

Welcome to MySQLdb’s documentation!

Contents:

	MySQLdb User’s Guide
	Introduction

	Installation

	_mysql
	MySQL C API translation

	MySQL C API function mapping

	Some _mysql examples

	MySQLdb
	Functions and attributes

	Connection Objects

	Cursor Objects

	Some examples

	Using and extending

	Embedded Server

	MySQLdb Package
	MySQLdb Package

	connections Module

	converters Module

	cursors Module

	times Module

	Subpackages
	constants Package

	MySQLdb Frequently Asked Questions
	Build Errors

	ImportError

	My data disappeared! (or won’t go away!)

	Other Errors

	Other Resources

Indices and tables

	Index

	Module Index

	Search Page

MySQLdb User’s Guide

Contents

	MySQLdb User’s Guide
	Introduction

	Installation

	_mysql
	MySQL C API translation

	MySQL C API function mapping

	Some _mysql examples

	MySQLdb
	Functions and attributes

	Connection Objects

	Cursor Objects

	Some examples

	Using and extending

	Embedded Server

Introduction

MySQLdb is an thread-compatible interface to the popular MySQL
database server that provides the Python database API.

Installation

The README file has complete installation instructions.

_mysql

If you want to write applications which are portable across databases,
use MySQLdb, and avoid using this module directly. _mysql
provides an interface which mostly implements the MySQL C API. For
more information, see the MySQL documentation [http://dev.mysql.com/doc/]. The documentation
for this module is intentionally weak because you probably should use
the higher-level MySQLdb module. If you really need it, use the
standard MySQL docs and transliterate as necessary.

MySQL C API translation

The MySQL C API has been wrapped in an object-oriented way. The only
MySQL data structures which are implemented are the MYSQL
(database connection handle) and MYSQL_RES (result handle)
types. In general, any function which takes MYSQL *mysql as an
argument is now a method of the connection object, and any function
which takes MYSQL_RES *result as an argument is a method of the
result object. Functions requiring none of the MySQL data structures
are implemented as functions in the module. Functions requiring one of
the other MySQL data structures are generally not implemented.
Deprecated functions are not implemented. In all cases, the mysql_
prefix is dropped from the name. Most of the conn methods listed
are also available as MySQLdb Connection object methods. Their use is
non-portable.

MySQL C API function mapping

	C API
	_mysql

	mysql_affected_rows()
	conn.affected_rows()

	mysql_autocommit()
	conn.autocommit()

	mysql_character_set_name()
	conn.character_set_name()

	mysql_close()
	conn.close()

	mysql_commit()
	conn.commit()

	mysql_connect()
	_mysql.connect()

	mysql_data_seek()
	result.data_seek()

	mysql_debug()
	_mysql.debug()

	mysql_dump_debug_info
	conn.dump_debug_info()

	mysql_escape_string()
	_mysql.escape_string()

	mysql_fetch_row()
	result.fetch_row()

	mysql_get_character_set_info()
	conn.get_character_set_info()

	mysql_get_client_info()
	_mysql.get_client_info()

	mysql_get_host_info()
	conn.get_host_info()

	mysql_get_proto_info()
	conn.get_proto_info()

	mysql_get_server_info()
	conn.get_server_info()

	mysql_info()
	conn.info()

	mysql_insert_id()
	conn.insert_id()

	mysql_num_fields()
	result.num_fields()

	mysql_num_rows()
	result.num_rows()

	mysql_options()
	various options to _mysql.connect()

	mysql_ping()
	conn.ping()

	mysql_query()
	conn.query()

	mysql_real_connect()
	_mysql.connect()

	mysql_real_query()
	conn.query()

	mysql_real_escape_string()
	conn.escape_string()

	mysql_rollback()
	conn.rollback()

	mysql_row_seek()
	result.row_seek()

	mysql_row_tell()
	result.row_tell()

	mysql_select_db()
	conn.select_db()

	mysql_set_character_set()
	conn.set_character_set()

	mysql_ssl_set()
	ssl option to _mysql.connect()

	mysql_stat()
	conn.stat()

	mysql_store_result()
	conn.store_result()

	mysql_thread_id()
	conn.thread_id()

	mysql_thread_safe_client()
	conn.thread_safe_client()

	mysql_use_result()
	conn.use_result()

	mysql_warning_count()
	conn.warning_count()

	CLIENT_*
	MySQLdb.constants.CLIENT.*

	CR_*
	MySQLdb.constants.CR.*

	ER_*
	MySQLdb.constants.ER.*

	FIELD_TYPE_*
	MySQLdb.constants.FIELD_TYPE.*

	FLAG_*
	MySQLdb.constants.FLAG.*

Some _mysql examples

Okay, so you want to use _mysql anyway. Here are some examples.

The simplest possible database connection is:

import _mysql
db=_mysql.connect()

This creates a connection to the MySQL server running on the local
machine using the standard UNIX socket (or named pipe on Windows),
your login name (from the USER environment variable), no password, and
does not USE a database. Chances are you need to supply more
information.:

db=_mysql.connect("localhost","joebob","moonpie","thangs")

This creates a connection to the MySQL server running on the local
machine via a UNIX socket (or named pipe), the user name “joebob”, the
password “moonpie”, and selects the initial database “thangs”.

We haven’t even begun to touch upon all the parameters connect()
can take. For this reason, I prefer to use keyword parameters:

db=_mysql.connect(host="localhost",user="joebob",
 passwd="moonpie",db="thangs")

This does exactly what the last example did, but is arguably easier to
read. But since the default host is “localhost”, and if your login
name really was “joebob”, you could shorten it to this:

db=_mysql.connect(passwd="moonpie",db="thangs")

UNIX sockets and named pipes don’t work over a network, so if you
specify a host other than localhost, TCP will be used, and you can
specify an odd port if you need to (the default port is 3306):

db=_mysql.connect(host="outhouse",port=3307,passwd="moonpie",db="thangs")

If you really had to, you could connect to the local host with TCP by
specifying the full host name, or 127.0.0.1.

Generally speaking, putting passwords in your code is not such a good
idea:

db=_mysql.connect(host="outhouse",db="thangs",read_default_file="~/.my.cnf")

This does what the previous example does, but gets the username and
password and other parameters from ~/.my.cnf (UNIX-like systems). Read
about option files [http://dev.mysql.com/doc/refman/en/option-files.html] for more details.

So now you have an open connection as db and want to do a
query. Well, there are no cursors in MySQL, and no parameter
substitution, so you have to pass a complete query string to
db.query():

db.query("""SELECT spam, eggs, sausage FROM breakfast
 WHERE price < 5""")

There’s no return value from this, but exceptions can be raised. The
exceptions are defined in a separate module, _mysql_exceptions,
but _mysql exports them. Read DB API specification PEP-249 [https://www.python.org/dev/peps/pep-0249/] to
find out what they are, or you can use the catch-all MySQLError.

At this point your query has been executed and you need to get the
results. You have two options:

r=db.store_result()
...or...
r=db.use_result()

Both methods return a result object. What’s the difference?
store_result() returns the entire result set to the client
immediately. If your result set is really large, this could be a
problem. One way around this is to add a LIMIT clause to your
query, to limit the number of rows returned. The other is to use
use_result(), which keeps the result set in the server and sends
it row-by-row when you fetch. This does, however, tie up server
resources, and it ties up the connection: You cannot do any more
queries until you have fetched all the rows. Generally I
recommend using store_result() unless your result set is really
huge and you can’t use LIMIT for some reason.

Now, for actually getting real results:

>>> r.fetch_row()
(('3','2','0'),)

This might look a little odd. The first thing you should know is,
fetch_row() takes some additional parameters. The first one is,
how many rows (maxrows) should be returned. By default, it returns
one row. It may return fewer rows than you asked for, but never
more. If you set maxrows=0, it returns all rows of the result
set. If you ever get an empty tuple back, you ran out of rows.

The second parameter (how) tells it how the row should be
represented. By default, it is zero which means, return as a tuple.
how=1 means, return it as a dictionary, where the keys are the
column names, or table.column if there are two columns with the
same name (say, from a join). how=2 means the same as how=1
except that the keys are always table.column; this is for
compatibility with the old Mysqldb module.

OK, so why did we get a 1-tuple with a tuple inside? Because we
implicitly asked for one row, since we didn’t specify maxrows.

The other oddity is: Assuming these are numeric columns, why are they
returned as strings? Because MySQL returns all data as strings and
expects you to convert it yourself. This would be a real pain in the
ass, but in fact, _mysql can do this for you. (And MySQLdb
does do this for you.) To have automatic type conversion done, you
need to create a type converter dictionary, and pass this to
connect() as the conv keyword parameter.

The keys of conv should be MySQL column types, which in the
C API are FIELD_TYPE_*. You can get these values like this:

from MySQLdb.constants import FIELD_TYPE

By default, any column type that can’t be found in conv is
returned as a string, which works for a lot of stuff. For our
purposes, we probably want this:

my_conv = { FIELD_TYPE.LONG: int }

This means, if it’s a FIELD_TYPE_LONG, call the builtin int()
function on it. Note that FIELD_TYPE_LONG is an INTEGER
column, which corresponds to a C long, which is also the type used
for a normal Python integer. But beware: If it’s really an UNSIGNED
INTEGER column, this could cause overflows. For this reason,
MySQLdb actually uses long() to do the conversion. But we’ll
ignore this potential problem for now.

Then if you use db=_mysql.connect(conv=my_conv...), the
results will come back ((3, 2, 0),), which is what you would
expect.

MySQLdb

MySQLdb is a thin Python wrapper around _mysql which makes it
compatible with the Python DB API interface (version 2). In reality,
a fair amount of the code which implements the API is in _mysql
for the sake of efficiency.

The DB API specification PEP-249 [https://www.python.org/dev/peps/pep-0249/] should be your primary guide for
using this module. Only deviations from the spec and other
database-dependent things will be documented here.

Functions and attributes

Only a few top-level functions and attributes are defined within
MySQLdb.

	connect(parameters...)

	Constructor for creating a connection to the
database. Returns a Connection Object. Parameters are the
same as for the MySQL C API. In addition, there are a few
additional keywords that correspond to what you would pass
mysql_options() before connecting. Note that some
parameters must be specified as keyword arguments! The
default value for each parameter is NULL or zero, as
appropriate. Consult the MySQL documentation for more
details. The important parameters are:

	host

	name of host to connect to. Default: use the local host
via a UNIX socket (where applicable)

	user

	user to authenticate as. Default: current effective user.

	passwd

	password to authenticate with. Default: no password.

	db

	database to use. Default: no default database.

	port

	TCP port of MySQL server. Default: standard port (3306).

	unix_socket

	location of UNIX socket. Default: use default location or
TCP for remote hosts.

	conv

	type conversion dictionary. Default: a copy of
MySQLdb.converters.conversions

	compress

	Enable protocol compression. Default: no compression.

	connect_timeout

	Abort if connect is not completed within
given number of seconds. Default: no timeout (?)

	named_pipe

	Use a named pipe (Windows). Default: don’t.

	init_command

	Initial command to issue to server upon
connection. Default: Nothing.

	read_default_file

	MySQL configuration file to read; see
the MySQL documentation for mysql_options().

	read_default_group

	Default group to read; see the MySQL
documentation for mysql_options().

	cursorclass

	cursor class that cursor() uses, unless
overridden. Default: MySQLdb.cursors.Cursor. This
must be a keyword parameter.

	use_unicode

	If True, CHAR and VARCHAR and TEXT columns are returned as
Unicode strings, using the configured character set. It is
best to set the default encoding in the server
configuration, or client configuration (read with
read_default_file). If you change the character set after
connecting (MySQL-4.1 and later), you’ll need to put the
correct character set name in connection.charset.

If False, text-like columns are returned as normal strings,
but you can always write Unicode strings.

This must be a keyword parameter.

	charset

	If present, the connection character set will be changed
to this character set, if they are not equal. Support for
changing the character set requires MySQL-4.1 and later
server; if the server is too old, UnsupportedError will be
raised. This option implies use_unicode=True, but you can
override this with use_unicode=False, though you probably
shouldn’t.

If not present, the default character set is used.

This must be a keyword parameter.

	sql_mode

	If present, the session SQL mode will be set to the given
string. For more information on sql_mode, see the MySQL
documentation. Only available for 4.1 and newer servers.

If not present, the session SQL mode will be unchanged.

This must be a keyword parameter.

	ssl

	This parameter takes a dictionary or mapping, where the
keys are parameter names used by the mysql_ssl_set [http://dev.mysql.com/doc/refman/en/mysql-ssl-set.html] MySQL
C API call. If this is set, it initiates an SSL connection
to the server; if there is no SSL support in the client,
an exception is raised. This must be a keyword
parameter.

	apilevel

	String constant stating the supported DB API level. ‘2.0’

	threadsafety

	Integer constant stating the level of thread safety the
interface supports. This is set to 1, which means: Threads may
share the module.

The MySQL protocol can not handle multiple threads using the
same connection at once. Some earlier versions of MySQLdb
utilized locking to achieve a threadsafety of 2. While this is
not terribly hard to accomplish using the standard Cursor class
(which uses mysql_store_result()), it is complicated by
SSCursor (which uses mysql_use_result(); with the latter you
must ensure all the rows have been read before another query can
be executed. It is further complicated by the addition of
transactions, since transactions start when a cursor execute a
query, but end when COMMIT or ROLLBACK is executed by
the Connection object. Two threads simply cannot share a
connection while a transaction is in progress, in addition to
not being able to share it during query execution. This
excessively complicated the code to the point where it just
isn’t worth it.

The general upshot of this is: Don’t share connections between
threads. It’s really not worth your effort or mine, and in the
end, will probably hurt performance, since the MySQL server runs
a separate thread for each connection. You can certainly do
things like cache connections in a pool, and give those
connections to one thread at a time. If you let two threads use
a connection simultaneously, the MySQL client library will
probably upchuck and die. You have been warned.

	charset

	The character set used by the connection. In MySQL-4.1 and newer,
it is possible (but not recommended) to change the connection’s
character set with an SQL statement. If you do this, you’ll also
need to change this attribute. Otherwise, you’ll get encoding
errors.

	paramstyle

	String constant stating the type of parameter marker formatting
expected by the interface. Set to ‘format’ = ANSI C printf
format codes, e.g. ‘...WHERE name=%s’. If a mapping object is
used for conn.execute(), then the interface actually uses
‘pyformat’ = Python extended format codes, e.g. ‘...WHERE
name=%(name)s’. However, the API does not presently allow the
specification of more than one style in paramstyle.

Note that any literal percent signs in the query string passed
to execute() must be escaped, i.e. %%.

Parameter placeholders can only be used to insert column
values. They can not be used for other parts of SQL, such as
table names, statements, etc.

	conv

	A dictionary or mapping which controls how types are converted
from MySQL to Python and vice versa.

If the key is a MySQL type (from FIELD_TYPE.*), then the value
can be either:

	a callable object which takes a string argument (the MySQL
value),’ returning a Python value

	a sequence of 2-tuples, where the first value is a combination
of flags from MySQLdb.constants.FLAG, and the second value
is a function as above. The sequence is tested until the flags
on the field match those of the first value. If both values
are None, then the default conversion is done. Presently this
is only used to distinguish TEXT and BLOB columns.

If the key is a Python type or class, then the value is a
callable Python object (usually a function) taking two arguments
(value to convert, and the conversion dictionary) which converts
values of this type to a SQL literal string value.

This is initialized with reasonable defaults for most
types. When creating a Connection object, you can pass your own
type converter dictionary as a keyword parameter. Otherwise, it
uses a copy of MySQLdb.converters.conversions. Several
non-standard types are returned as strings, which is how MySQL
returns all columns. For more details, see the built-in module
documentation.

Connection Objects

Connection objects are returned by the connect() function.

	commit()

	If the database and the tables support transactions, this
commits the current transaction; otherwise this method
successfully does nothing.

	rollback()

	If the database and tables support transactions, this rolls back
(cancels) the current transaction; otherwise a
NotSupportedError is raised.

	cursor([cursorclass])

	MySQL does not support cursors; however, cursors are easily
emulated. You can supply an alternative cursor class as an
optional parameter. If this is not present, it defaults to the
value given when creating the connection object, or the standard
Cursor class. Also see the additional supplied cursor
classes in the usage section.

There are many more methods defined on the connection object which
are MySQL-specific. For more information on them, consult the internal
documentation using pydoc.

Cursor Objects

	callproc(procname, args)

	Calls stored procedure procname with the sequence of arguments
in args. Returns the original arguments. Stored procedure
support only works with MySQL-5.0 and newer.

Compatibility note: PEP-249 [https://www.python.org/dev/peps/pep-0249/] specifies that if there are
OUT or INOUT parameters, the modified values are to be
returned. This is not consistently possible with MySQL. Stored
procedure arguments must be passed as server variables, and
can only be returned with a SELECT statement. Since a stored
procedure may return zero or more result sets, it is impossible
for MySQLdb to determine if there are result sets to fetch
before the modified parmeters are accessible.

The parameters are stored in the server as @_*procname*_*n*,
where n is the position of the parameter. I.e., if you
cursor.callproc(‘foo’, (a, b, c)), the parameters will be
accessible by a SELECT statement as @_foo_0, @_foo_1, and
@_foo_2.

Compatibility note: It appears that the mere act of
executing the CALL statement produces an empty result set, which
appears after any result sets which might be generated by the
stored procedure. Thus, you will always need to use nextset() to
advance result sets.

	close()

	Closes the cursor. Future operations raise ProgrammingError.
If you are using server-side cursors, it is very important to
close the cursor when you are done with it and before creating a
new one.

	info()

	Returns some information about the last query. Normally
you don’t need to check this. If there are any MySQL
warnings, it will cause a Warning to be issued through
the Python warning module. By default, Warning causes a
message to appear on the console. However, it is possible
to filter these out or cause Warning to be raised as exception.
See the MySQL docs for mysql_info(), and the Python warning
module. (Non-standard)

	setinputsizes()

	Does nothing, successfully.

	setoutputsizes()

	Does nothing, successfully.

	nextset()

	Advances the cursor to the next result set, discarding the remaining
rows in the current result set. If there are no additional result
sets, it returns None; otherwise it returns a true value.

Note that MySQL doesn’t support multiple result sets until 4.1.

Some examples

The connect() method works nearly the same as with _mysql:

import MySQLdb
db=MySQLdb.connect(passwd="moonpie",db="thangs")

To perform a query, you first need a cursor, and then you can execute
queries on it:

c=db.cursor()
max_price=5
c.execute("""SELECT spam, eggs, sausage FROM breakfast
 WHERE price < %s""", (max_price,))

In this example, max_price=5 Why, then, use %s in the
string? Because MySQLdb will convert it to a SQL literal value, which
is the string ‘5’. When it’s finished, the query will actually say,
”...WHERE price < 5”.

Why the tuple? Because the DB API requires you to pass in any
parameters as a sequence. Due to the design of the parser, (max_price)
is interpreted as using algebraic grouping and simply as max_price and
not a tuple. Adding a comma, i.e. (max_price,) forces it to make a
tuple.

And now, the results:

>>> c.fetchone()
(3L, 2L, 0L)

Quite unlike the _mysql example, this returns a single tuple,
which is the row, and the values are properly converted by default...
except... What’s with the L’s?

As mentioned earlier, while MySQL’s INTEGER column translates
perfectly into a Python integer, UNSIGNED INTEGER could overflow, so
these values are converted to Python long integers instead.

If you wanted more rows, you could use c.fetchmany(n) or
c.fetchall(). These do exactly what you think they do. On
c.fetchmany(n), the n is optional and defaults to
c.arraysize, which is normally 1. Both of these methods return a
sequence of rows, or an empty sequence if there are no more rows. If
you use a weird cursor class, the rows themselves might not be tuples.

Note that in contrast to the above, c.fetchone() returns None
when there are no more rows to fetch.

The only other method you are very likely to use is when you have to
do a multi-row insert:

c.executemany(
 """INSERT INTO breakfast (name, spam, eggs, sausage, price)
 VALUES (%s, %s, %s, %s, %s)""",
 [
 ("Spam and Sausage Lover's Plate", 5, 1, 8, 7.95),
 ("Not So Much Spam Plate", 3, 2, 0, 3.95),
 ("Don't Wany ANY SPAM! Plate", 0, 4, 3, 5.95)
])

Here we are inserting three rows of five values. Notice that there is
a mix of types (strings, ints, floats) though we still only use
%s. And also note that we only included format strings for one
row. MySQLdb picks those out and duplicates them for each row.

Using and extending

In general, it is probably wise to not directly interact with the DB
API except for small applications. Databases, even SQL databases, vary
widely in capabilities and may have non-standard features. The DB API
does a good job of providing a reasonably portable interface but some
methods are non-portable. Specifically, the parameters accepted by
connect() are completely implementation-dependent.

If you believe your application may need to run on several different
databases, the author recommends the following approach, based on
personal experience: Write a simplified API for your application which
implements the specific queries and operations your application needs
to perform. Implement this API as a base class which should be have
few database dependencies, and then derive a subclass from this which
implements the necessary dependencies. In this way, porting your
application to a new database should be a relatively simple matter of
creating a new subclass, assuming the new database is reasonably
standard.

Because MySQLdb’s Connection and Cursor objects are written in Python,
you can easily derive your own subclasses. There are several Cursor
classes in MySQLdb.cursors:

	BaseCursor

	The base class for Cursor objects. This does not raise Warnings.

	CursorStoreResultMixIn

	Causes the Cursor to use the mysql_store_result() function to
get the query result. The entire result set is stored on the
client side.

	CursorUseResultMixIn

	Causes the cursor to use the mysql_use_result() function to
get the query result. The result set is stored on the server side
and is transferred row by row using fetch operations.

	CursorTupleRowsMixIn

	Causes the cursor to return rows as a tuple of the column values.

CursorDictRowsMixIn

Causes the cursor to return rows as a dictionary, where the keys
are column names and the values are column values. Note that if
the column names are not unique, i.e., you are selecting from two
tables that share column names, some of them will be rewritten as
table.column. This can be avoided by using the SQL AS
keyword. (This is yet-another reason not to use * in SQL
queries, particularly where JOIN is involved.)

	Cursor

	The default cursor class. This class is composed of
CursorWarningMixIn, CursorStoreResultMixIn,
CursorTupleRowsMixIn, and BaseCursor, i.e. it raises
Warning, uses mysql_store_result(), and returns rows as
tuples.

	DictCursor

	Like Cursor except it returns rows as dictionaries.

	SSCursor

	A “server-side” cursor. Like Cursor but uses
CursorUseResultMixIn. Use only if you are dealing with
potentially large result sets.

	SSDictCursor

	Like SSCursor except it returns rows as dictionaries.

Embedded Server

Instead of connecting to a stand-alone server over the network,
the embedded server support lets you run a full server right in
your Python code or application server.

If you have built MySQLdb with embedded server support, there
are two additional functions you will need to make use of:

	server_init(args, groups)

	Initialize embedded server. If this client is not linked against
the embedded server library, this function does nothing.

	args

	sequence of command-line arguments

	groups

	sequence of groups to use in defaults files

	server_end()

	Shut down embedded server. If not using an embedded server, this
does nothing.

See the MySQL documentation for more information on the embedded
server.

	Title:	MySQLdb: a Python interface for MySQL

	Author:	Andy Dustman

	Version:	$Revision$

MySQLdb Package

MySQLdb Package

MySQLdb - A DB API v2.0 compatible interface to MySQL.

This package is a wrapper around _mysql, which mostly implements the
MySQL C API.

connect() – connects to server

See the C API specification and the MySQL documentation for more info
on other items.

For information on how MySQLdb handles type conversion, see the
MySQLdb.converters module.

	
MySQLdb.Binary(x)

	

	
MySQLdb.Connect(*args, **kwargs)

	Factory function for connections.Connection.

	
MySQLdb.Connection(*args, **kwargs)

	Factory function for connections.Connection.

	
MySQLdb.Date

	alias of date

	
MySQLdb.Time

	alias of time

	
MySQLdb.Timestamp

	alias of datetime

	
MySQLdb.DateFromTicks(ticks)

	Convert UNIX ticks into a date instance.

	
MySQLdb.TimeFromTicks(ticks)

	Convert UNIX ticks into a time instance.

	
MySQLdb.TimestampFromTicks(ticks)

	Convert UNIX ticks into a datetime instance.

	
exception MySQLdb.DataError

	Bases: _mysql_exceptions.DatabaseError

Exception raised for errors that are due to problems with the
processed data like division by zero, numeric value out of range,
etc.

	
exception MySQLdb.DatabaseError

	Bases: _mysql_exceptions.Error

Exception raised for errors that are related to the
database.

	
exception MySQLdb.Error

	Bases: _mysql_exceptions.MySQLError

Exception that is the base class of all other error exceptions
(not Warning).

	
exception MySQLdb.IntegrityError

	Bases: _mysql_exceptions.DatabaseError

Exception raised when the relational integrity of the database
is affected, e.g. a foreign key check fails, duplicate key,
etc.

	
exception MySQLdb.InterfaceError

	Bases: _mysql_exceptions.Error

Exception raised for errors that are related to the database
interface rather than the database itself.

	
exception MySQLdb.InternalError

	Bases: _mysql_exceptions.DatabaseError

Exception raised when the database encounters an internal
error, e.g. the cursor is not valid anymore, the transaction is
out of sync, etc.

	
exception MySQLdb.MySQLError

	Bases: Exception

Exception related to operation with MySQL.

	
exception MySQLdb.NotSupportedError

	Bases: _mysql_exceptions.DatabaseError

Exception raised in case a method or database API was used
which is not supported by the database, e.g. requesting a
.rollback() on a connection that does not support transaction or
has transactions turned off.

	
class MySQLdb.DBAPISet

	Bases: frozenset

A special type of set for which A == x is true if A is a
DBAPISet and x is a member of that set.

	
exception MySQLdb.OperationalError

	Bases: _mysql_exceptions.DatabaseError

Exception raised for errors that are related to the database’s
operation and not necessarily under the control of the programmer,
e.g. an unexpected disconnect occurs, the data source name is not
found, a transaction could not be processed, a memory allocation
error occurred during processing, etc.

	
exception MySQLdb.ProgrammingError

	Bases: _mysql_exceptions.DatabaseError

Exception raised for programming errors, e.g. table not found
or already exists, syntax error in the SQL statement, wrong number
of parameters specified, etc.

	
exception MySQLdb.Warning

	Bases: Warning, _mysql_exceptions.MySQLError

Exception raised for important warnings like data truncations
while inserting, etc.

	
MySQLdb.connect(*args, **kwargs)

	Factory function for connections.Connection.

	
MySQLdb.debug()

	Does a DBUG_PUSH with the given string.
mysql_debug() uses the Fred Fish debug library.
To use this function, you must compile the client library to
support debugging.

	
MySQLdb.escape()

	escape(obj, dict) – escape any special characters in object obj
using mapping dict to provide quoting functions for each type.
Returns a SQL literal string.

	
MySQLdb.escape_dict()

	escape_sequence(d, dict) – escape any special characters in
dictionary d using mapping dict to provide quoting functions for each type.
Returns a dictionary of escaped items.

	
MySQLdb.escape_sequence()

	escape_sequence(seq, dict) – escape any special characters in sequence
seq using mapping dict to provide quoting functions for each type.
Returns a tuple of escaped items.

	
MySQLdb.escape_string()

	escape_string(s) – quote any SQL-interpreted characters in string s.

Use connection.escape_string(s), if you use it at all.
_mysql.escape_string(s) cannot handle character sets. You are
probably better off using connection.escape(o) instead, since
it will escape entire sequences as well as strings.

	
MySQLdb.get_client_info()

	get_client_info() – Returns a string that represents
the client library version.

	
MySQLdb.string_literal()

	string_literal(obj) – converts object obj into a SQL string literal.
This means, any special SQL characters are escaped, and it is enclosed
within single quotes. In other words, it performs:

“’%s’” % escape_string(str(obj))

Use connection.string_literal(obj), if you use it at all.
_mysql.string_literal(obj) cannot handle character sets.

connections Module

This module implements connections for MySQLdb. Presently there is
only one class: Connection. Others are unlikely. However, you might
want to make your own subclasses. In most cases, you will probably
override Connection.default_cursor with a non-standard Cursor class.

	
class MySQLdb.connections.Connection(*args, **kwargs)

	Bases: _mysql.connection

MySQL Database Connection Object

	
exception DataError

	Bases: _mysql_exceptions.DatabaseError

Exception raised for errors that are due to problems with the
processed data like division by zero, numeric value out of range,
etc.

	
exception Connection.DatabaseError

	Bases: _mysql_exceptions.Error

Exception raised for errors that are related to the
database.

	
exception Connection.Error

	Bases: _mysql_exceptions.MySQLError

Exception that is the base class of all other error exceptions
(not Warning).

	
exception Connection.IntegrityError

	Bases: _mysql_exceptions.DatabaseError

Exception raised when the relational integrity of the database
is affected, e.g. a foreign key check fails, duplicate key,
etc.

	
exception Connection.InterfaceError

	Bases: _mysql_exceptions.Error

Exception raised for errors that are related to the database
interface rather than the database itself.

	
exception Connection.InternalError

	Bases: _mysql_exceptions.DatabaseError

Exception raised when the database encounters an internal
error, e.g. the cursor is not valid anymore, the transaction is
out of sync, etc.

	
exception Connection.NotSupportedError

	Bases: _mysql_exceptions.DatabaseError

Exception raised in case a method or database API was used
which is not supported by the database, e.g. requesting a
.rollback() on a connection that does not support transaction or
has transactions turned off.

	
exception Connection.OperationalError

	Bases: _mysql_exceptions.DatabaseError

Exception raised for errors that are related to the database’s
operation and not necessarily under the control of the programmer,
e.g. an unexpected disconnect occurs, the data source name is not
found, a transaction could not be processed, a memory allocation
error occurred during processing, etc.

	
exception Connection.ProgrammingError

	Bases: _mysql_exceptions.DatabaseError

Exception raised for programming errors, e.g. table not found
or already exists, syntax error in the SQL statement, wrong number
of parameters specified, etc.

	
exception Connection.Warning

	Bases: Warning, _mysql_exceptions.MySQLError

Exception raised for important warnings like data truncations
while inserting, etc.

	
Connection.autocommit(on)

	

	
Connection.begin()

	Explicitly begin a connection. Non-standard.
DEPRECATED: Will be removed in 1.3.
Use an SQL BEGIN statement instead.

	
Connection.cursor(cursorclass=None)

	Create a cursor on which queries may be performed. The
optional cursorclass parameter is used to create the
Cursor. By default, self.cursorclass=cursors.Cursor is
used.

	
Connection.default_cursor

	alias of Cursor

	
Connection.errorhandler(connection, cursor, errorclass, errorvalue)

	If cursor is not None, (errorclass, errorvalue) is appended to
cursor.messages; otherwise it is appended to
connection.messages. Then errorclass is raised with errorvalue as
the value.

You can override this with your own error handler by assigning it
to the instance.

	
Connection.literal(o)

	If o is a single object, returns an SQL literal as a string.
If o is a non-string sequence, the items of the sequence are
converted and returned as a sequence.

Non-standard. For internal use; do not use this in your
applications.

	
Connection.query(query)

	

	
Connection.set_character_set(charset)

	Set the connection character set to charset. The character
set can only be changed in MySQL-4.1 and newer. If you try
to change the character set from the current value in an
older version, NotSupportedError will be raised.

	
Connection.set_sql_mode(sql_mode)

	Set the connection sql_mode. See MySQL documentation for
legal values.

	
Connection.show_warnings()

	Return detailed information about warnings as a
sequence of tuples of (Level, Code, Message). This
is only supported in MySQL-4.1 and up. If your server
is an earlier version, an empty sequence is returned.

	
Connection.waiter = None

	

converters Module

MySQLdb type conversion module

This module handles all the type conversions for MySQL. If the default
type conversions aren’t what you need, you can make your own. The
dictionary conversions maps some kind of type to a conversion function
which returns the corresponding value:

Key: FIELD_TYPE.* (from MySQLdb.constants)

Conversion function:

Arguments: string

Returns: Python object

Key: Python type object (from types) or class

Conversion function:

	Arguments: Python object of indicated type or class AND

	conversion dictionary

Returns: SQL literal value

	Notes: Most conversion functions can ignore the dictionary, but

	it is a required parameter. It is necessary for converting
things like sequences and instances.

Don’t modify conversions if you can avoid it. Instead, make copies
(with the copy() method), modify the copies, and then pass them to
MySQL.connect().

	
MySQLdb.converters.Bool2Str(s, d)

	

	
MySQLdb.converters.Float2Str(o, d)

	

	
MySQLdb.converters.None2NULL(o, d)

	Convert None to NULL.

	
MySQLdb.converters.Set2Str(s, d)

	

	
MySQLdb.converters.Str2Set(s)

	

	
MySQLdb.converters.Thing2Literal(o, d)

	Convert something into a SQL string literal. If using
MySQL-3.23 or newer, string_literal() is a method of the
_mysql.MYSQL object, and this function will be overridden with
that method when the connection is created.

	
MySQLdb.converters.Thing2Str(s, d)

	Convert something into a string via str().

	
MySQLdb.converters.Unicode2Str(s, d)

	Convert a unicode object to a string using the default encoding.
This is only used as a placeholder for the real function, which
is connection-dependent.

	
MySQLdb.converters.array2Str(o, d)

	

	
MySQLdb.converters.char_array(s)

	

	
MySQLdb.converters.quote_tuple(t, d)

	

cursors Module

MySQLdb Cursors

This module implements Cursors of various types for MySQLdb. By
default, MySQLdb uses the Cursor class.

	
class MySQLdb.cursors.Cursor(connection)

	Bases: MySQLdb.cursors.CursorStoreResultMixIn, MySQLdb.cursors.CursorTupleRowsMixIn, MySQLdb.cursors.BaseCursor

This is the standard Cursor class that returns rows as tuples
and stores the result set in the client.

times Module

times module

This module provides some Date and Time classes for dealing with MySQL data.

Use Python datetime module to handle date and time columns.

	
MySQLdb.times.DateFromTicks(ticks)

	Convert UNIX ticks into a date instance.

	
MySQLdb.times.DateTime2literal(d, c)

	Format a DateTime object as an ISO timestamp.

	
MySQLdb.times.DateTimeDelta2literal(d, c)

	Format a DateTimeDelta object as a time.

	
MySQLdb.times.DateTime_or_None(s)

	

	
MySQLdb.times.Date_or_None(s)

	

	
MySQLdb.times.TimeDelta_or_None(s)

	

	
MySQLdb.times.TimeFromTicks(ticks)

	Convert UNIX ticks into a time instance.

	
MySQLdb.times.Time_or_None(s)

	

	
MySQLdb.times.TimestampFromTicks(ticks)

	Convert UNIX ticks into a datetime instance.

	
MySQLdb.times.format_TIMEDELTA(v)

	

	
MySQLdb.times.format_TIMESTAMP(d)

	

	
MySQLdb.times.mysql_timestamp_converter(s)

	Convert a MySQL TIMESTAMP to a Timestamp object.

Subpackages

	constants Package
	constants Package

	CLIENT Module

	CR Module

	ER Module

	FIELD_TYPE Module

	FLAG Module

	REFRESH Module

constants Package

constants Package

CLIENT Module

MySQL CLIENT constants

These constants are used when creating the connection. Use bitwise-OR
(|) to combine options together, and pass them as the client_flags
parameter to MySQLdb.Connection. For more information on these flags,
see the MySQL C API documentation for mysql_real_connect().

CR Module

MySQL Connection Errors

Nearly all of these raise OperationalError. COMMANDS_OUT_OF_SYNC
raises ProgrammingError.

ER Module

MySQL ER Constants

These constants are error codes for the bulk of the error conditions
that may occur.

FIELD_TYPE Module

MySQL FIELD_TYPE Constants

These constants represent the various column (field) types that are
supported by MySQL.

FLAG Module

MySQL FLAG Constants

These flags are used along with the FIELD_TYPE to indicate various
properties of columns in a result set.

REFRESH Module

MySQL REFRESH Constants

These constants seem to mostly deal with things internal to the
MySQL server. Forget you saw this.

MySQLdb Frequently Asked Questions

Contents

	MySQLdb Frequently Asked Questions
	Build Errors

	ImportError

	My data disappeared! (or won’t go away!)

	Other Errors

	Other Resources

Build Errors

ld: fatal: library -lmysqlclient_r: not found

mysqlclient_r is the thread-safe library. It’s not available on
all platforms, or all installations, apparently. You’ll need to
reconfigure site.cfg (in MySQLdb-1.2.1 and newer) to have
threadsafe = False.

mysql.h: No such file or directory

This almost always mean you don’t have development packages
installed. On some systems, C headers for various things (like MySQL)
are distributed as a separate package. You’ll need to figure out
what that is and install it, but often the name ends with -devel.

Another possibility: Some older versions of mysql_config behave oddly
and may throw quotes around some of the path names, which confused
MySQLdb-1.2.0. 1.2.1 works around these problems. If you see things
like -I’/usr/local/include/mysql’ in your compile command, that’s
probably the issue, but it shouldn’t happen any more.

ImportError

ImportError: No module named _mysql

If you see this, it’s likely you did some wrong when installing
MySQLdb; re-read (or read) README. _mysql is the low-level C module
that interfaces with the MySQL client library.

Various versions of MySQLdb in the past have had build issues on
“weird” platforms; “weird” in this case means “not Linux”, though
generally there aren’t problems on Unix/POSIX platforms, including
BSDs and Mac OS X. Windows has been more problematic, in part because
there is no mysql_config available in the Windows installation of
MySQL. 1.2.1 solves most, if not all, of these problems, but you will
still have to edit a configuration file so that the setup knows where
to find MySQL and what libraries to include.

ImportError: libmysqlclient_r.so.14: cannot open shared object file: No such file or directory

The number after .so may vary, but this means you have a version of
MySQLdb compiled against one version of MySQL, and are now trying to
run it against a different version. The shared library version tends
to change between major releases.

Solution: Rebuilt MySQLdb, or get the matching version of MySQL.

Another thing that can cause this: The MySQL libraries may not be on
your system path.

Solutions:

	set the LD_LIBRARY_PATH environment variable so that it includes
the path to the MySQL libraries.

	set static=True in site.cfg for static linking

	reconfigure your system so that the MySQL libraries are on the
default loader path. In Linux, you edit /etc/ld.so.conf and run
ldconfig. For Solaris, see Linker and Libraries Guide [http://docs.oracle.com/cd/E19253-01/817-1984/chapter6-63352/].

ImportError: ld.so.1: python: fatal: libmtmalloc.so.1: DF_1_NOOPEN tagged object may not be dlopen()’ed

This is a weird one from Solaris. What does it mean? I have no idea.
However, things like this can happen if there is some sort of a compiler
or environment mismatch between Python and MySQL. For example, on some
commercial systems, you might have some code compiled with their own
compiler, and other things compiled with GCC. They don’t always mesh
together. One way to encounter this is by getting binary packages from
different vendors.

Solution: Rebuild Python or MySQL (or maybe both) from source.

ImportError: dlopen(./_mysql.so, 2): Symbol not found: _sprintf$LDBLStub
Referenced from: ./_mysql.so
Expected in: dynamic lookup

This is one from Mac OS X. It seems to have been a compiler mismatch,
but this time between two different versions of GCC. It seems nearly
every major release of GCC changes the ABI in some why, so linking
code compiled with GCC-3.3 and GCC-4.0, for example, can be
problematic.

My data disappeared! (or won’t go away!)

Starting with 1.2.0, MySQLdb disables autocommit by default, as
required by the DB-API standard (PEP-249 [https://www.python.org/dev/peps/pep-0249/]). If you are using InnoDB
tables or some other type of transactional table type, you’ll need
to do connection.commit() before closing the connection, or else
none of your changes will be written to the database.

Conversely, you can also use connection.rollback() to throw away
any changes you’ve made since the last commit.

Important note: Some SQL statements – specifically DDL statements
like CREATE TABLE – are non-transactional, so they can’t be
rolled back, and they cause pending transactions to commit.

Other Errors

OperationalError: (1251, ‘Client does not support authentication protocol requested by server; consider upgrading MySQL client’)

This means your server and client libraries are not the same version.
More specifically, it probably means you have a 4.1 or newer server
and 4.0 or older client. You can either upgrade the client side, or
try some of the workarounds in Password Hashing as of MySQL 4.1 [http://dev.mysql.com/doc/refman/5.0/en/password-hashing.html].

Other Resources

	Help forum. Please search before posting.

	Google [http://www.google.com/]

	READ README!

	Read the User’s Guide

	Read PEP-249 [https://www.python.org/dev/peps/pep-0249/]

 Python Module Index

 _ |
 m

 		 	

 		
 _	

 	
 	
 _mysql	

 	
 	
 _mysql_exceptions	

 		 	

 		
 m	

 	[image: -]
 	
 MySQLdb	

 	
 	
 MySQLdb.connections	

 	
 	
 MySQLdb.constants	

 	
 	
 MySQLdb.constants.CLIENT	

 	
 	
 MySQLdb.constants.CR	

 	
 	
 MySQLdb.constants.ER	

 	
 	
 MySQLdb.constants.FIELD_TYPE	

 	
 	
 MySQLdb.constants.FLAG	

 	
 	
 MySQLdb.constants.REFRESH	

 	
 	
 MySQLdb.converters	

 	
 	
 MySQLdb.cursors	

 	
 	
 MySQLdb.times	

Index

 _
 | A
 | B
 | C
 | D
 | E
 | F
 | G
 | H
 | I
 | K
 | L
 | M
 | N
 | O
 | P
 | Q
 | R
 | S
 | T
 | U
 | W

_

 	
 	_mysql (module)

 	
 	_mysql_exceptions (module)

A

 	
 	affected_rows() (_mysql.connection method)

 	array2Str() (in module MySQLdb.converters)

 	
 	autocommit() (_mysql.connection method)

 	(MySQLdb.connections.Connection method)

B

 	
 	begin() (MySQLdb.connections.Connection method)

 	
 	Binary() (in module MySQLdb)

 	Bool2Str() (in module MySQLdb.converters)

C

 	
 	change_user() (_mysql.connection method)

 	char_array() (in module MySQLdb.converters)

 	character_set_name() (_mysql.connection method)

 	client_flag (_mysql.connection attribute)

 	close() (_mysql.connection method)

 	commit() (_mysql.connection method)

 	connect() (in module _mysql)

 	Connect() (in module MySQLdb)

 	connect() (in module MySQLdb)

 	connection (class in _mysql)

 	Connection (class in MySQLdb.connections)

 	Connection() (in module MySQLdb)

 	Connection.DatabaseError

 	
 	Connection.DataError

 	Connection.Error

 	Connection.IntegrityError

 	Connection.InterfaceError

 	Connection.InternalError

 	Connection.NotSupportedError

 	Connection.OperationalError

 	Connection.ProgrammingError

 	Connection.Warning

 	converter (_mysql.connection attribute)

 	(_mysql.result attribute)

 	Cursor (class in MySQLdb.cursors)

 	cursor() (MySQLdb.connections.Connection method)

D

 	
 	data_seek() (_mysql.result method)

 	DatabaseError, [1]

 	DataError, [1]

 	Date (in module MySQLdb)

 	Date_or_None() (in module MySQLdb.times)

 	DateFromTicks() (in module MySQLdb)

 	(in module MySQLdb.times)

 	DateTime2literal() (in module MySQLdb.times)

 	
 	DateTime_or_None() (in module MySQLdb.times)

 	DateTimeDelta2literal() (in module MySQLdb.times)

 	DBAPISet (class in MySQLdb)

 	debug() (in module _mysql)

 	(in module MySQLdb)

 	default_cursor (MySQLdb.connections.Connection attribute)

 	describe() (_mysql.result method)

 	dump_debug_info() (_mysql.connection method)

E

 	
 	errno() (_mysql.connection method)

 	Error, [1]

 	error() (_mysql.connection method)

 	errorhandler() (MySQLdb.connections.Connection method)

 	escape() (_mysql.connection method)

 	(in module MySQLdb)

 	(in module _mysql)

 	
 	escape_dict() (in module _mysql)

 	(in module MySQLdb)

 	escape_sequence() (in module _mysql)

 	(in module MySQLdb)

 	escape_string() (_mysql.connection method)

 	(in module MySQLdb)

 	(in module _mysql)

F

 	
 	fetch_row() (_mysql.result method)

 	field_count() (_mysql.connection method)

 	field_flags() (_mysql.result method)

 	
 	fileno() (_mysql.connection method)

 	Float2Str() (in module MySQLdb.converters)

 	format_TIMEDELTA() (in module MySQLdb.times)

 	format_TIMESTAMP() (in module MySQLdb.times)

G

 	
 	get_autocommit() (_mysql.connection method)

 	get_character_set_info() (_mysql.connection method)

 	get_client_info() (in module _mysql)

 	(in module MySQLdb)

 	
 	get_host_info() (_mysql.connection method)

 	get_proto_info() (_mysql.connection method)

 	get_server_info() (_mysql.connection method)

H

 	
 	has_next (_mysql.result attribute)

I

 	
 	info() (_mysql.connection method)

 	insert_id() (_mysql.connection method)

 	
 	IntegrityError, [1]

 	InterfaceError, [1]

 	InternalError, [1]

K

 	
 	kill() (_mysql.connection method)

L

 	
 	literal() (MySQLdb.connections.Connection method)

M

 	
 	mysql_timestamp_converter() (in module MySQLdb.times)

 	MySQLdb (module)

 	MySQLdb.connections (module)

 	MySQLdb.constants (module)

 	MySQLdb.constants.CLIENT (module)

 	MySQLdb.constants.CR (module)

 	MySQLdb.constants.ER (module)

 	
 	MySQLdb.constants.FIELD_TYPE (module)

 	MySQLdb.constants.FLAG (module)

 	MySQLdb.constants.REFRESH (module)

 	MySQLdb.converters (module)

 	MySQLdb.cursors (module)

 	MySQLdb.times (module)

 	MySQLError, [1]

N

 	
 	next_result() (_mysql.connection method)

 	None2NULL() (in module MySQLdb.converters)

 	
 	NotSupportedError, [1]

 	num_fields() (_mysql.result method)

 	num_rows() (_mysql.result method)

O

 	
 	open (_mysql.connection attribute)

 	
 	OperationalError, [1]

P

 	
 	ping() (_mysql.connection method)

 	
 	port (_mysql.connection attribute)

 	ProgrammingError, [1]

Q

 	
 	query() (_mysql.connection method)

 	(MySQLdb.connections.Connection method)

 	
 	quote_tuple() (in module MySQLdb.converters)

R

 	
 	read_query_result() (_mysql.connection method)

 	result (class in _mysql)

 	
 	rollback() (_mysql.connection method)

 	row_seek() (_mysql.result method)

 	row_tell() (_mysql.result method)

S

 	
 	select_db() (_mysql.connection method)

 	send_query() (_mysql.connection method)

 	server_capabilities (_mysql.connection attribute)

 	server_end() (in module _mysql)

 	server_init() (in module _mysql)

 	Set2Str() (in module MySQLdb.converters)

 	set_character_set() (_mysql.connection method)

 	(MySQLdb.connections.Connection method)

 	set_server_option() (_mysql.connection method)

 	
 	set_sql_mode() (MySQLdb.connections.Connection method)

 	show_warnings() (MySQLdb.connections.Connection method)

 	shutdown() (_mysql.connection method)

 	sqlstate() (_mysql.connection method)

 	stat() (_mysql.connection method)

 	store_result() (_mysql.connection method)

 	Str2Set() (in module MySQLdb.converters)

 	string_literal() (_mysql.connection method)

 	(in module MySQLdb)

 	(in module _mysql)

T

 	
 	Thing2Literal() (in module MySQLdb.converters)

 	Thing2Str() (in module MySQLdb.converters)

 	thread_id() (_mysql.connection method)

 	thread_safe() (in module _mysql)

 	Time (in module MySQLdb)

 	Time_or_None() (in module MySQLdb.times)

 	
 	TimeDelta_or_None() (in module MySQLdb.times)

 	TimeFromTicks() (in module MySQLdb)

 	(in module MySQLdb.times)

 	Timestamp (in module MySQLdb)

 	TimestampFromTicks() (in module MySQLdb)

 	(in module MySQLdb.times)

U

 	
 	Unicode2Str() (in module MySQLdb.converters)

 	
 	use_result() (_mysql.connection method)

W

 	
 	waiter (MySQLdb.connections.Connection attribute)

 	
 	Warning, [1]

 	warning_count() (_mysql.connection method)

_mysql Module

an adaptation of the MySQL C API (mostly)

You probably are better off using MySQLdb instead of using this
module directly.

In general, renaming goes from mysql_* to _mysql.*. _mysql.connect()
returns a connection object (MYSQL). Functions which expect MYSQL * as
an argument are now methods of the connection object. A number of things
return result objects (MYSQL_RES). Functions which expect MYSQL_RES * as
an argument are now methods of the result object. Deprecated functions
(as of 3.23) are NOT implemented.

	
_mysql.connect()

	Returns a MYSQL connection object. Exclusive use of
keyword parameters strongly recommended. Consult the
MySQL C API documentation for more details.

	host

	string, host to connect

	user

	string, user to connect as

	passwd

	string, password to use

	db

	string, database to use

	port

	integer, TCP/IP port to connect to

	unix_socket

	string, location of unix_socket (UNIX-ish only)

	conv

	mapping, maps MySQL FIELD_TYPE.* to Python functions which
convert a string to the appropriate Python type

	connect_timeout

	number of seconds to wait before the connection
attempt fails.

	compress

	if set, gzip compression is enabled

	named_pipe

	if set, connect to server via named pipe (Windows only)

	init_command

	command which is run once the connection is created

	read_default_file

	see the MySQL documentation for mysql_options()

	read_default_group

	see the MySQL documentation for mysql_options()

	client_flag

	client flags from MySQLdb.constants.CLIENT

	load_infile

	int, non-zero enables LOAD LOCAL INFILE, zero disables

	
class _mysql.connection

	Bases: object

Returns a MYSQL connection object. Exclusive use of
keyword parameters strongly recommended. Consult the
MySQL C API documentation for more details.

	host

	string, host to connect

	user

	string, user to connect as

	passwd

	string, password to use

	db

	string, database to use

	port

	integer, TCP/IP port to connect to

	unix_socket

	string, location of unix_socket (UNIX-ish only)

	conv

	mapping, maps MySQL FIELD_TYPE.* to Python functions which
convert a string to the appropriate Python type

	connect_timeout

	number of seconds to wait before the connection
attempt fails.

	compress

	if set, gzip compression is enabled

	named_pipe

	if set, connect to server via named pipe (Windows only)

	init_command

	command which is run once the connection is created

	read_default_file

	see the MySQL documentation for mysql_options()

	read_default_group

	see the MySQL documentation for mysql_options()

	client_flag

	client flags from MySQLdb.constants.CLIENT

	load_infile

	int, non-zero enables LOAD LOCAL INFILE, zero disables

	
affected_rows()

	Return number of rows affected by the last query.
Non-standard. Use Cursor.rowcount.

	
autocommit()

	Set the autocommit mode. True values enable; False value disable.

	
change_user()

	Changes the user and causes the database specified by db to
become the default (current) database on the connection
specified by mysql. In subsequent queries, this database is
the default for table references that do not include an
explicit database specifier.

This function was introduced in MySQL Version 3.23.3.

Fails unless the connected user can be authenticated or if he
doesn’t have permission to use the database. In this case the
user and database are not changed.

The db parameter may be set to None if you don’t want to have
a default database.

	
character_set_name()

	Returns the default character set for the current connection.
Non-standard.

	
client_flag

	Client flags; refer to MySQLdb.constants.CLIENT

	
close()

	Close the connection. No further activity possible.

	
commit()

	Commits the current transaction

	
converter

	Type conversion mapping

	
dump_debug_info()

	Instructs the server to write some debug information to the
log. The connected user must have the process privilege for
this to work. Non-standard.

	
errno()

	Returns the error code for the most recently invoked API function
that can succeed or fail. A return value of zero means that no error
occurred.

	
error()

	Returns the error message for the most recently invoked API function
that can succeed or fail. An empty string () is returned if no error
occurred.

	
escape()

	escape(obj, dict) – escape any special characters in object obj
using mapping dict to provide quoting functions for each type.
Returns a SQL literal string.

	
escape_string()

	escape_string(s) – quote any SQL-interpreted characters in string s.

Use connection.escape_string(s), if you use it at all.
_mysql.escape_string(s) cannot handle character sets. You are
probably better off using connection.escape(o) instead, since
it will escape entire sequences as well as strings.

	
field_count()

	Returns the number of columns for the most recent query on the
connection. Non-standard. Will probably give you bogus results
on most cursor classes. Use Cursor.rowcount.

	
fileno()

	Return underlaying fd for connection

	
get_autocommit()

	Get the autocommit mode. True when enable; False when disable.

	
get_character_set_info()

	Returns a dict with information about the current character set:

	collation

	collation name

	name

	character set name

	comment

	comment or descriptive name

	dir

	character set directory

	mbminlen

	min. length for multibyte string

	mbmaxlen

	max. length for multibyte string

Not all keys may be present, particularly dir.

Non-standard.

	
get_host_info()

	Returns a string that represents the MySQL client library
version. Non-standard.

	
get_proto_info()

	Returns an unsigned integer representing the protocol version
used by the current connection. Non-standard.

	
get_server_info()

	Returns a string that represents the server version number.
Non-standard.

	
info()

	Retrieves a string providing information about the most
recently executed query. Non-standard. Use messages or
Cursor.messages.

	
insert_id()

	Returns the ID generated for an AUTO_INCREMENT column by the previous
query. Use this function after you have performed an INSERT query into a
table that contains an AUTO_INCREMENT field.

Note that this returns 0 if the previous query does not
generate an AUTO_INCREMENT value. If you need to save the value for
later, be sure to call this immediately after the query
that generates the value.

The ID is updated after INSERT and UPDATE statements that generate
an AUTO_INCREMENT value or that set a column value to
LAST_INSERT_ID(expr). See section 6.3.5.2 Miscellaneous Functions
in the MySQL documentation.

Also note that the value of the SQL LAST_INSERT_ID() function always
contains the most recently generated AUTO_INCREMENT value, and is not
reset between queries because the value of that function is maintained
in the server.

	
kill()

	Asks the server to kill the thread specified by pid.
Non-standard.

	
next_result()

	If more query results exist, next_result() reads the next query
results and returns the status back to application.

After calling next_result() the state of the connection is as if
you had called query() for the next query. This means that you can
now call store_result(), warning_count(), affected_rows()
, and so forth.

Returns 0 if there are more results; -1 if there are no more results

Non-standard.

	
open

	True if connection is open

	
ping()

	Checks whether or not the connection to the server is
working. If it has gone down, an automatic reconnection is
attempted.

This function can be used by clients that remain idle for a
long while, to check whether or not the server has closed the
connection and reconnect if necessary.

New in 1.2.2: Accepts an optional reconnect parameter. If True,
then the client will attempt reconnection. Note that this setting
is persistent. By default, this is on in MySQL<5.0.3, and off
thereafter.

Non-standard. You should assume that ping() performs an
implicit rollback; use only when starting a new transaction.
You have been warned.

	
port

	TCP/IP port of the server connection

	
query()

	Execute a query. store_result() or use_result() will get the
result set, if any. Non-standard. Use cursor() to create a cursor,
then cursor.execute().

	
read_query_result()

	Read result of query sent by send_query().

	
rollback()

	Rolls backs the current transaction

	
select_db()

	Causes the database specified by db to become the default
(current) database on the connection specified by mysql. In subsequent
queries, this database is the default for table references that do not
include an explicit database specifier.

Fails unless the connected user can be authenticated as having
permission to use the database.

Non-standard.

	
send_query()

	Send a query. Same to query() except not wait response.

Use read_query_result() before calling store_result() or use_result()

	
server_capabilities

	Capabilities of server; consult MySQLdb.constants.CLIENT

	
set_character_set()

	Sets the default character set for the current connection.
Non-standard.

	
set_server_option()

	set_server_option(option) – Enables or disables an option
for the connection.

Non-standard.

	
shutdown()

	Asks the database server to shut down. The connected user must
have shutdown privileges. Non-standard.

	
sqlstate()

	Returns a string containing the SQLSTATE error code
for the last error. The error code consists of five characters.
‘00000’ means “no error.” The values are specified by ANSI SQL
and ODBC. For a list of possible values, see section 23
Error Handling in MySQL in the MySQL Manual.

Note that not all MySQL errors are yet mapped to SQLSTATE’s.
The value ‘HY000’ (general error) is used for unmapped errors.

Non-standard.

	
stat()

	Returns a character string containing information similar to
that provided by the mysqladmin status command. This includes
uptime in seconds and the number of running threads,
questions, reloads, and open tables. Non-standard.

	
store_result()

	Returns a result object acquired by mysql_store_result
(results stored in the client). If no results are available,
None is returned. Non-standard.

	
string_literal()

	string_literal(obj) – converts object obj into a SQL string literal.
This means, any special SQL characters are escaped, and it is enclosed
within single quotes. In other words, it performs:

“’%s’” % escape_string(str(obj))

Use connection.string_literal(obj), if you use it at all.
_mysql.string_literal(obj) cannot handle character sets.

	
thread_id()

	Returns the thread ID of the current connection. This value
can be used as an argument to kill() to kill the thread.

If the connection is lost and you reconnect with ping(), the
thread ID will change. This means you should not get the
thread ID and store it for later. You should get it when you
need it.

Non-standard.

	
use_result()

	Returns a result object acquired by mysql_use_result
(results stored in the server). If no results are available,
None is returned. Non-standard.

	
warning_count()

	Returns the number of warnings generated during execution
of the previous SQL statement.

Non-standard.

	
_mysql.debug()

	Does a DBUG_PUSH with the given string.
mysql_debug() uses the Fred Fish debug library.
To use this function, you must compile the client library to
support debugging.

	
_mysql.escape()

	escape(obj, dict) – escape any special characters in object obj
using mapping dict to provide quoting functions for each type.
Returns a SQL literal string.

	
_mysql.escape_dict()

	escape_sequence(d, dict) – escape any special characters in
dictionary d using mapping dict to provide quoting functions for each type.
Returns a dictionary of escaped items.

	
_mysql.escape_sequence()

	escape_sequence(seq, dict) – escape any special characters in sequence
seq using mapping dict to provide quoting functions for each type.
Returns a tuple of escaped items.

	
_mysql.escape_string()

	escape_string(s) – quote any SQL-interpreted characters in string s.

Use connection.escape_string(s), if you use it at all.
_mysql.escape_string(s) cannot handle character sets. You are
probably better off using connection.escape(o) instead, since
it will escape entire sequences as well as strings.

	
_mysql.get_client_info()

	get_client_info() – Returns a string that represents
the client library version.

	
class _mysql.result

	Bases: object

result(connection, use=0, converter={}) – Result set from a query.

Creating instances of this class directly is an excellent way to
shoot yourself in the foot. If using _mysql.connection directly,
use connection.store_result() or connection.use_result() instead.
If using MySQLdb.Connection, this is done by the cursor class.
Just forget you ever saw this. Forget... FOR-GET...

	
converter

	Type conversion mapping

	
data_seek()

	data_seek(n) – seek to row n of result set

	
describe()

	Returns the sequence of 7-tuples required by the DB-API for
the Cursor.description attribute.

	
fetch_row()

	fetch_row([maxrows, how]) – Fetches up to maxrows as a tuple.
The rows are formatted according to how:

0 – tuples (default)
1 – dictionaries, key=column or table.column if duplicated
2 – dictionaries, key=table.column

	
field_flags()

	Returns a tuple of field flags, one for each column in the result.

	
has_next

	Has next result

	
num_fields()

	Returns the number of fields (column) in the result.

	
num_rows()

	Returns the number of rows in the result set. Note that if
use=1, this will not return a valid value until the entire result
set has been read.

	
row_seek()

	row_seek(n) – seek by offset n rows of result set

	
row_tell()

	row_tell() – return the current row number of the result set.

	
_mysql.server_end()

	Shut down embedded server. If not using an embedded server, this
does nothing.

	
_mysql.server_init()

	Initialize embedded server. If this client is not linked against
the embedded server library, this function does nothing.

args – sequence of command-line arguments
groups – sequence of groups to use in defaults files

	
_mysql.string_literal()

	string_literal(obj) – converts object obj into a SQL string literal.
This means, any special SQL characters are escaped, and it is enclosed
within single quotes. In other words, it performs:

“’%s’” % escape_string(str(obj))

Use connection.string_literal(obj), if you use it at all.
_mysql.string_literal(obj) cannot handle character sets.

	
_mysql.thread_safe()

	Indicates whether the client is compiled as thread-safe.

MySQLdb

	MySQLdb Package
	MySQLdb Package

	connections Module

	converters Module

	cursors Module

	times Module

	Subpackages
	constants Package
	constants Package

	CLIENT Module

	CR Module

	ER Module

	FIELD_TYPE Module

	FLAG Module

	REFRESH Module

_mysql_exceptions Module

_mysql_exceptions: Exception classes for _mysql and MySQLdb.

These classes are dictated by the DB API v2.0:

https://www.python.org/dev/peps/pep-0249/

	
exception _mysql_exceptions.DataError

	Bases: _mysql_exceptions.DatabaseError

Exception raised for errors that are due to problems with the
processed data like division by zero, numeric value out of range,
etc.

	
exception _mysql_exceptions.DatabaseError

	Bases: _mysql_exceptions.Error

Exception raised for errors that are related to the
database.

	
exception _mysql_exceptions.Error

	Bases: _mysql_exceptions.MySQLError

Exception that is the base class of all other error exceptions
(not Warning).

	
exception _mysql_exceptions.IntegrityError

	Bases: _mysql_exceptions.DatabaseError

Exception raised when the relational integrity of the database
is affected, e.g. a foreign key check fails, duplicate key,
etc.

	
exception _mysql_exceptions.InterfaceError

	Bases: _mysql_exceptions.Error

Exception raised for errors that are related to the database
interface rather than the database itself.

	
exception _mysql_exceptions.InternalError

	Bases: _mysql_exceptions.DatabaseError

Exception raised when the database encounters an internal
error, e.g. the cursor is not valid anymore, the transaction is
out of sync, etc.

	
exception _mysql_exceptions.MySQLError

	Bases: Exception

Exception related to operation with MySQL.

	
exception _mysql_exceptions.NotSupportedError

	Bases: _mysql_exceptions.DatabaseError

Exception raised in case a method or database API was used
which is not supported by the database, e.g. requesting a
.rollback() on a connection that does not support transaction or
has transactions turned off.

	
exception _mysql_exceptions.OperationalError

	Bases: _mysql_exceptions.DatabaseError

Exception raised for errors that are related to the database’s
operation and not necessarily under the control of the programmer,
e.g. an unexpected disconnect occurs, the data source name is not
found, a transaction could not be processed, a memory allocation
error occurred during processing, etc.

	
exception _mysql_exceptions.ProgrammingError

	Bases: _mysql_exceptions.DatabaseError

Exception raised for programming errors, e.g. table not found
or already exists, syntax error in the SQL statement, wrong number
of parameters specified, etc.

	
exception _mysql_exceptions.Warning

	Bases: Warning, _mysql_exceptions.MySQLError

Exception raised for important warnings like data truncations
while inserting, etc.

 _static/comment-bright.png

_static/file.png

_static/minus.png

_static/up-pressed.png

_static/comment-close.png

_static/down.png

_static/ajax-loader.gif

_static/up.png

_static/down-pressed.png

nav.xhtml

 Table of Contents

 		Welcome to MySQLdb's documentation!

 		MySQLdb User's Guide

 		Introduction

 		Installation

 		_mysql

 		MySQL C API translation

 		MySQL C API function mapping

 		Some _mysql examples

 		MySQLdb

 		Functions and attributes

 		Connection Objects

 		Cursor Objects

 		Some examples

 		Using and extending

 		Embedded Server

 		MySQLdb Package

 		MySQLdb Package

 		connections Module

 		converters Module

 		cursors Module

 		times Module

 		Subpackages

 		constants Package

 		MySQLdb Frequently Asked Questions

 		Build Errors

 		ImportError

 		My data disappeared! (or won't go away!)

 		Other Errors

 		Other Resources

_static/comment.png

_static/plus.png

