

    
      
          
            
  
MXNet Documentation

MXNet.jl [https://github.com/dmlc/MXNet.jl] is Julia [http://julialang.org/] package of dmlc/mxnet [https://github.com/dmlc/mxnet]. MXNet.jl  brings flexible and efficient GPU
computing and state-of-art deep learning to Julia. Some highlight of features
include:


	Efficient tensor/matrix computation across multiple devices, including multiple CPUs, GPUs and distributed server nodes.


	Flexible symbolic manipulation to composite and construct state-of-the-art deep learning models.




For more details, see documentation below. Please also checkout the examples [https://github.com/dmlc/MXNet.jl/tree/master/examples] directory.
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Digit Recognition on MNIST

In this tutorial, we will work through examples of training a simple multi-layer
perceptron and then a convolutional neural network (the LeNet architecture) on
the MNIST handwritten digit dataset [http://yann.lecun.com/exdb/mnist/]. The
code for this tutorial could be found in examples/mnist [https://github.com/dmlc/MXNet.jl/tree/master/examples/mnist].


Simple 3-layer MLP

This is a tiny 3-layer MLP that could be easily trained on CPU. The script starts with

using MXNet





to load the MXNet module. Then we are ready to define the network
architecture via the symbolic API. We start with
a placeholder data symbol,

data = mx.Variable(:data)





and then cascading fully-connected layers and activation functions:

fc1  = mx.FullyConnected(data = data, name=:fc1, num_hidden=128)
act1 = mx.Activation(data = fc1, name=:relu1, act_type=:relu)
fc2  = mx.FullyConnected(data = act1, name=:fc2, num_hidden=64)
act2 = mx.Activation(data = fc2, name=:relu2, act_type=:relu)
fc3  = mx.FullyConnected(data = act2, name=:fc3, num_hidden=10)





Note each composition we take the previous symbol as the data argument, forming a feedforward chain. The architecture looks like

Input --> 128 units (ReLU) --> 64 units (ReLU) --> 10 units





where the last 10 units correspond to the 10 output classes (digits 0,…,9). We
then add a final SoftmaxOutput operation to turn the 10-dimensional prediction to proper probability values for the 10 classes:

mlp  = mx.SoftmaxOutput(data = fc3, name=:softmax)





As we can see, the MLP is just a chain of layers. For this case, we can also use
the mx.chain macro. The same architecture above can be defined as

mlp = @mx.chain mx.Variable(:data)             =>
  mx.FullyConnected(name=:fc1, num_hidden=128) =>
  mx.Activation(name=:relu1, act_type=:relu)   =>
  mx.FullyConnected(name=:fc2, num_hidden=64)  =>
  mx.Activation(name=:relu2, act_type=:relu)   =>
  mx.FullyConnected(name=:fc3, num_hidden=10)  =>
  mx.SoftmaxOutput(name=:softmax)





After defining the architecture, we are ready to load the MNIST data. MXNet.jl
provide built-in data providers for the MNIST dataset, which could automatically
download the dataset into Pkg.dir("MXNet")/data/mnist if necessary. We wrap
the code to construct the data provider into mnist-data.jl so that it could be shared by both the MLP example and the LeNet ConvNets example.

batch_size = 100
include("mnist-data.jl")
train_provider, eval_provider = get_mnist_providers(batch_size)





If you need to write your own data providers for customized data format, please
refer to AbstractDataProvider.

Given the architecture and data, we can instantiate an model to do the actual
training. mx.FeedForward is the built-in model that is suitable for most feed-forward architectures. When constructing the model, we also specify the context on which the computation should be carried out. Because this is a really tiny MLP, we will just run on a single CPU device.

model = mx.FeedForward(mlp, context=mx.cpu())





You can use a mx.gpu() or if a list of devices (e.g. [mx.gpu(0),
mx.gpu(1)]) is provided, data-parallelization will be used automatically. But for this tiny example, using a GPU device might not help.

The last thing we need to specify is the optimization algorithm (a.k.a. optimizer) to use. We use the basic SGD with a fixed learning rate 0.1 and momentum 0.9:

optimizer = mx.SGD(lr=0.1, momentum=0.9, weight_decay=0.00001)





Now we can do the training. Here the n_epoch parameter specifies that we
want to train for 20 epochs. We also supply a eval_data to monitor validation accuracy on the validation set.

mx.fit(model, optimizer, train_provider, n_epoch=20, eval_data=eval_provider)





Here is a sample output

INFO: Start training on [CPU0]
INFO: Initializing parameters...
INFO: Creating KVStore...
INFO: == Epoch 001 ==========
INFO: ## Training summary
INFO:       :accuracy = 0.7554
INFO:            time = 1.3165 seconds
INFO: ## Validation summary
INFO:       :accuracy = 0.9502
...
INFO: == Epoch 020 ==========
INFO: ## Training summary
INFO:       :accuracy = 0.9949
INFO:            time = 0.9287 seconds
INFO: ## Validation summary
INFO:       :accuracy = 0.9775








Convolutional Neural Networks

In the second example, we show a slightly more complicated architecture that
involves convolution and pooling. This architecture for the MNIST is usually
called the [LeNet]. The first part of the architecture is listed below:

# input
data = mx.Variable(:data)

# first conv
conv1 = @mx.chain mx.Convolution(data=data, kernel=(5,5), num_filter=20)  =>
                  mx.Activation(act_type=:tanh) =>
                  mx.Pooling(pool_type=:max, kernel=(2,2), stride=(2,2))

# second conv
conv2 = @mx.chain mx.Convolution(data=conv1, kernel=(5,5), num_filter=50) =>
                  mx.Activation(act_type=:tanh) =>
                  mx.Pooling(pool_type=:max, kernel=(2,2), stride=(2,2))





We basically defined two convolution modules. Each convolution module is
actually a chain of Convolution, tanh activation and then max Pooling operations.

Each sample in the MNIST dataset is a 28x28 single-channel grayscale image. In
the tensor format used by NDArray, a batch of 100 samples is a tensor of
shape (28,28,1,100). The convolution and pooling operates in the spatial
axis, so kernel=(5,5) indicate a square region of 5-width and 5-height.
The rest of the architecture follows as:

# first fully-connected
fc1   = @mx.chain mx.Flatten(data=conv2) =>
                  mx.FullyConnected(num_hidden=500) =>
                  mx.Activation(act_type=:tanh)

# second fully-connected
fc2   = mx.FullyConnected(data=fc1, num_hidden=10)

# softmax loss
lenet = mx.Softmax(data=fc2, name=:softmax)





Note a fully-connected operator expects the input to be a matrix. However, the
results from spatial convolution and pooling are 4D tensors. So we explicitly
used a Flatten operator to flat the tensor, before connecting it to the
FullyConnected operator.

The rest of the network is the same as the previous MLP example. As before, we can now load the MNIST dataset:

batch_size = 100
include("mnist-data.jl")
train_provider, eval_provider = get_mnist_providers(batch_size; flat=false)





Note we specified flat=false to tell the data provider to provide 4D tensors instead of 2D matrices because the convolution operators needs correct spatial shape information. We then construct a feedforward model on GPU, and train it.

#--------------------------------------------------------------------------------
# fit model
model = mx.FeedForward(lenet, context=mx.gpu())

# optimizer
optimizer = mx.SGD(lr=0.05, momentum=0.9, weight_decay=0.00001)

# fit parameters
mx.fit(model, optimizer, train_provider, n_epoch=20, eval_data=eval_provider)





And here is a sample of running outputs:

INFO: == Epoch 001 ==========
INFO: ## Training summary
INFO:       :accuracy = 0.6750
INFO:            time = 4.9814 seconds
INFO: ## Validation summary
INFO:       :accuracy = 0.9712
...
INFO: == Epoch 020 ==========
INFO: ## Training summary
INFO:       :accuracy = 1.0000
INFO:            time = 4.0086 seconds
INFO: ## Validation summary
INFO:       :accuracy = 0.9915






	LeNet

	Lecun, Y.; Bottou, L.; Bengio, Y.; Haffner, P.,
Gradient-based learning applied to document recognition,
Proceedings of the IEEE, vol.86, no.11, pp.2278-2324,
Nov 1998.








Predicting with a trained model

Predicting with a trained model is very simple. By calling mx.predict with the
model and a data provider, we get the model output as a Julia Array:

probs = mx.predict(model, eval_provider)





The following code shows a stupid way of getting all the labels from the data
provider, and compute the prediction accuracy manually:

# collect all labels from eval data
labels = Array[]
for batch in eval_provider
  push!(labels, copy(mx.get_label(batch)))
end
labels = cat(1, labels...)

# Now we use compute the accuracy
correct = 0
for i = 1:length(labels)
  # labels are 0...9
  if indmax(probs[:,i]) == labels[i]+1
    correct += 1
  end
end
println(mx.format("Accuracy on eval set: {1:.2f}%", 100correct/length(labels)))





Alternatively, when the dataset is huge, one can provide a callback to
mx.predict, then the callback function will be invoked with the outputs of
each mini-batch. The callback could, for example, write the data to disk for
future inspection. In this case, no value is returned from mx.predict. See
also predict().







          

      

      

    

  

    
      
          
            
  
Generating Random Sentence with LSTM RNN

This tutorial shows how to train a LSTM (Long short-term memory) RNN (recurrent
neural network) to perform character-level sequence training and prediction. The
original model, usually called char-rnn is described in Andrej Karpathy’s
blog [http://karpathy.github.io/2015/05/21/rnn-effectiveness/], with
a reference implementation in Torch available here [https://github.com/karpathy/char-rnn].

Because MXNet.jl does not have a specialized model for recurrent neural networks
yet, the example shown here is an implementation of LSTM by using the default
FeedForward model via explicitly unfolding over time. We will be using
fixed-length input sequence for training. The code is adapted from the char-rnn
example for MXNet’s Python binding [https://github.com/dmlc/mxnet/blob/master/example/rnn/char_lstm.ipynb], which
demonstrates how to use low-level symbolic APIs to
build customized neural network models directly.

The most important code snippets of this example is shown and explained here.
To see and run the complete code, please refer to the examples/char-lstm [https://github.com/dmlc/MXNet.jl/tree/master/examples/char-lstm] directory.
You will need to install Iterators.jl [https://github.com/JuliaLang/Iterators.jl] and StatsBase.jl [https://github.com/JuliaStats/StatsBase.jl] to run this example.


LSTM Cells

Christopher Olah has a great blog post about LSTM [http://colah.github.io/posts/2015-08-Understanding-LSTMs/] with beautiful and
clear illustrations. So we will not repeat the definition and explanation of
what an LSTM cell is here. Basically, an LSTM cell takes input x, as well as
previous states (including c and h), and produce the next states.
We define a helper type to bundle the two state variables together:

immutable LSTMState
  c :: mx.SymbolicNode
  h :: mx.SymbolicNode
end





Because LSTM weights are shared at every time when we do explicit unfolding, so
we also define a helper type to hold all the weights (and bias) for an LSTM cell
for convenience.

immutable LSTMParam
  i2h_W :: mx.SymbolicNode
  h2h_W :: mx.SymbolicNode
  i2h_b :: mx.SymbolicNode
  h2h_b :: mx.SymbolicNode
end





Note all the variables are of type SymbolicNode. We will construct the
LSTM network as a symbolic computation graph, which is then instantiated with
NDArray for actual computation.

function lstm_cell(data::mx.SymbolicNode, prev_state::LSTMState, param::LSTMParam;
                   num_hidden::Int=512, dropout::Real=0, name::Symbol=gensym())

  if dropout > 0
    data = mx.Dropout(data, p=dropout)
  end

  i2h = mx.FullyConnected(data=data, weight=param.i2h_W, bias=param.i2h_b,
                          num_hidden=4num_hidden, name=symbol(name, "_i2h"))
  h2h = mx.FullyConnected(data=prev_state.h, weight=param.h2h_W, bias=param.h2h_b,
                          num_hidden=4num_hidden, name=symbol(name, "_h2h"))

  gates = mx.SliceChannel(i2h + h2h, num_outputs=4, name=symbol(name, "_gates"))

  in_gate     = mx.Activation(gates[1], act_type=:sigmoid)
  in_trans    = mx.Activation(gates[2], act_type=:tanh)
  forget_gate = mx.Activation(gates[3], act_type=:sigmoid)
  out_gate    = mx.Activation(gates[4], act_type=:sigmoid)

  next_c = (forget_gate .* prev_state.c) + (in_gate .* in_trans)
  next_h = out_gate .* mx.Activation(next_c, act_type=:tanh)

  return LSTMState(next_c, next_h)
end





The following figure is stolen (permission requested) from
Christopher Olah’s blog [http://colah.github.io/posts/2015-08-Understanding-LSTMs/], which illustrate
exactly what the code snippet above is doing.

[image: ../_images/LSTM3-chain.png]
In particular, instead of defining the four gates independently, we do the
computation together and then use SliceChannel to split them into four
outputs. The computation of gates are all done with the symbolic API. The return
value is a LSTM state containing the output of a LSTM cell.




Unfolding LSTM

Using the LSTM cell defined above, we are now ready to define a function to
unfold a LSTM network with L layers and T time steps. The first part of the
function is just defining all the symbolic variables for the shared weights and
states.

The embed_W is the weights used for character embedding — i.e. mapping the
one-hot encoded characters into real vectors. The pred_W and pred_b are
weights and bias for the final prediction at each time step.

Then we define the weights for each LSTM cell. Note there is one cell for each
layer, and it will be replicated (unrolled) over time. The states are, however,
not shared over time. Instead, here we define the initial states here at the
beginning of a sequence, and we will update them with the output states at each
time step as we explicitly unroll the LSTM.

function LSTM(n_layer::Int, seq_len::Int, dim_hidden::Int, dim_embed::Int, n_class::Int;
              dropout::Real=0, name::Symbol=gensym(), output_states::Bool=false)

  # placeholder nodes for all parameters
  embed_W = mx.Variable(symbol(name, "_embed_weight"))
  pred_W  = mx.Variable(symbol(name, "_pred_weight"))
  pred_b  = mx.Variable(symbol(name, "_pred_bias"))

  layer_param_states = map(1:n_layer) do i
    param = LSTMParam(mx.Variable(symbol(name, "_l$(i)_i2h_weight")),
                      mx.Variable(symbol(name, "_l$(i)_h2h_weight")),
                      mx.Variable(symbol(name, "_l$(i)_i2h_bias")),
                      mx.Variable(symbol(name, "_l$(i)_h2h_bias")))
    state = LSTMState(mx.Variable(symbol(name, "_l$(i)_init_c")),
                      mx.Variable(symbol(name, "_l$(i)_init_h")))
    (param, state)
  end
  #...





Unrolling over time is a straightforward procedure of stacking the embedding
layer, and then LSTM cells, on top of which the prediction layer. During
unrolling, we update the states and collect all the outputs. Note each time step
takes data and label as inputs. If the LSTM is named as :ptb, the data and
label at step t will be named :ptb_data_$t and :ptb_label_$t. Late
on when we prepare the data, we will define the data provider to match those
names.

  # now unroll over time
  outputs = mx.SymbolicNode[]
  for t = 1:seq_len
    data   = mx.Variable(symbol(name, "_data_$t"))
    label  = mx.Variable(symbol(name, "_label_$t"))
    hidden = mx.FullyConnected(data=data, weight=embed_W, num_hidden=dim_embed,
                               no_bias=true, name=symbol(name, "_embed_$t"))

    # stack LSTM cells
    for i = 1:n_layer
      l_param, l_state = layer_param_states[i]
      dp = i == 1 ? 0 : dropout # don't do dropout for data
      next_state = lstm_cell(hidden, l_state, l_param, num_hidden=dim_hidden, dropout=dp,
                             name=symbol(name, "_lstm_$t"))
      hidden = next_state.h
      layer_param_states[i] = (l_param, next_state)
    end

    # prediction / decoder
    if dropout > 0
      hidden = mx.Dropout(hidden, p=dropout)
    end
    pred = mx.FullyConnected(data=hidden, weight=pred_W, bias=pred_b, num_hidden=n_class,
                             name=symbol(name, "_pred_$t"))
    smax = mx.SoftmaxOutput(pred, label, name=symbol(name, "_softmax_$t"))
    push!(outputs, smax)
  end
  #...





Note at each time step, the prediction is connected to a SoftmaxOutput
operator, which could back propagate when corresponding labels are provided. The
states are then connected to the next time step, which allows back propagate
through time. However, at the end of the sequence, the final states are not
connected to anything. This dangling outputs is problematic, so we explicitly
connect each of them to a BlockGrad operator, which simply back
propagates 0-gradient and closes the computation graph.

In the end, we just group all the prediction outputs at each time step as
a single SymbolicNode and return. Optionally we will also group the
final states, this is used when we use the trained LSTM to sample sentences.

  # append block-gradient nodes to the final states
  for i = 1:n_layer
    l_param, l_state = layer_param_states[i]
    final_state = LSTMState(mx.BlockGrad(l_state.c, name=symbol(name, "_l$(i)_last_c")),
                            mx.BlockGrad(l_state.h, name=symbol(name, "_l$(i)_last_h")))
    layer_param_states[i] = (l_param, final_state)
  end

  # now group all outputs together
  if output_states
    outputs = outputs ∪ [x[2].c for x in layer_param_states] ∪
                        [x[2].h for x in layer_param_states]
  end
  return mx.Group(outputs...)
end








Data Provider for Text Sequences

Now we need to construct a data provider that takes a text file, divide the text
into mini-batches of fixed-length character-sequences, and provide them as
one-hot encoded vectors.

Note the is no fancy feature extraction at all. Each character is simply encoded
as a one-hot vector: a 0-1 vector of the size given by the vocabulary. Here we
just construct the vocabulary by collecting all the unique characters in the
training text – there are not too many of them (including punctuations and
whitespace) for English text. Each input character is then encoded as a vector
of 0s on all coordinates, and 1 on the coordinate corresponding to that
character. The character-to-coordinate mapping is giving by the vocabulary.

The text sequence data provider implement the data provider API. We define the CharSeqProvider as below:

type CharSeqProvider <: mx.AbstractDataProvider
  text       :: AbstractString
  batch_size :: Int
  seq_len    :: Int
  vocab      :: Dict{Char,Int}

  prefix     :: Symbol
  n_layer    :: Int
  dim_hidden :: Int
end





The provided data and labels follow the naming convention of inputs used when
unrolling the LSTM. Note in the code below, apart from $name_data_$t and
$name_label_$t, we also provides the initial c and h states for each
layer. This is because we are using the high-level FeedForward API,
which has no idea about time and states. So we will feed the initial states for
each sequence from the data provider. Since the initial states is always zero,
we just need to always provide constant zero blobs.

function mx.provide_data(p :: CharSeqProvider)
  [(symbol(p.prefix, "_data_$t"), (length(p.vocab), p.batch_size)) for t = 1:p.seq_len] ∪
  [(symbol(p.prefix, "_l$(l)_init_c"), (p.dim_hidden, p.batch_size)) for l=1:p.n_layer] ∪
  [(symbol(p.prefix, "_l$(l)_init_h"), (p.dim_hidden, p.batch_size)) for l=1:p.n_layer]
end
function mx.provide_label(p :: CharSeqProvider)
  [(symbol(p.prefix, "_label_$t"), (p.batch_size,)) for t = 1:p.seq_len]
end





Next we implement the AbstractDataProvider.eachbatch() interface for the provider.
We start by defining the data and label arrays, and the DataBatch object we
will provide in each iteration.

function mx.eachbatch(p :: CharSeqProvider)
  data_all  = [mx.zeros(shape) for (name, shape) in mx.provide_data(p)]
  label_all = [mx.zeros(shape) for (name, shape) in mx.provide_label(p)]

  data_jl = [copy(x) for x in data_all]
  label_jl= [copy(x) for x in label_all]

  batch = mx.DataBatch(data_all, label_all, p.batch_size)
  #...





The actual data providing iteration is implemented as a Julia coroutine. In this
way, we can write the data loading logic as a simple coherent for loop, and
do not need to implement the interface functions like Base.start(),
Base.next(), etc.

Basically, we partition the text into
batches, each batch containing several contiguous text sequences. Note at each
time step, the LSTM is trained to predict the next character, so the label is
the same as the data, but shifted ahead by one index.

  #...
  function _text_iter()
    text = p.text

    n_batch = floor(Int, length(text) / p.batch_size / p.seq_len)
    text = text[1:n_batch*p.batch_size*p.seq_len] # discard tailing
    idx_all = 1:length(text)

    for idx_batch in partition(idx_all, p.batch_size*p.seq_len)
      for i = 1:p.seq_len
        data_jl[i][:] = 0
        label_jl[i][:] = 0
      end

      for (i, idx_seq) in enumerate(partition(idx_batch, p.seq_len))
        for (j, idx) in enumerate(idx_seq)
          c_this = text[idx]
          c_next = idx == length(text) ? UNKNOWN_CHAR : text[idx+1]
          data_jl[j][char_idx(vocab,c_this),i] = 1
          label_jl[j][i] = char_idx(vocab,c_next)-1
        end
      end

      for i = 1:p.seq_len
        copy!(data_all[i], data_jl[i])
        copy!(label_all[i], label_jl[i])
      end

      produce(batch)
    end
  end

  return Task(_text_iter)
end








Training the LSTM

Now we have implemented all the supporting infrastructures for our char-lstm.
To train the model, we just follow the standard high-level API. Firstly, we
construct a LSTM symbolic architecture:

# define LSTM
lstm = LSTM(LSTM_N_LAYER, SEQ_LENGTH, DIM_HIDDEN, DIM_EMBED,
            n_class, dropout=DROPOUT, name=NAME)





Note all the parameters are defined in examples/char-lstm/config.jl [https://github.com/dmlc/MXNet.jl/blob/master/examples/char-lstm/config.jl].
Now we load the text file and define the data provider. The data input.txt
we used in this example is a tiny Shakespeare dataset [https://github.com/dmlc/web-data/tree/master/mxnet/tinyshakespeare]. But you
can try with other text files.

# load data
text_all  = readall(INPUT_FILE)
len_train = round(Int, length(text_all)*DATA_TR_RATIO)
text_tr   = text_all[1:len_train]
text_val  = text_all[len_train+1:end]

data_tr   = CharSeqProvider(text_tr, BATCH_SIZE, SEQ_LENGTH, vocab, NAME,
                            LSTM_N_LAYER, DIM_HIDDEN)
data_val  = CharSeqProvider(text_val, BATCH_SIZE, SEQ_LENGTH, vocab, NAME,
                            LSTM_N_LAYER, DIM_HIDDEN)





The last step is to construct a model, an optimizer and fit the mode to the
data. We are using the ADAM optimizer [Adam] in this example.

model = mx.FeedForward(lstm, context=context)
optimizer = mx.ADAM(lr=BASE_LR, weight_decay=WEIGHT_DECAY, grad_clip=CLIP_GRADIENT)

mx.fit(model, optimizer, data_tr, eval_data=data_val, n_epoch=N_EPOCH,
       initializer=mx.UniformInitializer(0.1),
       callbacks=[mx.speedometer(), mx.do_checkpoint(CKPOINT_PREFIX)], eval_metric=NLL())





Note we are also using a customized NLL evaluation metric, which calculate
the negative log-likelihood during training. Here is an output sample at the end of
the training process.

...
INFO: Speed: 357.72 samples/sec
INFO: == Epoch 020 ==========
INFO: ## Training summary
INFO:                NLL = 1.4672
INFO:         perplexity = 4.3373
INFO:               time = 87.2631 seconds
INFO: ## Validation summary
INFO:                NLL = 1.6374
INFO:         perplexity = 5.1418
INFO: Saved checkpoint to 'char-lstm/checkpoints/ptb-0020.params'
INFO: Speed: 368.74 samples/sec
INFO: Speed: 361.04 samples/sec
INFO: Speed: 360.02 samples/sec
INFO: Speed: 362.34 samples/sec
INFO: Speed: 360.80 samples/sec
INFO: Speed: 362.77 samples/sec
INFO: Speed: 357.18 samples/sec
INFO: Speed: 355.30 samples/sec
INFO: Speed: 362.33 samples/sec
INFO: Speed: 359.23 samples/sec
INFO: Speed: 358.09 samples/sec
INFO: Speed: 356.89 samples/sec
INFO: Speed: 371.91 samples/sec
INFO: Speed: 372.24 samples/sec
INFO: Speed: 356.59 samples/sec
INFO: Speed: 356.64 samples/sec
INFO: Speed: 360.24 samples/sec
INFO: Speed: 360.32 samples/sec
INFO: Speed: 362.38 samples/sec
INFO: == Epoch 021 ==========
INFO: ## Training summary
INFO:                NLL = 1.4655
INFO:         perplexity = 4.3297
INFO:               time = 86.9243 seconds
INFO: ## Validation summary
INFO:                NLL = 1.6366
INFO:         perplexity = 5.1378
INFO: Saved checkpoint to 'examples/char-lstm/checkpoints/ptb-0021.params'






	Adam

	Diederik Kingma and Jimmy Ba: Adam: A Method for Stochastic
Optimization. arXiv:1412.6980 [http://arxiv.org/abs/1412.6980]
[cs.LG].








Sampling Random Sentences

After training the LSTM, we can now sample random sentences from the trained
model. The sampler works in the following way:


	Starting from some fixed character, take a for example, and feed it as input to the LSTM.


	The LSTM will produce an output distribution over the vocabulary and a state
in the first time step. We sample a character from the output distribution,
fix it as the second character.


	In the next time step, we feed the previously sampled character as input and
continue running the LSTM by also taking the previous states (instead of the
0 initial states).


	Continue running until we sampled enough characters.




Note we are running with mini-batches, so several sentences could be sampled
simultaneously. Here are some sampled outputs from a network I trained for
around half an hour on the Shakespeare dataset. Note all the line-breaks,
punctuations and upper-lower case letters are produced by the sampler itself.
I did not do any post-processing.

## Sample 1
all have sir,
Away will fill'd in His time, I'll keep her, do not madam, if they here? Some more ha?

## Sample 2
am.

CLAUDIO:
Hone here, let her, the remedge, and I know not slept a likely, thou some soully free?

## Sample 3
arrel which noble thing
The exchnachsureding worns: I ne'er drunken Biancas, fairer, than the lawfu?

## Sample 4
augh assalu, you'ld tell me corn;
Farew. First, for me of a loved. Has thereat I knock you presents?

## Sample 5
ame the first answer.

MARIZARINIO:
Door of Angelo as her lord, shrield liken Here fellow the fool ?

## Sample 6
ad well.

CLAUDIO:
Soon him a fellows here; for her fine edge in a bogms' lord's wife.

LUCENTIO:
I?

## Sample 7
adrezilian measure.

LUCENTIO:
So, help'd you hath nes have a than dream's corn, beautio, I perchas?

## Sample 8
as eatter me;
The girlly: and no other conciolation!

BISTRUMIO:
I have be rest girl. O, that I a h?

## Sample 9
and is intend you sort:
What held her all 'clama's for maffice. Some servant.' what I say me the cu?

## Sample 10
an thoughts will said in our pleasue,
Not scanin on him that you live; believaries she.

ISABELLLLL?





See Andrej Karpathy’s blog post [http://karpathy.github.io/2015/05/21/rnn-effectiveness/] on more examples and
links including Linux source codes, Algebraic Geometry Theorems, and even
cooking recipes. The code for sampling can be found in
examples/char-lstm/sampler.jl [https://github.com/dmlc/MXNet.jl/blob/master/examples/char-lstm/sampler.jl].




Visualizing the LSTM

Finally, you could visualize the LSTM by calling to_graphviz() on the
constructed LSTM symbolic architecture. We only show an example of 1-layer and
2-time-step LSTM below. The automatic layout produced by GraphViz is definitely
much less clear than Christopher Olah’s illustrations [http://colah.github.io/posts/2015-08-Understanding-LSTMs/], but could
otherwise be very useful for debugging. As we can see, the LSTM unfolded over
time is just a (very) deep neural network. The complete code for producing this
visualization can be found in examples/char-lstm/visualize.jl [https://github.com/dmlc/MXNet.jl/blob/master/examples/char-lstm/visualize.jl].

[image: ../_images/char-lstm-vis.svg]





          

      

      

    

  

    
      
          
            
  
Installation Guide


Automatic Installation

To install MXNet.jl, simply type

Pkg.add("MXNet")





in the Julia REPL. Or to use the latest git version of MXNet.jl, use the following command instead

Pkg.checkout("MXNet")





MXNet.jl is built on top of libmxnet [https://github.com/dmlc/mxnet]. Upon installation, Julia will try to
automatically download and build libmxnet.

The libmxnet source is downloaded to Pkg.dir("MXNet")/deps/src/mxnet. The
automatic build is using default configurations, with OpenCV, CUDA disabled.
If the compilation failed due to unresolved dependency, or if you want to
customize the build, it is recommended to compile and install libmxnet manually.
Please see below for more details.




Manual Compilation

It is possible to compile libmxnet separately and point MXNet.jl to a the existing library in case automatic compilation fails due to unresolved dependencies in an un-standard environment; Or when one want to work with a seperate, maybe customized libmxnet.

To build libmxnet, please refer to the installation guide of libmxnet [http://mxnet.readthedocs.org/en/latest/build.html]. After successfully
installing libmxnet, set the MXNET_HOME environment variable to the location
of libmxnet. In other words, the compiled libmxnet.so should be found in
$MXNET_HOME/lib.


Note

The constant MXNET_HOME is pre-compiled in MXNet.jl package cache. If you
updated the environment variable after installing MXNet.jl, make sure to
update the pre-compilation cache by Base.compilecache("MXNet").



When the MXNET_HOME environment variable is detected and the corresponding
libmxnet.so could be loaded successfully, MXNet.jl will skip automatic building during installation and use the specified libmxnet instead.

Basically, MXNet.jl will search libmxnet.so or libmxnet.dll in the following paths (and in that order):


	$MXNET_HOME/lib: customized libmxnet builds


	Pkg.dir("MXNet")/deps/usr/lib: automatic builds


	Any system wide library search path










          

      

      

    

  

    
      
          
            
  
Overview


MXNet.jl Namespace

Most the functions and types in MXNet.jl are organized in a flat namespace.
Because many some functions are conflicting with existing names in the Julia
Base module, we wrap them all in a mx module. The convention of accessing
the MXNet.jl interface is the to use the mx. prefix explicitly:

using MXNet

x = mx.zeros(2,3)              # MXNet NDArray
y = zeros(eltype(x), size(x))  # Julia Array
copy!(y, x)                    # Overloaded function in Julia Base
z = mx.ones(size(x), mx.gpu()) # MXNet NDArray on GPU
mx.copy!(z, y)                 # Same as copy!(z, y)





Note functions like size, copy! that is extensively overloaded for
various types works out of the box. But functions like zeros and ones
will be ambiguous, so we always use the mx. prefix. If you prefer, the
mx. prefix can be used explicitly for all MXNet.jl functions, including
size and copy! as shown in the last line.




Low Level Interface


NDArrays

NDArray is the basic building blocks of the actual computations in MXNet. It
is like a Julia Array object, with some important differences listed here:


	The actual data could live on different Context (e.g. GPUs). For some
contexts, iterating into the elements one by one is very slow, thus indexing
into NDArray is not supported in general. The easiest way to inspect the
contents of an NDArray is to use the copy function to copy the
contents as a Julia Array.


	Operations on NDArray (including basic arithmetics and neural network related operators) are executed in parallel with automatic dependency tracking to ensure correctness.


	There is no generics in NDArray, the eltype is always mx.MX_float. Because for applications in machine learning, single precision floating point numbers are typical a best choice balancing between precision, speed and portability. Also since libmxnet is designed to support multiple languages as front-ends, it is much simpler to implement with a fixed data type.




While most of the computation is hidden in libmxnet by operators corresponding
to various neural network layers. Getting familiar with the NDArray API is
useful for implementing Optimizer or customized operators in Julia directly.

The followings are common ways to create NDArray objects:


	mx.empty(shape[, context]): create on uninitialized array of a given shape
on a specific device. For example, mx.empty(2,3)`, `mx.((2,3), mx.gpu(2)).


	mx.zeros(shape[, context]) and mx.ones(shape[, context]): similar to
the Julia’s built-in zeros and ones.


	mx.copy(jl_arr, context): copy the contents of a Julia Array to a specific device.




Most of the convenient functions like size, length, ndims, eltype on array objects should work out-of-the-box. Although indexing is not supported, it is possible to take slices:

a = mx.ones(2,3)
b = mx.slice(a, 1:2)
b[:] = 2
println(copy(a))
# =>
# Float32[2.0 2.0 1.0
#         2.0 2.0 1.0]





A slice is a sub-region sharing the same memory with the original NDArray
object. A slice is always a contiguous piece of memory, so only slicing on the
last dimension is supported. The example above also shows a way to set the
contents of an NDArray.

a = mx.empty(2,3)
a[:] = 0.5              # set all elements to a scalar
a[:] = rand(size(a))    # set contents with a Julia Array
copy!(a, rand(size(a))) # set value by copying a Julia Array
b = mx.empty(size(a))
b[:] = a                # copying and assignment between NDArrays





Note due to the intrinsic design of the Julia language, a normal assignment

a = b





does not mean copying the contents of b to a. Instead, it just make
the variable a pointing to a new object, which is b. Similarly, inplace arithmetics does not work as expected:

a = mx.ones(2)
r = a           # keep a reference to a
b = mx.ones(2)
a += b          # translates to a = a + b
println(copy(a))
# => Float32[2.0f0,2.0f0]
println(copy(r))
# => Float32[1.0f0,1.0f0]





As we can see, a has expected value, but instead of inplace updating, a new
NDArray is created and a is set to point to this new object. If we look
at r, which still reference to the old a, its content has not changed.
There is currently no way in Julia to overload the operators like += to get customized behavior.

Instead, you will need to write a[:] = a+b, or if you want real inplace
+= operation, MXNet.jl provides a simple macro @mx.inplace:

@mx.inplace a += b
macroexpand(:(@mx.inplace a += b))
# => :(MXNet.mx.add_to!(a,b))





As we can see, it translate the += operator to an explicit add_to!
function call, which invokes into libmxnet to add the contents of b into
a directly. For example, the following is the update rule in the SGD
Optimizer (both grad and weight are NDArray objects):

@inplace weight += -lr * (grad_scale * grad + self.weight_decay * weight)





Note there is no much magic in mx.inplace: it only does a shallow
translation. In the SGD update rule example above, the computation like scaling
the gradient by grad_scale and adding the weight decay all create temporary
NDArray objects. To mitigate this issue, libmxnet has a customized memory
allocator designed specifically to handle this kind of situations. The following
snippet does a simple benchmark on allocating temp NDArray vs. pre-allocating:

using Benchmark
using MXNet

N_REP = 1000
SHAPE = (128, 64)
CTX   = mx.cpu()
LR    = 0.1

function inplace_op()
  weight = mx.zeros(SHAPE, CTX)
  grad   = mx.ones(SHAPE, CTX)

  # pre-allocate temp objects
  grad_lr = mx.empty(SHAPE, CTX)

  for i = 1:N_REP
    copy!(grad_lr, grad)
    @mx.inplace grad_lr .*= LR
    @mx.inplace weight -= grad_lr
  end
  return weight
end

function normal_op()
  weight = mx.zeros(SHAPE, CTX)
  grad   = mx.ones(SHAPE, CTX)

  for i = 1:N_REP
    weight[:] -= LR * grad
  end
  return weight
end

# make sure the results are the same
@assert(maximum(abs(copy(normal_op() - inplace_op()))) < 1e-6)

println(compare([inplace_op, normal_op], 100))





The comparison on my laptop shows that normal_op while allocating a lot of
temp NDArray in the loop (the performance gets worse when increasing
N_REP), is only about twice slower than the pre-allocated one.










	Row

	Function

	Average

	Relative

	Replications





	1

	“inplace_op”

	0.0074854

	1.0

	100



	2

	“normal_op”

	0.0174202

	2.32723

	100






So it will usually not be a big problem unless you are at the bottleneck of the computation.




Distributed Key-value Store

The type KVStore and related methods are used for data sharing across
different devices or machines. It provides a simple and efficient
integer - NDArray key-value storage system that each device can pull or push.

The following example shows how to create a local KVStore, initialize a value and then pull it back.

kv    = mx.KVStore(:local)
shape = (2,3)
key   = 3

mx.init!(kv, key, mx.ones(shape)*2)
a = mx.empty(shape)
mx.pull!(kv, key, a) # pull value into a
println(copy(a))
# =>
# Float32[2.0 2.0 2.0
#        2.0 2.0 2.0]










Intermediate Level Interface


Symbols and Composition

The way we build deep learning models in MXNet.jl is to use the powerful
symbolic composition system. It is like Theano [http://deeplearning.net/software/theano/], except that we avoided long
expression compiliation time by providing larger neural network related
building blocks to guarantee computation performance. See also this note [http://mxnet.readthedocs.org/en/latest/program_model.html] for the design and trade-off of the MXNet symbolic composition system.

The basic type is mx.Symbol. The following is a trivial example of composing
two symbols with the + operation.

A = mx.Variable(:A)
B = mx.Variable(:B)
C = A + B





We get a new symbol by composing existing symbols by some operations. A hierarchical architecture of a deep neural network could be realized by recursive composition. For example, the following code snippet shows a simple 2-layer MLP construction, using a hidden layer of 128 units and a ReLU activation function.

net = mx.Variable(:data)
net = mx.FullyConnected(data=net, name=:fc1, num_hidden=128)
net = mx.Activation(data=net, name=:relu1, act_type=:relu)
net = mx.FullyConnected(data=net, name=:fc2, num_hidden=64)
net = mx.Softmax(data=net, name=:out)





Each time we take the previous symbol, and compose with an operation. Unlike the
simple + example above, the operations here are “bigger” ones, that correspond to common computation layers in deep neural networks.

Each of those operation takes one or more input symbols for composition, with
optional hyper-parameters (e.g. num_hidden, act_type) to further customize the composition results.

When applying those operations, we can also specify a name for the result symbol. This is convenient if we want to refer to this symbol later on. If not supplied, a name will be automatically generated.

Each symbol takes some arguments. For example, in the + case above, to
compute the value of C, we will need to know the values of the two inputs
A and B. For neural networks, the arguments are primarily two categories: inputs and parameters. inputs are data and labels for the networks, while parameters are typically trainable weights, bias, filters.

When composing symbols, their arguments accumulates. We can list all the arguments by

julia> mx.list_arguments(net)
6-element Array{Symbol,1}:
 :data         # Input data, name from the first data variable
 :fc1_weight   # Weights of the fully connected layer named :fc1
 :fc1_bias     # Bias of the layer :fc1
 :fc2_weight   # Weights of the layer :fc2
 :fc2_bias     # Bias of the layer :fc2
 :out_label    # Input label, required by the softmax layer named :out





Note the names of the arguments are generated according to the provided name for each layer. We can also specify those names explicitly:

net = mx.Variable(:data)
w   = mx.Variable(:myweight)
net = mx.FullyConnected(data=data, weight=w, name=:fc1, num_hidden=128)
mx.list_arguments(net)
# =>
# 3-element Array{Symbol,1}:
#  :data
#  :myweight
#  :fc1_bias





The simple fact is that a Variable is just a placeholder mx.Symbol. In composition, we can use arbitrary symbols for arguments. For example:

net  = mx.Variable(:data)
net  = mx.FullyConnected(data=net, name=:fc1, num_hidden=128)
net2 = mx.Variable(:data2)
net2 = mx.FullyConnected(data=net2, name=:net2, num_hidden=128)
mx.list_arguments(net2)
# =>
# 3-element Array{Symbol,1}:
#  :data2
#  :net2_weight
#  :net2_bias
composed_net = net2(data2=net, name=:composed)
mx.list_arguments(composed_net)
# =>
# 5-element Array{Symbol,1}:
#  :data
#  :fc1_weight
#  :fc1_bias
#  :net2_weight
#  :net2_bias





Note we use a composed symbol, net as the argument data2 for net2 to
get a new symbol, which we named :composed. It also shows that a symbol itself is a call-able object, which can be invoked to fill in missing arguments and get more complicated symbol compositions.




Shape Inference

Given enough information, the shapes of all arguments in a composed symbol could
be inferred automatically. For example, given the input shape, and some
hyper-parameters like num_hidden, the shapes for the weights and bias in a neural network could be inferred.

net = mx.Variable(:data)
net = mx.FullyConnected(data=net, name=:fc1, num_hidden=10)
arg_shapes, out_shapes, aux_shapes = mx.infer_shape(net, data=(10, 64))





The returned shapes corresponds to arguments with the same order as returned by
mx.list_arguments. The out_shapes are shapes for outputs, and
aux_shapes can be safely ignored for now.

for (n,s) in zip(mx.list_arguments(net), arg_shapes)
  println("$n => $s")
end
# =>
# data => (10,64)
# fc1_weight => (10,10)
# fc1_bias => (10,)
for (n,s) in zip(mx.list_outputs(net), out_shapes)
  println("$n => $s")
end
# =>
# fc1_output => (10,64)








Binding and Executing

In order to execute the computation graph specified a composed symbol, we will
bind the free variables to concrete values, specified as mx.NDArray. This
will create an mx.Executor on a given mx.Context. A context describes the computation devices (CPUs, GPUs, etc.) and an executor will carry out the computation (forward/backward) specified in the corresponding symbolic composition.

A = mx.Variable(:A)
B = mx.Variable(:B)
C = A .* B
a = mx.ones(3) * 4
b = mx.ones(3) * 2
c_exec = mx.bind(C, context=mx.cpu(), args=Dict(:A => a, :B => b))

mx.forward(c_exec)
copy(c_exec.outputs[1])  # copy turns NDArray into Julia Array
# =>
# 3-element Array{Float32,1}:
#  8.0
#  8.0
#  8.0





For neural networks, it is easier to use simple_bind. By providing the shape
for input arguments, it will perform a shape inference for the rest of the
arguments and create the NDArray automatically. In practice, the binding and
executing steps are hidden under the Model interface.

TODO Provide pointers to model tutorial and further details about binding and symbolic API.






High Level Interface

The high level interface include model training and prediction API, etc.







          

      

      

    

  

    
      
          
            
  
FAQ


Running MXNet on AWS GPU instances

See the discussions and notes here [https://github.com/dmlc/MXNet.jl/issues/43].







          

      

      

    

  

    
      
          
            
  
Context


	
class Context

	A context describes the device type and id on which computation should be carried on.






	
cpu(dev_id=0)

	
	Parameters

	dev_id (Int) – the CPU id.





Get a CPU context with a specific id. cpu() is usually the default context for many
operations when no context is specified.






	
gpu(dev_id=0)

	
	Parameters

	dev_id (Int) – the GPU device id.





Get a GPU context with a specific id. The K GPUs on a node is typically numbered as 0,…,K-1.









          

      

      

    

  

    
      
          
            
  
Models

The model API provides convenient high-level interface to do training and predicting on
a network described using the symbolic API.


	
class AbstractModel

	The abstract super type of all models in MXNet.jl.






	
class FeedForward

	The feedforward model provides convenient interface to train and predict on
feedforward architectures like multi-layer MLP, ConvNets, etc. There is no
explicitly handling of time index, but it is relatively easy to implement
unrolled RNN / LSTM under this framework (TODO: add example). For models
that handles sequential data explicitly, please use TODO…






	
FeedForward(arch :: SymbolicNode, ctx)

	
	Parameters

	
	arch – the architecture of the network constructed using the symbolic API.


	ctx – the devices on which this model should do computation. It could be a single Context
or a list of Context objects. In the latter case, data parallelization will be used
for training. If no context is provided, the default context cpu() will be used.













	
init_model(self, initializer; overwrite=false, input_shapes...)

	Initialize the weights in the model.

This method will be called automatically when training a model. So there is usually no
need to call this method unless one needs to inspect a model with only randomly initialized
weights.


	Parameters

	
	self (FeedForward) – the model to be initialized.


	initializer (AbstractInitializer) – an initializer describing how the weights should be initialized.


	overwrite (Bool) – keyword argument, force initialization even when weights already exists.


	input_shapes – the shape of all data and label inputs to this model, given as keyword arguments.
For example, data=(28,28,1,100), label=(100,).













	
predict(self, data; overwrite=false, callback=nothing)

	Predict using an existing model. The model should be already initialized, or trained or loaded from
a checkpoint. There is an overloaded function that allows to pass the callback as the first argument,
so it is possible to do

predict(model, data) do batch_output
  # consume or write batch_output to file
end






	Parameters

	
	self (FeedForward) – the model.


	data (AbstractDataProvider) – the data to perform prediction on.


	overwrite (Bool) – an Executor is initialized the first time predict is called. The memory
allocation of the Executor depends on the mini-batch size of the test
data provider. If you call predict twice with data provider of the same batch-size,
then the executor can be potentially be re-used. So, if overwrite is false,
we will try to re-use, and raise an error if batch-size changed. If overwrite
is true (the default), a new Executor will be created to replace the old one.









Note

Prediction is computationally much less costly than training, so the bottleneck sometimes becomes the IO
for copying mini-batches of data. Since there is no concern about convergence in prediction, it is better
to set the mini-batch size as large as possible (limited by your device memory) if prediction speed is a
concern.

For the same reason, currently prediction will only use the first device even if multiple devices are
provided to construct the model.




Note

If you perform further after prediction. The weights are not automatically synchronized if overwrite
is set to false and the old predictor is re-used. In this case
setting overwrite to true (the default) will re-initialize the predictor the next time you call
predict and synchronize the weights again.




	Seealso

	train(), fit(), init_model(), load_checkpoint()










	
train(model :: FeedForward, ...)

	Alias to fit().






	
fit(model :: FeedForward, optimizer, data; kwargs...)

	Train the model on data with the optimizer.


	Parameters

	
	model (FeedForward) – the model to be trained.


	optimizer (AbstractOptimizer) – the optimization algorithm to use.


	data (AbstractDataProvider) – the training data provider.


	n_epoch (Int) – default 10, the number of full data-passes to run.


	eval_data (AbstractDataProvider) – keyword argument, default nothing. The data provider for
the validation set.


	eval_metric (AbstractEvalMetric) – keyword argument, default Accuracy(). The metric used
to evaluate the training performance. If eval_data is provided, the same metric is also
calculated on the validation set.


	kvstore (KVStore or Base.Symbol) – keyword argument, default :local. The key-value store used to synchronize gradients
and parameters when multiple devices are used for training.


	initializer (AbstractInitializer) – keyword argument, default UniformInitializer(0.01).


	force_init (Bool) – keyword argument, default false. By default, the random initialization using the
provided initializer will be skipped if the model weights already exists, maybe from a previous
call to train() or an explicit call to init_model() or load_checkpoint(). When
this option is set, it will always do random initialization at the begining of training.


	callbacks (Vector{AbstractCallback}) – keyword argument, default []. Callbacks to be invoked at each epoch or mini-batch,
see AbstractCallback.
















          

      

      

    

  

    
      
          
            
  
Initializers


Interface


	
class AbstractInitializer

	The abstract base class for all initializers.





To define a new initializer, it is
enough to derive a new type, and implement one or more of the following methods:


	
_init_weight(self :: AbstractInitializer, name :: Base.Symbol, array :: NDArray)

	




	
_init_bias(self :: AbstractInitializer, name :: Base.Symbol, array :: NDArray)

	




	
_init_gamma(self :: AbstractInitializer, name :: Base.Symbol, array :: NDArray)

	




	
_init_beta(self :: AbstractInitializer, name :: Base.Symbol, array :: NDArray)

	



Or, if full behavior customization is needed, override the following function


	
init(self :: AbstractInitializer, name :: Base.Symbol, array :: NDArray)

	






Built-in initializers


	
class UniformInitializer

	Initialize weights according to a uniform distribution within the provided scale.






	
class NormalInitializer

	Initialize weights according to a univariate Gaussian distribution.






	
NormalIninitializer(; mu=0, sigma=0.01)

	Construct a NormalInitializer with mean mu and variance sigma.






	
class XavierInitializer

	The initializer documented in the paper [Bengio and Glorot 2010]: Understanding
the difficulty of training deep feedforward neuralnetworks.

There are several different version of the XavierInitializer used in the wild.
The general idea is that the variance of the initialization distribution is controlled
by the dimensionality of the input and output. As a distribution one can either choose
a normal distribution with μ = 0 and σ² or a uniform distribution from -σ to σ.

Several different ways of calculating the variance are given in the literature or are
used by various libraries.


	[Bengio and Glorot 2010]: mx.XavierInitializer(distribution = mx.xv_uniform, regularization = mx.xv_avg, magnitude = 1)


	[K. He, X. Zhang, S. Ren, and J. Sun 2015]: mx.XavierInitializer(distribution = mx.xv_gaussian, regularization = mx.xv_in, magnitude = 2)


	caffe_avg: mx.XavierInitializer(distribution = mx.xv_uniform, regularization = mx.xv_avg, magnitude = 3)














          

      

      

    

  

    
      
          
            
  
Optimizers


Common interfaces


	
class AbstractOptimizer

	Base type for all optimizers.






	
class AbstractLearningRateScheduler

	Base type for all learning rate scheduler.






	
class AbstractMomentumScheduler

	Base type for all momentum scheduler.






	
class OptimizationState

	
	
batch_size

	The size of the mini-batch used in stochastic training.






	
curr_epoch

	The current epoch count. Epoch 0 means no training yet, during the first
pass through the data, the epoch will be 1; during the second pass, the
epoch count will be 1, and so on.






	
curr_batch

	The current mini-batch count. The batch count is reset during every epoch.
The batch count 0 means the beginning of each epoch, with no mini-batch
seen yet. During the first mini-batch, the mini-batch count will be 1.






	
curr_iter

	The current iteration count. One iteration corresponds to one mini-batch,
but unlike the mini-batch count, the iteration count does not reset
in each epoch. So it track the total number of mini-batches seen so far.










	
get_learning_rate(scheduler, state)

	
	Parameters

	
	scheduler (AbstractLearningRateScheduler) – a learning rate scheduler.


	state (OptimizationState) – the current state about epoch, mini-batch and iteration count.






	Returns

	the current learning rate.










	
class LearningRate.Fixed

	Fixed learning rate scheduler always return the same learning rate.






	
class LearningRate.Exp

	\(\eta_t = \eta_0\gamma^t\). Here \(t\) is the epoch count, or the iteration
count if decay_on_iteration is set to true.






	
class LearningRate.Inv

	\(\eta_t = \eta_0 * (1 + \gamma * t)^(-power)\).
Here \(t\) is the epoch count, or the iteration count if decay_on_iteration
is set to true.






	
get_momentum(scheduler, state)

	
	Parameters

	
	scheduler (AbstractMomentumScheduler) – the momentum scheduler.


	state (OptimizationState) – the state about current epoch, mini-batch and iteration count.






	Returns

	the current momentum.










	
class Momentum.Null

	The null momentum scheduler always returns 0 for momentum. It is also used to
explicitly indicate momentum should not be used.






	
class Momentum.Fixed

	Fixed momentum scheduler always returns the same value.






	
get_updater(optimizer)

	
	Parameters

	optimizer (AbstractOptimizer) – the underlying optimizer.





A utility function to create an updater function, that uses its closure to
store all the states needed for each weights.








Built-in optimizers


	
class AbstractOptimizerOptions

	Base class for all optimizer options.






	
normalized_gradient(opts, state, grad)

	
	Parameters

	
	opts (AbstractOptimizerOptions) – options for the optimizer, should contain the field
grad_scale, grad_clip and weight_decay.


	state (OptimizationState) – the current optimization state.


	weight (NDArray) – the trainable weights.


	grad (NDArray) – the original gradient of the weights.








Get the properly normalized gradient (re-scaled and clipped if necessary).






	
class SGD

	Stochastic gradient descent optimizer.


	
SGD(; kwargs...)

	
	Parameters

	
	lr (Real) – default 0.01, learning rate.


	lr_scheduler (AbstractLearningRateScheduler) – default nothing, a
dynamic learning rate scheduler. If set, will overwrite the lr
parameter.


	momentum (Real) – default 0.0, the momentum.


	momentum_scheduler (AbstractMomentumScheduler) – default nothing,
a dynamic momentum scheduler. If set, will overwrite the momentum
parameter.


	grad_clip (Real) – default 0, if positive, will clip the gradient
into the bounded range [-grad_clip, grad_clip].


	weight_decay (Real) – default 0.0001, weight decay is equivalent to
adding a global l2 regularizer to the parameters.

















	
class ADAM

	The solver described in Diederik Kingma, Jimmy Ba: Adam: A Method for
Stochastic Optimization. arXiv:1412.6980 [cs.LG].


	
ADAM(; kwargs...)

	
	Parameters

	
	lr (Real) – default 0.001, learning rate.


	lr_scheduler (AbstractLearningRateScheduler) – default nothing, a
dynamic learning rate scheduler. If set, will overwrite the lr
parameter.


	beta1 (Real) – default 0.9.


	beta2 (Real) – default 0.999.


	epsilon (Real) – default 1e-8.


	grad_clip (Real) – default 0, if positive, will clip the gradient
into the range [-grad_clip, grad_clip].


	weight_decay (Real) – default 0.00001, weight decay is equivalent
to adding a global l2 regularizer for all the parameters.






















          

      

      

    

  

    
      
          
            
  
Callbacks in training


	
class AbstractCallback

	Abstract type of callback functions used in training.






	
class AbstractBatchCallback

	Abstract type of callbacks to be called every mini-batch.






	
class AbstractEpochCallback

	Abstract type of callbacks to be called every epoch.






	
every_n_batch(callback :: Function, n :: Int; call_on_0 = false)

	A convenient function to construct a callback that runs every n mini-batches.


	Parameters

	call_on_0 (Int) – keyword argument, default false. Unless set, the callback
will not be run on batch 0.





For example, the speedometer() callback is defined as

every_n_iter(frequency, call_on_0=true) do state :: OptimizationState
  if state.curr_batch == 0
    # reset timer
  else
    # compute and print speed
  end
end






	Seealso

	every_n_epoch(), speedometer().










	
speedometer(; frequency=50)

	Create an AbstractBatchCallback that measure the training speed
(number of samples processed per second) every k mini-batches.


	Parameters

	frequency (Int) – keyword argument, default 50. The frequency (number of
min-batches) to measure and report the speed.










	
every_n_epoch(callback :: Function, n :: Int; call_on_0 = false)

	A convenient function to construct a callback that runs every n full data-passes.


	Parameters

	call_on_0 (Int) – keyword argument, default false. Unless set, the callback
will not be run on epoch 0. Epoch 0 means no training has been performed
yet. This is useful if you want to inspect the randomly initialized model
that has not seen any data yet.



	Seealso

	every_n_iter().










	
do_checkpoint(prefix; frequency=1, save_epoch_0=false)

	Create an AbstractEpochCallback that save checkpoints of the model to disk.
The checkpoints can be loaded back later on.


	Parameters

	
	prefix (AbstractString) – the prefix of the filenames to save the model. The model
architecture will be saved to prefix-symbol.json, while the weights will be saved
to prefix-0012.params, for example, for the 12-th epoch.


	frequency (Int) – keyword argument, default 1. The frequency (measured in epochs) to
save checkpoints.


	save_epoch_0 (Bool) – keyword argument, default false. Whether we should save a
checkpoint for epoch 0 (model initialized but not seen any data yet).
















          

      

      

    

  

    
      
          
            
  
Evaluation Metrics

Evaluation metrics provide a way to evaluate the performance of a learned model.
This is typically used during training to monitor performance on the validation
set.


	
class AbstractEvalMetric

	The base class for all evaluation metrics. The sub-types should implement the following
interfaces.


	
update!(metric, labels, preds)

	Update and accumulate metrics.


	Parameters

	
	metric (AbstractEvalMetric) – the metric object.


	labels (Vector{NDArray}) – the labels from the data provider.


	preds (Vector{NDArray}) – the outputs (predictions) of the network.













	
reset!(metric)

	Reset the accumulation counter.






	
get(metric)

	Get the accumulated metrics.


	Returns

	Vector{Tuple{Base.Symbol, Real}}, a list of name-value pairs. For
example, [(:accuracy, 0.9)].














	
class Accuracy

	Multiclass classification accuracy.

Calculates the mean accuracy per sample for softmax in one dimension.
For a multi-dimensional softmax the mean accuracy over all dimensions is calculated.






	
class MSE

	Mean Squared Error. TODO: add support for multi-dimensional outputs.

Calculates the mean squared error regression loss in one dimension.









          

      

      

    

  

    
      
          
            
  
Data Providers


Interface

Data providers are wrappers that load external data, be it images, text, or general tensors,
and split it into mini-batches so that the model can consume the data in a uniformed way.


	
class AbstractDataProvider

	The root type for all data provider. A data provider should implement the following interfaces:


	
get_batch_size(provider) → Int

	
	Parameters

	provider (AbstractDataProvider) – the data provider.



	Returns

	the mini-batch size of the provided data. All the provided data should have the
same mini-batch size (i.e. the last dimension).










	
provide_data(provider) → Vector{Tuple{Base.Symbol, Tuple}}

	
	Parameters

	provider (AbstractDataProvider) – the data provider.



	Returns

	a vector of (name, shape) pairs describing the names of the data it provides, and
the corresponding shapes.










	
provide_label(provider) → Vector{Tuple{Base.Symbol, Tuple}}

	
	Parameters

	provider (AbstractDataProvider) – the data provider.



	Returns

	a vector of (name, shape) pairs describing the names of the labels it provides, and
the corresponding shapes.









The difference between data and label is that during
training stage, both data and label will be feeded into the model, while during
prediction stage, only data is loaded. Otherwise, they could be anything, with any names, and
of any shapes. The provided data and label names here should match the input names in a target
SymbolicNode.

A data provider should also implement the Julia iteration interface, in order to allow iterating
through the data set. The provider will be called in the following way:

for batch in eachbatch(provider)
  data = get_data(provider, batch)
end





which will be translated by Julia compiler into

state = Base.start(eachbatch(provider))
while !Base.done(provider, state)
  (batch, state) = Base.next(provider, state)
  data = get_data(provider, batch)
end





By default, eachbatch() simply returns the provider itself, so the iterator interface
is implemented on the provider type itself. But the extra layer of abstraction allows us to
implement a data provider easily via a Julia Task coroutine. See the
data provider defined in the char-lstm example for an example of using coroutine to define data
providers.





The detailed interface functions for the iterator API is listed below:


	
Base.eltype(provider) → AbstractDataBatch

	
	Parameters

	provider (AbstractDataProvider) – the data provider.



	Returns

	the specific subtype representing a data batch. See AbstractDataBatch.










	
Base.start(provider) → AbstractDataProviderState

	
	Parameters

	provider (AbstractDataProvider) – the data provider.





This function is always called before iterating into the dataset. It should initialize
the iterator, reset the index, and do data shuffling if needed.






	
Base.done(provider, state) → Bool

	
	Parameters

	
	provider (AbstractDataProvider) – the data provider.


	state (AbstractDataProviderState) – the state returned by Base.start() Base.next().






	Returns

	true if there is no more data to iterate in this dataset.










	
Base.next(provider) -> (AbstractDataBatch, AbstractDataProviderState)

	
	Parameters

	provider (AbstractDataProvider) – the data provider.



	Returns

	the current data batch, and the state for the next iteration.









Note sometimes you are wrapping an existing data iterator (e.g. the built-in libmxnet data iterator) that
is built with a different convention. It might be difficult to adapt to the interfaces stated here. In this
case, you can safely assume that


	Base.start() will always be called, and called only once before the iteration starts.


	Base.done() will always be called at the beginning of every iteration and always be called once.


	If Base.done() return true, the iteration will stop, until the next round, again, starting with
a call to Base.start().


	Base.next() will always be called only once in each iteration. It will always be called after
one and only one call to Base.done(); but if Base.done() returns true, Base.next() will
not be called.




With those assumptions, it will be relatively easy to adapt any existing iterator. See the implementation
of the built-in MXDataProvider for example.


Caution

Please do not use the one data provider simultaneously in two different places, either in parallel,
or in a nested loop. For example, the behavior for the following code is undefined

for batch in data
  # updating the parameters

  # now let's test the performance on the training set
  for b2 in data
    # ...
  end
end








	
class AbstractDataProviderState

	Base type for data provider states.






	
class AbstractDataBatch

	Base type for a data mini-batch. It should implement the following interfaces:


	
count_samples(provider, batch) → Int

	
	Parameters

	batch (AbstractDataBatch) – the data batch object.



	Returns

	the number of samples in this batch. This number should be greater than 0, but
less than or equal to the batch size. This is used to indicate at the end of
the data set, there might not be enough samples for a whole mini-batch.










	
get_data(provider, batch) → Vector{NDArray}

	
	Parameters

	
	provider (AbstractDataProvider) – the data provider.


	batch (AbstractDataBatch) – the data batch object.






	Returns

	a vector of data in this batch, should be in the same order as declared in
provide_data().

The last dimension of each NDArray should always match the batch_size, even when
count_samples() returns a value less than the batch size. In this case,
the data provider is free to pad the remaining contents with any value.












	
get_label(provider, batch) → Vector{NDArray}

	
	Parameters

	
	provider (AbstractDataProvider) – the data provider.


	batch (AbstractDataBatch) – the data batch object.






	Returns

	a vector of labels in this batch. Similar to get_data().









The following utility functions will be automatically defined.


	
get(provider, batch, name) → NDArray

	
	Parameters

	
	provider (AbstractDataProvider) – the data provider.


	batch (AbstractDataBatch) – the data batch object.


	name (Base.Symbol) – the name of the data to get, should be one of the names
provided in either provide_data()
or provide_label().






	Returns

	the corresponding data array corresponding to that name.










	
load_data!(provider, batch, targets)

	
	Parameters

	
	provider (AbstractDataProvider) – the data provider.


	batch (AbstractDataBatch) – the data batch object.


	targets (Vector{Vector{SlicedNDArray}}) – the targets to load data into.








The targets is a list of the same length as number of data provided by this provider.
Each element in the list is a list of SlicedNDArray. This list described a
spliting scheme of this data batch into different slices, each slice is specified by
a slice-ndarray pair, where slice specify the range of samples in the mini-batch
that should be loaded into the corresponding ndarray.

This utility function is used in data parallelization, where a mini-batch is splited
and computed on several different devices.






	
load_label!(provider, batch, targets)

	
	Parameters

	
	provider (AbstractDataProvider) – the data provider.


	batch (AbstractDataBatch) – the data batch object.


	targets (Vector{Vector{SlicedNDArray}}) – the targets to load label into.








The same as load_data!(), except that this is for loading labels.










	
class DataBatch

	A basic subclass of AbstractDataBatch, that implement the interface by
accessing member fields.






	
class SlicedNDArray

	A alias type of Tuple{UnitRange{Int},NDArray}.








Built-in data providers


	
class ArrayDataProvider

	A convenient tool to iterate NDArray or Julia Array.






	
ArrayDataProvider(data[, label]; batch_size, shuffle, data_padding, label_padding)

	Construct a data provider from NDArray or Julia Arrays.


	Parameters

	
	data – the data, could be


	a NDArray, or a Julia Array. This is equivalent to :data => data.


	a name-data pair, like :mydata => array, where :mydata is the name of the data
and array is an NDArray or a Julia Array.


	a list of name-data pairs.







	label – the same as the data parameter. When this argument is omitted, the constructed
provider will provide no labels.


	batch_size (Int) – the batch size, default is 0, which means treating the whole array as a
single mini-batch.


	shuffle (Bool) – turn on if the data should be shuffled at every epoch.


	data_padding (Real) – when the mini-batch goes beyond the dataset boundary, there might
be less samples to include than a mini-batch. This value specify a scalar to pad the
contents of all the missing data points.


	label_padding (Real) – the same as data_padding, except for the labels.








TODO: remove data_padding and label_padding, and implement rollover that copies
the last or first several training samples to feed the padding.








libmxnet data providers


	
class MXDataProvider

	A data provider that wrap built-in data iterators from libmxnet. See below for
a list of built-in data iterators.






	
CSVIter(...)

	Can also be called with the alias CSVProvider.
Create iterator for dataset in csv.


	Parameters

	
	data_name (Base.Symbol) – keyword argument, default :data. The name of the data.


	label_name (Base.Symbol) – keyword argument, default :softmax_label. The name of the label. Could be nothing if no label is presented in this dataset.


	data_csv (string, required) – Dataset Param: Data csv path.


	data_shape (Shape(tuple), required) – Dataset Param: Shape of the data.


	label_csv (string, optional, default='NULL') – Dataset Param: Label csv path. If is NULL, all labels will be returned as 0


	label_shape (Shape(tuple), optional, default=(1,)) – Dataset Param: Shape of the label.






	Returns

	the constructed MXDataProvider.










	
ImageRecordIter(...)

	Can also be called with the alias ImageRecordProvider.
Create iterator for dataset packed in recordio.


	Parameters

	
	data_name (Base.Symbol) – keyword argument, default :data. The name of the data.


	label_name (Base.Symbol) – keyword argument, default :softmax_label. The name of the label. Could be nothing if no label is presented in this dataset.


	path_imglist (string, optional, default='') – Dataset Param: Path to image list.


	path_imgrec (string, optional, default='./data/imgrec.rec') – Dataset Param: Path to image record file.


	label_width (int, optional, default='1') – Dataset Param: How many labels for an image.


	data_shape (Shape(tuple), required) – Dataset Param: Shape of each instance generated by the DataIter.


	preprocess_threads (int, optional, default='4') – Backend Param: Number of thread to do preprocessing.


	verbose (boolean, optional, default=True) – Auxiliary Param: Whether to output parser information.


	num_parts (int, optional, default='1') – partition the data into multiple parts


	part_index (int, optional, default='0') – the index of the part will read


	shuffle (boolean, optional, default=False) – Augmentation Param: Whether to shuffle data.


	seed (int, optional, default='0') – Augmentation Param: Random Seed.


	batch_size (int (non-negative), required) – Batch Param: Batch size.


	round_batch (boolean, optional, default=True) – Batch Param: Use round robin to handle overflow batch.


	prefetch_buffer (, optional, default=4) – Backend Param: Number of prefetched parameters


	rand_crop (boolean, optional, default=False) – Augmentation Param: Whether to random crop on the image


	crop_y_start (int, optional, default='-1') – Augmentation Param: Where to nonrandom crop on y.


	crop_x_start (int, optional, default='-1') – Augmentation Param: Where to nonrandom crop on x.


	max_rotate_angle (int, optional, default='0') – Augmentation Param: rotated randomly in [-max_rotate_angle, max_rotate_angle].


	max_aspect_ratio (float, optional, default=0) – Augmentation Param: denotes the max ratio of random aspect ratio augmentation.


	max_shear_ratio (float, optional, default=0) – Augmentation Param: denotes the max random shearing ratio.


	max_crop_size (int, optional, default='-1') – Augmentation Param: Maximum crop size.


	min_crop_size (int, optional, default='-1') – Augmentation Param: Minimum crop size.


	max_random_scale (float, optional, default=1) – Augmentation Param: Maxmum scale ratio.


	min_random_scale (float, optional, default=1) – Augmentation Param: Minimum scale ratio.


	max_img_size (float, optional, default=1e+10) – Augmentation Param: Maxmum image size after resizing.


	min_img_size (float, optional, default=0) – Augmentation Param: Minimum image size after resizing.


	random_h (int, optional, default='0') – Augmentation Param: Maximum value of H channel in HSL color space.


	random_s (int, optional, default='0') – Augmentation Param: Maximum value of S channel in HSL color space.


	random_l (int, optional, default='0') – Augmentation Param: Maximum value of L channel in HSL color space.


	rotate (int, optional, default='-1') – Augmentation Param: Rotate angle.


	fill_value (int, optional, default='255') – Augmentation Param: Maximum value of illumination variation.


	inter_method (int, optional, default='1') – Augmentation Param: 0-NN 1-bilinear 2-cubic 3-area 4-lanczos4 9-auto 10-rand.


	mirror (boolean, optional, default=False) – Augmentation Param: Whether to mirror the image.


	rand_mirror (boolean, optional, default=False) – Augmentation Param: Whether to mirror the image randomly.


	mean_img (string, optional, default='') – Augmentation Param: Mean Image to be subtracted.


	mean_r (float, optional, default=0) – Augmentation Param: Mean value on R channel.


	mean_g (float, optional, default=0) – Augmentation Param: Mean value on G channel.


	mean_b (float, optional, default=0) – Augmentation Param: Mean value on B channel.


	mean_a (float, optional, default=0) – Augmentation Param: Mean value on Alpha channel.


	scale (float, optional, default=1) – Augmentation Param: Scale in color space.


	max_random_contrast (float, optional, default=0) – Augmentation Param: Maximum ratio of contrast variation.


	max_random_illumination (float, optional, default=0) – Augmentation Param: Maximum value of illumination variation.






	Returns

	the constructed MXDataProvider.










	
MNISTIter(...)

	Can also be called with the alias MNISTProvider.
Create iterator for MNIST hand-written digit number recognition dataset.


	Parameters

	
	data_name (Base.Symbol) – keyword argument, default :data. The name of the data.


	label_name (Base.Symbol) – keyword argument, default :softmax_label. The name of the label. Could be nothing if no label is presented in this dataset.


	image (string, optional, default='./train-images-idx3-ubyte') – Dataset Param: Mnist image path.


	label (string, optional, default='./train-labels-idx1-ubyte') – Dataset Param: Mnist label path.


	batch_size (int, optional, default='128') – Batch Param: Batch Size.


	shuffle (boolean, optional, default=True) – Augmentation Param: Whether to shuffle data.


	flat (boolean, optional, default=False) – Augmentation Param: Whether to flat the data into 1D.


	seed (int, optional, default='0') – Augmentation Param: Random Seed.


	silent (boolean, optional, default=False) – Auxiliary Param: Whether to print out data info.


	num_parts (int, optional, default='1') – partition the data into multiple parts


	part_index (int, optional, default='0') – the index of the part will read


	prefetch_buffer (, optional, default=4) – Backend Param: Number of prefetched parameters






	Returns

	the constructed MXDataProvider.















          

      

      

    

  

    
      
          
            
  
NDArray API


	
class NDArray

	Wrapper of the NDArray type in libmxnet. This is the basic building block
of tensor-based computation.


Note

since C/C++ use row-major ordering for arrays while Julia follows a
column-major ordering. To keep things consistent, we keep the underlying data
in their original layout, but use language-native convention when we talk
about shapes. For example, a mini-batch of 100 MNIST images is a tensor of
C/C++/Python shape (100,1,28,28), while in Julia, the same piece of memory
have shape (28,28,1,100).








	
context(arr :: NDArray)

	Get the context that this NDArray lives on.






	
empty(shape :: Tuple, ctx :: Context)

	
empty(shape :: Tuple)

	
empty(dim1, dim2, ...)

	Allocate memory for an uninitialized NDArray with specific shape.






Interface functions similar to Julia Arrays


	
zeros(shape :: Tuple, ctx :: Context)

	
zeros(shape :: Tuple)

	
zeros(dim1, dim2, ...)

	Create zero-ed NDArray with specific shape.






	
ones(shape :: Tuple, ctx :: Context)

	
ones(shape :: Tuple)

	
ones(dim1, dim2, ...)

	Create an NDArray with specific shape and initialize with 1.






	
size(arr :: NDArray)

	
size(arr :: NDArray, dim :: Int)

	Get the shape of an NDArray. The shape is in Julia’s column-major convention. See
also the notes on NDArray shapes.






	
length(arr :: NDArray)

	Get the number of elements in an NDArray.






	
ndims(arr :: NDArray)

	Get the number of dimensions of an NDArray. Is equivalent to length(size(arr)).






	
eltype(arr :: NDArray)

	Get the element type of an NDArray. Currently the element type is always mx.MX_float.






	
slice(arr :: NDArray, start:stop)

	Create a view into a sub-slice of an NDArray. Note only slicing at the slowest
changing dimension is supported. In Julia’s column-major perspective, this is the last
dimension. For example, given an NDArray of shape (2,3,4), slice(array, 2:3) will create
a NDArray of shape (2,3,2), sharing the data with the original array. This operation is
used in data parallelization to split mini-batch into sub-batches for different devices.






	
setindex!(arr :: NDArray, val, idx)

	Assign values to an NDArray. Elementwise assignment is not implemented, only the following
scenarios are supported


	arr[:] = val: whole array assignment, val could be a scalar or an array (Julia Array
or NDArray) of the same shape.


	arr[start:stop] = val: assignment to a slice, val could be a scalar or an array of
the same shape to the slice. See also slice().









	
getindex(arr :: NDArray, idx)

	Shortcut for slice(). A typical use is to write

arr[:] += 5





which translates into

arr[:] = arr[:] + 5





which furthur translates into

setindex!(getindex(arr, Colon()), 5, Colon())






Note

The behavior is quite different from indexing into Julia’s Array. For example, arr[2:5]
create a copy of the sub-array for Julia Array, while for NDArray, this is
a slice that shares the memory.










Copying functions


	
copy!(dst :: Union{NDArray, Array}, src :: Union{NDArray, Array})

	Copy contents of src into dst.






	
copy(arr :: NDArray)

	
copy(arr :: NDArray, ctx :: Context)

	
copy(arr :: Array, ctx :: Context)

	Create a copy of an array. When no Context is given, create a Julia Array.
Otherwise, create an NDArray on the specified context.






	
convert(::Type{Array{T}}, arr :: NDArray)

	Convert an NDArray into a Julia Array of specific type. Data will be copied.








Basic arithmetics


	
@inplace()

	Julia does not support re-definiton of += operator (like __iadd__ in python),
When one write a += b, it gets translated to a = a+b. a+b will allocate new
memory for the results, and the newly allocated NDArray object is then assigned
back to a, while the original contents in a is discarded. This is very inefficient
when we want to do inplace update.

This macro is a simple utility to implement this behavior. Write

@mx.inplace a += b





will translate into

mx.add_to!(a, b)





which will do inplace adding of the contents of b into a.






	
add_to!(dst :: NDArray, args :: Union{Real, NDArray}...)

	Add a bunch of arguments into dst. Inplace updating.






	
+(args...)

	
.+(args...)

	Summation. Multiple arguments of either scalar or NDArray could be
added together. Note at least the first or second argument needs to be an NDArray to
avoid ambiguity of built-in summation.






	
sub_from!(dst :: NDArray, args :: Union{Real, NDArray}...)

	Subtract a bunch of arguments from dst. Inplace updating.






	
-(arg0, arg1)

	
-(arg0)

	
.-(arg0, arg1)

	Subtraction arg0 - arg1, of scalar types or NDArray. Or create
the negative of arg0.






	
mul_to!(dst :: NDArray, arg :: Union{Real, NDArray})

	Elementwise multiplication into dst of either a scalar or an NDArray of the same shape.
Inplace updating.






	
.*(arg0, arg1)

	Elementwise multiplication of arg0 and arg, could be either scalar or NDArray.






	
*(arg0, arg1)

	Currently only multiplication a scalar with an NDArray is implemented. Matrix multiplication
is to be added soon.






	
div_from!(dst :: NDArray, arg :: Union{Real, NDArray})

	Elementwise divide a scalar or an NDArray of the same shape from dst. Inplace updating.






	
./(arg0 :: NDArray, arg :: Union{Real, NDArray})

	Elementwise dividing an NDArray by a scalar or another NDArray of the same shape.






	
/(arg0 :: NDArray, arg :: Real)

	Divide an NDArray by a scalar. Matrix division (solving linear systems) is not implemented yet.








Manipulating as Julia Arrays


	
@nd_as_jl(captures..., statement)

	A convenient macro that allows to operate NDArray as Julia Arrays. For example,

x = mx.zeros(3,4)
y = mx.ones(3,4)
z = mx.zeros((3,4), mx.gpu())

@mx.nd_as_jl ro=(x,y) rw=z begin
  # now x, y, z are just ordinary Julia Arrays
  z[:,1] = y[:,2]
  z[:,2] = 5
end





Under the hood, the macro convert all the declared captures from NDArray into Julia
Arrays, by using try_get_shared(). And automatically commit the modifications back into
the NDArray that is declared as rw. This is useful for fast prototyping and when
implement non-critical computations, such as AbstractEvalMetric.


Note


	Multiple rw and / or ro capture declaration could be made.


	The macro does not check to make sure that ro captures are not modified. If the
original NDArray lives in CPU memory, then it is very likely the corresponding
Julia Array shares data with the NDArray, so modifying the Julia Array will also
modify the underlying NDArray.


	More importantly, since the NDArray is
asynchronized, we will wait for writing for rw variables but wait only for reading
in ro variables. If we write into those ro variables, and if the memory is
shared, racing condition might happen, and the behavior is undefined.


	When an NDArray is declared to be captured as rw, its contents is always sync
back in the end.


	The execution results of the expanded macro is always nothing.


	The statements are wrapped in a let, thus locally introduced new variables will not be
available after the statements. So you will need to declare the variables before calling the
macro if needed.











	
try_get_shared(arr)

	Try to create a Julia array by sharing the data with the underlying NDArray.


	Parameters

	arr (NDArray) – the array to be shared.






Warning

The returned array does not guarantee to share data with the underlying NDArray.
In particular, data sharing is possible only when the NDArray lives on CPU.








	
is_shared(j_arr, arr)

	Test whether j_arr is sharing data with arr.


	Parameters

	
	j_arr (Array) – the Julia Array.


	arr (NDArray) – the NDArray.















IO


	
load(filename, ::Type{NDArray})

	Load NDArrays from binary file.


	Parameters

	filename (AbstractString) – the path of the file to load. It could be S3 or HDFS address.



	Returns

	Either Dict{Base.Symbol, NDArray} or Vector{NDArray}.





If the libmxnet is built with the corresponding component enabled. Examples


	s3://my-bucket/path/my-s3-ndarray


	hdfs://my-bucket/path/my-hdfs-ndarray


	/path-to/my-local-ndarray









	
save(filename :: AbstractString, data)

	Save NDarrays to binary file. Filename could be S3 or HDFS address, if libmxnet is built
with corresponding support.


	Parameters

	
	filename (AbstractString) – path to the binary file to write to.


	data (NDArray, or a Vector{NDArray} or a Dict{Base.Symbol, NDArray}.) – data to save to file.















libmxnet APIs

The libxmnet APIs are automatically imported from libmxnet.so. The functions listed
here operate on NDArray objects. The arguments to the functions are typically ordered
as

func_name(arg_in1, arg_in2, ..., scalar1, scalar2, ..., arg_out1, arg_out2, ...)





unless NDARRAY_ARG_BEFORE_SCALAR is not set. In this case, the scalars are put before the input arguments:

func_name(scalar1, scalar2, ..., arg_in1, arg_in2, ..., arg_out1, arg_out2, ...)





If ACCEPT_EMPTY_MUTATE_TARGET is set. An overloaded function without the output arguments will also be defined:

func_name(arg_in1, arg_in2, ..., scalar1, scalar2, ...)





Upon calling, the output arguments will be automatically initialized with empty NDArrays.

Those functions always return the output arguments. If there is only one output (the typical situation), that
object (NDArray) is returned. Otherwise, a tuple containing all the outputs will be returned.


Public APIs


	
abs(...)

	Take absolute value of the src


	Parameters

	src (NDArray) – Source input to the function










	
argmax_channel(...)

	Take argmax indices of each channel of the src.The result will be ndarray of shape (num_channel,) on the same device.


	Parameters

	src (NDArray) – Source input to the function










	
ceil(...)

	Take ceil value of the src


	Parameters

	src (NDArray) – Source input to the function










	
choose_element_0index(...)

	Choose one element from each line(row for python, column for R/Julia) in lhs according to index indicated by rhs. This function assume rhs uses 0-based index.


	Parameters

	
	lhs (NDArray) – Left operand to the function.


	rhs (NDArray) – Right operand to the function.













	
clip(...)

	Clip ndarray elements to range (a_min, a_max)


	Parameters

	
	src (NDArray) – Source input


	a_min (real_t) – Minimum value


	a_max (real_t) – Maximum value













	
cos(...)

	Take cos of the src


	Parameters

	src (NDArray) – Source input to the function










	
dot(...)

	Calculate 2D matrix multiplication


	Parameters

	
	lhs (NDArray) – Left operand to the function.


	rhs (NDArray) – Right operand to the function.













	
exp(...)

	Take exp of the src


	Parameters

	src (NDArray) – Source input to the function










	
fill_element_0index(...)

	Fill one element of each line(row for python, column for R/Julia) in lhs according to index indicated by rhs and values indicated by mhs. This function assume rhs uses 0-based index.


	Parameters

	
	lhs (NDArray) – Left operand to the function.


	mhs (NDArray) – Middle operand to the function.


	rhs (NDArray) – Right operand to the function.













	
floor(...)

	Take floor value of the src


	Parameters

	src (NDArray) – Source input to the function










	
log(...)

	Take log of the src


	Parameters

	src (NDArray) – Source input to the function










	
max(...)

	Take max of the src.The result will be ndarray of shape (1,) on the same device.


	Parameters

	src (NDArray) – Source input to the function










	
min(...)

	Take min of the src.The result will be ndarray of shape (1,) on the same device.


	Parameters

	src (NDArray) – Source input to the function










	
norm(...)

	Take L2 norm of the src.The result will be ndarray of shape (1,) on the same device.


	Parameters

	src (NDArray) – Source input to the function










	
round(...)

	Take round value of the src


	Parameters

	src (NDArray) – Source input to the function










	
rsqrt(...)

	Take rsqrt of the src


	Parameters

	src (NDArray) – Source input to the function










	
sign(...)

	Take sign value of the src


	Parameters

	src (NDArray) – Source input to the function










	
sin(...)

	Take sin of the src


	Parameters

	src (NDArray) – Source input to the function










	
sqrt(...)

	Take sqrt of the src


	Parameters

	src (NDArray) – Source input to the function










	
square(...)

	Take square of the src


	Parameters

	src (NDArray) – Source input to the function










	
sum(...)

	Take sum of the src.The result will be ndarray of shape (1,) on the same device.


	Parameters

	src (NDArray) – Source input to the function












Internal APIs


Note

Document and signatures for internal API functions might be incomplete.




	
_copyto(...)

	
	Parameters

	src (NDArray) – Source input to the function.










	
_div(...)

	
	Parameters

	
	lhs (NDArray) – Left operand to the function.


	rhs (NDArray) – Right operand to the function.













	
_div_scalar(...)

	
	Parameters

	
	lhs (NDArray) – Left operand to the function.


	rhs (real_t) – Right operand to the function.













	
_imdecode(...)

	Decode an image, clip to (x0, y0, x1, y1), substract mean, and write to buffer


	Parameters

	
	mean (NDArray) – image mean


	index (int) – buffer position for output


	x0 (int) – x0


	y0 (int) – y0


	x1 (int) – x1


	y1 (int) – y1


	c (int) – channel


	size (int) – length of str_img













	
_minus(...)

	
	Parameters

	
	lhs (NDArray) – Left operand to the function.


	rhs (NDArray) – Right operand to the function.













	
_minus_scalar(...)

	
	Parameters

	
	lhs (NDArray) – Left operand to the function.


	rhs (real_t) – Right operand to the function.













	
_mul(...)

	
	Parameters

	
	lhs (NDArray) – Left operand to the function.


	rhs (NDArray) – Right operand to the function.













	
_mul_scalar(...)

	
	Parameters

	
	lhs (NDArray) – Left operand to the function.


	rhs (real_t) – Right operand to the function.













	
_onehot_encode(...)

	
	Parameters

	
	lhs (NDArray) – Left operand to the function.


	rhs (NDArray) – Right operand to the function.













	
_plus(...)

	
	Parameters

	
	lhs (NDArray) – Left operand to the function.


	rhs (NDArray) – Right operand to the function.













	
_plus_scalar(...)

	
	Parameters

	
	lhs (NDArray) – Left operand to the function.


	rhs (real_t) – Right operand to the function.













	
_random_gaussian(...)

	




	
_random_uniform(...)

	




	
_rdiv_scalar(...)

	
	Parameters

	
	lhs (NDArray) – Left operand to the function.


	rhs (real_t) – Right operand to the function.













	
_rminus_scalar(...)

	
	Parameters

	
	lhs (NDArray) – Left operand to the function.


	rhs (real_t) – Right operand to the function.













	
_set_value(...)

	
	Parameters

	src (real_t) – Source input to the function.

















          

      

      

    

  

    
      
          
            
  
Symbolic API


	
class SymbolicNode

	SymbolicNode is the basic building block of the symbolic graph in MXNet.jl.






	
deepcopy(self :: SymbolicNode)

	Make a deep copy of a SymbolicNode.






	
copy(self :: SymbolicNode)

	Make a copy of a SymbolicNode. The same as making a deep copy.






	
call(self :: SymbolicNode, args :: SymbolicNode...)

	
call(self :: SymbolicNode; kwargs...)

	Make a new node by composing self with args. Or the arguments
can be specified using keyword arguments.






	
list_arguments(self :: SymbolicNode)

	List all the arguments of this node. The argument for a node contains both
the inputs and parameters. For example, a FullyConnected node will
have both data and weights in its arguments. A composed node (e.g. a MLP) will
list all the arguments for intermediate nodes.


	Returns

	A list of symbols indicating the names of the arguments.










	
list_outputs(self :: SymbolicNode)

	List all the outputs of this node.


	Returns

	A list of symbols indicating the names of the outputs.










	
list_auxiliary_states(self :: SymbolicNode)

	List all auxiliary states in the symbool.

Auxiliary states are special states of symbols that do not corresponds to an argument,
and do not have gradient. But still be useful for the specific operations.
A common example of auxiliary state is the moving_mean and moving_variance in BatchNorm.
Most operators do not have Auxiliary states.


	Returns

	A list of symbols indicating the names of the auxiliary states.










	
get_internals(self :: SymbolicNode)

	Get a new grouped SymbolicNode whose output contains all the internal outputs of
this SymbolicNode.






	
get_attr(self :: SymbolicNode, key :: Symbol)

	Get attribute attached to this SymbolicNode belonging to key.
:return: The value belonging to key as a Nullable.






	
set_attr(self:: SymbolicNode, key :: Symbol, value :: AbstractString)

	Set the attribute key to value for this SymbolicNode.


Warning

It is encouraged not to call this function directly, unless you know exactly what you are doing. The
recommended way of setting attributes is when creating the SymbolicNode. Changing
the attributes of a SymbolicNode that is already been used somewhere else might
cause unexpected behavior and inconsistency.








	
Variable(name :: Union{Symbol, AbstractString})

	Create a symbolic variable with the given name. This is typically used as a placeholder.
For example, the data node, acting as the starting point of a network architecture.


	Parameters

	AbstractString} attrs (Dict{Symbol,) – The attributes associated with this Variable.










	
Group(nodes :: SymbolicNode...)

	Create a SymbolicNode by grouping nodes together.






	
infer_shape(self :: SymbolicNode; args...)

	
infer_shape(self :: SymbolicNode; kwargs...)

	Do shape inference according to the input shapes. The input shapes could be provided
as a list of shapes, which should specify the shapes of inputs in the same order as
the arguments returned by list_arguments(). Alternatively, the shape information
could be specified via keyword arguments.


	Returns

	A 3-tuple containing shapes of all the arguments, shapes of all the outputs and
shapes of all the auxiliary variables. If shape inference failed due to incomplete
or incompatible inputs, the return value will be (nothing, nothing, nothing).










	
getindex(self :: SymbolicNode, idx :: Union{Int, Base.Symbol, AbstractString})

	Get a node representing the specified output of this node. The index could be
a symbol or string indicating the name of the output, or a 1-based integer
indicating the index, as in the list of list_outputs().






	
to_json(self :: SymbolicNode)

	Convert a SymbolicNode into a JSON string.






	
from_json(repr :: AbstractString, ::Type{SymbolicNode})

	Load a SymbolicNode from a JSON string representation.






	
load(filename :: AbstractString, ::Type{SymbolicNode})

	Load a SymbolicNode from a JSON file.






	
save(filename :: AbstractString, node :: SymbolicNode)

	Save a SymbolicNode to a JSON file.






libmxnet APIs


Public APIs


	
Activation(...)

	Apply activation function to input.Softmax Activation is only available with CUDNN on GPUand will be computed at each location across channel if input is 4D.


	Parameters

	
	data (SymbolicNode) – Input data to activation function.


	act_type ({'relu', 'sigmoid', 'softrelu', 'tanh'}, required) – Activation function to be applied.


	name (Symbol) – The name of the SymbolicNode. (e.g. :my_symbol), optional.


	AbstractString} attrs (Dict{Symbol,) – The attributes associated with this SymbolicNode.






	Returns

	SymbolicNode.










	
BatchNorm(...)

	Apply batch normalization to input.


	Parameters

	
	data (SymbolicNode) – Input data to batch normalization


	eps (float, optional, default=0.001) – Epsilon to prevent div 0


	momentum (float, optional, default=0.9) – Momentum for moving average


	fix_gamma (boolean, optional, default=True) – Fix gamma while training


	name (Symbol) – The name of the SymbolicNode. (e.g. :my_symbol), optional.


	AbstractString} attrs (Dict{Symbol,) – The attributes associated with this SymbolicNode.






	Returns

	SymbolicNode.










	
BlockGrad(...)

	Get output from a symbol and pass 0 gradient back


	Parameters

	
	data (SymbolicNode) – Input data.


	name (Symbol) – The name of the SymbolicNode. (e.g. :my_symbol), optional.


	AbstractString} attrs (Dict{Symbol,) – The attributes associated with this SymbolicNode.






	Returns

	SymbolicNode.










	
Cast(...)

	Cast array to a different data type.


	Parameters

	
	data (SymbolicNode) – Input data to cast function.


	dtype ({'float16', 'float32', 'float64', 'int32', 'uint8'}, required) – Target data type.


	name (Symbol) – The name of the SymbolicNode. (e.g. :my_symbol), optional.


	AbstractString} attrs (Dict{Symbol,) – The attributes associated with this SymbolicNode.






	Returns

	SymbolicNode.










	
Concat(...)

	Perform an feature concat on channel dim (dim 1) over all the inputs.

This function support variable length positional SymbolicNode inputs.


	Parameters

	
	data (SymbolicNode[]) – List of tensors to concatenate


	num_args (int, required) – Number of inputs to be concated.


	dim (int, optional, default='1') – the dimension to be concated.


	name (Symbol) – The name of the SymbolicNode. (e.g. :my_symbol), optional.


	AbstractString} attrs (Dict{Symbol,) – The attributes associated with this SymbolicNode.






	Returns

	SymbolicNode.










	
Convolution(...)

	Apply convolution to input then add a bias.


	Parameters

	
	data (SymbolicNode) – Input data to the ConvolutionOp.


	weight (SymbolicNode) – Weight matrix.


	bias (SymbolicNode) – Bias parameter.


	kernel (Shape(tuple), required) – convolution kernel size: (y, x)


	stride (Shape(tuple), optional, default=(1,1)) – convolution stride: (y, x)


	dilate (Shape(tuple), optional, default=(1,1)) – convolution dilate: (y, x)


	pad (Shape(tuple), optional, default=(0,0)) – pad for convolution: (y, x)


	num_filter (int (non-negative), required) – convolution filter(channel) number


	num_group (int (non-negative), optional, default=1) – Number of groups partition. This option is not supported by CuDNN, you can use SliceChannel to num_group,apply convolution and concat instead to achieve the same need.


	workspace (long (non-negative), optional, default=512) – Tmp workspace for convolution (MB).


	no_bias (boolean, optional, default=False) – Whether to disable bias parameter.


	name (Symbol) – The name of the SymbolicNode. (e.g. :my_symbol), optional.


	AbstractString} attrs (Dict{Symbol,) – The attributes associated with this SymbolicNode.






	Returns

	SymbolicNode.










	
Crop(...)

	Crop the 2nd and 3rd dim of input data, with the corresponding size of w_h or with width and height of the second input symbol

This function support variable length positional SymbolicNode inputs.


	Parameters

	
	num_args (int, required) – Number of inputs for crop, if equals one, then we will use the h_wfor crop heihgt and width, else if equals two, then we will use the heightand width of the second input symbol, we name crop_like here


	offset (Shape(tuple), optional, default=(0,0)) – crop offset coordinate: (y, x)


	h_w (Shape(tuple), optional, default=(0,0)) – crop height and weight: (h, w)


	center_crop (boolean, optional, default=False) – If set to true, then it will use be the center_crop,or it will crop using the shape of crop_like


	name (Symbol) – The name of the SymbolicNode. (e.g. :my_symbol), optional.


	AbstractString} attrs (Dict{Symbol,) – The attributes associated with this SymbolicNode.






	Returns

	SymbolicNode.










	
Deconvolution(...)

	Apply deconvolution to input then add a bias.


	Parameters

	
	data (SymbolicNode) – Input data to the DeconvolutionOp.


	weight (SymbolicNode) – Weight matrix.


	bias (SymbolicNode) – Bias parameter.


	kernel (Shape(tuple), required) – deconvolution kernel size: (y, x)


	stride (Shape(tuple), optional, default=(1,1)) – deconvolution stride: (y, x)


	pad (Shape(tuple), optional, default=(0,0)) – pad for deconvolution: (y, x)


	num_filter (int (non-negative), required) – deconvolution filter(channel) number


	num_group (int (non-negative), optional, default=1) – number of groups partition


	workspace (long (non-negative), optional, default=512) – Tmp workspace for deconvolution (MB)


	no_bias (boolean, optional, default=True) – Whether to disable bias parameter.


	name (Symbol) – The name of the SymbolicNode. (e.g. :my_symbol), optional.


	AbstractString} attrs (Dict{Symbol,) – The attributes associated with this SymbolicNode.






	Returns

	SymbolicNode.










	
Dropout(...)

	Apply dropout to input


	Parameters

	
	data (SymbolicNode) – Input data to dropout.


	p (float, optional, default=0.5) – Fraction of the input that gets dropped out at training time


	name (Symbol) – The name of the SymbolicNode. (e.g. :my_symbol), optional.


	AbstractString} attrs (Dict{Symbol,) – The attributes associated with this SymbolicNode.






	Returns

	SymbolicNode.










	
ElementWiseSum(...)

	Perform an elementwise sum over all the inputs.

This function support variable length positional SymbolicNode inputs.


	Parameters

	
	num_args (int, required) – Number of inputs to be summed.


	name (Symbol) – The name of the SymbolicNode. (e.g. :my_symbol), optional.


	AbstractString} attrs (Dict{Symbol,) – The attributes associated with this SymbolicNode.






	Returns

	SymbolicNode.










	
Embedding(...)

	Get embedding for one-hot input


	Parameters

	
	data (SymbolicNode) – Input data to the EmbeddingOp.


	weight (SymbolicNode) – Enbedding weight matrix.


	input_dim (int, required) – input dim of one-hot encoding


	output_dim (int, required) – output dim of embedding


	name (Symbol) – The name of the SymbolicNode. (e.g. :my_symbol), optional.


	AbstractString} attrs (Dict{Symbol,) – The attributes associated with this SymbolicNode.






	Returns

	SymbolicNode.










	
Flatten(...)

	Flatten input


	Parameters

	
	data (SymbolicNode) – Input data to  flatten.


	name (Symbol) – The name of the SymbolicNode. (e.g. :my_symbol), optional.


	AbstractString} attrs (Dict{Symbol,) – The attributes associated with this SymbolicNode.






	Returns

	SymbolicNode.










	
FullyConnected(...)

	Apply matrix multiplication to input then add a bias.


	Parameters

	
	data (SymbolicNode) – Input data to the FullyConnectedOp.


	weight (SymbolicNode) – Weight matrix.


	bias (SymbolicNode) – Bias parameter.


	num_hidden (int, required) – Number of hidden nodes of the output.


	no_bias (boolean, optional, default=False) – Whether to disable bias parameter.


	name (Symbol) – The name of the SymbolicNode. (e.g. :my_symbol), optional.


	AbstractString} attrs (Dict{Symbol,) – The attributes associated with this SymbolicNode.






	Returns

	SymbolicNode.










	
IdentityAttachKLSparseReg(...)

	Apply a sparse regularization to the output a sigmoid activation function.


	Parameters

	
	data (SymbolicNode) – Input data.


	sparseness_target (float, optional, default=0.1) – The sparseness target


	penalty (float, optional, default=0.001) – The tradeoff parameter for the sparseness penalty


	momentum (float, optional, default=0.9) – The momentum for running average


	name (Symbol) – The name of the SymbolicNode. (e.g. :my_symbol), optional.


	AbstractString} attrs (Dict{Symbol,) – The attributes associated with this SymbolicNode.






	Returns

	SymbolicNode.










	
LRN(...)

	Apply convolution to input then add a bias.


	Parameters

	
	data (SymbolicNode) – Input data to the ConvolutionOp.


	alpha (float, optional, default=0.0001) – value of the alpha variance scaling parameter in the normalization formula


	beta (float, optional, default=0.75) – value of the beta power parameter in the normalization formula


	knorm (float, optional, default=2) – value of the k parameter in normalization formula


	nsize (int (non-negative), required) – normalization window width in elements.


	name (Symbol) – The name of the SymbolicNode. (e.g. :my_symbol), optional.


	AbstractString} attrs (Dict{Symbol,) – The attributes associated with this SymbolicNode.






	Returns

	SymbolicNode.










	
LeakyReLU(...)

	Apply activation function to input.


	Parameters

	
	data (SymbolicNode) – Input data to activation function.


	act_type ({'elu', 'leaky', 'prelu', 'rrelu'},optional, default='leaky') – Activation function to be applied.


	slope (float, optional, default=0.25) – Init slope for the activation. (For leaky and elu only)


	lower_bound (float, optional, default=0.125) – Lower bound of random slope. (For rrelu only)


	upper_bound (float, optional, default=0.334) – Upper bound of random slope. (For rrelu only)


	name (Symbol) – The name of the SymbolicNode. (e.g. :my_symbol), optional.


	AbstractString} attrs (Dict{Symbol,) – The attributes associated with this SymbolicNode.






	Returns

	SymbolicNode.










	
LinearRegressionOutput(...)

	Use linear regression for final output, this is used on final output of a net.


	Parameters

	
	data (SymbolicNode) – Input data to function.


	label (SymbolicNode) – Input label to function.


	grad_scale (float, optional, default=1) – Scale the gradient by a float factor


	name (Symbol) – The name of the SymbolicNode. (e.g. :my_symbol), optional.


	AbstractString} attrs (Dict{Symbol,) – The attributes associated with this SymbolicNode.






	Returns

	SymbolicNode.










	
LogisticRegressionOutput(...)

	Use Logistic regression for final output, this is used on final output of a net.
Logistic regression is suitable for binary classification or probability prediction tasks.


	Parameters

	
	data (SymbolicNode) – Input data to function.


	label (SymbolicNode) – Input label to function.


	grad_scale (float, optional, default=1) – Scale the gradient by a float factor


	name (Symbol) – The name of the SymbolicNode. (e.g. :my_symbol), optional.


	AbstractString} attrs (Dict{Symbol,) – The attributes associated with this SymbolicNode.






	Returns

	SymbolicNode.










	
MAERegressionOutput(...)

	Use mean absolute error regression for final output, this is used on final output of a net.


	Parameters

	
	data (SymbolicNode) – Input data to function.


	label (SymbolicNode) – Input label to function.


	grad_scale (float, optional, default=1) – Scale the gradient by a float factor


	name (Symbol) – The name of the SymbolicNode. (e.g. :my_symbol), optional.


	AbstractString} attrs (Dict{Symbol,) – The attributes associated with this SymbolicNode.






	Returns

	SymbolicNode.










	
Pooling(...)

	Perform spatial pooling on inputs.


	Parameters

	
	data (SymbolicNode) – Input data to the pooling operator.


	kernel (Shape(tuple), required) – pooling kernel size: (y, x)


	pool_type ({'avg', 'max', 'sum'}, required) – Pooling type to be applied.


	stride (Shape(tuple), optional, default=(1,1)) – stride: for pooling (y, x)


	pad (Shape(tuple), optional, default=(0,0)) – pad for pooling: (y, x)


	name (Symbol) – The name of the SymbolicNode. (e.g. :my_symbol), optional.


	AbstractString} attrs (Dict{Symbol,) – The attributes associated with this SymbolicNode.






	Returns

	SymbolicNode.










	
Reshape(...)

	Reshape input to target shape


	Parameters

	
	data (SymbolicNode) – Input data to  reshape.


	target_shape (Shape(tuple), required) – Target new shape. One and only one dim can be 0, in which case it will be inferred from the rest of dims


	name (Symbol) – The name of the SymbolicNode. (e.g. :my_symbol), optional.


	AbstractString} attrs (Dict{Symbol,) – The attributes associated with this SymbolicNode.






	Returns

	SymbolicNode.










	
SliceChannel(...)

	Slice channel into many outputs with equally divided channel


	Parameters

	
	num_outputs (int, required) – Number of outputs to be sliced.


	name (Symbol) – The name of the SymbolicNode. (e.g. :my_symbol), optional.


	AbstractString} attrs (Dict{Symbol,) – The attributes associated with this SymbolicNode.






	Returns

	SymbolicNode[].










	
Softmax(...)

	DEPRECATED: Perform a softmax transformation on input. Please use SoftmaxOutput


	Parameters

	
	data (SymbolicNode) – Input data to softmax.


	grad_scale (float, optional, default=1) – Scale the gradient by a float factor


	ignore_label (float, optional, default=-1) – the ignore_label will not work in backward, and this only be used when multi_output=true


	multi_output (boolean, optional, default=False) – If set to true, for a (n,k,x_1,..,x_n) dimensional input tensor, softmax will generate n*x_1*…*x_n output, each has k classes


	use_ignore (boolean, optional, default=False) – If set to true, the ignore_label value will not contribute to the backward gradient


	name (Symbol) – The name of the SymbolicNode. (e.g. :my_symbol), optional.


	AbstractString} attrs (Dict{Symbol,) – The attributes associated with this SymbolicNode.






	Returns

	SymbolicNode.










	
SoftmaxActivation(...)

	Apply softmax activation to input. This is intended for internal layers. For output (loss layer) please use SoftmaxOutput. If type=instance, this operator will compute a softmax for each instance in the batch; this is the default mode. If type=channel, this operator will compute a num_channel-class softmax at each position of each instance; this can be used for fully convolutional network, image segmentation, etc.


	Parameters

	
	data (SymbolicNode) – Input data to activation function.


	type ({'channel', 'instance'},optional, default='instance') – Softmax Mode. If set to instance, this operator will compute a softmax for each instance in the batch; this is the default mode. If set to channel, this operator will compute a num_channel-class softmax at each position of each instance; this can be used for fully convolutional network, image segmentation, etc.


	name (Symbol) – The name of the SymbolicNode. (e.g. :my_symbol), optional.


	AbstractString} attrs (Dict{Symbol,) – The attributes associated with this SymbolicNode.






	Returns

	SymbolicNode.










	
SoftmaxOutput(...)

	Perform a softmax transformation on input, backprop with logloss.


	Parameters

	
	data (SymbolicNode) – Input data to softmax.


	label (SymbolicNode) – Label data.


	grad_scale (float, optional, default=1) – Scale the gradient by a float factor


	ignore_label (float, optional, default=-1) – the ignore_label will not work in backward, and this only be used when multi_output=true


	multi_output (boolean, optional, default=False) – If set to true, for a (n,k,x_1,..,x_n) dimensional input tensor, softmax will generate n*x_1*…*x_n output, each has k classes


	use_ignore (boolean, optional, default=False) – If set to true, the ignore_label value will not contribute to the backward gradient


	name (Symbol) – The name of the SymbolicNode. (e.g. :my_symbol), optional.


	AbstractString} attrs (Dict{Symbol,) – The attributes associated with this SymbolicNode.






	Returns

	SymbolicNode.










	
SwapAxis(...)

	Apply swapaxis to input.


	Parameters

	
	data (SymbolicNode) – Input data to the SwapAxisOp.


	dim1 (int (non-negative), optional, default=0) – the first axis to be swapped.


	dim2 (int (non-negative), optional, default=0) – the second axis to be swapped.


	name (Symbol) – The name of the SymbolicNode. (e.g. :my_symbol), optional.


	AbstractString} attrs (Dict{Symbol,) – The attributes associated with this SymbolicNode.






	Returns

	SymbolicNode.










	
UpSampling(...)

	Perform nearest neighboor/bilinear up sampling to inputs

This function support variable length positional SymbolicNode inputs.


	Parameters

	
	data (SymbolicNode[]) – Array of tensors to upsample


	scale (int (non-negative), required) – Up sampling scale


	num_filter (int (non-negative), optional, default=0) – Input filter. Only used by nearest sample_type.


	sample_type ({'bilinear', 'nearest'}, required) – upsampling method


	multi_input_mode ({'concat', 'sum'},optional, default='concat') – How to handle multiple input. concat means concatenate upsampled images along the channel dimension. sum means add all images together, only available for nearest neighbor upsampling.


	num_args (int, required) – Number of inputs to be upsampled. For nearest neighbor upsampling, this can be 1-N; the size of output will be(scale*h_0,scale*w_0) and all other inputs will be upsampled to thesame size. For bilinear upsampling this must be 2; 1 input and 1 weight.


	name (Symbol) – The name of the SymbolicNode. (e.g. :my_symbol), optional.


	AbstractString} attrs (Dict{Symbol,) – The attributes associated with this SymbolicNode.






	Returns

	SymbolicNode.










	
abs(...)

	Take absolute value of the src


	Parameters

	
	src (SymbolicNode) – Source symbolic input to the function


	name (Symbol) – The name of the SymbolicNode. (e.g. :my_symbol), optional.


	AbstractString} attrs (Dict{Symbol,) – The attributes associated with this SymbolicNode.






	Returns

	.












	
ceil(...)

	Take ceil value of the src


	Parameters

	
	src (SymbolicNode) – Source symbolic input to the function


	name (Symbol) – The name of the SymbolicNode. (e.g. :my_symbol), optional.


	AbstractString} attrs (Dict{Symbol,) – The attributes associated with this SymbolicNode.






	Returns

	.












	
cos(...)

	Take cos of the src


	Parameters

	
	src (SymbolicNode) – Source symbolic input to the function


	name (Symbol) – The name of the SymbolicNode. (e.g. :my_symbol), optional.


	AbstractString} attrs (Dict{Symbol,) – The attributes associated with this SymbolicNode.






	Returns

	.












	
exp(...)

	Take exp of the src


	Parameters

	
	src (SymbolicNode) – Source symbolic input to the function


	name (Symbol) – The name of the SymbolicNode. (e.g. :my_symbol), optional.


	AbstractString} attrs (Dict{Symbol,) – The attributes associated with this SymbolicNode.






	Returns

	.












	
floor(...)

	Take floor value of the src


	Parameters

	
	src (SymbolicNode) – Source symbolic input to the function


	name (Symbol) – The name of the SymbolicNode. (e.g. :my_symbol), optional.


	AbstractString} attrs (Dict{Symbol,) – The attributes associated with this SymbolicNode.






	Returns

	.












	
log(...)

	Take log of the src


	Parameters

	
	src (SymbolicNode) – Source symbolic input to the function


	name (Symbol) – The name of the SymbolicNode. (e.g. :my_symbol), optional.


	AbstractString} attrs (Dict{Symbol,) – The attributes associated with this SymbolicNode.






	Returns

	.












	
round(...)

	Take round value of the src


	Parameters

	
	src (SymbolicNode) – Source symbolic input to the function


	name (Symbol) – The name of the SymbolicNode. (e.g. :my_symbol), optional.


	AbstractString} attrs (Dict{Symbol,) – The attributes associated with this SymbolicNode.






	Returns

	.












	
rsqrt(...)

	Take rsqrt of the src


	Parameters

	
	src (SymbolicNode) – Source symbolic input to the function


	name (Symbol) – The name of the SymbolicNode. (e.g. :my_symbol), optional.


	AbstractString} attrs (Dict{Symbol,) – The attributes associated with this SymbolicNode.






	Returns

	.












	
sign(...)

	Take sign value of the src


	Parameters

	
	src (SymbolicNode) – Source symbolic input to the function


	name (Symbol) – The name of the SymbolicNode. (e.g. :my_symbol), optional.


	AbstractString} attrs (Dict{Symbol,) – The attributes associated with this SymbolicNode.






	Returns

	.












	
sin(...)

	Take sin of the src


	Parameters

	
	src (SymbolicNode) – Source symbolic input to the function


	name (Symbol) – The name of the SymbolicNode. (e.g. :my_symbol), optional.


	AbstractString} attrs (Dict{Symbol,) – The attributes associated with this SymbolicNode.






	Returns

	.












	
sqrt(...)

	Take sqrt of the src


	Parameters

	
	src (SymbolicNode) – Source symbolic input to the function


	name (Symbol) – The name of the SymbolicNode. (e.g. :my_symbol), optional.


	AbstractString} attrs (Dict{Symbol,) – The attributes associated with this SymbolicNode.






	Returns

	.












	
square(...)

	Take square of the src


	Parameters

	
	src (SymbolicNode) – Source symbolic input to the function


	name (Symbol) – The name of the SymbolicNode. (e.g. :my_symbol), optional.


	AbstractString} attrs (Dict{Symbol,) – The attributes associated with this SymbolicNode.






	Returns

	.














Internal APIs


Note

Document and signatures for internal API functions might be incomplete.




	
_CrossDeviceCopy(...)

	Special op to copy data cross device


	Parameters

	
	name (Symbol) – The name of the SymbolicNode. (e.g. :my_symbol), optional.


	AbstractString} attrs (Dict{Symbol,) – The attributes associated with this SymbolicNode.






	Returns

	SymbolicNode.










	
_Div(...)

	Perform an elementwise div.


	Parameters

	
	name (Symbol) – The name of the SymbolicNode. (e.g. :my_symbol), optional.


	AbstractString} attrs (Dict{Symbol,) – The attributes associated with this SymbolicNode.






	Returns

	SymbolicNode.










	
_DivScalar(...)

	Perform an elementwise div.


	Parameters

	
	array (SymbolicNode) – Input array operand to the operation.


	scalar (float, required) – scalar value.


	scalar_on_left (boolean, optional, default=False) – scalar operand is on the left.


	name (Symbol) – The name of the SymbolicNode. (e.g. :my_symbol), optional.


	AbstractString} attrs (Dict{Symbol,) – The attributes associated with this SymbolicNode.






	Returns

	SymbolicNode.










	
_Maximum(...)

	Perform an elementwise power.


	Parameters

	
	name (Symbol) – The name of the SymbolicNode. (e.g. :my_symbol), optional.


	AbstractString} attrs (Dict{Symbol,) – The attributes associated with this SymbolicNode.






	Returns

	SymbolicNode.










	
_MaximumScalar(...)

	Perform an elementwise maximum.


	Parameters

	
	array (SymbolicNode) – Input array operand to the operation.


	scalar (float, required) – scalar value.


	scalar_on_left (boolean, optional, default=False) – scalar operand is on the left.


	name (Symbol) – The name of the SymbolicNode. (e.g. :my_symbol), optional.


	AbstractString} attrs (Dict{Symbol,) – The attributes associated with this SymbolicNode.






	Returns

	SymbolicNode.










	
_Minimum(...)

	Perform an elementwise power.


	Parameters

	
	name (Symbol) – The name of the SymbolicNode. (e.g. :my_symbol), optional.


	AbstractString} attrs (Dict{Symbol,) – The attributes associated with this SymbolicNode.






	Returns

	SymbolicNode.










	
_MinimumScalar(...)

	Perform an elementwise minimum.


	Parameters

	
	array (SymbolicNode) – Input array operand to the operation.


	scalar (float, required) – scalar value.


	scalar_on_left (boolean, optional, default=False) – scalar operand is on the left.


	name (Symbol) – The name of the SymbolicNode. (e.g. :my_symbol), optional.


	AbstractString} attrs (Dict{Symbol,) – The attributes associated with this SymbolicNode.






	Returns

	SymbolicNode.










	
_Minus(...)

	Perform an elementwise minus.


	Parameters

	
	name (Symbol) – The name of the SymbolicNode. (e.g. :my_symbol), optional.


	AbstractString} attrs (Dict{Symbol,) – The attributes associated with this SymbolicNode.






	Returns

	SymbolicNode.










	
_MinusScalar(...)

	Perform an elementwise minus.


	Parameters

	
	array (SymbolicNode) – Input array operand to the operation.


	scalar (float, required) – scalar value.


	scalar_on_left (boolean, optional, default=False) – scalar operand is on the left.


	name (Symbol) – The name of the SymbolicNode. (e.g. :my_symbol), optional.


	AbstractString} attrs (Dict{Symbol,) – The attributes associated with this SymbolicNode.






	Returns

	SymbolicNode.










	
_Mul(...)

	Perform an elementwise mul.


	Parameters

	
	name (Symbol) – The name of the SymbolicNode. (e.g. :my_symbol), optional.


	AbstractString} attrs (Dict{Symbol,) – The attributes associated with this SymbolicNode.






	Returns

	SymbolicNode.










	
_MulScalar(...)

	Perform an elementwise mul.


	Parameters

	
	array (SymbolicNode) – Input array operand to the operation.


	scalar (float, required) – scalar value.


	scalar_on_left (boolean, optional, default=False) – scalar operand is on the left.


	name (Symbol) – The name of the SymbolicNode. (e.g. :my_symbol), optional.


	AbstractString} attrs (Dict{Symbol,) – The attributes associated with this SymbolicNode.






	Returns

	SymbolicNode.










	
_NDArray(...)

	Stub for implementing an operator implemented in native frontend language with ndarray.


	Parameters

	
	info (, required) – 


	name (Symbol) – The name of the SymbolicNode. (e.g. :my_symbol), optional.


	AbstractString} attrs (Dict{Symbol,) – The attributes associated with this SymbolicNode.






	Returns

	SymbolicNode.










	
_Native(...)

	Stub for implementing an operator implemented in native frontend language.


	Parameters

	
	info (, required) – 


	need_top_grad (boolean, optional, default=True) – Whether this layer needs out grad for backward. Should be false for loss layers.


	name (Symbol) – The name of the SymbolicNode. (e.g. :my_symbol), optional.


	AbstractString} attrs (Dict{Symbol,) – The attributes associated with this SymbolicNode.






	Returns

	SymbolicNode.










	
_Plus(...)

	Perform an elementwise plus.


	Parameters

	
	name (Symbol) – The name of the SymbolicNode. (e.g. :my_symbol), optional.


	AbstractString} attrs (Dict{Symbol,) – The attributes associated with this SymbolicNode.






	Returns

	SymbolicNode.










	
_PlusScalar(...)

	Perform an elementwise plus.


	Parameters

	
	array (SymbolicNode) – Input array operand to the operation.


	scalar (float, required) – scalar value.


	scalar_on_left (boolean, optional, default=False) – scalar operand is on the left.


	name (Symbol) – The name of the SymbolicNode. (e.g. :my_symbol), optional.


	AbstractString} attrs (Dict{Symbol,) – The attributes associated with this SymbolicNode.






	Returns

	SymbolicNode.










	
_Power(...)

	Perform an elementwise power.


	Parameters

	
	name (Symbol) – The name of the SymbolicNode. (e.g. :my_symbol), optional.


	AbstractString} attrs (Dict{Symbol,) – The attributes associated with this SymbolicNode.






	Returns

	SymbolicNode.










	
_PowerScalar(...)

	Perform an elementwise power.


	Parameters

	
	array (SymbolicNode) – Input array operand to the operation.


	scalar (float, required) – scalar value.


	scalar_on_left (boolean, optional, default=False) – scalar operand is on the left.


	name (Symbol) – The name of the SymbolicNode. (e.g. :my_symbol), optional.


	AbstractString} attrs (Dict{Symbol,) – The attributes associated with this SymbolicNode.






	Returns

	SymbolicNode.

















          

      

      

    

  

    
      
          
            
  
Neural Networks Factory

Neural network factory provide convenient helper functions to define
common neural networks.


	
MLP(input, spec)

	Construct a multi-layer perceptron. A MLP is a multi-layer neural network with
fully connected layers.


	Parameters

	
	input (SymbolicNode) – the input to the mlp.


	spec – the mlp specification, a list of hidden dimensions. For example,
[128, (512, :sigmoid), 10]. The number in the list indicate the
number of hidden units in each layer. A tuple could be used to specify
the activation of each layer. Otherwise, the default activation will
be used (except for the last layer).


	hidden_activation (Base.Symbol) – keyword argument, default :relu, indicating
the default activation for hidden layers. The specification here could be overwritten
by layer-wise specification in the spec argument. Also activation is not
applied to the last, i.e. the prediction layer. See Activation() for a
list of supported activation types.


	prefix – keyword argument, default gensym(), used as the prefix to
name the constructed layers.






	Returns

	the constructed MLP.













          

      

      

    

  

    
      
          
            
  
Executor


	
class Executor

	An executor is a realization of a symbolic architecture defined by a SymbolicNode.
The actual forward and backward computation specified by the network architecture can
be carried out with an executor.






	
bind(sym, ctx, args; args_grad=Dict(), aux_states=Dict(), grad_req=GRAD_WRITE)

	Create an Executor by binding a SymbolicNode to concrete NDArray.


	Parameters

	
	sym (SymbolicNode) – the network architecture describing the computation graph.


	ctx (Context) – the context on which the computation should run.


	args – either a list of NDArray or a dictionary of name-array pairs. Concrete
arrays for all the inputs in the network architecture. The inputs typically include
network parameters (weights, bias, filters, etc.), data and labels. See list_arguments()
and infer_shape().


	args_grad – TODO


	aux_states – 


	grad_req – 
















          

      

      

    

  

    
      
          
            
  
Network Visualization


	
to_graphviz(network)

	
	Parameters

	
	network (SymbolicNode) – the network to visualize.


	title (AbstractString) – keyword argument, default “Network Visualization”,
the title of the GraphViz graph.


	input_shapes – keyword argument, default nothing. If provided,
will run shape inference and plot with the shape information. Should
be either a dictionary of name-shape mapping or an array of shapes.






	Returns

	the graph description in GraphViz dot language.
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