

    
      
          
            
  
multivariate_inference

Package to test and compare different multivariate inference methods.


Installation

pip install git+https://github.com/ejolly/multivariate_inference
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Usage

To use multivariate_inference in a project:

import multivariate_inference









          

      

      

    

  

    
      
          
            
  
API Reference

This reference provides detailed documentation for all the features in multivariate_inference


multivariate_inference.helpers: General Helper Functions

Helper function definitions.


	
multivariate_inference.helpers.upper(mat)

	Return upper triangle of matrix






	
multivariate_inference.helpers.isPSD(mat, tol=1e-08)

	Check if matrix is positive-semi-definite by virtue of all its eigenvalues being >= 0. The cholesky decomposition does not work for edge cases because np.linalg.cholesky fails on matrices with exactly 0 valued eigenvalues, whereas in Matlab this is not true, so that method appropriate. Ref: https://goo.gl/qKWWzJ






	
multivariate_inference.helpers.nearestPSD(A, nit=100)

	Higham (2000) algorithm to find the nearest positive semi-definite matrix that minimizes the Frobenius distance/norm. Sstatsmodels using something very similar in corr_nearest(), but with spectral SGD to search for a local minima. Reference: https://goo.gl/Eut7UU


	Parameters

	nit (int) – number of iterations to run algorithm; more iterations improves accuracy but increases computation time.










	
multivariate_inference.helpers.easy_multivariate_normal(num_obs, num_features, corrs, mu=0.0, sigma=1.0, seed=None, forcePSD=True, return_new_corrs=False, nit=100)

	Function to more easily generate multivariate normal samples provided a correlation matrix or list of correlations (upper triangle of correlation matrix) instead of a covariance matrix. Defaults to returning approximately standard normal (mu = 0; sigma = 1) variates. Unlike numpy, if the desired correlation matrix is not positive-semi-definite, will by default issue a warning and find the nearest PSD correlation matrix and generate data with this matrix. This new matrix can optionally be returned used the return_new_corrs argument.


	Parameters

	
	num_obs (int) – number of observations/samples to generate (rows)


	corrs (ndarray/list/float) – num_features x num_features 2d array, flattend numpy array of length (num_features * (num_features-1)) / 2, or scalar for same correlation on all off-diagonals


	num_features (int) – number of features/variables/dimensions to generate (columns)


	mu (float/list) – mean of each feature across observations; default 0.0


	sigma (float/list) – sd of each feature across observations; default 1.0


	forcePD (bool) – whether to find and use a new correlation matrix if the requested one is not positive semi-definite; default False


	return_new_corrs (bool) – return the nearest correlation matrix that is positive semi-definite used to generate data; default False


	nit (int) – number of iterations to search for the nearest positive-semi-definite correlation matrix is the requested correlation matrix is not PSD; default 100






	Returns

	correlated data as num_obs x num_features array



	Return type

	ndarray










	
multivariate_inference.helpers.kde_pvalue(permutation_distribution, test_statistic, tails=2, kde_grid_size=200)

	Use a KDE to smooth a permutation distribution and use a interpolation to compute p-values a la:
https://users.aalto.fi/~eglerean/bramila_mantel.m


	Parameters

	
	permutation_distribution (ndarry) – array of permuted test statistics


	test_statistic (float) – true value of computed test statistic


	tails (int) – two-tailed or one-tailed p-value; default two-tailed


	kde_grid_size (int) – size of the kde grid to generate; default 200 if len(permutation_distribution) <= 5000 otherwise multiples of 200 correponding to how many extra permutations were performed in multiples of 5000













	
multivariate_inference.helpers.create_heterogeneous_simulation(r_within_1, r_within_2, r_between_1, r_between_2, n_variables)

	Create a heterogeneous multivariate covariance matrix based on:
Omelka, M. and Hudecova, S. (2013) A comparison of the Mantel test
with a generalised distance covariance test. Environmetrics,
Vol. 24, 449–460. DOI: 10.1002/env.2238.








multivariate_inference.dependence: Multivariate Dependence Measures

Dependence measures functions.


	
multivariate_inference.dependence.double_center(mat)

	Double center a 2d array.


	Parameters

	mat (ndarray) – 2d numpy array



	Returns

	double-centered version of input



	Return type

	mat (ndarray)










	
multivariate_inference.dependence.u_center(mat)

	U-center a 2d array. U-centering is a bias-corrected form of double-centering


	Parameters

	mat (ndarray) – 2d numpy array



	Returns

	u-centered version of input



	Return type

	mat (narray)










	
multivariate_inference.dependence.distance_correlation(x, y, bias_corrected=True, return_all_stats=False)

	
	Compute the distance correlation betwen 2 arrays.

	Distance correlation involves computing the normalized covariance of two centered euclidean distance matrices. Each distance matrix is the euclidean distance between rows (if x or y are 2d) or scalars (if x or y are 1d). Each matrix is centered using u-centering, a bias-corrected form of double-centering. This permits inference of the normalized covariance between each distance matrix using a one-tailed directional t-test. (Szekely & Rizzo, 2013). While distance correlation is normally bounded between 0 and 1, u-centering can produce negative estimates, which are never significant. Therefore these estimates are windsorized to 0, ala Geerligs, Cam-CAN, Henson, 2016.






	Parameters

	
	x (ndarray) – 1d or 2d numpy array of observations by features


	y (ndarry) – 1d or 2d numpy array of observations by features


	bias_corrected (bool) – if false use double-centering but no inference test is performed, if true use u-centering and perform inference; default True


	return_all_stats (bool) – if true return distance covariance and variances of each array as well; default False






	Returns

	dictionary of results (correlation, t, p, and df.) Optionally, covariance, x variance, and y variance



	Return type

	results (dict)










	
multivariate_inference.dependence.procrustes_similarity(mat1, mat2, n_permute=5000, tail=1, n_jobs=-1, random_state=None)

	Use procrustes super-position to perform a similarity test between 2 matrices. Matrices need to match in size on their first dimension only, as the smaller matrix on the second dimension will be padded with zeros. After aligning two matrices using the procrustes transformation, use the computed disparity between them (sum of squared error of elements) as a similarity metric. Shuffle the rows of one of the matrices and recompute the disparity to perform inference (Peres-Neto & Jackson, 2001). Note: by default this function reverses disparity to treat it like a similarity measure like correlation, rather than a distance measure like correlation distance, i.e. smaller values mean less similar, larger values mean more similar.


	Parameters

	
	mat1 (ndarray) – 2d numpy array; must have same number of rows as mat2


	mat2 (ndarray) – 1d or 2d numpy array; must have same number of rows as mat1


	n_permute (int) – number of permutation iterations to perform


	tail (int) – either 1 for one-tailed or 2 for two-tailed test; default 2


	n_jobs (int) – The number of CPUs to use to do permutation; default -1 (all)






	Returns

	similarity between matrices bounded between 0 and 1
pval (float): permuted p-value



	Return type

	similarity (float)
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