mushroom Documentation
Release 0.9.20

Michael P. Jung

Jun 11, 2018

Contents

1 Table of contents 3
1.1 Installation InStruCtions v v v i e et e e e e e e e e e e e e e e e 3
1.2 Mushroom protocol 4
1.3 CORS . . . e 9
1.4 Examples e 9
1.5 Python APIreference 0 i e e e e e 20
1.6 FAQ . . . o o e e e 28
1.7 LICENSE . . . o v i e e e e e e e e e e e e e 28
2 Indices and tables 31
Python Module Index 33

mushroom Documentation, Release 0.9.20

Mushroom is a real-time web messaging framework which is based on gevent and supports WebSockets and long
polling transports. It also contains code for inter-process communication via message queues.

Contents 1

mushroom Documentation, Release 0.9.20

2 Contents

CHAPTER 1

Table of contents

1.1 Installation instructions

1.1.1 Prerequisites

The following instructions assume that you are using a Debian or Ubuntu Linux system and have the packages vir-
tualenvwrapper and rabbitmgq installed.

$ apt—-get install python-dev virtualenvwrapper rabbitmg

RabbitMQ is only required if you want to run the the unit tests or you are planning to use the inter process communi-
cation using message queues in your own applications. virtualenvwrapper is optional, too. You can also use virtualenv
directly or make sure that the required python modules are in your PYTHONPATH environment variable.

Create virtualenv and install requirements

$ mkvirtualenv --no-site-packages mushroom
$ pip install -r test-requirements.txt

Note: Running setup.py test without a virtualenv does not work as the selenium tests need to start a second python
tasks with the same environment. This task will not be able to find the packages which are installed in the project dir
by setup.py test.

1.1.2 Running the examples

$ workon mushroom
$ cd examples
$./chat-server.py

http://www.rabbitmq.com/
https://pypi.python.org/pypi/virtualenvwrapper
https://pypi.python.org/pypi/virtualenv

mushroom Documentation, Release 0.9.20

All examples start a server at port 39288. This port was choosen by random.randint(1024, 65535). Once the server is
up and running open a browser and open up the URL http://127.0.0.1:39288/.

For more information about the included examples see Examples.

1.1.3 Running the unit tests

Prerequisites
Mushroom is compatible with gevent 0.x but the selenium test case does require gevent.subprocess which is only part
of gevent 1.x. If you plan to run the mushroom unit tests you should use gevent 1.x.

At the time this document was written gevent 1.x was not released and can only be obtained from the Git repository:
https://github.com/surfly/gevent

Configure RabbitMQ

In order to run the test suite you need RabbitMQ installed with a vhost /mushroom and a user with bosh mushroom as
username and password with full access to the /mushroom vhost.

Use the following commands to create the vhost, user and permissions:

$ rabbitmgctl add_vhost /mushroom
$ rabbitmgctl add_user mushroom mushroom
$ rabbitmgctl set_permissions —-p /mushroom mushroom ".*" "_x" " "

Running the tests

$ workon mushroom
$ python setup.py test

1.2 Mushroom protocol

1.2.1 General

The mushroom protocol is based on JSON and negotiates the best possible transport with the client. Once the transport
negotiation is complete, the protocol becomes transport specific.

1.2.2 Message format

Mushroom uses RPC style messages. All messages are encoded as list with the message type as the first argument.
This message format is used for both directions. Thus Mushroom RPC also allows to call methods on the client.

Heartbeat

The heartbeat is used by the client and server to acknowledge messages and keep the connection alive if there has been
no traffic for a given amount of time. For transports that do not keep the connection open for an unlimited amount of
time this is used for polling.

4 Chapter 1. Table of contents

http://127.0.0.1:39288/
https://github.com/surfly/gevent

mushroom Documentation, Release 0.9.20

’[O, last_message_id]

Notification

’[l, message_id, method_name, data]

The method name is required to be a string and SHOULD be namespaced with dots as separator.

Request

This message works uses the same message format as the notification but expects a response.

’[2, message_id, method_name, data]

Response

’[3, message_id, request_message_id, data]

Error response

’[4, message_id, request_message_id, data]

Disconnect

’[—11

1.2.3 Message id

The message id MUST be implemented as a counter without gaps. It is used to match request and response messages
together and provide robust messaging even in case of a unexpected connection timeout.

1.2.4 Transport negotiation
Next generation web applications are probably going to use WebSocket exclusively for transferring realtime data.
Until WebSockets are part of all browsers in use, a fallback solution is required to reach a large audience.

Mushroom therefore supports two transports which supports most browsers in use today, while providing the best
possible performance for those users living at the bleeding edge.

Currently the following two protocols are supported:
* poll
¢ websocket

Other transports like JSONP polling, multipart requests and flash sockets are not supported by mushroom as they
provide little to no performance benefit over the two supported transports or require a propietary plugin.

1.2. Mushroom protocol 5

mushroom Documentation, Release 0.9.20

Client request

The client sends a POST request to BASE_URL with POST data of the following form:

{

"transports": ["poll", "websocket"]

Depending on the needs extra fields can be transferred to perform authentication. For example a simple request with
an user name and password which only supports long polling as transport could look like:

{

"transports": ["poll"],
"username": "mobydick",
"password": "lochness"

For more sophisticated applications it probably makes sense to handover authentication using some signed credentials:

{

"transports": ["poll", "websocket"],

"username": "bikeshedder",

"timestamp": 1341852462,

"digest": "3369bf6cd89ael387d2a6b7b0063£7b2f76fb65901dc7bdeeadac9859%9e68ed82"

Note: Those ways of authenticating users is by no means ment to be a defenitive list for authenticating clients. Use
whatever authentication method fits your application best. If you are working in a trusted environment or do not need
authentication at all feel free to skip it entirely.

Warning: Even though it is possible to use cookies for authentication it is highly discouraged. If a browser falls
back to long polling, it will need to transmit the cookies for every single request. This might be fine for very small
cookies but still then add bloat that is not required at all as mushroom encodes its own session id into the URL.

Server response

The response from the server will be a JSON of the following format:

{

"transport": "poll",
"url": "https://example.com/poll/cl1108b722b2447f3b603b8f£f783233ef/"

The response for the websocket transport looks simmilar but contains a URL with ws or wss protocol:

{
"transport": "websocket",
"url": "wss://example.com/websocket/cl1108b722b2447£f3b603b8f£783233ef/"

6 Chapter 1. Table of contents

mushroom Documentation, Release 0.9.20

1.2.5 Long polling

All requests to the server must contain a JSON array of messages.

Receiving messages (polling)

Once long polling is decided as transport, the browser is expected to connect to the given URL as soon as possible.
If the message array contains a heartbeat, the connection is detected as polling and will not return until there are
messages available or the timeout is reached:

[
[0, last_message_id]

]

Note: You can also send other messages along with the heartbeat message.

The response is of the following format:

[

message+

]

The last message index is a integer and must be given at the next poll request to confirm the receipt of the messages
received during the last poll request. This index is used to recover from a timed out poll request without losing
messages.

Note: Please note that this requires a disconnecting client to perform one last extra poll request to the server to
acknowledge the last received messages before stopping to poll.

Sending messages

The format for sending messages is simple and straightforward:

[

message+

]

The message id is a simple counter implemented by the client which is used by the server to filter out duplicate
messages. This can be used to filter out already received messages which were retransmitted due to a timeout.

The server response is a simple 200 OK without any data.

Long polling example

Assuming the connection has been up for a while and the server has now reached message id 117. The client has sent
5 messages so far and th next message id is 5 (counting from zero).

1. Poll request (client to server):

1.2. Mushroom protocol 7

mushroom Documentation, Release 0.9.20

[
[0, 117]
]

2. Send request (client to server):

[1, 5, "player.ready", truel],
[2, 6, "get_time"]

3. Send response (server to client):

(No data, simply a 200 OK)

4. Poll response (server to client):

[
[3, 118, 6, 1342106240]

]

5. Acknowledge message and continue polling:

[
[1, 118]

]

1.2.6 WebSocket

WebSockets are bidirectional and have builtin framing. Every message is transferred as a separate frame.

WebSocket example

As in the long polling example the server has reached message id 117 and the last message sent by the client had id 4.

1. Heartbeat (client to server):

’[o, 117]

2. Heartbeat (server to client):

][o, 1

3. Notification (client to server):

’[1, 5, "player.ready", true]

4. Request (client to server):

’[2, 6, "get_time"]

5. Response (server to client):

Chapter 1. Table of contents

mushroom Documentation, Release 0.9.20

’[3, 118, 6, 1342106240]

1.3 CORS

In order to support Cross-Origin Resource Sharing mushroom utilizes the Access-Control-Allow-Origin header and
provides a fallback using a so called CORS iframe. The CORS iframe works by setting the document.domain in the
parent frame and inside the iframe at the same time. Once both frames have set their window.domain the parent frame
can use the XMLHttpRequest object of the CORS iframe and interact with the server in a natural way.

1.4 Examples

Please see Installation instructions how to set up mushroom and run the examples.

The examples can be found in the examples directory of the source tree. The following examples are currently avail-
able:

1.4.1 Ping example

The browser requests the ping method of the server every 2 seconds. When sending the ping request -> ping is written
to the browser window and upon receiving the response a <- pong is added.

Server - examples/ping-server.py

#!/usr/bin/env python

import example_pythonpath
from example utils import ExampleServer, ExampleStaticFile

class PingServer (ExampleServer) :
urls = [
('/', ExampleStaticFile('ping.html'")),
] + ExampleServer.urls

def rpc_ping(self, request):
return 'pong'

v L

if name == main

PingServer.main ()

Client - examples/ping.html

<!DOCTYPE html>

<html>

<head>

(continues on next page)

1.3. CORS 9

mushroom Documentation, Release 0.9.20

(continued from previous page)

<title>Mushroom Test Client</title>
</head>

<body>

<secript type="text/Jjavascript" src="/js/mushroom.js"></script>
<script type="text/javascript">
var client = new mushroom.Client ({
url: '/
1) i
client.connect ();
window.setInterval (function () {
document .write ('<div>→ ping</div>");
client.request ('ping', null, function (data) {
document .write ('<div>← pong</div>");
1)
}, 2000);
</script>

</body>

</html>

1.4.2 Time pusher example

The server pushes the current time every second and the browser displays it.

Server - examples/time-pusher-server.py

#!/usr/bin/env python
from time import time
import gevent

import example_ pythonpath
from example utils import ExampleServer, ExampleStaticFile

class TimePusherServer (ExampleServer) :
urls = [
('/'", ExampleStaticFile('time-pusher.html')),
] + ExampleServer.urls

def server_init (self):
gevent.spawn (self.time_loop)

def time_loop(self):
while True:
gevent.sleep (1)
self.sessions.notify('time', time())

(continues on next page)

10 Chapter 1. Table of contents

mushroom Documentation, Release 0.9.20

(continued from previous page)

if name == '__main__ ':
TimePusherServer.main ()

Client - examples/time-pusher.html

<!DOCTYPE html>
<html>

<head>
<title>Mushroom Test Client</title>
</head>

<body>
<p id="date"></p>

<secript type="text/Jjavascript" src="/js/mushroom.js"></script>
<script type="text/javascript">
var client = new mushroom.Client ({
url: '/
1) i
client.connect ();
client.method('time', function (request) {
var date = new Date (request.data » 1000);
var dateElement = document.getElementById('date');
dateElement.innerHTML = date.toString();
1) i
</seript>

</body>

</html>

1.4.3 Chat example

Simple chat room example. The client code uses Knockout and jQuery.

Server - examples/chat-server.py

#!/usr/bin/env python

import example_pythonpath
from example utils import ExampleServer, ExampleStaticFile

class ChatServer (ExampleServer) :
urls = [
('/', ExampleStaticFile('chat.html'")),
] + ExampleServer.urls

def rpc_message (self, request):

(continues on next page)

1.4. Examples 11

http://knockoutjs.com/
http://jquery.com/

mushroom Documentation, Release 0.9.20

(continued from previous page)

self.sessions.notify('message’', request.data)

if _ name_ == '_ main__ ':
ChatServer.main ()

Client - examples/chat.html

<!DOCTYPE html>
<html>

<head>
<title>Mushroom Chat Example</title>
</head>
<style type="text/css">
#messages {
border: 1lpx solid #999;
padding: 0.5em;
margin: lem O;
height: 20em;
overflow: auto;
}
</style>

<body>

<hl>Welcome to Mushroom Chat Example</hl>

<div id="loading" data-bind="visible: !online ()">Loading...</div>
<div style="display: none" data-bind="visible: online">

<div data-bind="visible: !usernameSet ()">
<h2>Choose username</h2>
<form id="login-form" data-bind="submit: setUsername">
<input name="username" data-bind="value: username, valueUpdate:
—'afterkeydown'">
<input type="submit" value="Ok" data-bind="enable: username () !== "''">
</form>
</div>

<div data-bind="visible: usernameSet">
<h2>Current discussion</h2>
<div id="messages">
<div data-bind="if: messages().length === 0">No chat messages, yet. :-
< (</div>
<!-- ko foreach: messages ——>
<div class="message">
<&

</div>
<!-- /ko —-—>
</div>

(continues on next page)

12 Chapter 1. Table of contents

mushroom Documentation, Release 0.9.20

(continued from previous page)

<form id="form" data-bind="submit:

<input name="message" data-bind="value:
—'afterkeydown'">

<input type="submit" value="Send" data-bind="enable: message () !==

sendMessage">

message, valueUpdate:

o>
</form>
</div>
</div>
<script type="text/javascript" src="/js/mushroom. js"></script>
<secript type="text/javascript" src="/js/Jjquery.js"></script>
<script type="text/javascript" src="/js/knockout.js"></script>
<script type="text/javascript">
S (function () {
var model = {
username: ko.observable(''),
usernameSet: ko.observable (false),
message: ko.observable(''"),
messages: ko.observableArray (),
online: ko.observable (false),
setUsername: function () {
this.usernameSet (true);
}I
sendMessage: function () {
client.notify('message', {
username: this.username (),
message: this.message ()
1)
this.message('"');
return false;
}
}
ko.applyBindings (model) ;
var client = new mushroom.Client ({
url: '/
1) i
client.signals.connected.connect (function () {
model.online (true);
1) i
client.method('message', function (request) {
model .messages.push (request.data);
1) i
client.connect ();
}) i
</script>
</body>
</html>

1.4.4 Remote control example

Read-eval-print loop which allows remote control of the connected browsers. Start the server and type help to get a
list of supported commands.

1.4. Examples 13

mushroom Documentation, Release 0.9.20

Server - remote-control.py

#!/usr/bin/env python
from _ future import print_function

import cmd
import logging

from gevent import monkey
import example_pythonpath
from example utils import ExampleServer, ExampleStaticFile
class RemoteControlCmd (cmd.Cmd) :
prompt = 'remote-control> '

intro = 'Interactive browser remote control\nType "help" for more information.'
use_rawinput = False

def _ init_ (self, server):
cmd.Cmd._ _init_ (self)
self.server = server

def postcmd(self, stop, line):

if stop == 'EOF':
print ('"D")
if stop:

print ('May the maltron be with you!')
return True

def do_help(self, args):
"'"'"Type "help" for the list of available commands and help <command>" for,,
—details about a specific command.'''
cmd.Cmd.do_help(self, args)

def do_exit (self, args):
"'"'"Exit the console.'''
return 'exit'

def do_eval (self, args):
''""Call eval() on the browser.'''
self.server.sessions.notify('eval', args)

def do_print (self, args):
''"'Call print () on the browser.'''
self.server.sessions.notify('print', args)

def do_alert(self, args):
''"'"Call alert () on the browser.'''
self.server.sessions.notify('alert', args)

def do_EOF (self, args):
"'"'"You can exit the console by typing Ctrl+D.''"'
return 'EOF'

(continues on next page)

14 Chapter 1. Table of contents

mushroom Documentation, Release 0.9.20

(continued from previous page)

def do_who(self, args):
''"'"Show connected users'''
if not self.server.sessions:
print ('No sessions connected.')

return
print ('$%d session?s connected:' % (
len(self.server.sessions),
's' if len(self.server.sessions) != 1 else ''))
print ('SESSION ID IP ADDRESS TRANSPORT')
print ('————-—-——-—— ")

FHAEH## (" XXXXXXXXXXXXXXXXXXxXxXxx 000.000.000.000 ws/poll ")
for session in self.server.sessions:

print ('¢-22s $-15s %-9s' % (session.id,
session.transport.remote_addr, session.transport.name))

def do_gauge(self, args):
'"'Set gauge value'''
self.server.sessions.notify('gauge', args)

class RemoteControlServer (ExampleServer) :
urls = [
('/'", ExampleStaticFile('remote-control.html")),
] + ExampleServer.urls

def _ init_ (self, listener):

super (RemoteControlServer, self).__init__ (listener, log=None)

if name == '__main__':
monkey.patch_sys ()

logging.basicConfig(filename="'remote-control.log', level=logging.DEBUG)

listener = (RemoteControlServer.host, RemoteControlServer.port)
print ('Server running at http://%s:%d/' % listener)
server = RemoteControlServer (listener)

server.start ()

rccmd = RemoteControlCmd (server)
rccmd. cmdloop ()

XXX how to shutdown cleanly?

Client - remote-control.html

<!DOCTYPE html>
<html>
<head>
<title>Remote Control Client</title>
</head>
<body>

<canvas id="gauge"></canvas>

<script type="text/Jjavascript" src="/js/mushroom.js"></script>

(continues on next page)

1.4. Examples

15

mushroom Documentation, Release 0.9.20

(continued from previous page)

<script type="text/javascript" src="/js/gauge.js"></script>
<script type="text/javascript">
var gauge = new Gauge (document.getElementById('gauge'));
gauge.maxValue = 100;
gauge.set (0) ;

var client = new mushroom.Client ({
url: '/!'
1) i
client.method('eval', function (request) {

eval (request.data);

1) i

client.method('print', function (request) {
document .write ('<div>' + request.data + '</div>");

1) i

client.method('alert', function (request) {
alert (request.data);

1) i

client.method('gauge', function (request) {
var value = parselnt (request.data);
if (value > gauge.maxValue) {

value = gauge.maxValue;

}
gauge.set (value);

1) i

client.connect ();

</script>

</body>

</html>

1.4.5 Webexec example

The server executes an application (currently ping localhost) and sends the standard output to all connected browsers.

Server - examples/webexec.py

#!/usr/bin/env python

import example_ pythonpath
from example utils import ExampleServer, ExampleStaticFile

import gevent
from gevent import subprocess

class WebexecServer (ExampleServer) :
urls = [
('/'", ExampleStaticFile ('webexec.html')),
] + ExampleServer.urls

def server_init (self):
gevent.spawn (self.exec_subprocess)

(continues on next page)

16 Chapter 1. Table of contents

mushroom Documentation, Release 0.9.20

(continued from previous page)

def exec_subprocess (self):

proc = subprocess.Popen(['ping', 'localhost'], stdout=subprocess.PIPE)
while True:
line = proc.stdout.readline() .rstrip()
if line is None:
break

self.sessions.notify('stdout', line)

if name == '_ _main

WebexecServer.main ()

Client - examples/webexec.html

<!DOCTYPE html>
<html>

<head>
<title>Mushroom Test Client</title>
</head>

<body>
<p id="output"></p>

<script type="text/javascript" src="/js/mushroom.js"></script>
<script type="text/javascript">
var client = new mushroom.Client ({
url: '/
1) i
client.connect ();
client.method('stdout', function (request) {
var outputElement = document.getElementById('output');
var lineElement = document.createElement ('div');
lineElement.innerText = request.data;
outputElement.appendChild(lineElement) ;
1)
</script>

</body>

</html>

1.4.6 Click game example

In this very basic game players must click an appearing square as quick as possible in order to score points.

This example uses jQuery.

1.4. Examples 17

http://jquery.com/

mushroom Documentation, Release 0.9.20

Server - examples/click-game.py

#!/usr/bin/env python

from time import time
from random import random

import gevent

import example_ pythonpath
from example_utils import ExampleServer,

class TimePusherServer (ExampleServer) :
urls = [
('/'", ExampleStaticFile('click-game.html'")),
] + ExampleServer.urls

def server_init (self):
self.score = 0
gevent .spawn (self.main_loop)
def main_loop(self):
while True:
gevent.sleep (2)

x = random()
y = random()
self.sessions.notify('target', { 'x': x,

def rpc_click(self,
self.score += 1

self.sessions.notify('score',

request) :

self.score)

'__main__ ':

TimePusherServer.main ()

if name ==

ExampleStaticFile

Client - examples/click-game.html

<!DOCTYPE html>
<html>

<head>
<title>Mushroom Click Game</title>
<style>
#score {
font-size: 200%;
font-weight: bold;
margin-bottom: 20px;
}
#playing—-area {
position: relative;
width: 440px;
height: 440px;

background-color: #ccc;

(continues on next page)

18

Chapter 1. Table of contents

mushroom Documentation, Release 0.9.20

(continued from previous page)

border-radius: 20px;

}

#target {
position: absolute;
margin: 20px;
height: 40px;
width: 40px;
background-color: #900;
border-radius: 10px;
cursor: pointer;

}

</style>
</head>

<body>
<div id="score">0</div>

<div id="playing-area">
<div id="target"></div>
</div>

<script src="/Jjs/mushroom.js"></script>
<secript src="/js/jquery.js"></script>
<script>
$ (function () {
var client = new mushroom.Client ({
url: '/'
1)
var S$target = $('#target');
client.method('target', function (request) {
Starget.css ({
left: (request.data.x x 400) + 'px',
top: (request.data.y » 400) + 'px'
b
1) i
var S$score = $('#score');
client.method('score', function (request) {
$score.text (request.data);
1) i
client.signals.connected.connect (function () {
$('#target').click (function () {
client.notify('click");
b
1) i
client.connect ();
}) i
</script>

</body>

</html>

1.4. Examples 19

mushroom Documentation, Release 0.9.20

1.5 Python API reference

1.5.1 WSGI application - mushroom.application

class mushroom.application.Application (rpc_handler=None, session_handler=None)

bootstrap (request)
request (request)

start_session (request, transport)

1.5.2 HTTP utilities and transports - mushroom.http

® Request and response

» Exceptions

» Transports

Request and response

class mushroom.http.HttpRequest (environ)
class mushroom.http.HttpResponse (code="200 OK’, content=", extra_headers=None)

class mushroom.http.JsonResponse (data)

Exceptions

class mushroom.http.HttpError (message=None)

code = "'

{1

headers

message

class mushroom.http.HttpUnauthorized (auth_scheme=None)

code = '401 Unauthorized'

class mushroom.http.HttpNotFound (message=None)

code = '404 Not Found'

class mushroom.http.HttpMethodNotAllowed (allowed_methods)

code = '405 Method Not Allowed'

class mushroom.http.HttpInternalServerError (message=None)

20 Chapter 1. Table of contents

mushroom Documentation, Release 0.9.20

code = '500 Internal Server Error'

class mushroom.http.HttpNotImplemented (message=None)

code = '501 Not Implemented'

Transports

class mushroom.http.HttpTransport

get_url (protocol, request, session)
handle_http_request (request, session)

class mushroom.http.PollTransport

get_handshake_data (request, session)
handle_disconnect (reconnect=Fualse)
handle_http_request (request, session)
name = 'poll'

real_send (message)
Perform the actual send operation. This method is only called internally and should not be called from
application code. This method is transport specific and must be overwritten.

timeout = 40

class mushroom.http.WebSocketTransport

get_handshake_data (request, session)
handle_disconnect ()
handle_http_request (request, session)
handle_message (message)

name = 'ws'

real_send (message)
Perform the actual send operation. This method is only called internally and should not be called from
application code. This method is transport specific and must be overwritten.

1.5.3 Messaging via message oriented middlewares - mushroom.messaging
class mushroom.messaging.Client (broker_url, exchange, queue, rpc_handler)

start ()
stop ()

class mushroom.messaging.Transport (broker_url, exchange, queue)

callback (body, message)

1.5. Python API reference 21

mushroom Documentation, Release 0.9.20

mainloop ()
send (message, routing_key=None)
start ()

stop (join=True)

1.5.4 Remote procedure calls - mushroom.rpc

» Engine
e RPC handlers

» Exceptions

* Message classes

Engine

class mushroom. rpc.Engine (transport, rpc_handler)
Transport neutral message factory and mapper between requests and responses. This is the heart of all RPC
handling.

handle_message (message)
Handle message received from the transport.

Parameters message — message to be handled

next_message_id()
Generate the next message id for outbound messages.

Returns: the next message id

notify (method, data=None, **kwargs)
Send a notification.

Parameters
* method — name of the method to be called
* data - data for the method being called
* kwargs — transport specific arguments

request (method, data=None, timeout=None, **kwargs)
Send a request and wait for the response or timeout. If no response for the given method is received within
timeout seconds a RequestTimeout exception is raised.

Parameters
* method — name of the method to be called
* data — data for the method being called
* timeout - timeout in seconds for this request
* kwargs — transport specific arguments

send (message, **kwargs)
Hand message over to the transport.

22 Chapter 1. Table of contents

mushroom Documentation, Release 0.9.20

Parameters
* message — message to be sent

* kwargs — transport specific arguments

RPC handlers

class mushroom. rpc.MethodDispatcher (0bj, prefix="rpc_’, suffix="")
Dispatcher implementation that calls methods on an object with a specific prefix and/or suffix. This makes it
possible to define objects that provides a set of methods which can then be called by the client.

Note: Using an empty prefix, _ or ___is highly discouraged as it allows the client to call methods like methods
like __del__ . The same holds true for the suffix. If you really want to dispatch methods without a prefix or
suffix it is a good idea to write a custom dispatcher that implements some checks for this.

__call__ (request)
The Engine calls the request handler like it was a function that takes the request as sole argument and
returns the response. This function implements the adapter for this interface and makes it possible to use
this class as handler for the Engine.

Parameters request — request object

mushroom.rpc.dummy_ rpc_handler (request)
Dummy RPC handler that raises a MethodNotFound exception for all calls. This is useful for applications that
do not need do receive any data from the client but only publish data.

Exceptions
exception mushroom.rpc.RpcError (message=")
Base class for all exceptions raised from by the Engine.

exception mushroom. rpc.MethodNotFound (method_name)
This error is raised when a method for a Request or Notification message is not found. This can either happen
when a connected client tries to call a server method or the server tries to call a method on the client side.

exception mushroom.rpc.RequestException (data)
This exception is raised when a Request message is answered with an Error message.

exception mushroom.rpc.RequestTimeout (message=")
This error is raised when a Request message is not answered within a specified timeout value. By default the
value is set to infinite can be set do a different value when making the request.

Message classes
class mushroom.rpc.Message
Base class for all messages.

static from list (/)
Parse a list as defined in the protocol into a message object.

Parameters 1 — list to be parsed

class mushroom.rpc.Heartbeat (last_message_id)
Heartbeat message

code = 0

1.5. Python API reference 23

mushroom Documentation, Release 0.9.20

static from list (/)
Parse list into a heartbeat message

Parameters 1 - list to be parsed

to_list ()
Serialize this message into a list

class mushroom.rpc.Notification (message_id, method, data=None)
Notification message

code =1

static from list (/)
Parse list into a notification message

Parameters 1 — list to be parsed

to_list ()
Serialize this message into a list

class mushroom. rpc.Request (message_id, method, data=None)
Request message

code = 2

static from list (/)
Parse list into a request message

Parameters 1 — list to be parsed

get_response (block=True, timeout=None)
Get response for this request.

Parameters
* block (bool)—block until response is available

* timeout (int or None) — seconds to wait before raising a mushroom. rpc.
RequestTimeout error

Return type mushroom. rpc.Response or mushroom. rpc.Error
Raises mushroom. rpc.RequestTimeout

response

to_1list ()

class mushroom. rpc.Response (message_id, request_message_id, data=None)
Response message

code = 3

static for_request (message_id, request, data=None)
Named constructor when the request is known. Some transports need the reference to the original request
object when sending the reply for a request. Therefore the Engine generates all responses using this
method.

Parameters
* request — the request which caused this response
* data - response data of the method which was called

* message_id — id of this message

24 Chapter 1. Table of contents

mushroom Documentation, Release 0.9.20

static from list (/)
Parse list into a response message

Parameters 1 - list to be parsed

to_list ()
Serialize this message into a list

class mushroom. rpc.Error (message_id, request_message_id, data=None)
Error message

This is the message class and not the exception. The RpcEngine will raise a RequestException upon receiving
this message type.

code = 4

static for_request (message_id, request, data=None)
Named constructor when the request is known. Some transports need the reference to the original request

object when sending the reply for a request. Therefore the RpcEngine generates all errors using this
method.

Parameters

* request - the request which caused this response
* data - response data of the method which was called
* message_id - id of this message

static from_list (/)
Parse list into a error message

Parameters 1 — list to be parsed

to_list ()
Serialize this message into a list

class mushroom.rpc.Disconnect
Disconnect message

code = -1

static from_list (/)
Parse list into a disconnect message

Parameters 1 — list to be parsed

to_list ()
Serialize this message into a list

1.5.5 Standalone server - mushroom.server
class mushroom.server.Server (listener, *args, **kwargs)

run ()

sessions

1.5. Python API reference 25

mushroom Documentation, Release 0.9.20

1.5.6 Sessions for client-server communication - mushroom.sessions

class mushroom.session.Session (id, transport, rpc_handler)

notify (*args, **kwargs)
Send a notification to the connected client.

This method is just a wrapper for the mushroom. rpc.Engine.request () method and uses the
same arguments.

request (*args, **kwargs)
Send a request to the connected client.

This method is just a wrapper for the mushroom. rpc. Engine.notify () method and uses the same
arguments.

class mushroom.session.SessionHandler

authenticate (session, auth)
connect (session)
disconnect (session)
class mushroom.session.SessionHandlerAdapter (obj, prefix="session_’, suffix="")

class mushroom.session.SessionList
List of sessions which provides a convenient notify() method to notify all sessions. This list also implements
copy-on-write (COW) so calls to add() and remove() are possible during a notify() call.

add (session)
notify (method, data=None)
remove (session)

mushroom.session.session_id_generator ()

1.5.7 Simple API - mushroom.simple

class mushroom.simple.SimpleApplication (urls=None, rpc_handler=None, ses-
sion_handler=None)

request (request)

class mushroom.simple.SimpleServer (listener, **kwargs)
This is the preferred way of starting to work with mushroom. This server class makes it possible to use mush-
room with only a few lines of code by relying on some defaults:

¢ All RPC methods are prefixed with rpc__

* Session handlers calls are prefixed wit session_

* The server runs on localhost with port 39288
In order to use this class create a subclass from it, overwrite the urls attribute and start YourServer.main().
host = '127.0.0.1"
classmethod main ()

port = 39288

26 Chapter 1. Table of contents

mushroom Documentation, Release 0.9.20

server_init ()
session_authenticate (session, auth)
session_connect (session)
session_disconnect (session)

urls = None

class mushroom.simple.StaticFile (filename)

content_types = {'css': 'text/css', 'gif': 'image/gif', 'html': 'text/html',
get (request)
load file()

mushroom.simple.parse_listener (value)

1.5.8 Transport base classes - mushroom.transport

class mushroom.transport.UnreliableTransport
Base class for unreliable transports. Unreliable means that the underlying protocol does not guarantee message
delivery by itself. This is typically the case for any protocol that does raw communication without a layer that
guarantees message delivery by itself.

connect ()
Start transport and connect to the remote side. This method is transport specific and must be overwriten.

disconnect ()
Disconnect from the remote side and stop transport. This method is transport specific and must be over-
written.

handle_connect ()
handle_disconnect (reconnect=False)
handle_ heartbeat (heartbeat)
handle_message (message)

real_send (message)
Perform the actual send operation. This method is only called internally and should not be called from
application code. This method is transport specific and must be overwritten.

send (message)

1.5.9 Utilities - mushroom.utils

class mushroom.utils.Observable (value=None)

get ()

set (value)

subscribe (listener)
unsubscribe (listener)

unsubscribe all (listener)

1.5. Python API reference 27

'ico':

mushroom Documentation, Release 0.9.20

class mushroom.utils.Signal

connect (handler)
disconnect (handler)
disconnect_all ()

send (*args, **kwargs)

1.5.10 Django Support - mushroom.django_support
1.6 FAQ

1.6.1 Which Python versions are supported?

Mushoom supports Python 2 and 3.

1.6.2 Are there plans to support asyncio?
No. While asyncio is great, it depends on the use of yield from. This can results in a very unnatural program

flow. The goal of mushroom is to make asynchronous I/O as simple and natural as possible. asyncio does not meet
this criteria. This is the same reason why mushroom is based on gevent and not Tornado.

1.6.3 Why is there no version 1.0 of mushroom?

Once mushroom is feature complete and provides a stable API version 1.0 will be released. For this to happen all
FIXME, TODO and XXX markers need to be gone. The test coverage and documentation need to be way better, too.

1.6.4 Is there Django support?

Mushroom comes with a django_support module which provides a RunserverCommand base class. This class
makes it simple to write custom management commands for starting a mushroom based server.

Max “DebVortex” Brauer has written a django-mushroom package which works in a different way and provides a
runserver_with_mushroom managment command and rpc_function decorators.

1.6.5 Can | get commercial support?

You can also get commercial support from the maintainer and his company Terreon GmbH.

1.7 License

Copyright (c) 2012-2013 Michael P. Jung
All rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions

(continues on next page)

28 Chapter 1. Table of contents

http://docs.python.org/dev/library/asyncio.html
http://gevent.org/
http://www.tornadoweb.org/
https://github.com/DebVortex/django-mushroom
http://terreon.de/

mushroom Documentation, Release 0.9.20

(continued from previous page)

are met:

+ Redistributions of source code must retain the above copyright notice,
this list of conditions and the following disclaimer.

+ Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF

THE POSSIBILITY OF SUCH DAMAGE.

1.7. License 29

mushroom Documentation, Release 0.9.20

30 Chapter 1. Table of contents

CHAPTER 2

Indices and tables

* genindex
* modindex

e search

31

mushroom Documentation, Release 0.9.20

32 Chapter 2. Indices and tables

Python Module Index

m

mushroom.
mushroom.
.server, 25

mushroom

mushroom.
mushroom.
mushroom.
mushroom.

application, 20
messaging, 21

session, 26
simple, 26
transport, 27
utils, 27

33

mushroom Documentation, Release 0.9.20

34 Python Module Index

Index

Symbols

_call__() (mushroom.rpc.MethodDispatcher method),
23

A

add() (mushroom.session.SessionList method), 26

Application (class in mushroom.application), 20

authenticate() (mushroom.session.SessionHandler
method), 26

B

bootstrap() (mushroom.application.Application method),
20

C

callback() (mushroom.messaging.Transport method), 21

Client (class in mushroom.messaging), 21

code (mushroom.http.HttpError attribute), 20

code (mushroom.http.HttpInternalServerError attribute),
20

code (mushroom.http.HttpMethodNotAllowed attribute),
20

code (mushroom.http.HttpNotFound attribute), 20

code (mushroom.http.HttpNotImplemented attribute), 21

code (mushroom.http.HttpUnauthorized attribute), 20

code (mushroom.rpc.Disconnect attribute), 25

code (mushroom.rpc.Error attribute), 25

code (mushroom.rpc.Heartbeat attribute), 23

code (mushroom.rpc.Notification attribute), 24

code (mushroom.rpc.Request attribute), 24

code (mushroom.rpc.Response attribute), 24

connect() (mushroom.session.SessionHandler method),
26

connect() (mushroom.transport.UnreliableTransport

method), 27

connect() (mushroom.utils.Signal method), 28

content_types (mushroom.simple.StaticFile attribute), 27

D

Disconnect (class in mushroom.rpc), 25

disconnect() (mushroom.session.SessionHandler
method), 26

disconnect() (mushroom.transport.UnreliableTransport
method), 27

disconnect() (mushroom.utils.Signal method), 28

disconnect_all() (mushroom.utils.Signal method), 28

dummy_rpc_handler() (in module mushroom.rpc), 23

E

Engine (class in mushroom.rpc), 22
Error (class in mushroom.rpc), 25

F

for_request() (mushroom.rpc.Error static method), 25
for_request() (mushroom.rpc.Response static method), 24
from_list() (mushroom.rpc.Disconnect static method), 25
from_list() (mushroom.rpc.Error static method), 25
from_list() (mushroom.rpc.Heartbeat static method), 23
from_list() (mushroom.rpc.Message static method), 23
from_list() (mushroom.rpc.Notification static method), 24
from_list() (mushroom.rpc.Request static method), 24
from_list() (mushroom.rpc.Response static method), 24

G

get() (mushroom.simple.StaticFile method), 27

get() (mushroom.utils.Observable method), 27

get_handshake_data() (mushroom.http.PollTransport
method), 21

get_handshake_data()
room.http.WebSocketTransport
21

get_response() (mushroom.rpc.Request method), 24

get_url() (mushroom.http.HttpTransport method), 21

H

handle_connect()
room.transport.UnreliableTransport
27

(mush-
method),

(mush-
method),

35

mushroom Documentation, Release 0.9.20

handle_disconnect()
method), 21

(mushroom.http.PollTransport

handle_disconnect() (mush-
room.http.WebSocketTransport method),
21

handle_disconnect() (mush-

room.transport.UnreliableTransport method),
27

handle_heartbeat() (mush-
room.transport.UnreliableTransport method),
27

handle_http_request() (mushroom.http.HttpTransport
method), 21

handle_http_request() (mushroom.http.PollTransport
method), 21

handle_http_request() (mush-
room.http.WebSocketTransport method),
21

handle_message() (mushroom.http.WebSocketTransport
method), 21

handle_message() (mushroom.rpc.Engine method), 22
handle_message() (mush-
room.transport.UnreliableTransport method),
27
headers (mushroom.http.HttpError attribute), 20
Heartbeat (class in mushroom.rpc), 23
host (mushroom.simple.SimpleServer attribute), 26
HttpError (class in mushroom.http), 20
HttpInternalServerError (class in mushroom.http), 20
HttpMethodNotAllowed (class in mushroom.http), 20
HttpNotFound (class in mushroom.http), 20
HttpNotImplemented (class in mushroom.http), 21
HttpRequest (class in mushroom.http), 20
HttpResponse (class in mushroom.http), 20
HttpTransport (class in mushroom.http), 21
HttpUnauthorized (class in mushroom.http), 20

J

JsonResponse (class in mushroom.http), 20

L

load_file() (mushroom.simple.StaticFile method), 27

M

main() (mushroom.simple.SimpleServer class method),
26

mainloop() (mushroom.messaging. Transport method), 21

Message (class in mushroom.rpc), 23

message (mushroom.http.HttpError attribute), 20

MethodDispatcher (class in mushroom.rpc), 23

MethodNotFound, 23

mushroom.application (module), 20

mushroom.messaging (module), 21

mushroom.server (module), 25

mushroom.session (module), 26
mushroom.simple (module), 26
mushroom.transport (module), 27
mushroom.utils (module), 27

N

name (mushroom.http.PollTransport attribute), 21

name (mushroom.http.WebSocketTransport attribute), 21
next_message_id() (mushroom.rpc.Engine method), 22
Notification (class in mushroom.rpc), 24

notify() (mushroom.rpc.Engine method), 22

notify() (mushroom.session.Session method), 26
notify() (mushroom.session.SessionList method), 26

O

Observable (class in mushroom.utils), 27

P

parse_listener() (in module mushroom.simple), 27
PollTransport (class in mushroom.http), 21
port (mushroom.simple.SimpleServer attribute), 26

R

real_send() (mushroom.http.PollTransport method), 21

real_send() (mushroom.http.WebSocketTransport
method), 21

real_send() (mushroom.transport.UnreliableTransport
method), 27

remove() (mushroom.session.SessionList method), 26

Request (class in mushroom.rpc), 24

request() (mushroom.application.Application method),
20

request() (mushroom.rpc.Engine method), 22

request() (mushroom.session.Session method), 26

request() (mushroom.simple.SimpleApplication method),
26

RequestException, 23

RequestTimeout, 23

Response (class in mushroom.rpc), 24

response (mushroom.rpc.Request attribute), 24

RpcError, 23

run() (mushroom.server.Server method), 25

S

send() (mushroom.messaging.Transport method), 22

send() (mushroom.rpc.Engine method), 22

send() (mushroom.transport.UnreliableTransport
method), 27

send() (mushroom.utils.Signal method), 28

Server (class in mushroom.server), 25

server_init() (mushroom.simple.SimpleServer method),
26

Session (class in mushroom.session), 26

36

Index

mushroom Documentation, Release 0.9.20

session_authenticate() (mushroom.simple.SimpleServer
method), 27

session_connect() (mushroom.simple.SimpleServer
method), 27

session_disconnect() (mushroom.simple.SimpleServer
method), 27

session_id_generator() (in module mushroom.session),
26

SessionHandler (class in mushroom.session), 26

SessionHandlerAdapter (class in mushroom.session), 26

SessionList (class in mushroom.session), 26

sessions (mushroom.server.Server attribute), 25

set() (mushroom.utils.Observable method), 27

Signal (class in mushroom.utils), 27

SimpleApplication (class in mushroom.simple), 26

SimpleServer (class in mushroom.simple), 26

start() (mushroom.messaging.Client method), 21

start() (mushroom.messaging. Transport method), 22

start_session() (mushroom.application. Application
method), 20

StaticFile (class in mushroom.simple), 27

stop() (mushroom.messaging.Client method), 21

stop() (mushroom.messaging. Transport method), 22

subscribe() (mushroom.utils.Observable method), 27

T

timeout (mushroom.http.PollTransport attribute), 21
to_list() (mushroom.rpc.Disconnect method), 25
to_list() (mushroom.rpc.Error method), 25

to_list() (mushroom.rpc.Heartbeat method), 24
to_list() (mushroom.rpc.Notification method), 24
to_list() (mushroom.rpc.Request method), 24
to_list() (mushroom.rpc.Response method), 25
Transport (class in mushroom.messaging), 21

U

UnreliableTransport (class in mushroom.transport), 27

unsubscribe() (mushroom.utils.Observable method), 27

unsubscribe_all() (mushroom.utils.Observable method),
27

urls (mushroom.simple.SimpleServer attribute), 27

W

WebSocketTransport (class in mushroom.http), 21

Index

37

	Table of contents
	Installation instructions
	Mushroom protocol
	CORS
	Examples
	Python API reference
	FAQ
	License

	Indices and tables
	Python Module Index

