

musdb

A python package to parse and process the sigsep musdb18 dataset as part of the MUS
task [https://sisec.inria.fr/home/2018-professionally-produced-music-recordings/]
of the Signal Separation Evaluation Campaign
(SISEC) [https://sisec.inria.fr/]

Contents:

	Installation
	SIGSEP-MUS Dataset / Subset

	Usage
	Providing a compatible function

	Create estimates for SiSEC evaluation
	Setting up musdb

	Test if your separation function generates valid output

	Processing the full musdb

	Processing training and testing subsets separately

	Access the reference signals / targets

	Use multiple cores

	Example

	Modules
	Modules

	Audio Classes

References

If you use this package, please reference the following paper

Installation

Decoding

As the MUSDB18 is encoded as STEMS, it relies on ffmpeg to read the multi-stream files. We provide a python wrapper called stempeg that allows to easily parse the dataset and decode the stem tracks on-the-fly. Before you install musdb (that includes the stempeg requirement), it is therefore required to install ffmpeg. The installation differ among operating systems.

E.g. if you use Anaconda you can install ffmpeg on Windows/Mac/Linux using the following command:

conda install -c conda-forge ffmpeg

Alternatively you can install ffmpeg manually as follows:

Mac: use homebrew: brew install ffmpeg
Ubuntu Linux: sudo apt-get install ffmpeg

Use a decoded version

If you have trouble installing stempeg or ffmpeg we also support parse and process the pre-decoded PCM/wav files. We provide docker based scripts [https://github.com/sigsep/sigsep-mus-io] to decode the dataset to wav files. If you want to use the decoded musdb dataset, use the is_wav parameter when initialising the dataset.

Package installation

You can install the musdb parsing package using pip:

pip install musdb

pip install musdb

SIGSEP-MUS Dataset / Subset

The dataset can be downloaded here [https://sigsep.github.io/musdb].

Usage

This package should nicely integrate with your existing python code,
thus makes it easy to participate in the MUSDB
tasks [https://sisec.inria.fr/home/2018-professionally-produced-music-recordings].
The core of this package is calling a user-provided function that
separates the mixtures from the musdb into several estimated target
sources.

Providing a compatible function

The core of this package consists of calling a user-provided function
which separates the mixtures from the musdb into estimated target
sources.

	The function will take an musdb Track object which can be used
from inside your algorithm.

	Participants can access

	Track.audio, representing the stereo mixture as an np.ndarray
of shape=(nun_sampl, 2)

	Track.rate, the sample rate

	Track.path, the absolute path of the mixture which might be handy
to process with external applications, so that participants don’t
need to write out temporary wav files.

	The function needs to return a python Dict which consists of
target name (key) and the estimated target as audio arrays with
same shape as the mixture (value).

	It is the users choice which target sources they want to provide for
a given mixture. Supported targets are
['vocals', 'accompaniment', 'drums', 'bass', 'other'].

	Please make sure that the returned estimates do have the same sample
rate as the mixture track.

Here is an example for such a function separating the mixture into a
vocals and accompaniment track.

def my_function(track):

 # get the audio mixture as numpy array shape=(nun_sampl, 2)
 track.audio

 # compute voc_array, acc_array
 # ...

 return {
 'vocals': voc_array,
 'accompaniment': acc_array
 }

Create estimates for SiSEC evaluation

Setting up musdb

Simply import the musdb package in your main python function:

import musdb

mus = musdb.DB(
 root_dir='path/to/musdb/',
)

The root_dir is the path to the musdb dataset folder. Instead of
root_dir it can also be set system-wide. Just
export MUSDB_PATH=/path/to/musdb inside your terminal environment.

Test if your separation function generates valid output

Before you run the full 150 tracks, which might take very long, participants
can test their separation function by running:

mus.test(my_function)

This test makes sure the user provided output is compatible to the
musdb framework. The function returns True if the test succeeds.

Processing the full musdb

To process all 150 musdb tracks and saves the results to the
estimates_dir:

mus.run(my_function, estimates_dir="path/to/estimates")

Processing training and testing subsets separately

Algorithms which make use of machine learning techniques can use the
training subset and then apply the algorithm on the test data:

mus.run(my_training_function, subsets="train")
mus.run(my_test_function, subsets="test")

Access the reference signals / targets

For supervised learning you can use the provided reference sources by loading the track.targets dictionary.
E.g. to access the vocal reference from a track:

track.targets['vocals'].audio

Use multiple cores

Python Multiprocessing

To speed up the processing, run can make use of multiple CPUs:

mus.run(my_function, parallel=True, cpus=4)

Note: We use the python builtin multiprocessing package, which sometimes
is unable to parallelize the user provided function to
PicklingError [http://stackoverflow.com/a/8805244].

Example

import musdb

def my_function(track):
 '''My fancy BSS algorithm'''

 # get the audio mixture as numpy array shape=(num_sampl, 2)
 track.audio

 # get the mixture path for external processing
 track.path

 # get the sample rate
 track.rate

 # return any number of targets
 estimates = {
 'vocals': vocals_array,
 'accompaniment': acc_array,
 }
 return estimates

initiate musdb
mus = musdb.DB(root_dir="./Volumes/Data/musdb")

verify if my_function works correctly
if mus.test(my_function):
 print "my_function is valid"

this might take 3 days to finish
mus.run(my_function, estimates_dir="path/to/estimates")

Modules

	Modules

	Audio Classes

Modules

	Modules

	Audio Classes

Audio Classes

Index

 _static/up.png

nav.xhtml

 Table of Contents

 		
 musdb

 		
 Installation

 		
 SIGSEP-MUS Dataset / Subset

 		
 Usage

 		
 Providing a compatible function

 		
 Create estimates for SiSEC evaluation

 		
 Setting up musdb

 		
 Test if your separation function generates valid output

 		
 Processing the full musdb

 		
 Processing training and testing subsets separately

 		
 Access the reference signals / targets

 		
 Use multiple cores

 		
 Example

 		
 Modules

 		
 Modules

 		
 Audio Classes

_static/down-pressed.png

_static/down.png

_static/comment-close.png

_static/comment.png

_static/minus.png

_static/plus.png

_static/file.png

_static/up-pressed.png

_static/ajax-loader.gif

_static/comment-bright.png

