

 The documentation has moved to http://mycroft-core.rtfd.io/.

Index

 A
 | B
 | C
 | D
 | E
 | F
 | G
 | I
 | L
 | M
 | N
 | P
 | R
 | S
 | W

A

 	
 	add_event() (mycroft.MycroftSkill method)

 	
 	adds_context() (in module mycroft)

 	Api (class in mycroft)

B

 	
 	bind() (mycroft.MycroftSkill method)

C

 	
 	converse() (mycroft.MycroftSkill method)

 	
 	convert_number() (in module mycroft.util)

D

 	
 	disable_intent() (mycroft.MycroftSkill method)

E

 	
 	enable_intent() (mycroft.MycroftSkill method)

 	
 	extract_datetime() (in module mycroft.util)

 	extractnumber() (in module mycroft.util)

F

 	
 	FallbackSkill (class in mycroft)

G

 	
 	get_cache_directory() (in module mycroft.util)

 	
 	getLogger() (in module mycroft.util)

I

 	
 	initialize() (mycroft.MycroftSkill method)

 	
 	intent_file_handler() (in module mycroft)

 	intent_handler() (in module mycroft)

L

 	
 	location (mycroft.MycroftSkill attribute)

 	
 	location_pretty (mycroft.MycroftSkill attribute)

 	location_timezone (mycroft.MycroftSkill attribute)

M

 	
 	make_active() (mycroft.MycroftSkill method)

 	
 	make_intent_failure_handler() (mycroft.FallbackSkill class method)

 	MycroftSkill (class in mycroft)

N

 	
 	nice_number() (in module mycroft.util)

 	
 	normalize() (in module mycroft.util)

P

 	
 	play_mp3() (in module mycroft.util)

 	
 	play_wav() (in module mycroft.util)

R

 	
 	register_fallback() (mycroft.FallbackSkill method)

 	register_intent() (mycroft.MycroftSkill method)

 	register_intent_file() (mycroft.MycroftSkill method)

 	register_vocabulary() (mycroft.MycroftSkill method)

 	
 	remove_context() (mycroft.MycroftSkill method)

 	remove_fallback() (mycroft.FallbackSkill class method)

 	remove_instance_handlers() (mycroft.FallbackSkill method)

 	removes_context() (in module mycroft)

 	resolve_resource_file() (in module mycroft.util)

S

 	
 	set_context() (mycroft.MycroftSkill method)

 	settings (mycroft.MycroftSkill attribute)

 	shutdown() (mycroft.FallbackSkill method)

 	(mycroft.MycroftSkill method)

 	
 	speak() (mycroft.MycroftSkill method)

 	speak_dialog() (mycroft.MycroftSkill method)

W

 	
 	wait_while_speaking() (in module mycroft.util)

mycroft package

	mycroft.util package
	getLogger

	wait_while_speaking

	play_wav

	play_mp3

	extract_datetime

	extractnumber

	normalize

	nice_number

	convert_number

	resolve_resource_file

	get_cache_directory

MycroftSkill class

	
class mycroft.MycroftSkill(name=None, emitter=None)

	Abstract base class which provides common behaviour and parameters to all
Skills implementation.

	
add_event(name, handler, need_self)

	Create event handler for executing intent

	Parameters:	
	name – IntentParser name

	handler – method to call

	need_self – optional parameter, when called from a decorated
intent handler the function will need the self
variable passed as well.

	
bind(emitter)

	Register emitter with skill.

	
converse(utterances, lang='en-us')

	Handle conversation. This method can be used to override the normal
intent handler after the skill has been invoked once.

To enable this override thise converse method and return True to
indicate that the utterance has been handled.

	Parameters:	
	utterances – The utterances from the user

	lang – language the utterance is in

Returns: True if an utterance was handled, otherwise False

	
disable_intent(intent_name)

	Disable a registered intent

	
enable_intent(intent_name)

	Reenable a registered intent

	
initialize()

	Initialization function to be implemented by all Skills.

Usually used to create intents rules and register them.

	
location

	Get the JSON data struction holding location information.

	
location_pretty

	Get a more ‘human’ version of the location as a string.

	
location_timezone

	Get the timezone code, such as ‘America/Los_Angeles’

	
make_active()

	Bump skill to active_skill list in intent_service
this enables converse method to be called even without skill being
used in last 5 minutes

	
register_intent(intent_parser, handler, need_self=False)

	Register an Intent with the intent service.

	Parameters:	
	intent_parser – Intent or IntentBuilder object to parse
utterance for the handler.

	handler – function to register with intent

	need_self – optional parameter, when called from a decorated
intent handler the function will need the self
variable passed as well.

	
register_intent_file(intent_file, handler, need_self=False)

	Register an Intent file with the intent service.

	Parameters:	
	intent_file – name of file that contains example queries
that should activate the intent

	handler – function to register with intent

	need_self – use for decorator. See register_intent

	
register_vocabulary(entity, entity_type)

	Register a word to an keyword

	Parameters:	
	entity – word to register

	entity_type – Intent handler entity to tie the word to

	
remove_context(context)

	remove_context removes a keyword from from the context manager.

	
set_context(context, word='')

	Add context to intent service

	Parameters:	
	context – Keyword

	word – word connected to keyword

	
settings

	Load settings if not already loaded.

	
shutdown()

	This method is intended to be called during the skill
process termination. The skill implementation must
shutdown all processes and operations in execution.

	
speak(utterance, expect_response=False)

	Speak a sentence.

	Parameters:	
	utterance – sentence mycroft should speak

	expect_response – set to True if Mycroft should expect a
response from the user and start listening
for response.

	
speak_dialog(key, data={}, expect_response=False)

	Speak sentance based of dialog file.

	Args

	key: dialog file key (filname without extension)
data: information to populate sentence with
expect_response: set to True if Mycroft should expect a

response from the user and start listening
for response.

FallbackSkill class

	
class mycroft.FallbackSkill(name=None, emitter=None)

	Bases: mycroft.skills.core.MycroftSkill

FallbackSkill is used to declare a fallback to be called when
no skill is matching an intent. The fallbackSkill implements a
number of fallback handlers to be called in an order determined
by their priority.

	
classmethod make_intent_failure_handler(ws)

	Goes through all fallback handlers until one returns True

	
register_fallback(handler, priority)

	register a fallback with the list of fallback handlers
and with the list of handlers registered by this instance

	
classmethod remove_fallback(handler_to_del)

	Remove a fallback handler

	Parameters:	handler_to_del – reference to handler

	
remove_instance_handlers()

	Remove all fallback handlers registered by the fallback skill.

	
shutdown()

	Remove all registered handlers and perform skill shutdown.

Api class

	
class mycroft.Api(path)

	Generic object to wrap web APIs

intent_handler decorator

	
mycroft.intent_handler(intent_parser)

	Decorator for adding a method as an intent handler.

intent_file_handler decorator

	
mycroft.intent_file_handler(intent_file)

	Decorator for adding a method as an intent file handler.

adds_context decorator

	
mycroft.adds_context(context, words='')

	Adds context to context manager.

removes_context decorator

	
mycroft.removes_context(context)

	Removes context from the context manager.

mycroft.util package

getLogger

	
mycroft.util.getLogger(name='MYCROFT')

	Get a python logger

	Parameters:	name – Module name for the logger

	Returns:	an instance of logging.Logger

wait_while_speaking

	
mycroft.util.wait_while_speaking()

	Pause as long as Text to Speech is still happening

Pause while Text to Speech is still happening. This always pauses
briefly to ensure that any preceeding request to speak has time to
begin.

play_wav

	
mycroft.util.play_wav(uri)

	

play_mp3

	
mycroft.util.play_mp3(uri)

	

extract_datetime

	
mycroft.util.extract_datetime(text, anchorDate=None, lang='en-us')

	Parsing function that extracts date and time information
from sentences. Parses many of the common ways that humans
express dates and times. Includes relative dates like “5 days from today”.

	Vague terminology are given arbitrary values, like:

	
	morning = 8 AM

	afternoon = 3 PM

	evening = 7 PM

If a time isn’t supplied, the function defaults to 12 AM

	Parameters:	
	str (string) – the text to be normalized

	anchortDate (datetime, optional) – the date to be used for
relative dating (for example, what does “tomorrow” mean?).
Defaults to the current date
(acquired with datetime.datetime.now())

	lang (string) – the language of the sentence(s)

	Returns:	
	‘datetime’ is the extracted date

	as a datetime object. Times are represented in 24 hour notation.
‘leftover_string’ is the original phrase with all date and time
related keywords stripped out. See examples for further
clarification

Returns ‘None’ if no date was extracted.

	Return type:	[datetime, str]

Examples

>>> extract_datetime(
... "What is the weather like the day after tomorrow?",
... datetime(2017, 06, 30, 00, 00)
...)
[datetime.datetime(2017, 7, 2, 0, 0), 'what is weather like']

>>> extract_datetime(
... "Set up an appointment 2 weeks from Sunday at 5 pm",
... datetime(2016, 02, 19, 00, 00)
...)
[datetime.datetime(2016, 3, 6, 17, 0), 'set up appointment']

extractnumber

	
mycroft.util.extractnumber(text, lang='en-us')

	Takes in a string and extracts a number.
:param text: the string to extract a number from
:type text: str
:param lang: the code for the language text is in
:type lang: str

	Returns:	The number extracted or the original text.

	Return type:	(str)

normalize

	
mycroft.util.normalize(text, lang='en-us', remove_articles=True)

	Prepare a string for parsing

This function prepares the given text for parsing by making
numbers consistent, getting rid of contractions, etc.
:param text: the string to normalize
:type text: str
:param lang: the code for the language text is in
:type lang: str
:param remove_articles: whether to remove articles (like ‘a’, or ‘the’)
:type remove_articles: bool

	Returns:	The normalized string.

	Return type:	(str)

nice_number

	
mycroft.util.nice_number(number, lang='en-us', speech=True, denominators=None)

	Format a float to human readable functions

This function formats a float to human understandable functions. Like
4.5 becomes 4 and a half for speech and 4 1/2 for text
:param number: the float to format
:type number: str
:param lang: the code for the language text is in
:type lang: str
:param speech: to return speech representation or text representation
:type speech: bool
:param denominators: denominators to use, default [1 .. 20]
:type denominators: iter of ints

	Returns:	The formatted string.

	Return type:	(str)

convert_number

	
mycroft.util.convert_number(number, denominators)

	Convert floats to mixed fractions

resolve_resource_file

	
mycroft.util.resolve_resource_file(res_name)

	Convert a resource into an absolute filename.

Resource names are in the form: ‘filename.ext’
or ‘path/filename.ext’

The system wil look for ~/.mycroft/res_name first, and
if not found will look at /opt/mycroft/res_name,
then finally it will look for res_name in the ‘mycroft/res’
folder of the source code package.

Example:
With mycroft running as the user ‘bob’, if you called

resolve_resource_file(‘snd/beep.wav’)

it would return either ‘/home/bob/.mycroft/snd/beep.wav’ or
‘/opt/mycroft/snd/beep.wav’ or ‘.../mycroft/res/snd/beep.wav’,
where the ‘...’ is replaced by the path where the package has
been installed.

	Parameters:	res_name (str) – a resource path/name

get_cache_directory

	
mycroft.util.get_cache_directory(domain=None)

	Get a directory for caching data

This directory can be used to hold temporary caches of data to
speed up performance. This directory will likely be part of a
small RAM disk and may be cleared at any time. So code that
uses these cached files must be able to fallback and regenerate
the file.

	Parameters:	domain (str) – The cache domain. Basically just a subdirectory.

	Returns:	a path to the directory where you can cache data

	Return type:	str

 nav.xhtml

 Table of Contents

 		<no title>

_static/down-pressed.png

_static/minus.png

_static/ajax-loader.gif

_static/up-pressed.png

_static/up.png

_static/file.png

_static/comment-bright.png

_static/comment.png

_static/plus.png

_static/down.png

_static/comment-close.png

