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MultivariateStats.jl is a Julia package for multivariate statistical analysis. It provides a rich set of useful analysis
techniques, such as PCA, CCA, LDA, PLS, etc.

Contents:
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2 Contents



CHAPTER 1

Linear Least Square and Ridge Regression

The package provides functions to perform Linear Least Square and Ridge Regression.

1.1 Linear Least Square

Linear Least Square is to find linear combination(s) of given variables to fit the responses by minimizing the squared
error between them. This can be formulated as an optimization as follows:

minimize
(a,𝑏)

1

2
‖y − (Xa+ 𝑏)‖2

Sometimes, the coefficient matrix is given in a transposed form, in which case, the optimization is modified as:

minimize
(a,𝑏)

1

2
‖y − (X𝑇a+ 𝑏)‖2

The package provides llsq to solve these problems:

llsq(X, y; ...)
Solve the linear least square problem formulated above.

Here, y can be either a vector, or a matrix where each column is a response vector.

This function accepts two keyword arguments:

• trans: whether to use the transposed form. (default is false)

• bias: whether to include the bias term b. (default is true)

The function results the solution a. In particular, when y is a vector (matrix), a is also a vector (matrix). If
bias is true, then the returned array is augmented as [a; b].

Examples

For a single response vector y (without using bias):
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using MultivariateStats

# prepare data
X = rand(1000, 3) # feature matrix
a0 = rand(3) # ground truths
y = X * a0 + 0.1 * randn(1000) # generate response

# solve using llsq
a = llsq(X, y; bias=false)

# do prediction
yp = X * a

# measure the error
rmse = sqrt(mean(abs2(y - yp)))
print("rmse = $rmse")

For a single response vector y (using bias):

# prepare data
X = rand(1000, 3)
a0, b0 = rand(3), rand()
y = X * a0 + b0 + 0.1 * randn(1000)

# solve using llsq
sol = llsq(X, y)

# extract results
a, b = sol[1:end-1], sol[end]

# do prediction
yp = X * a + b'

For a matrix Y comprised of multiple columns:

# prepare data
X = rand(1000, 3)
A0, b0 = rand(3, 5), rand(1, 5)
Y = (X * A0 .+ b0) + 0.1 * randn(1000, 5)

# solve using llsq
sol = llsq(X, Y)

# extract results
A, b = sol[1:end-1,:], sol[end,:]

# do prediction
Yp = X * A .+ b'

1.2 Ridge Regression

Compared to linear least square, Ridge Regression uses an additional quadratic term to regularize the problem:

minimize
(a,𝑏)

1

2
‖y − (Xa+ 𝑏)‖2 + 1

2
a𝑇Qa
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The transposed form:

minimize
(a,𝑏)

1

2
‖y − (X𝑇a+ 𝑏)‖2 + 1

2
a𝑇Qa

The package provides ridge to solve these problems:

ridge(X, y, r; ...)
Solve the ridge regression problem formulated above.

Here, y can be either a vector, or a matrix where each column is a response vector.

The argument r gives the quadratic regularization matrix Q, which can be in either of the following forms:

• r is a real scalar, then Q is considered to be r * eye(n), where n is the dimension of a.

• r is a real vector, then Q is considered to be diagm(r).

• r is a real symmetric matrix, then Q is simply considered to be r.

This function accepts two keyword arguments:

• trans: whether to use the transposed form. (default is false)

• bias: whether to include the bias term b. (default is true)

The function results the solution a. In particular, when y is a vector (matrix), a is also a vector (matrix). If
bias is true, then the returned array is augmented as [a; b].

1.2. Ridge Regression 5
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CHAPTER 2

Data Whitening

A whitening transformation is a decorrelation transformation that transforms a set of random variables into a set of
new random variables with identity covariance (uncorrelated with unit variances).

In particular, suppose a random vector has covariance C, then a whitening transform W is one that satisfy:

W𝑇CW = I

Note that W is generally not unique. In particular, if W is a whitening transform, so is any of its rotation WR with
R𝑇R = I.

2.1 Whitening

The package uses Whitening defined below to represent a whitening transform:

immutable Whitening{T<:FloatingPoint}
mean::Vector{T} # mean vector (can be empty to indicate zero mean), of length

→˓d
W::Matrix{T} # the transform coefficient matrix, of size (d, d)

end

An instance of Whitening can be constructed by Whitening(mean, W).

There are several functions to access the properties of a whitening transform f:

indim(f)
Get the input dimension, i.e d.

outdim(f)
Get the out dimension, i.e d.

mean(f)
Get the mean vector.

Note: if f.mean is empty, this function returns a zero vector of length d.

7
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transform(f, x)
Apply the whitening transform to a vector or a matrix with samples in columns, as W𝑇 (x− 𝜇).

2.2 Data Analysis

Given a dataset, one can use the fit method to estimate a whitening transform.

fit(Whitening, X; ...)
Estimate a whitening transform from the data given in X. Here, X should be a matrix, whose columns give the
samples.

This function returns an instance of Whitening.

Keyword Arguments:

name description default
regcoef The regularization coefficient.

The covariance will be regular-
ized as follows when regcoef
is positive:
C + (eigmax(C) *
regcoef) * eye(d)

zero(T)

mean The mean vector, which can be ei-
ther of:

• 0: the input data has already
been centralized

• nothing: this function
will compute the mean

• a pre-computed mean vector

nothing

Note: This function internally relies on cov_whiten to derive the transformation W. The function
cov_whiten itself is also a useful function.

cov_whitening(C)
Derive the whitening transform coefficient matrix W given the covariance matrix C. Here, C can be either a square
matrix, or an instance of Cholesky.

Internally, this function solves the whitening transform using Cholesky factorization. The rationale is as follows:
let C = U𝑇U and W = U−1, then W𝑇CW = I.

Note: The return matrix W is an upper triangular matrix.

cov_whitening(C, regcoef)
Derive a whitening transform based on a regularized covariance, as C + (eigmax(C) * regcoef) *
eye(d).

In addition, the package also provides cov_whiten!, in which the input matrix C will be overwritten during com-
putation. This can be more efficient when C is no longer used.

invsqrtm(C)
Compute inv(sqrtm(C)) through symmetric eigenvalue decomposition.

8 Chapter 2. Data Whitening



CHAPTER 3

Principal Component Analysis

Principal Component Analysis (PCA) derives an orthogonal projection to convert a given set of observations to linearly
uncorrelated variables, called principal components.

This package defines a PCA type to represent a PCA model, and provides a set of methods to access the properties.

3.1 Properties

Let M be an instance of PCA, d be the dimension of observations, and p be the output dimension (i.e the dimension of
the principal subspace)

indim(M)
Get the input dimension d, i.e the dimension of the observation space.

outdim(M)
Get the output dimension p, i.e the dimension of the principal subspace.

mean(M)
Get the mean vector (of length d).

projection(M)
Get the projection matrix (of size (d, p)). Each column of the projection matrix corresponds to a principal
component.

The principal components are arranged in descending order of the corresponding variances.

principalvars(M)
The variances of principal components.

tprincipalvar(M)
The total variance of principal components, which is equal to sum(principalvars(M)).

tresidualvar(M)
The total residual variance.

9
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tvar(M)
The total observation variance, which is equal to tprincipalvar(M) + tresidualvar(M).

principalratio(M)
The ratio of variance preserved in the principal subspace, which is equal to tprincipalvar(M) /
tvar(M).

3.2 Transformation and Construction

Given a PCA model M, one can use it to transform observations into principal components, as

y = P𝑇 (x− 𝜇)

or use it to reconstruct (approximately) the observations from principal components, as

x̃ = Py + 𝜇

Here, P is the projection matrix.

The package provides methods to do so:

transform(M, x)
Transform observations x into principal components.

Here, x can be either a vector of length d or a matrix where each column is an observation.

reconstruct(M, y)
Approximately reconstruct observations from the principal components given in y.

Here, y can be either a vector of length p or a matrix where each column gives the principal components for an
observation.

3.3 Data Analysis

One can use the fit method to perform PCA over a given dataset.

fit(PCA, X; ...)
Perform PCA over the data given in a matrix X. Each column of X is an observation.

This method returns an instance of PCA.

Keyword arguments:

Let (d, n) = size(X) be respectively the input dimension and the number of observations:

10 Chapter 3. Principal Component Analysis
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name description default
method The choice of methods:

• :auto: use :cov when d
< n or :svd otherwise

• :cov: based on covariance
matrix

• :svd: based on SVD of the
input data

:auto

maxoutdim Maximum output dimension. min(d, n)
pratio The ratio of variances preserved

in the principal subspace.
0.99

mean The mean vector, which can be ei-
ther of:

• 0: the input data has already
been centralized

• nothing: this function
will compute the mean

• a pre-computed mean vector

nothing

Notes:

• The output dimension p depends on both maxoutdim and pratio, as follows. Suppose the first k
principal components preserve at least pratio of the total variance, while the first k-1 preserves less
than pratio, then the actual output dimension will be min(k, maxoutdim).

• This function calls pcacov or pcasvd internally, depending on the choice of method.

Example:

using MultivariateStats

# suppose Xtr and Xte are training and testing data matrix,
# with each observation in a column

# train a PCA model
M = fit(PCA, Xtr; maxoutdim=100)

# apply PCA model to testing set
Yte = transform(M, Xte)

# reconstruct testing observations (approximately)
Xr = reconstruct(M, Yte)

Example with iris dataset and plotting:

using MultivariateStats, RDatasets, Plots
plotly() # using plotly for 3D-interacive graphing

# load iris dataset
iris = dataset("datasets", "iris")

# split half to training set
Xtr = convert(Array,DataArray(iris[1:2:end,1:4]))'
Xtr_labels = convert(Array,DataArray(iris[1:2:end,5]))

(continues on next page)

3.3. Data Analysis 11
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(continued from previous page)

# split other half to testing set
Xte = convert(Array,DataArray(iris[2:2:end,1:4]))'
Xte_labels = convert(Array,DataArray(iris[2:2:end,5]))

# suppose Xtr and Xte are training and testing data matrix,
# with each observation in a column

# train a PCA model, allowing up to 3 dimensions
M = fit(PCA, Xtr; maxoutdim=3)

# apply PCA model to testing set
Yte = transform(M, Xte)

# reconstruct testing observations (approximately)
Xr = reconstruct(M, Yte)

# group results by testing set labels for color coding
setosa = Yte[:,Xte_labels.=="setosa"]
versicolor = Yte[:,Xte_labels.=="versicolor"]
virginica = Yte[:,Xte_labels.=="virginica"]

# visualize first 3 principal components in 3D interacive plot
p = scatter(setosa[1,:],setosa[2,:],setosa[3,:],marker=:circle,linewidth=0)
scatter!(versicolor[1,:],versicolor[2,:],versicolor[3,:],marker=:circle,linewidth=0)
scatter!(virginica[1,:],virginica[2,:],virginica[3,:],marker=:circle,linewidth=0)
plot!(p,xlabel="PC1",ylabel="PC2",zlabel="PC3")

3.4 Core Algorithms

Two algorithms are implemented in this package: pcacov and pcastd.

pcacov(C, mean; ...)
Compute PCA based on eigenvalue decomposition of a given covariance matrix C.

Parameters

• C – The covariance matrix.

• mean – The mean vector of original samples, which can be a vector of length d, or an empty
vector Float64[] indicating a zero mean.

Returns The resultant PCA model.

Note This function accepts two keyword arguments: maxoutdim and pratio.

pcasvd(Z, mean, tw; ...)
Compute PCA based on singular value decomposition of a centralized sample matrix Z.

Parameters

• Z – provides centralized samples.

• mean – The mean vector of the original samples, which can be a vector of length d, or an
empty vector Float64[] indicating a zero mean.

Returns The resultant PCA model.

Note This function accepts two keyword arguments: maxoutdim and pratio.

12 Chapter 3. Principal Component Analysis



CHAPTER 4

Probabilistic Principal Component Analysis

Probabilistic Principal Component Analysis (PPCA) represents a constrained form of the Gaussian distribution in
which the number of free parameters can be restricted while still allowing the model to capture the dominant cor-
relations in a data set. It is expressed as the maximum likelihood solution of a probabilistic latent variable model
[BSHP06].

This package defines a PPCA type to represent a probabilistic PCA model, and provides a set of methods to access the
properties.

4.1 Properties

Let M be an instance of PPCA, d be the dimension of observations, and p be the output dimension (i.e the dimension
of the principal subspace)

indim(M)
Get the input dimension d, i.e the dimension of the observation space.

outdim(M)
Get the output dimension p, i.e the dimension of the principal subspace.

mean(M)
Get the mean vector (of length d).

projection(M)
Get the projection matrix (of size (d, p)). Each column of the projection matrix corresponds to a principal
component.

The principal components are arranged in descending order of the corresponding variances.

loadings(M)
The factor loadings matrix (of size (d, p)).

var(M)
The total residual variance.

13
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4.2 Transformation and Construction

Given a probabilistic PCA model M, one can use it to transform observations into latent variables, as

z = (W𝑇W + 𝜎2I)W𝑇 (x− 𝜇)

or use it to reconstruct (approximately) the observations from latent variables, as

x̃ = WE[z] + 𝜇

Here, W is the factor loadings or weight matrix.

The package provides methods to do so:

transform(M, x)
Transform observations x into latent variables.

Here, x can be either a vector of length d or a matrix where each column is an observation.

reconstruct(M, z)
Approximately reconstruct observations from the latent variable given in z.

Here, y can be either a vector of length p or a matrix where each column gives the latent variables for an
observation.

4.3 Data Analysis

One can use the fit method to perform PCA over a given dataset.

fit(PPCA, X; ...)
Perform probabilistic PCA over the data given in a matrix X. Each column of X is an observation.

This method returns an instance of PCA.

Keyword arguments:

Let (d, n) = size(X) be respectively the input dimension and the number of observations:

14 Chapter 4. Probabilistic Principal Component Analysis
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name description default
method The choice of methods:

• :ml: use maximum likeli-
hood version of probabilistic
PCA

• :em: use EM version of
probabilistic PCA

• :bayes: use Bayesian
PCA

:ml

maxoutdim Maximum output dimension. d-1
mean The mean vector, which can be ei-

ther of:
• 0: the input data has already

been centralized
• nothing: this function

will compute the mean
• a pre-computed mean vector

nothing

tol Convergence tolerance 1.0e-6
tot Maximum number of iterations 1000

Notes:

• This function calls ppcaml, ppcaem or bayespca internally, depending on the choice of method.

Example:

using MultivariateStats

# suppose Xtr and Xte are training and testing data matrix,
# with each observation in a column

# train a PCA model
M = fit(PPCA, Xtr; maxoutdim=100)

# apply PCA model to testing set
Yte = transform(M, Xte)

# reconstruct testing observations (approximately)
Xr = reconstruct(M, Yte)

4.4 Core Algorithms

Three algorithms are implemented in this package: ppcaml, ppcaem, and bayespca.

ppcaml(Z, mean, tw; ...)
Compute probabilistic PCA using on maximum likelihood formulation for a centralized sample matrix Z.

Parameters

• Z – provides centralized samples.

• mean – The mean vector of the original samples, which can be a vector of length d, or an
empty vector Float64[] indicating a zero mean.

4.4. Core Algorithms 15
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Returns The resultant PPCA model.

Note This function accepts two keyword arguments: maxoutdim and tol.

ppcaem(S, mean, n; ...)
Compute probabilistic PCA based on expectation-maximization algorithm for a given sample covariance matrix
S.

Parameters

• S – The sample covariance matrix.

• mean – The mean vector of original samples, which can be a vector of length d, or an empty
vector Float64[] indicating a zero mean.

• n – The number of observations.

Returns The resultant PPCA model.

Note This function accepts two keyword arguments: maxoutdim, tol, and tot.

bayespca(S, mean, n; ...)
Compute probabilistic PCA based on Bayesian algorithm for a given sample covariance matrix S.

Parameters

• S – The sample covariance matrix.

• mean – The mean vector of original samples, which can be a vector of length d, or an empty
vector Float64[] indicating a zero mean.

• n – The number of observations.

Returns The resultant PPCA model.

Note This function accepts two keyword arguments: maxoutdim, tol, and tot.

Additional notes:

• Function uses the maxoutdim parameter as an upper boundary when it automatically determines the
latent space dimensionality.

4.5 References

16 Chapter 4. Probabilistic Principal Component Analysis



CHAPTER 5

Kernel Principal Component Analysis

Kernel Principal Component Analysis (kernel PCA) is an extension of principal component analysis (PCA) using
techniques of kernel methods. Using a kernel, the originally linear operations of PCA are performed in a reproducing
kernel Hilbert space.

This package defines a KernelPCA type to represent a kernel PCA model, and provides a set of methods to access
the properties.

5.1 Properties

Let M be an instance of KernelPCA, d be the dimension of observations, and p be the output dimension (i.e the
dimension of the principal subspace)

indim(M)
Get the input dimension d, i.e the dimension of the observation space.

outdim(M)
Get the output dimension p, i.e the dimension of the principal subspace.

projection(M)
Get the projection matrix (of size (n, p)). Each column of the projection matrix corresponds to an eigenvector,
and n is a number of observations.

The principal components are arranged in descending order of the corresponding eigenvalues.

principalvars(M)
The variances of principal components.

5.2 Transformation and Construction

The package provides methods to do so:

17
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transform(M, x)
Transform observations x into principal components.

Here, x can be either a vector of length d or a matrix where each column is an observation.

reconstruct(M, y)
Approximately reconstruct observations from the principal components given in y.

Here, y can be either a vector of length p or a matrix where each column gives the principal components for an
observation.

5.3 Data Analysis

One can use the fit method to perform kernel PCA over a given dataset.

fit(KernelPCA, X; ...)
Perform kernel PCA over the data given in a matrix X. Each column of X is an observation.

This method returns an instance of KernelPCA.

Keyword arguments:

Let (d, n) = size(X) be respectively the input dimension and the number of observations:

name description default
kernel The kernel function:

This functions accepts two vector
arguments x and y, and returns a
scalar value.

(x,y)->x'y

solver The choice of solver:
• :eig: uses eigfact
• :eigs: uses eigs (always

used for sparse data)

:eig

maxoutdim Maximum output dimension. min(d, n)
inverse Whether to perform calculation

for inverse transform for non-
precomputed kernels.

false

𝛽 Hyperparameter of the ridge re-
gression that learns the inverse
transform (when inverse is
true).

1.0

tol Convergence tolerance for eigs
solver

0.0

maxiter Maximum number of iterations
for eigs solver

300

5.4 Kernels

List of the commonly used kernels:

18 Chapter 5. Kernel Principal Component Analysis
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function description
(x,y)->x'y Linear
(x,y)->(x'y+c)^d Polynomial
(x,y)->exp(-𝛾*norm(x-y)^2.0) Radial basis function (RBF)

Example:

using MultivariateStats

# suppose Xtr and Xte are training and testing data matrix,
# with each observation in a column

# train a kernel PCA model
M = fit(KernelPCA, Xtr; maxoutdim=100, inverse=true)

# apply kernel PCA model to testing set
Yte = transform(M, Xte)

# reconstruct testing observations (approximately)
Xr = reconstruct(M, Yte)

5.4. Kernels 19
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CHAPTER 6

Canonical Correlation Analysis

Canonical Correlation Analysis (CCA) is a statistical analysis technique to identify correlations between two sets of
variables. Given two vector variables X and Y, it finds two projections, one for each, to transform them to a common
space with maximum correlations.

The package defines a CCA type to represent a CCA model, and provides a set of methods to access the properties.

6.1 Properties

Let M be an instance of CCA, dx be the dimension of X, dy the dimension of Y, and p the output dimension (i.e the
dimensio of the common space).

xindim(M)
Get the dimension of X, the first set of variables.

yindim(M)
Get the dimension of Y, the second set of variables.

outdim(M)
Get the output dimension, i.e that of the common space.

xmean(M)
Get the mean vector of X (of length dx).

ymean(M)
Get the mean vector of Y (of length dy).

xprojection(M)
Get the projection matrix for X (of size (dx, p)).

yprojection(M)
Get the projection matrix for Y (of size (dy, p)).

correlations(M)
The correlations of the projected componnents (a vector of length p).

21
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6.2 Transformation

Given a CCA model, one can transform observations into both spaces into a common space, as

z𝑥 = P𝑇
𝑥 (x− 𝜇𝑥)

z𝑦 = P𝑇
𝑦 (y − 𝜇𝑦)

Here, P𝑥 and P𝑦 are projection matrices for X and Y; 𝜇𝑥 and 𝜇𝑦 are mean vectors.

This package provides methods to do so:

xtransform(M, x)
Transform observations in the X-space to the common space.

Here, x can be either a vector of length dx or a matrix where each column is an observation.

ytransform(M, y)
Transform observations in the Y-space to the common space.

Here, y can be either a vector of length dy or a matrix where each column is an observation.

6.3 Data Analysis

One can use the fit method to perform CCA over given datasets.

fit(CCA, X, Y; ...)
Perform CCA over the data given in matrices X and Y. Each column of X and Y is an observation.

X and Y should have the same number of columns (denoted by n below).

This method returns an instance of CCA.

Keyword arguments:

name description default
method The choice of methods:

• :cov: based on covariance
matrices

• :svd: based on SVD of the
input data

:svd

outdim The output dimension, i.e dimen-
sion of the common space

min(dx, dy, n)

mean The mean vector, which can be ei-
ther of:

• 0: the input data has already
been centralized

• nothing: this function
will compute the mean

• a pre-computed mean vector

nothing

Notes: This function calls ccacov or ccasvd internally, depending on the choice of method.

22 Chapter 6. Canonical Correlation Analysis
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6.4 Core Algorithms

Two algorithms are implemented in this package: ccacov and ccasvd.

ccacov(Cxx, Cyy, Cxy, xmean, ymean, p)
Compute CCA based on analysis of the given covariance matrices, using generalized eigenvalue decomposition.

Parameters

• Cxx – The covariance matrix of X.

• Cyy – The covariance matrix of Y.

• Cxy – The covariance matrix between X and Y.

• xmean – The mean vector of the original samples of X, which can be a vector of length dx,
or an empty vector Float64[] indicating a zero mean.

• ymean – The mean vector of the original samples of Y, which can be a vector of length dy,
or an empty vector Float64[] indicating a zero mean.

• p – The output dimension, i.e the dimension of the common space.

Returns The resultant CCA model.

ccasvd(Zx, Zy, xmean, ymean, p)
Compute CCA based on singular value decomposition of centralized sample matrices Zx and Zy.

Parameters

• Zx – The centralized sample matrix for X.

• Zy – The centralized sample matrix for Y.

• xmean – The mean vector of the original samples of X, which can be a vector of length dx,
or an empty vector Float64[] indicating a zero mean.

• ymean – The mean vector of the original samples of Y, which can be a vector of length dy,
or an empty vector Float64[] indicating a zero mean.

• p – The output dimension, i.e the dimension of the common space.

Returns The resultant CCA model.

6.4. Core Algorithms 23
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CHAPTER 7

Classical Multidimensional Scaling

In general, Multidimensional Scaling (MDS) refers to techniques that transforms samples into lower dimensional
space while preserving the inter-sample distances as well as possible.

7.1 Overview of Classical MDS

Classical MDS is a specific technique in this family that accomplishes the embedding in two steps:

1. Convert the distance matrix to a Gram matrix.

This conversion is based on the following relations between a distance matrix D and a Gram matrix G:

sqr(D) = g1𝑇 + 1g𝑇 − 2G

Here, sqr(D) indicates the element-wise square of D, and g is the diagonal elements of G. This relation is
itself based on the following decomposition of squared Euclidean distance:

‖x− y‖2 = ‖x‖2 + ‖y‖2 − 2x𝑇y

2. Perform eigenvalue decomposition of the Gram matrix to derive the coordinates.

7.2 Functions

This package provides functions related to classical MDS.

gram2dmat(G)
Convert a Gram matrix G to a distance matrix.

gram2dmat!(D, G)
Convert a Gram matrix G to a distance matrix, and write the results to D.

dmat2gram(D)
Convert a distance matrix D to a Gram matrix.

25
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dmat2gram!(G, D)
Convert a distance matrix D to a Gram matrix, and write the results to G.

classical_mds(D, p[, dowarn=true])
Perform classical MDS. This function derives a p-dimensional embedding based on a given distance matrix D.

It returns a coordinate matrix of size (p, n), where each column is the coordinates for an observation.

Note: The Gramian derived from D may have nonpositive or degenerate eigenvalues. The subspace of nonpos-
itive eigenvalues is projected out of the MDS solution so that the strain function is minimized in a least-squares
sense. If the smallest remaining eigenvalue that is used for the MDS is degenerate, then the solution is not
unique, as any linear combination of degenerate eigenvectors will also yield a MDS solution with the same
strain value. By default, warnings are emitted if either situation is detected, which can be suppressed with
dowarn=false.

If the MDS uses an eigenspace of dimension m less than p, then the MDS coordinates will be padded with p-m
zeros each.

Reference:

@inbook{Borg2005,
Author = {Ingwer Borg and Patrick J. F. Groenen},
Title = {Modern Multidimensional Scaling: Theory and Applications},
Edition = {2},
Year = {2005},
Chapter = {12},
Doi = {10.1007/0-387-28981-X},
Pages = {201--268},
Series = {Springer Series in Statistics},
Publisher = {Springer},
}
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CHAPTER 8

Linear Discriminant Analysis

Linear Discriminant Analysis are statistical analysis methods to find a linear combination of features for separating
observations in two classes.

Note: Please refer to Multi-class Linear Discriminant Analysis for methods that can discriminate between multiple
classes.

8.1 Overview of LDA

Suppose the samples in the positive and negative classes respectively with means: 𝜇𝑝 and 𝜇𝑛, and covariances C𝑝 and
C𝑛. Then based on Fisher’s Linear Discriminant Criteria, the optimal projection direction can be expressed as:

w = 𝛼 · (C𝑝 +C𝑛)
−1(𝜇𝑝 − 𝜇𝑛)

Here 𝛼 is an arbitrary non-negative coefficient.

8.2 Linear Discriminant

A linear discriminant functional can be written as

𝑓(x) = w𝑇x+ 𝑏

Here, w is the coefficient vector, and b is the bias constant.

This package uses the LinearDiscriminant type, defined as below, to capture a linear discriminant functional:

immutable LinearDiscriminant <: Discriminant
w::Vector{Float64}
b::Float64

end

This type comes with several methods. Let f be an instance of LinearDiscriminant
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length(f)
Get the length of the coefficient vector.

evaluate(f, x)
Evaluate the linear discriminant value, i.e w'x + b.

When x is a vector, it returns a real value; when x is a matrix with samples in columns, it returns a vector of
length size(x, 2).

predict(f, x)
Make prediction. It returns true iff evaluate(f, x) is positive.

8.3 Data Analysis

The package provides several functions to perform Linear Discriminant Analysis.

ldacov(Cp, Cn, 𝜇p, 𝜇n)
Performs LDA given covariances and mean vectors.

Parameters

• Cp – The covariance matrix of the positive class.

• Cn – The covariance matrix of the negative class.

• 𝜇p – The mean vector of the positive class.

• 𝜇n – The mean vector of the negative class.

Returns The resultant linear discriminant functional of type LinearDiscriminant.

Note: The coefficient vector is scaled such that w'𝜇p + b = 1 and w'𝜇n + b = -1.

ldacov(C, 𝜇p, 𝜇n)
Performs LDA given a covariance matrix and both mean vectors.

Parameters

• C – The pooled covariane matrix (i.e (Cp + Cn)/2)

• 𝜇p – The mean vector of the positive class.

• 𝜇n – The mean vector of the negative class.

Returns The resultant linear discriminant functional of type LinearDiscriminant.

Note: The coefficient vector is scaled such that w'𝜇p + b = 1 and w'𝜇n + b = -1.

fit(LinearDiscriminant, Xp, Xn)
Performs LDA given both positive and negative samples.

Parameters

• Xp – The sample matrix of the positive class.

• Xn – The sample matrix of the negative class.

Returns The resultant linear discriminant functional of type LinearDiscriminant.
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CHAPTER 9

Multi-class Linear Discriminant Analysis

Multi-class LDA is a generalization of standard two-class LDA that can handle arbitrary number of classes.

9.1 Overview

Multi-class LDA is based on the analysis of two scatter matrices: within-class scatter matrix and between-class scatter
matrix.

Given a set of samples x1, . . . ,x𝑛, and their class labels 𝑦1, . . . , 𝑦𝑛:

The within-class scatter matrix is defined as:

S𝑤 =

𝑛∑︁
𝑖=1

(x𝑖 − 𝜇𝑦𝑖
)(x𝑖 − 𝜇𝑦𝑖

)𝑇

Here, 𝜇𝑘 is the sample mean of the k-th class.

The between-class scatter matrix is defined as:

S𝑏 =

𝑚∑︁
𝑘=1

𝑛𝑘(𝜇𝑘 − 𝜇)(𝜇𝑘 − 𝜇)𝑇

Here, m is the number of classes, 𝜇 is the overall sample mean, and 𝑛𝑘 is the number of samples in the k-th class.

Then, multi-class LDA can be formulated as an optimization problem to find a set of linear combinations (with coef-
ficients w) that maximizes the ratio of the between-class scattering to the within-class scattering, as

ŵ = argmax
w

w𝑇S𝑏w

w𝑇S𝑤w

The solution is given by the following generalized eigenvalue problem:

S𝑏w = 𝜆S𝑤w (9.1)

Generally, at most m - 1 generalized eigenvectors are useful to discriminate between m classes.

When the dimensionality is high, it may not be feasible to construct the scatter matrices explicitly. In such cases, see
SubspaceLDA below.
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9.2 Normalization by number of observations

An alternative definition of the within- and between-class scatter matrices normalizes for the number of observations
in each group:

S*
𝑤 = 𝑛

𝑚∑︁
𝑘=1

1

𝑛𝑘

∑︁
𝑖|𝑦𝑖=𝑘

(x𝑖 − 𝜇𝑘)(x𝑖 − 𝜇𝑘)
𝑇

S*
𝑏 = 𝑛

𝑚∑︁
𝑘=1

(𝜇𝑘 − 𝜇*)(𝜇𝑘 − 𝜇*)𝑇

where

𝜇* =
1

𝑘

𝑚∑︁
𝑘=1

𝜇𝑘.

This definition can sometimes be more useful when looking for directions which discriminate among clusters contain-
ing widely-varying numbers of observations.

9.3 Multi-class LDA

The package defines a MulticlassLDA type to represent a multi-class LDA model, as:

type MulticlassLDA
proj::Matrix{Float64}
pmeans::Matrix{Float64}
stats::MulticlassLDAStats

end

Here, proj is the projection matrix, pmeans is the projected means of all classes, stats is an instance of
MulticlassLDAStats that captures all statistics computed to train the model (which we will discuss later).

Several methods are provided to access properties of the LDA model. Let M be an instance of MulticlassLDA:

indim(M)
Get the input dimension (i.e the dimension of the observation space).

outdim(M)
Get the output dimension (i.e the dimension of the transformed features).

projection(M)
Get the projection matrix (of size d x p).

mean(M)
Get the overall sample mean vector (of length d).

classmeans(M)
Get the matrix comprised of class-specific means as columns (of size (d, m)).

classweights(M)
Get the weights of individual classes (a vector of length m). If the samples are not weighted, the weight equals
the number of samples of each class.

withinclass_scatter(M)
Get the within-class scatter matrix (of size (d, d)).

betweenclass_scatter(M)
Get the between-class scatter matrix (of size (d, d)).
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transform(M, x)
Transform input sample(s) in x to the output space. Here, x can be either a sample vector or a matrix comprised
of samples in columns.

In the pratice of classification, one can transform testing samples using this transform method, and compare
them with M.pmeans.

9.4 Data Analysis

One can use fit to perform multi-class LDA over a set of data:

fit(MulticlassLDA, nc, X, y; ...)
Perform multi-class LDA over a given data set.

Parameters

• nc – the number of classes

• X – the matrix of input samples, of size (d, n). Each column in X is an observation.

• y – the vector of class labels, of length n. Each element of y must be an integer between 1
and nc.

Returns The resultant multi-class LDA model, of type MulticlassLDA.

Keyword arguments:

name description default
method The choice of methods:

• :gevd: based on general-
ized eigenvalue decomposi-
tion

• :whiten: first derive a
whitening transform from
Sw and then solve the prob-
lem based on eigenvalue de-
composition of the whiten
Sb.

:gevd

outdim The output dimension, i.e dimen-
sion of the transformed space

min(d, nc-1)

regcoef The regularization coefficient.
A positive value regcoef

* eigmax(Sw) is added to
the diagonal of Sw to improve
numerical stability.

1.0e-6

Note: The resultant projection matrix P satisfies:

P𝑇 (S𝑤 + 𝜅I)P = I

Here, 𝜅 equals regcoef * eigmax(Sw). The columns of P are arranged in descending order of the corre-
sponding generalized eigenvalues.

Note that MulticlassLDA does not currently support the normalized version using S*
𝑤 and S*

𝑏 (see
SubspaceLDA below).
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9.5 Task Functions

The multi-class LDA consists of several steps:

1. Compute statistics, such as class means, scatter matrices, etc.

2. Solve the projection matrix.

3. Construct the model.

Sometimes, it is useful to only perform one of these tasks. The package exposes several functions for this purpose:

multiclass_lda_stats(nc, X, y)
Compute statistics required to train a multi-class LDA.

Parameters

• nc – the number of classes

• X – the matrix of input samples.

• y – the vector of class labels.

This function returns an instance of MulticlassLDAStats, defined as below, that captures all relevant
statistics.

type MulticlassLDAStats
dim::Int # sample dimensions
nclasses::Int # number of classes
cweights::Vector{Float64} # class weights
tweight::Float64 # total sample weight
mean::Vector{Float64} # overall sample mean
cmeans::Matrix{Float64} # class-specific means
Sw::Matrix{Float64} # within-class scatter matrix
Sb::Matrix{Float64} # between-class scatter matrix

end

This type has the following constructor. Under certain circumstances, one might collect statistics in other ways
and want to directly construct this instance.

MulticlassLDAStats(cweights, mean, cmeans, Sw, Sb)
Construct an instance of type MulticlassLDAStats.

Parameters

• cweights – the class weights, a vector of length m.

• mean – the overall sample mean, a vector of length d.

• cmeans – the class-specific sample means, a matrix of size (d, m).

• Sw – the within-class scatter matrix, a matrix of size (d, d).

• Sb – the between-class scatter matrix, a matrix of size (d, d).

multiclass_lda(S; ...)
Perform multi-class LDA based on given statistics. Here S is an instance of MulticlassLDAStats.

This function accepts the following keyword arguments (as above): method, outdim, and regcoef.

mclda_solve(Sb, Sw, method, p, regcoef)
Solve the projection matrix given both scatter matrices.

Parameters
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• Sb – the between-class scatter matrix.

• Sw – the within-class scatter matrix.

• method – the choice of method, which can be either :gevd or :whiten.

• p – output dimension.

• regcoef – regularization coefficient.

mclda_solve!(Sb, Sw, method, p, regcoef)
Solve the projection matrix given both scatter matrices.

Note: In this function, Sb and Sw will be overwritten (saving some space).

9.6 Subspace LDA

The package also defines a SubspaceLDA type to represent a multi-class LDA model for high-dimensional spaces.
MulticlassLDA, because it stores the scatter matrices, is not well-suited for high-dimensional data. For example, if
you are performing LDA on images, and each image has 10^6 pixels, then the scatter matrices would contain 10^12
elements, far too many to store directly. SubspaceLDA calculates the projection direction without the intermediary
of the scatter matrices, by focusing on the subspace that lies within the span of the within-class scatter. This also serves
to regularize the computation.

immutable SubspaceLDA{T<:Real}
projw::Matrix{T} # P, project down to the subspace spanned by within-class

→˓scatter
projLDA::Matrix{T} # L, LDA directions in the projected subspace
𝜆::Vector{T}
cmeans::Matrix{T}
cweights::Vector{Int}

end

This supports all the same methods as MulticlassLDA, with the exception of the functions that return a scatter
matrix. The overall projection is represented as a factorization P*L, where P'*x projects data points to the subspace
spanned by the within-class scatter, and L is the LDA projection in the subspace. The projection directions w (the
columns of projection(M)) satisfy the equation

P𝑇S𝑏w = 𝜆P𝑇S𝑤w.

When P is of full rank (e.g., if there are more data points than dimensions), then this equation guarantees that Eq. (9.1)
will also hold.

SubspaceLDA also supports the normalized version of LDA via the normalize keyword:

M = fit(SubspaceLDA, X, label; normalize=true)

would perform LDA using the equivalent of S*
𝑤 and S*

𝑏 .
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CHAPTER 10

Independent Component Analysis

Independent Component Analysis (ICA) is a computational technique for separating a multivariate signal into additive
subcomponents, with the assumption that the subcomponents are non-Gaussian and independent from each other.

There are multiple algorithms for ICA. Currently, this package implements the Fast ICA algorithm.

10.1 ICA

The package uses a type ICA, defined below, to represent an ICA model:

mutable struct ICA{T<:Real}
mean::Vector{T} # mean vector, of length m (or empty to indicate zero mean)
W::Matrix{T} # component coefficient matrix, of size (m, k)

end

Note: Each column of W here corresponds to an independent component.

Several methods are provided to work with ICA. Let M be an instance of ICA:

indim(M)
Get the input dimension, i.e the number of observed mixtures.

outdim(M)
Get the output dimension, i.e the number of independent components.

mean(M)
Get the mean vector.

Note: if M.mean is empty, this function returns a zero vector of length indim(M).

transform(M, x)
Transform x to the output space to extract independent components, as W𝑇 (x− 𝜇).

35

http://en.wikipedia.org/wiki/Independent_component_analysis


MultivariateStats Documentation, Release 0.1.0

10.2 Data Analysis

One can use fit to perform ICA over a given data set.

fit(ICA, X, k; ...)
Perform ICA over the data set given in X.

Parameters

• X – The data matrix, of size (m, n). Each row corresponds to a mixed signal, while each
column corresponds to an observation (e.g all signal value at a particular time step).

• k – The number of independent components to recover.

Returns

The resultant ICA model, an instance of type ICA.

Note: If do_whiten is true, the return W satisfies W𝑇CW = I, otherwise W is orthonormal,
i.e W𝑇W = I

Keyword Arguments:
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name description default
alg The choice of algorithm (must be

:fastica)
:fastica

fun The approx neg-entropy functor.
It can be obtained using the func-
tion icagfun. Now, it accepts
the following values:

• icagfun(:tanh)
• icagfun(:tanh, a)
• icagfun(:gaus)

icagfun(:tanh)

do_whiten Whether to perform pre-
whitening

true

maxiter Maximum number of iterations 100
tol Tolerable change of W at conver-

gence
1.0e-6

mean The mean vector, which can be ei-
ther of:

• 0: the input data has already
been centralized

• nothing: this function
will compute the mean

• a pre-computed mean vector

nothing

winit Initial guess of W, which should be
either of:

• empty matrix: the function
will perform random initial-
ization

• a matrix of size (k, k)
(when do_whiten)

• a matrix of size (m, k)
(when !do_whiten)

zeros(0,0)

verbose Whether to display iteration infor-
mation

false

10.3 Core Algorithms

The package also exports functions of the core algorithms. Sometimes, it can be more efficient to directly invoke them
instead of going through the fit interface.

fastica!(W, X, fun, maxiter, tol, verbose)
Invoke the Fast ICA algorithm.

Parameters

• W – The initial un-mixing matrix, of size (m, k). The function updates this matrix inplace.

• X – The data matrix, of size (m, n). This matrix is input only, and won’t be modified.

• fun – The approximate neg-entropy functor, which can be obtained using icagfun (see
above).
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• maxiter – Maximum number of iterations.

• tol – Tolerable change of W at convergence.

• verbose – Whether to display iteration information.

Returns The updated W.

Note: The number of components is inferred from W as size(W, 2).
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Factor Analysis

Factor Analysis (FA) is a linear-Gaussian latent variable model that is closely related to probabilistic PCA. In contrast
to the probabilistic PCA model, the covariance of conditional distribution of the observed variable given the latent
variable is diagonal rather than isotropic [BSHP06].

This package defines a FactorAnalysis type to represent a factor analysis model, and provides a set of methods
to access the properties.

11.1 Properties

Let M be an instance of FactorAnalysis, d be the dimension of observations, and p be the output dimension (i.e
the dimension of the principal subspace)

indim(M)
Get the input dimension d, i.e the dimension of the observation space.

outdim(M)
Get the output dimension p, i.e the dimension of the principal subspace.

mean(M)
Get the mean vector (of length d).

projection(M)
Get the projection matrix (of size (d, p)). Each column of the projection matrix corresponds to a principal
component.

The principal components are arranged in descending order of the corresponding variances.

loadings(M)
The factor loadings matrix (of size (d, p)).

cov(M)
The diagonal covariance matrix.
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11.2 Transformation and Construction

Given a probabilistic PCA model M, one can use it to transform observations into latent variables, as

z = W𝑇Σ−1(x− 𝜇)

or use it to reconstruct (approximately) the observations from latent variables, as

x̃ = ΣW(W𝑇W)−1z+ 𝜇

Here, W is the factor loadings or weight matrix, Σ = Ψ+W𝑇W is the covariance matrix.

The package provides methods to do so:

transform(M, x)
Transform observations x into latent variables.

Here, x can be either a vector of length d or a matrix where each column is an observation.

reconstruct(M, z)
Approximately reconstruct observations from the latent variable given in z.

Here, y can be either a vector of length p or a matrix where each column gives the latent variables for an
observation.

11.3 Data Analysis

One can use the fit method to perform factor analysis over a given dataset.

fit(FactorAnalysis, X; ...)
Perform factor analysis over the data given in a matrix X. Each column of X is an observation.

This method returns an instance of FactorAnalysis.

Keyword arguments:

Let (d, n) = size(X) be respectively the input dimension and the number of observations:

name description default
method The choice of methods:

• :em: use EM version of fac-
tor analysis

• :cm: use CM version of fac-
tor analysis

:cm

maxoutdim Maximum output dimension d-1
mean The mean vector, which can be ei-

ther of:
• 0: the input data has already

been centralized
• nothing: this function

will compute the mean
• a pre-computed mean vector

nothing

tol Convergence tolerance 1.0e-6
tot Maximum number of iterations 1000
𝜂 Variance low bound 1.0e-6
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Notes:

• This function calls facm or faem internally, depending on the choice of method.

Example:

using MultivariateStats

# suppose Xtr and Xte are training and testing data matrix,
# with each observation in a column

# train a FactorAnalysis model
M = fit(FactorAnalysis, Xtr; maxoutdim=100)

# apply FactorAnalysis model to testing set
Yte = transform(M, Xte)

# reconstruct testing observations (approximately)
Xr = reconstruct(M, Yte)

11.4 Core Algorithms

Two algorithms are implemented in this package: faem and facm.

faem(S, mean, n; ...)
Perform factor analysis using an expectation-maximization algorithm for a given sample covariance matrix S
[RUBN82].

Parameters

• S – The sample covariance matrix.

• mean – The mean vector of original samples, which can be a vector of length d, or an empty
vector Float64[] indicating a zero mean.

• n – The number of observations.

Returns The resultant FactorAnalysis model.

Note This function accepts two keyword arguments: maxoutdim,‘‘tol‘‘, and tot.

facm(S, mean, n; ...)
Perform factor analysis using an fast conditional maximization algorithm for a given sample covariance matrix
S [ZHAO08].

Parameters

• S – The sample covariance matrix.

• mean – The mean vector of original samples, which can be a vector of length d, or an empty
vector Float64[] indicating a zero mean.

• n – The number of observations.

Returns The resultant FactorAnalysis model.

Note This function accepts two keyword arguments: maxoutdim, tol, tot, and 𝜂.
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11.5 References

Notes:

All methods implemented in this package adopt the column-major convention of JuliaStats: in a data matrix, each
column corresponds to a sample/observation, while each row corresponds to a feature (variable or attribute).
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