sdk_api_test. Itis — a tool to perform basic validation of your nésdk-based
API. (The script is automatically installed in the appropriate place when you install n6sdk.)

See: the n6sdk_api_test: API testing tool chapter of the documentation.

* A new Pyramid scaffold added that makes it easy to create a skeleton of a new n6sdk-based REST API project
— just run the shell command: pcreate -s n6sdk YourProjectName (within the virtualenv in which
n6sdk has been installed).

See: the updated Tutorial.

* The né6sdk.data_spec.DataSpec data specification class has been deeply changed as well as a new data specifi-
cation class has been added: n6sdk.data_spec.AllSearchableDataSpec (being a subclass of DataSpec).

Now, all field specifications defined within DataSpec have the flag in_params set to None, that is, are not
marked as query parameters.

It means that you need to create a subclass of DataSpec and, in that subclass, extend desired field specifications
to enable them explicitly as query parameters (e.g., by using Ext (in_params='optional’)).

Alternatively, you can create a subclass of AllSearchableDataSpec (which is a DataSpec subclass simi-
lar to the previous version of DataSpec, i.e., with most of fields marked as possible query parameters,

67

n6sdk Documentation, Release 0.6.1

using in_params='optional’) — then you may want to extend some field specifications (by using
Ext (in_params=None)) to disable them as query parameters.

See: the updated Tutorial.

* Now, the field specification DataSpec.url_pattern requires that url_pattern values (concerning query pa-
rameter values as well as result values), if present, are not empty.

To implement this restriction, a new boolean flag has been added to n6sdk.data_spec.fields.UnicodeField (and
all its subclasses): disallow_empty, settable as a constructor argument or a subclass attribute. If the flag is
true, values are not allowed to be empty. The default value of the flag is False.

e A fix that affects n6sdk.data_spec.DataSpec.fqdn, n6sdk.data_spec.fields.DomainNameField as well as
n6sdk.regexes. DOMAIN_ASCII_LOWERCASE_REGEX and n6sdk.regexes. DOMAIN_ASCII_LOWERCASE_STRICT_REGEX:
now, the top-level part of a domain name (TLD) is no longer allowed to consist of digits only (thanks to that,
the possibility to erroneously accept an IPv4 address as a domain name has been suppressed).

* A new category added to DataSpec.category.enum_values: ' malware—action’.

* A new field specification added to DataSpec: action, intented to be used for events whose category is
"malware—action’ (mentioned above).

» Exception handling has been revamped. Among others, now content-type of HTTP error pages is set to
text/plain (notto text/html).

A few significant changes related to that novelties have been applied to the following n6sdk.pyramid_commons
classes: DefaultStreamViewBase, HttpResource and ConfigHelper (please analyze their code if you need de-
tailed information); most notably:

— the DefaultStreamViewBase.concrete_view_class() class method takes the fifth obligatory argument (and
obligatory subclass attribute): adjust_exc (see the documentation of the method);

— the HitpResource.configure_views() method (which calls DefaultStreamViewBase.concrete_view_class())
takes the second obligatory argument: adjust_exc;

— the ConfigHelper.complete() method (called, if needed, by ConfigHelpermake_wsgi_app()) registers ap-
propriate Pyramid exception views as well as specifies appropriate callable as the adjust_exc argu-
ment for HttpResource.configure_views() (if you are interested in details, please, see the ConfigHelper
source code, especially the code of complete() and of two new class methods: exception_view() and
exc_to_http_exc()).

* Now, all ConfigHelper constructor arguments are officially required to be specified as keyword arguments (not
as positional ones).

* The pyramid library (an existing external dependency) is now restricted to be not newer than version 7.5.7.
Other changes:

* New external dependencies added: python-cjson and requests (used by the n6sdk_api_test tool mentioned
above).

* A bugfix: now, log messages from the n6sdk.pyramid_commons module are emitted using the
"n6sdk.pyramid_commons’ logger rather than the root logger.

* A new public helper function added: n6sdk.pyramid_commons.renderers.data_dict_to_json(); it defines how
the standard renderers json and sjson serialize each data record (for details, see the documentation of the
function);

* Various minor code cleanups, refactorizations and improvements.
* New and improved unit tests and doctests.

* A lot of documentation improvements and fixes.

68 Chapter 5. Release Notes

https://pypi.python.org/pypi/python-cjson
http://docs.python-requests.org/en/latest/

n6sdk Documentation, Release 0.6.1

5.3 0.5.0 (2015-04-18)

Significant or backward incompatible changes:
* Now, multiple values for a client query parameter can be specified in URL query strings in two alternative ways:

— separated with commas, within one query string item (as in past n6sdk versions), e.g.
category=bots,dos-attacker, phish;

— as individual query string items (the way introduced in this n6sdk release), e.g.:
category=botsé&category=dos—-attacker&category=phish.

Implementation of the extension caused the following changes in the n6sdk programming interfaces:

— now, the argument for <data specification>.clean_param_dict() is a dictionary that maps query parameter
names to lists of individual uncleaned parameter values (in past n6sdk versions it mapped to strings
consisting of comma-separated uncleaned parameter values);

— extraction of individual query parameter values from the URL’s query string — including splitting
comma-separated sequences of values — is now entirely outside of the data specification machinery and
field classes; the n6sdk.data_spec.fields.Field. _split_raw_param_value() non-public method has been re-
moved.

— the interface of the n6sdk.exceptions. ParamValueCleaningError constructor has been extended a bit: now
the second item of a 3-tuple being an item of an error_info_seq argument can be either a single value (as
previously) or a list of values.

The Tutorial and other parts of the documentation have been adjusted appropriately.
* A lot of changes related to data specification fields:
— New field classes in the n6sdk.data_spec.fields module:
% IPv6Field (for IPv6 addresses),
x [Pv6NetField (for IPv6 network specifications),
x EmailSimplifiedField (for e-mail addresses),
IBANSimplifiedField (for International Bank Account Numbers),
x ListOfDictsField (for lists of dictionaries containing arbitrary data),
DirField (two-value enumeration: ' src’ or ' dst”’),

x ExtendedAddressField (for lists of address data items — see the change in the address field spec-
ification, mentioned below).

— Modified field classes in the n6sdk.data_spec.fields module:
* DictResultField:
- the key_to_subfield_factory attribute is no longer obligatory;
- the required_keys attribute is gone;
- the clean_param_value() method now raises TypeError instead of NotImplementedError;
* AddressField:

- now inherits from ListOfDictsField, not directly from ResultListFieldMixin and DictResult-
Field,

- the required_keys attribute is gone; ip subfield is still obligatory — but now this require-
ment is implemented internally;

5.3. 0.5.0 (2015-04-18) 69

n6sdk Documentation, Release 0.6.1

- the clean_param_value() method now raises TypeError instead of NotImplementedError.

— New field specifications added to the n6sdk.data_spec.DataSpec class:

* time.until (DateTimeField, params-only),

#* active.until (DateTimeField, params-only),

* modified (DateTimeField, results-only),

* modified.min (DateTimeField, params-only),

* modified.max (DateTimeField, params-only),

#* modified.until (DateTimeField, params-only),

* 1pv6 (IPv6Field, params-only),

* ipv6.net (IPv6NetField, params-only),

#* injects (ListOfDictsField, results-only),

* registrar (UnicodeLimitedField),

url_pattern (UnicodeLimitedField),

username (UnicodeLimitedField),

% x509fp_shal (SHAIField),

* email (EmailSimplifiedField),

* iban (IBANSimplifiedField),
phone (UnicodeLimitedField).

*

— The address field specification (at n6sdk.data_spec.DataSpec) has been changed: now it is an Ex-
tendedAddressField instance — its subfields include:

* 1p/ipv6 (IPv4Field/IPv6Field, obligatory — which means that either ' ip’ or ‘ipvé6’, but not
both, must be present in each member dictionary),

cc (CCField),
asn (ASNField),
dir (DirField),

*

*

*

x rdns (DomainNameField).
— New categories added to DataSpec.category.enum_values:

* 'amplifier’,

* '"backdoor’,

* "dns—query’,

* "flow’,

* 'flow—anomaly’,

% " fraud’,

* " leak’,

* 'vulnerable’,

* "webinject’.

The Tutorial has been adjusted appropriately.

70 Chapter 5. Release Notes

n6sdk Documentation, Release 0.6.1

* Both standard renderers (json and s json) now add the "z " suffix (indicating the UTC time) to all date+time
values.

* The sjson renderer now generates an additional empty line to indicate the end of data stream.
Other changes:

* A new external dependency: the ipaddr library.

* New and improved unit tests and doctests.

 Several documentation improvements and fixes.

5.4 0.4.0 (2014-12-23)

This is the first public, free/open-source-licensed release of n6sdk.
Backward incompatible (though rather minor) changes:

* Changed behaviour of the standard json and s json renderers (defined in n6sdk.pyramid_commons.renderers
as the StreamRenderer_json and StreamRenderer_sjson classes): now they make use of a new helper function,
dict_with_nulls_removed(), that replaces the old mechanism of recursive removing of None-or-empty values
from result dictionaries: previously, values equal to zero (such as 0, 0.0 or False) were also removed; now
they are kept (note that values being None, empty containers and empty strings are still removed).

* Now, in the n6sdk.pyramid_commons.DefaultStreamViewBase.call_api() method, an
n6sdk.exceptions.TooMuchDataError — exception from call_api_method() or from data spec-
ification’s clean_result_dict() causes pyramid.httpexceptions. HTTPForbidden =~ and not pyra-
mid.httpexceptions. HTTPServerError.

e The nb6sdk.class_helpers.singleton() class decorator is now more lenient: instantiation does not count if
__init__() of a decorated class raised (or propagated) an exception.

Other changes:

* Bugfix in the n6sdk.pyramid_commons.DefaultStreamViewBase.concrete_view_class() class method: now the
check of the given renderer labels against the set of registered renderers works properly; previously it behaved
nonsensically: accepted unregistered labels (causing further KeyError exceptions) and at the same time de-
manded that all registeted labels had to be used.

* Furthermore, n6sdk.pyramid_commons.DefaultStreamViewBase has a new class attribute:
break_on_result_cleaning_error, by default set to True. In custom subclasses it can be set to False —
then result dictionaries that cannot be cleaned will be skipped (and a proper warning will be recorded to the
logs) instead of causing pyramid.httpexceptions. HTTPServerError.

* The n6sdk.pyramid_commons.renderers.dict_with_nulls_removed() function (mentioned above) is exposed as a
public helper (it may be useful when implementing custom renderers).

e The nésdk.data_spec.fields.Field class (and its subclasses) as well as
nésdk.datetime_helpers.FixedOffsetTimezone — have custom implementations of the __repr_ () method
(producing more readable results).

* Various minor code cleanups, refactorizations and improvements.

* New and improved unit tests and doctests.
Documentation-related news (including big ones!):

* Now the documentation is generated with Sphinx.

* A new, long Tutorial has been added.

5.4. 0.4.0 (2014-12-23) 71

https://code.google.com/p/ipaddr-py/
http://sphinx-doc.org/

n6sdk Documentation, Release 0.6.1

* A bunch of docstrings have been added.

* Contents of many docstrings have been improved.

* All docstrings are now reStructuredText-formatted and used as a part of the Sphinx-generated documentation.

e The former CHANGES . t xt file has been reStructuredText-formatted, renamed to NEWS . rst and used as a part
of the Sphinx-generated documentation. There is also a new README . rst file, also included in the generated
documentation.

* The former README . t xt file has been moved to examples/BasicExample and sligthly improved.

 Furthermore, some other BasicExample improvements have been made (cleanups, refactorizations and minor
fixes; among others, the version field in the BasicExample‘s setup . py file no longer follows the n6sdk version;
from now itisjust"0.0.1").

5.5 0.3.0 (2014-08-12)

Significant or backward incompatible changes:

* Network incident category "ddos" has been replaced with two separate categories: "dos—attacker" and
"dos-victim" (see: n6sdk.data_spec. CATEGORY_ENUMS).

* nb6sdk.data_spec.fields.ResultListFieldMixin.clean_result_value() no longer accepts collections.Set instances
(now it accepts only collection.Sequence instances that are not str/unicode instances).

5.6 0.2.0 (2014-08-08)

Significant or backward incompatible changes:

» Changes in the base data specification class (n6sdk.data_spec.DataSpec) and/or in the classes defined in the
nésdk.data_spec.fields module:

the source field is now an instance of a new class: n6sdk.data_spec.fields.SourceField — which implements
more restricted validation of values; now each value not only needs to be at most 32-characters long, but
also it must consist of two non-empty parts, separated with exactly one dot character (’ .’), containing
only lowercase ASCII letters, digits and hyphens (* —").

a change in n6sdk.data_spec.fields.DateTimeField that affects the time, expires and until fields of
DataSpec: the clean_result_value() method now accepts also ISO-formatted date-and-time strings (not
only datetime.datetime instances);

a change in n6sdk.data_spec.fields.IntegerField that affects the sport, dport and count fields of DataSpec:
in clean_result_value(), the former strict is-instance check (int/long) has been replaced with a duck-typed
coercion, accepting anything that can be converted using in#() without information loss (e.g. a float being
an integer number, such as 42 . 0, or a string being a decimal representation of an integer number, such
as " 42’ —butnot’42.0");

a change in n6sdk.data_spec.fields.ASNField that affects the address (namely: asn of its subitems) and
asn fields of DataSpec: the clean_*_value() methods now accept strings (str/unicode):

either being a decimal representation of an integer number in range 0..°“2¥*32-1°, e.g.
"98765432" (formely only clean_param_value() accepted such strings),

% or consisting of two dot-separated decimal representations of integer numbers in range 0..°‘2**16-
1°°,e.g. "34567.65432" (formely such a notation was not accepted at all);

72

Chapter 5. Release Notes

n6sdk Documentation, Release 0.6.1

note: clean_result_value () still accepts also int and long values in range 0..°‘2**32-1°“ (and still
does not accept instances of float and other types).

a change in n6sdk.data_spec.fields.CCField that affects the address (namely: cc of its subitems) and cc
fields of DataSpec: the clean_*_value() methods now accept also lowercase letters (which are automati-
cally uppercased);

a change in n6sdk.data_spec.fields.DomainNameSubstringField that affects the fgdn (note: Domain-
NameField is a subclass of DomainNameSubstringField) and fgdn.sub fields of DataSpec: the value of
max_length has been changed from 253 to 255;

a change in n6sdk.data_spec.fields. DomainNameField that affects the fqdn field of DataSpec: the regular
expression the values are matched against is now more liberal (especially, underscores are now allowed;
rationale: real-life domain names — especially those maliciously constructed — are not necessarily RFC-
compliant; see: nésdk.regexes. DOMAIN_ASCII_LOWERCASE_REGEX for details);

a change in n6sdk.data_spec.fields.AnonymizedIPv4Field that affects the adip field of DataSpec: the
clean_*_value() methods now accept also ’ X’ (uppercased ’ x’) segments which are automatically low-
ercased;

the adip field is no longer enabled as a query parameter (field’s in_params is now set to None);

a change in n6sdk.data_spec.fields.HexDigestField that affects the md5 and shal fields of DataSpec: the
clean_*_value() methods now accept also non-lowercase hexadecimal digit letters (which are automati-
cally lowercased);

the former hash_algo attribute of UnicodeField class/subclasses/instances has been renamed to
hash_algo_descr;

n6sdk.data_spec.fields. URLField is now a subclass of n6sdk.data_spec.fields. URLSubstringField,
n6sdk.data_spec.fields.ListField has been removed (use ResultListFieldMixin instead);

the former n6sdk.data_spec.fields.AddressField implementation has been replaced with a new one, espe-
cially the implementation of the methods has been factored out to new generic base classes: ResultList-
FieldMixin and DictResultField; some details have changed in a backwards-incompatible way — notably:
key_to_subfield_class has been renamed to key_to_subfield_factory.

e Changes in signatures of the n6sdk.data_spec.BaseDataSpec methods: clean_param_dict(),
clean_param_keys(), clean_result_dict(), clean_result_keys():

replaced the optional argument keys_to_ignore with the ignored_keys keyword-only argument (still op-
tional),

added other optional arguments: forbidden_keys, extra_required_keys, discarded_keys.

* Changes in n6sdk.pyramid_commons:

functions init_pyramid_config() and complete_pyramid_config() have been removed; use the new
ConfigHelper class instead (for details — see its documentation, its code and the examples in
examples/BasicExample...);

a new function added: register_stream_renderer() (see below);

the signature of the StreamResponse class constructor changed: renderer has been renamed to ren-
derer_name; also, now the value of that argument can be any name registered with the new function
register_stream_renderer() (see its documentation for details); ’ json’ and ' sjson’ are registered
out-of-the-box;

the DefaultStreamViewBase class has been revamped in a backward-incompatibile way (please analyze
its code if you need detailed information); most notably:

5.6. 0.2.0 (2014-08-08) 73

n6sdk Documentation, Release 0.6.1

* The module n6sdk.data_backend_api (together with the decorator n6sdk.data_backend_api.data_backend_api_method)

now the concrete_view_class() class method has completely different signature (see its documen-
tation for details; note that data_spec now must be an instance, not a class); now each concrete
subclass must have specified the resource_id, renderers, data_spec and data_backend_api_method
attributes (for more information, also see the documentation of the concrete_view_class() class
method mentioned above);

« formely, the data specification’s clean_param_dict() call performed in pre-
pare_params() was guarded only against ParamCleaningError (transformed into pyra-
mid.httpexceptions. HTTPBadRequest, when caught); now, also other exceptions are handled:
n6sdk.exceptions.AuthorizationError (transformed into pyramid.httpexceptions.HTTPForbidden)
and generic n6sdk.exceptions.DataAPIError (logged as an error and transformed into pyra-
mid.httpexceptions. HTTPServerError) [note the symmetry between the prepare_params() and
call_api() methods];

x the possibility of specifying keyword arguments for data specification’s clean_*_dict() calls as well
as for data backend API’s method call has been added (see the get_clean_param_dict_kwargs(),
get_clean_result_dict_kwargs() and get_extra_api_kwargs() hook methods; the default implemen-
tation of each of them returns just an empty dict);

— backward-incompatibile chages in the signature of the constructor of the HttpResource class:

* now all arguments should be specified as keyword ones (never positional, i.e. you cannot rely on
argument order any more);

* NOW data_spec must be an instance, not a class;

note: see the documentation of this class for details.

has been removed. It is no longer required to decorate or mark your custom data backend API class or its
methods in any special way.

Unused n6sdk.exceptions.InvalidCallError has been removed.

n6sdk.exceptions.FieldValueTooLongError has been added (see below).

Other changes:

Appropriate adjustments in examples/BasicExample.
Some non-essential changes related to n6sdk.data_spec.fields:

— if the given value is too long, the clean_*_value() methods of n6sdk.data_spec.fields. UnicodeLimitedField
(and of its subclasses) now raise a new exception n6sdk.exceptions.FieldValueTooLongError (which is a
subclass of n6sdk.exceptions.FieldValueError that was formely raised) — see its documentation for details
about attributes of its instances (that attributes can be useful, for example, when implementing external
trimming of too long values...);

— it is now explicitly required for n6sdk.data_spec.fields.HexDigestField instances (and for instances of its
subclasses) that num_of _characters and hash_algo_descr are specified (as subclass attributes or construc-
tor arguments);

— it is now explicitly required for n6sdk.data_spec.fields.UnicodeLimitedField instances (and for instances
of its subclasses) that max_length is not less than 1.

Module n6sdk.addr_helpers added.
Major refactorings and several minor additions, improvements, fixes and cleanups.

Improvements in the documentation (a lot of improved/added docstrings, improved README . t xt, added
CHANGES. txt...) and code comments.

MANIFEST. in and other package setup improvements and cleanups.

74

Chapter 5. Release Notes

n6sdk Documentation, Release 0.6.1

* New and improved unit tests and doctests.

5.7 0.0.1 (2014-04-25)

Initial release.

5.7. 0.0.1 (2014-04-25)

75

n6sdk Documentation, Release 0.6.1

76

Chapter 5. Release Notes

CHAPTER 6

Indices and tables

¢ genindex
* modindex

e search

77

n6sdk Documentation, Release 0.6.1

78

Chapter 6. Indices and tables

Python Module Index

n6sdk.
n6sdk.
né6sdk.
.encoding_helpers, 62
nésdk.
.regexes, 65

n6sdk

nosdk

addr_helpers, 54
class_helpers,55
datetime_helpers, 58

exceptions, 49

79

n6sdk Documentation, Release 0.6.1

80

Python Module Index

Index

Symbols DOMAIN_ASCII_LOWERCASE_REGEX (in module
nb6sdk.regexes), 65

DOMAIN_ASCII_LOWERCASE_STRICT_REGEX (in
module n6sdk.regexes), 66

dst() (n6sdk.datetime_helpers.FixedOffsetTimezone

_ErrorWithPublicMessageMixin (class in
n6sdk.exceptions), 49

_KeyCleaningErrorMixin (class in n6sdk.exceptions), 50

_ValueCleaningErrorMixin (class in nésdk.exceptions),

50 method), 58
A E
as_unicode() (in module n6sdk.encoding_helpers), 63 EMAIL_SIMPLIFIED_REGEX (in module
ascii_str() (in module n6sdk.encoding_helpers), 64 n6sdk.regexes), 66
AsciiMixIn (class in n6sdk.encoding_helpers), 62 F
attr_required() (in module n6sdk.class_helpers), 55
AuthorizationError, 52 FieldValueError, 50
FieldValueTooLongError, 50
C FixedOffsetTimezone (class in n6sdk.datetime_helpers),
CC_SIMPLE_REGEX (in module n6sdk.regexes), 65 58
D I
DataAPIError. 51 IBAN_REGEX (in module n6sdk.regexes), 66
date_by_isoweekday() (in module 1llegal_keys_msg_template
n6sdk.datetime_helpers), 58 (n6sdk.exceptions.ParamKeyCleaningError
date_by_ordinalday() (in module attribute), 53 .
n6sdk.datetime_helpers), 58 ip_network_as_tuple() (in module n6sdk.addr_helpers),
datetime_to_utc_timestamp() (in module 54
n6sdk.datetime_helpers), 58 ip_network_tuple_to_min_max_ip() (in module
datetime_utc_normalize() (in module n6sdk.addr_helpers), 54
n6sdk.datetime_helpers), 59 ip_str_to_int() (in module n6sdk.addr_helpers), 54
default_public_message (n6sdk.exceptions._ErrorWithPublifR14ssaD¥iiMIZED_REGEX (in module
attribute), 50 n6sdk.regexes), 66

default_public_message (n6sdk.exceptions. AuthorizationErf§v4-CIDR_NETWORK_REGEX (in module

attribute), 52 n6sdk.regexes), 66
default_public_message (n6sdk.exceptions.ParamCleaningEE‘)(Yr4 _STRICT_DECIMAL_REGEX (in module
attribute), 52 nb6sdk.regexes), 66

default_public_message (n6sdk.exceptions.ParamKeyCleanitigfifgfime_format_normalized() (in module
attribute), 53 n6sdk.datetime_helpers), 59
default_public_message (n6sdk.exceptions.ParamValueCleaRi)rgError
attribute), 53
default_public_message (n6sdk.exceptions. TooMuchDataErfissing_keys_msg_template
attribute), 52 (n6sdk.exceptions.ParamKeyCleaningError
attribute), 53

81

n6sdk Documentation, Release 0.6.1

msg_template (n6sdk.exceptions.ParamValueCleaningError

attribute), 53

N

n6sdk.addr_helpers (module), 54
n6sdk.class_helpers (module), 55
n6sdk.datetime_helpers (module), 58
n6sdk.encoding_helpers (module), 62
n6sdk.exceptions (module), 49
n6sdk.regexes (module), 65

P

ParamCleaningError, 52

ParamKeyCleaningError, 52

ParamValueCleaningError, 53

parse_iso_date() (in module n6sdk.datetime_helpers), 60

parse_iso_datetime() (in module
n6sdk.datetime_helpers), 61
parse_iso_datetime_to_utc() (in module

n6sdk.datetime_helpers), 61
parse_iso_time() (in module n6sdk.datetime_helpers), 62

parse_python_formatted_datetime() (in module
n6sdk.datetime_helpers), 62
provide_surrogateescape() (in module

n6sdk.encoding_helpers), 64

public_message (n6sdk.exceptions._ErrorWithPublicMessageMixin

attribute), 50

R

ResultCleaningError, 53
ResultKeyCleaningError, 53
ResultValueCleaningError, 54

S

singleton() (in module n6sdk.class_helpers), 56

T

TooMuchDataError, 52
tzname() (n6sdk.datetime_helpers.FixedOffsetTimezone
method), 58

U

utcoffset() (n6sdk.datetime_helpers.FixedOffsetTimezone
method), 58

82

Index

	n6sdk: Server-side Software Development Kit for n6
	Basic References
	Copyright, License and Authors

	Tutorial
	Setting up the development environment
	Data processing and architecture overview
	Data specification class
	Implementing the data backend API
	Custom authentication policy
	Gluing it together
	Installation for production (using Apache server)

	n6sdk_api_test: API testing tool
	Overview
	Installation
	Configuration and usage

	Library Reference
	Core modules
	Helper modules

	Release Notes
	0.6.1 (2015-10-21)
	0.6.0 (2015-10-13)
	0.5.0 (2015-04-18)
	0.4.0 (2014-12-23)
	0.3.0 (2014-08-12)
	0.2.0 (2014-08-08)
	0.0.1 (2014-04-25)

	Indices and tables
	Python Module Index

