

Welcome to Read the Docs

This is an autogenerated index file.

Please create an index.rst or README.rst file with your own content
under the root (or /docs) directory in your repository.

If you want to use another markup, choose a different builder in your settings.
Check out our Getting Started Guide [https://docs.readthedocs.io/en/latest/getting_started.html] to become more
familiar with Read the Docs.

Index

Citing this model

The software in this repository is provided under the terms of the software license included with it.

If you use this model in your research, we respectfully ask you to cite:

The original publication upon which this model is based

	Boyle JH, Cohen N. Caenorhabditis elegans body wall muscles are simple actuators. Biosystems. 2008;94: 170–181.

The latest release of this Open Source Brain repository

	This link should provide a DOI/citation for the latest version released: https://zenodo.org/badge/latestdoi/4203900. If you would like us to make a new release, please open an issue.

OpenWorm muscle model

[image: Build Status] [https://travis-ci.org/openworm/muscle_model] [image: Gitter] [https://gitter.im/openworm/muscle_model?utm_source=badge&utm_medium=badge&utm_campaign=pr-badge&utm_content=badge]

Authors: Mike Vella, Alex Dibert, Padraig Gleeson, Rayner Lucas
email:mv333@cam.ac.uk

If you contribute to the project please add your name to the Authors field

Introduction

This repository contains several different subprojects all related to the construction of a biophysically-detailed model
of the dynamic properties of electrical excitation of the body wall muscle of the c. elegans.

[image: Overview of dynamics we are reproducing]

In the figure above, you can see the basic functionality that we are seeking to reproduce. The electrical activity of a muscle cell
can be recorded using an electrode that is stuck into it. Connecting the electrode to a sensitive
amplifier and stimulator allows a researcher to either use a current clamp [https://en.wikipedia.org/wiki/Electrophysiology#Current_clamp] or voltage clamp [https://en.wikipedia.org/wiki/Voltage_clamp] mode to control and examine the dynamics of the voltage changes or current flow across the membrane.

Ultimately, we understand from Hodgkin and Huxley [https://en.wikipedia.org/wiki/Hodgkin%E2%80%93Huxley_model] that these electrical dynamics of the membrane are fully determined by the dynamics of ion channels [https://en.wikipedia.org/wiki/Ion_channel] that sit across the membrane.

In 2008, Dr. Netta Cohen and Dr. Jordan Boyle at the University of Leeds published an article with their mathematical model of these dynamics based on real data.

This model was expressed as a system of equations and a set of parameters in their publication, as well as C++ and Matlab code.

Their original code has been graciously shared with the OpenWorm project under the BoyleCohen2008 directory. In addition, a Python port of key components of the model
has been added by OpenWorm contributors (Rayner Lucas).

For the purposes of re-using the model as a component of the larger OpenWorm project, we have converted the mathematical model of Cohen & Boyle into NeuroML2, an XML-based
description of the system of equations that make up mathematical models of biophysically-based models of excitable membranes.

This repository contains the following:

	Simulation of C.Elegans muscle cell electrical properties, based on Boyle & Cohen 2008.

	NeuroML 2/LEMS conversion of the muscle cell model

	Optimization script for the above model, utliising Optimal Neuron package. Optimizing towards sharp electrode data obtained from lab of Michael M Francis.

	C++ Module for importation of arbitrary Pyramidal model into C++ program such as Palyanov et al SPH solver.

1. Simulation of C.Elegans muscle cell electrical properties

The authoritative version of the muscle cell model from Boyle & Cohen has been shared with the project under the BoyleCohen2008/ directory. Here you will also find a Python port of some of the scripts that demonstrate the dynamics of the muscle model.

An early attempt to convert this model into the NEURON package is available in the neuron_implementation/ directory (no longer supported).

2. NeuroML 2/LEMS conversion of the muscle cell model

This version of the muscle model reflects an initial attempt to convert the model from: http://www.sciencedirect.com/science/article/pii/S0303264708001408 into NeuroML 2 (http://www.neuroml.org/neuroml2.php).

See issue: https://github.com/openworm/OpenWorm/issues/169 for the latest.

See also http://www.opensourcebrain.org/projects/muscle_model/wiki.

2.1 Simulation of muscle cell ion channels

The muscle model contains NeuroML2 descriptions of the ion channels in the muscle cell. To create and run LEMS simulations of these ion channels, first install the dependencies as follows:

INSTALLDIR=~/git
mkdir $INSTALLDIR
cd $INSTALLDIR
git clone https://github.com/openworm/muscle_model

pip install lxml
git clone https://github.com/NeuralEnsemble/libNeuroML.git
cd libNeuroML
git checkout development
python setup.py install
cd ..

git clone https://github.com/NeuroML/pyNeuroML.git
cd pyNeuroML
python setup.py install
cd ../..

This will install the muscle model and all their dependencies into the directory defined by INSTALLDIR.

To create and run the LEMS simulations, there is a script for each of the NeuroML2 ion channel models. For example,
to create and run a simulation to analyse the fast potassium channel, go to the muscle_model/NeuroML2/ subdirectory and run the command:

./analyse_k_fast.sh

In this directory, you can run:

pynml LEMS_NeuronMuscle.xml

to run a simulation of a presynaptic neuron causing the muscle cell to spike:

[image: NeuronMuscle.png]

Note: neither the presynaptic neuron (modelled as an Integrate and Fire neuron) nor the synapse model are physiologically constrained.

3. Optimization script for the above model

Note: see https://github.com/openworm/muscle_model/issues/18 for details on the current status of these subprojects.

See https://github.com/openworm/muscle_model/blob/master/pyramidal_implementation/README.md

4. C++ Module for SPH/muscle_model integration

Note: see https://github.com/openworm/muscle_model/issues/18 for details on the current status of these subprojects.

This is still at an alpha stage, but has been demonstrated to function as expected.

to compile and run (temp notes with hardcoded paths - replace with your own path)
run the following commands from inside curdir:

$ export PYTHONPATH=”/home/mike/dev/cpp_pyramidal_integration/”
OR
export PYTHONPATH=$PYTHONPATH:/home/mike/dev/muscle_model/pyramidal_implementation/
$ g++ main.cpp -l python2.7 -o sim -I /usr/include/python2.7/
$./sim

The resultant so file will then be importable in any c++ module and present a PyramidalSimulation class with a run() method which will return the membrane potential at the end of execution of a fixed timestep.

Reusing this model

The code in this repository is provided under the terms of the software license included with it. If you use this model in your research, we respectfully ask you to cite the references outlined in the CITATION file.

Muscle cell code from Boyle and Cohen 2008

This software was used in the publication [https://groups.google.com/group/openworm-discuss/attach/df619bba6defa84f/C.%20elegans%20Body%20Wall%20Muscles%20are%20Simple%20Actuators%20-%20Boyle,%20Cohen%20-%202007.pdf?part=0.2&authuser=0]:

J.H. Boyle, N. Cohen, Caenorhabditis elegans body wall muscles are simple actuators, BioSystems 94 (2008) 170–181

to both define and optimise the parameters of a muscle cell model for C. elegans.

If you use or alter this code please cite the above publication.

This is being used by the OpenWorm project to create an initial model of a muscle cell in NeuroML 2 [https://github.com/openworm/muscle_model/tree/master/NeuroML2].

A key matlab script is located at MatlabSupport/Main_Version/vclamp.m which, when run, should produce a main graph of the paper.

A python version of this has been added at PythonSupport/Main_Version/vclamp.py. When run correctly it should produce the following image:

[image: vclamp.py running correctly]

This reproduces figure 2B of the Boyle & Cohen paper.

This code is released under the terms of the MIT license.

C elegans muscle cell model in NeuroML 2

This is a NeuroML 2 implementation of the C elegans muscle cell model of Boyle & Cohen, 2008 [http://www.sciencedirect.com/science/article/pii/S0303264708001408].

To install & run this version, install either jNeuroML (for jnml, as outlined here [https://github.com/NeuroML/jNeuroML/blob/master/README.md]), or PyNeuroML (for pynml, as outlined here [https://github.com/NeuroML/pyNeuroML]).

Get a local copy of this repository with:

git clone https://github.com/openworm/muscle_model.git

or

git clone git@github.com:openworm/muscle_model.git # if SSH authentication is set up locally

Go into the directory with the NeuroML 2 version of the model:

cd muscle_model/NeuroML2

Run the example cell (trying to reproduce Figure 2A in Boyle & Cohen, 2008 [http://www.sciencedirect.com/science/article/pii/S0303264708001408]) with:

jnml LEMS_Figure2A.xml # using jNeuroML

or

pynml LEMS_Figure2A.xml # using PyNeuroML

Run the example cell (trying to reproduce Figure 2B in Boyle & Cohen, 2008 [http://www.sciencedirect.com/science/article/pii/S0303264708001408]) with:

jnml LEMS_Figure2B.xml
pynml LEMS_Figure2B.xml

An iPython notebook with examples of how to explore elements of the muscle model is available at Explore.ipynb [http://nbviewer.ipython.org/github/openworm/muscle_model/blob/master/NeuroML2/Explore.ipynb].

For more details on the current status of this conversion, see issue: https://github.com/openworm/OpenWorm/issues/169

 A conversion of the NeuroML 2 muscle cell model to C by Robby Simpson

This code requires no external libraries and is intended to be useful to those wishing to understand how the muscle cell, as well as NeuroML 2 and LEMS, can be implemented in a simulator using Euler’s method.

Reproduces Figure 2A in Boyle & Cohen, 2008 [http://www.sciencedirect.com/science/article/pii/S0303264708001408]

To compile:

gcc testMuscleOpenworm.c -lm -o muscleC

Then the simulation can be run with:

./muscleC

To plot the results, pipe the output to a file and use your favourite plotting tool (or neuroConstruct [https://github.com/NeuralEnsemble/neuroConstruct/blob/master/INSTALL]) to plot them:

./muscleC > results.dat
~/neuroConstruct/nCplot.sh -b results.dat

[image: plot]

Channel information

Channel information at: T = 34.0 degC, E_rev = 50.0 mV, [Ca2+] = 0.001 mM

	
 k_fast

 k_fast.channel.nml

 Ion: k

 g = gmax * p4 * q

 K fast channel from Boyle and Cohen 2008

	
[image: k_fast steady state]

	
[image: k_fast time course]

	
 k_slow

 k_slow.channel.nml

 Ion: k

 g = gmax * n

 K slow channel from Boyle and Cohen 2008

	
[image: k_slow steady state]

	
[image: k_slow time course]

	
 ca_boyle

 ca_boyle.channel.nml

 Ion: ca

 g = gmax * e2 * f * h

 Ca channel from Boyle and Cohen 2008

	
[image: ca_boyle steady state]

	
[image: ca_boyle time course]

 Note: this is an early attempt to convert the muscle model to NEURON

It does not match the MATLAB [https://github.com/openworm/muscle_model/tree/master/BoyleCohen2008/MatlabSupport/Main_Version],
Python [https://github.com/openworm/muscle_model/tree/master/BoyleCohen2008/PythonSupport/Main_Version] or
NeuroML 2 [https://github.com/openworm/muscle_model/tree/master/NeuroML2] versions of the model!

To run:

$ nrnivmodl
$ python main.py

WARNING

This implementation is not compatible with the current
version of libNeuroML, it is currently being rewritten
by Mike Vella.

See also https://github.com/openworm/muscle_model/issues/18

Compilation of C++ interface

Compile the PyramidalSimulation object:

g++ -c PyramidalSimulation.cpp -I /usr/include/python2.7/ -I ./ -l python2.7 -o PyramidalSimulation.o

Invoke the linker:

g++ example.cpp PyramidalSimulation.o -I /usr/include/python2.7/ -I ./ -l python2.7 -o simulation

Experimental data info

Denis Turutin described the simulations he sent us as follows:

	For spontaneous 50s, It is spontaneous evoked (current clamp) with holding current 0 pA.

	For CCramp it is, 0 pA for 100ms, -20 pA 5ms, from -20pA to 40 pA linear within 2 s, finally 0 pA for 100ms

We are using the CCramp data (2) (RATIONALE - it is very difficult to interpret the data obtained under the effect of synaptic input, the current injectino should negate synaptic current influx).

The experimental data recorded in W05042200_1_1_3_1.txt will be used as a target.

Some Calculations - If Denis’ protocol description is correct, total time of execution is 0.1+0.05+2+0.1 = 2.205s. There are 11025 data points in the recording, giving a sampling frequency of 5KHz.

Observations:

	(initial) Resting potential 30mV

Note: the initial hyperpolarizing step can be used to elicit information about the passive properties of the cell.

Simulation info

Initial simulation:

The initial simulation will be of reduced complexity:

Take the component of the ramp from 10pA to 40pA and approximate to 25pA. As the current ramp is linear, 10pA should occur at (100+5+1000)ms = 1105, i.e data point 1.1055000=5525.To data point 2.1051000=10525

This is saved as redacted_data.txt

Information previously contained in top level README.md

The relevant model is contained in the /pyramidal_implementation folder

This model includes the following currents:
- k_fast
- k_slow
- Ca
- leak

Running model

To run model install pyramidal and its dependencies as described here:
http://pyramidal.readthedocs.org/en/latest/install.html

The relevant model is contained in the /pyramidal_implementation folder, cd to that folder and:

Then execute the command:

 python run.py eval_file0 40.041444758152295 0.0 4514.250191560498 35.2 0.4089 0.6 --compile --plotoverlay

This will use the auto-mod file compilation feature of Pyramidal including nrnivmodl compilation and run the model with the best-optimized parameters to-date.

Running optimization

To run model install Optimal Neuron and its dependencies as described here:
http://optimal-neuron.readthedocs.org/en/latest/installation.html

Remove any mod files (such as ca.mod) from the pyramidal_implementation repository as this will interfere with the optimizer behaviour, the optimizer is designed to run with the manual_*.mod files which are located in the /mod_file directory and need to be the only mod files present in the /pyramidal directory before execution of the optimization script.

The current optimization is set up to use features extracted from the data file, the feature values are:

‘peak_linear_gradient’: 0.0126455, ‘average_minimum’: 32.9139683819512, ‘spike_frequency_adaptation’: 0.054102950823597951, ‘trough_phase_adaptation’: -0.032339835206814785, ‘mean_spike_frequency’: 170.75638755391191, ‘average_maximum’: 52.484330488178259, ‘trough_decay_exponent’: 0.082997586003614746, ‘interspike_time_covar’: 0.67343012507213718, ‘min_peak_no’: 20, ‘spike_width_adaptation’: 5.196371093168479e-17, ‘max_peak_no’: 20, ‘first_spike_time’: 105.37999999997665, ‘peak_decay_exponent’: -0.074000673186574759

and corresponding weights:

‘peak_linear_gradient’: 20,’average_minimum’: 5.0, ‘spike_frequency_adaptation’: 0.0, ‘trough_phase_adaptation’: 0.0, ‘mean_spike_frequency’: 1.0, ‘average_maximum’: 2.0, ‘trough_decay_exponent’: 0.0, ‘interspike_time_covar’: 0.0, ‘min_peak_no’: 1.0, ‘spike_width_adaptation’: 0.0, ‘max_peak_no’: 50.0, ‘first_spike_time’: 1.0, ‘peak_decay_exponent’: 0.0

Then run:

 >>>python optimization.py

The optimizer will execute on 64 threads and display the results. Play with optimization.py to change #threads, #population #max_evaluations etc.

 _images/f564c7c9bcec24cabd9f3c3d621fdb41adfa522f.png
What dynamics of the
muscle cell do we want
to reproduce?

ion channels

/b

Amplifier /
Stimulator

muscle cell current clamy

Repeated trials in
each mode
overlaid on top of
each other

e Top trace is
! "‘L recording, bottom
trace is stimulus
e A)shows results
in milliVolts, B)
shows results in
nanoAmps

Bikaid % Fig 2. A&B, Boyle
70 mv. & Cohen, 2008

_images/muscle_model.png
“build passing

_images/NeuronMuscle.png
File View Mouse

neuron_v

File View Mouse

_images/Plot.png
10

15

EY

Y

a0

s

_static/comment-bright.png

_static/comment-close.png

_static/ajax-loader.gif

_static/comment.png

_static/down-pressed.png

_images/94805b6bd16eb3805f4bcd9e5285e45ecf07c1b2.png

_static/down.png

nav.xhtml

 Table of Contents

 		
 Welcome to Read the Docs

_static/minus.png

_static/plus.png

_static/file.png

_static/up.png

_static/up-pressed.png

