

Welcome to Read the Docs

This is an autogenerated index file.

Please create a /home/docs/checkouts/readthedocs.org/user_builds/mw-http/checkouts/latest/index.rst or /home/docs/checkouts/readthedocs.org/user_builds/mw-http/checkouts/latest/README.rst file with your own content.

If you want to use another markup, choose a different builder in your settings.

Index

Change Log

Unreleased

0.3.3 - 2017-05-03

Fixed

	Bug in HttpServiceProvider

0.3.2 - 2017-05-03

Added

	wrap middleware to wrap PSR-7 style middleware #23

	Middleware documentation

0.3.1 - 2017-05-02

Added

	HttpServiceProvider which provides basic services of the library

	serveStatic middleware #19

	Request Path #20

0.3.0 - 2017-03-18

Changed

Completely re-tooled the entire package. This no longer holds any micro framework code. Krak\Lava [https://github.com/krakphp/lava] is the replacement for this.

	Converted functions for dispatching/server/response-factory into classes with proper interfaces since you typically won’t need to make your own very frequently

	Removed all framework related code

	Removed all unneeded composer dependencies (only nikic/iter remains)

	Routing is now a lot simpler and not dependent on any libraries like krak/mw. They are simply value objects now.

	This package is now at krak/http instead of krak/mw-http

Added

	This CHANGELOG

	ResponseFactoryStore for easily storing and utilizing response factories.

0.2.4 - 2016-12-05

Changed

	Fixed REST parseJson Bug

	Updated responseFactory to be a parameter not a service

Added

	test for 415 parse json error

	more documentation

	a few more services to the REST package for convenience

0.2.3 - 2016-12-05

Added

	Mountable Middleware #5

	Redirect Marshal Response Matching #3

0.2.2 - 2016-12-04

Several minor changes to the system.

Changed

	Adding server to app service dependencies

	Documentation updates and Std package update

0.2.1 - 2016-11-30

Fixed

	Hotfix for fixing package.php inclusion

0.2.0 - 2016-11-28

Added

	Added Evenement event listener integration to the App

	Added Pimple integration into the core. Refactored how
the app works entirely

	AutoArgs Package - allows for symfony style action parameters

	Initial Documentation and Package Refactoring

Changed

	Fixed bug with config defaults

0.1.0 - 2016-11-23

Initial Release

Added

	Packages

	Server

	Basic Routing

	HttpApp

Http

The Krak Http package is a set of utilities for building Http applications. It comes with an implementation agnostic routing system, PSR-7 Response Factories, PSR-7 Server implementation, and a handful of useful middleware for Http applications.

Installation

Install via composer at krak/http

Usage

Response Factories

<?php

interface ResponseFactory {
 public function createResponse($status = 200, array $headers = [], $body = null);
}

Every response factory must implement that interface.

<?php

use Krak\Http\ResponseFactory;

$rf = new ResponseFactory\DiactorosResponseFactory();
$rf = new ResponseFactory\GuzzleResponseFactory();

// adds html content-type header
$html_rf = new ResponseFactory\HtmlResponseFactory($rf);
// json encodes the body and add json content-type header. Accepts json_encode_options as second parameter
$json_rf = new ResponseFactory\JsonResponseFactory($rf, JSON_PRETTY_PRINT);
// adds text content-type header
$text_rf = new ResponseFactory\TextResponseFactory($rf);

$json_rf->createResponse(200, [], [1,2,3]);

Routes

<?php

use Krak\Http\Route;

$routes = new Route\RouteGroup();
$routes->get('/', function() {})->with('attribute', 'value');
$routes->group('/foo', function($foo) {
 $sub->get('', 'handler');
 $sub->group('/bar', function($bar) {
 $bar->get('/baz', 'handler');
 });
});
$routes->with('attribute1', 'value');

Compiling Routes

Once you’ve created a set of routes, you can then compile them with a route compiler. These will traverse the hierarchy of routes and flatten them into an iterator with normalized paths.

<?php

use Krak\Http\Route;

$routes = new Route\RouteGroup();
// add routes to $routes

$compiler = new Route\RecursiveRouteCompiler();
// compile on a path
$routes = $compiler->compileRoutes($routes, '/');

Dispatch

To dispatch a set of routes, you need to create dispatcher factory, which will create a dispatcher from a set of routes, then you can dispatch a PSR-7 request.

<?php

use Krak\Http\Dispatcher;
$dispatch_factory = new Dispatcher\FastRoute\FastRouteDispatcherFactory();
$dispatch = $dispatch_factory->createDispatcher($routes);
$res = $dispatch->dispatch($req);

// $res->status_code
// $res->matched_route->route
// $res->matched_route->params
// $res->allowed_methods /* if status code is a 405 response */

Server

The server is responsible for creating a request, and emitting a response. It’s a simple interface:

<?php

interface Server {
 /** @param $handler resolves the request into a response object */
 public function serve($handler);
}

<?php

$server = new Krak\Http\Server\DiactorosServer();
$server->serve(function($req) {
 return new Zend\Diactoros\Response();
});

Middleware

Here are several useful middleware to use within your own applications. Each middleware takes two arguments: A PSR-7 Server Request, and an HttpLink. If you want more documentation on how the Link’s work, checkout the Krak\Mw library.

<?php

use Psr\Http\Message\ServerRequestInterface;
use Krak\Http\Middleware\HttpLink;

function myMiddleware() {
 return function(ServerRequestInterface $req, HttpLink $next) {
 if (certainCondition($req)) {
 return $next($req->withAttribute('a', '1'))->withStatusCode(404);
 }

 return $next->response(404, ['X-Header' => 'value'], 'Some body'); // can also use a php or psr-7 stream.
 };
}

injectRequestAttribute($name, $value)

This will automatically inject an attribute with a name and the given value.

wrap($psr7_middleware)

This will wrap PSR-7 style middleware that use the request and response in the middleware parameters.

<?php

$mw = Krak\Http\Middleware\wrap(function($req, $resp, callable $next) {

});

serveStatic($root)

This will sit and will check if a file exists at the URI path. If it does, it will serve the file, else it will fall through to the next middleware.

mount($path, $mw)

Mounts a middleware on a path prefix. If the path prefix is matched, then the middleware is invoked.

<?php

use function Krak\Http\Middleware\{mount, serveStatic};

$mw = mount('/assets', serveStatic(__DIR__ . '/path/to/assets'));

The above middleware will try to load files on the /assets uri. So GET /assets/app.css will return a css file content if __DIR__ . /path/to/assets/app.css exists in the filesystem.

Tests and Examples

Run tests via:

make test

 nav.xhtml

 Table of Contents

 		Welcome to Read the Docs

_static/up.png

_static/file.png

_static/plus.png

_static/comment-bright.png

_static/minus.png

_static/up-pressed.png

_static/down.png

_static/comment-close.png

_static/down-pressed.png

_static/ajax-loader.gif

_static/comment.png

