
multirange Documentation
Release 0.3.0

ibu radempa

May 10, 2015

Contents

1 Status 3

2 Introduction 5
2.1 Overview . 5
2.2 Features . 5
2.3 Limitations . 5
2.4 Range . 5
2.5 Generalized range object . 6
2.6 Range iterable . 6
2.7 Multirange . 6

3 Usage examples 7

4 Functions 9

Python Module Index 13

i

ii

multirange Documentation, Release 0.3.0

multiranges provides functions operating on multiple range-like objects.

Convenience functions for multiple range-like objects

An elementary package for Python >= 3.3

https://pypi.python.org/pypi/multirange/

Contents 1

https://pypi.python.org/pypi/multirange/

multirange Documentation, Release 0.3.0

2 Contents

CHAPTER 1

Status

The code works, but it is not stable: functionality might be added or reorganized as long as the major version equals 0
(cf. http://semver.org/spec/v2.0.0.html, item #4). Hint: Stability grows quicker when you provide feedback.

multirange is not yet feature complete; most operations involving multiranges are missing.

3

http://semver.org/spec/v2.0.0.html

multirange Documentation, Release 0.3.0

4 Chapter 1. Status

CHAPTER 2

Introduction

2.1 Overview

This library for Python >= 3.3 provides convenience functions for multiple range-like objects corresponding to finite
sets of consecutive integers.

It has 3 main types of operations:

• operations involving few range-like objects (a generalization of Python’s native range objects)

• operations involving an iterable of range-like objects (range iterables)

• operations involving so-called multiranges; we define a multirange as iterables range-like objects, which have
no mutual overlap, which are not adjacent, and which are ordered increasingly.

2.2 Features

• Provide operations on multiple instances of range (disregarding attribute step), or any other object having at-
tributes start and stop evaluating to int

Note: Since Python 3.3 range objects have the start, stop and step attributes.

• Avoid materializing of ranges as full lists of integers. Instead, results are computed from the boundaries (start,
stop) only.

• If not otherwise noted, the functions of this module throw no Exceptions, provided they are called with valid
parameters.

2.3 Limitations

• Require Python >= 3.3

2.4 Range

In the context of this module we define as a range r either a native Python range object, or any other object having
attributes start and stop, which evaluate to int.

5

multirange Documentation, Release 0.3.0

A range r has the meaning of the set of all consecutive integers from r.start to r.stop - 1. If r.start >= r.stop, this means
the empty set. Note that for negative step values the native Python range object may generate several values, while
in our context an empty set may result. Example: range(0, -10, -1) generates 10 values, while in our context (step ==
1) this entails an empty set of integers.

Ranges often need to be brought to normal form (cf. normalize()). By default the normal form is a native range
object with step == 1, or None if r.stop <= r.start. Alternatively, in case r.stop > r.start, the normal form may be any
other generalized range object, which is obtained using a non-default value of the construct keyword argument in most
functions (see below).

The functions of this module always accept ranges in their normalized form, and if not otherwise stated, non-
normalized ranges are accepted, too.

Two ranges are called adjacent if the end (value of the stop attribute) of one coincides with the beginning (value of the
start attribute) of the other.

2.5 Generalized range object

When the documentation of this module refers to a range, it usually means a generalized range object (or range-like
object), not just Python’s native range.

As generalized range object we define an object which can be constructed using exactly two integer arguments, start
and stop, and which has attributes start and stop returning these integer values at any time. One example is the native
range object. Here is another very simple one:

class MyRange(object):
def __init__(self, start, stop):

self.start = start
self.stop = stop

The main advantage of generalized range objects over native range objects is that they may have additional structure
beyond start and stop (where the native range only has a step attribute).

2.6 Range iterable

The purpose of this module is to ease common operations involving multiple ranges, more precisely, iterables of
ranges. By range iterable we mean an iterable yielding either None or an instance of a generalized range object.

Warning: Some functions need to sort range iterables, thereby defining an intermediate list, so don’t expect
optimal performance for iterables with a large number of items for all functions.

Range iterables are not to be confused with multiranges.

2.7 Multirange

As multirange we define a range iterable where the ranges don’t overlap, are not adjacent and are ordered increasingly.
A multirange can be obtained from any range iterable by using normalize_multi().

6 Chapter 2. Introduction

CHAPTER 3

Usage examples

>>> import multirange as mr
>>> print(mr.normalize(range(5, 0)))
None
>>> mr.overlap(range(0, 10), range(5, 15))
range(5, 10)
>>> mr.is_disjunct([range(8, 10), range(0, 2), range(2, 4)])
True
>>> mr.covering_all([range(8, 10), range(0, 2), range(2, 4)])
range(0, 10)
>>> mr.contains(range(0, 10), range(0, 5))
True
>>> mr.is_covered_by([range(8, 10), range(0, 2)], range(0, 20))
True
>>> mr.intermediate(range(10, 15), range(0, 5))
range(5, 10)
>>> list(mr.gaps([range(4, 6), range(6, 7), range(8, 10), range(0, 3)]))
[range(3, 4), range(7, 8)]
>>> mr.difference(range(1, 9), range(2, 3))
(range(1, 2), range(3, 9))
>>> list(mr.normalize_multi([None, range(0, 5), range(5, 7), range(8, 9)]))
[range(0, 7), range(8, 9)]
>>> list(mr.difference_one_multi(range(0, 9), [range(-2, 2), range(4, 5)]))
[range(2, 4), range(5, 9)]

Please consult the unit tests (latest) for more examples.

7

https://github.com/iburadempa/multirange/blob/master/tests/test_most.py

multirange Documentation, Release 0.3.0

8 Chapter 3. Usage examples

CHAPTER 4

Functions

multirange.normalize(r, construct=<class ‘range’>)
Return an object which is the normalization of range r.

The normalized range is either None (if r.start >= r.stop), or an object constructed using construct with the
arguments r.start, r.stop.

In case construct == range we try to avoid constructing new objects.

multirange.filter_normalize(rs, construct=<class ‘range’>)
Normalize ranges iteratively.

Iterate over all ranges in the given range iterable rs, yielding normalized ranges

multirange.filter_nonempty(rs, invert=False, do_normalize=True, construct=<class ‘range’>,
with_position=False)

Filter for non-empty ranges.

Iterate over all ranges in the given range iterable rs and yield those which are not None after normalization; if
invert is True, yield those which are None

If do_normalize is True, yield only normalized non-empty ranges (using the constructor given in construct upon
normalization); otherwise yield the original range objects.

If with_position is True, return 2-tuples consisting of the position of the matching range within rs and the
matching range. Otherwise yield only the matching range.

multirange.equals(r1, r2)
Check equality of two ranges.

Return whether the the two ranges r1 and r2 are equal after normalization.

Incidental remark: If you have native range objects (being not None) and want to take into account step values,
you can use native python equality of ranges; for instance, range(0, 5, -10) == range(0, -5) == range(0).

multirange.filter_equal(rs, r, do_normalize=True, construct=<class ‘range’>,
with_position=False)

Filter ranges for equality to a given range.

Iterate over all ranges in the given range iterable rs and yield those which are equal to range r after normalization.

If do_normalize evaluates to True, then do not return the original items from rs, but instead normalized ranges,
where the range objects are constructed using construct.

If with_position evalues to True, then yield 2-tuples consisting of an int indicating the position of a matching
range within rs and the range itself.

9

multirange Documentation, Release 0.3.0

multirange.is_adjacent(r1, r2)
Check for adjacency of two ranges.

Return whether the ranges r1 and r2 are adjacent.

If r1 or r2 is None after normalization, return None instead of a bool.

multirange.overlap(r1, r2, construct=<class ‘range’>)
Overlap of two ranges.

For two ranges r1 and r2 return the normalized range corresponding to the intersection ot the sets (of consecutive
integers) corresponding to r1 and r2

Return a normalized result, which is either None, or an object constructed using construct.

multirange.filter_overlap(rs, r, do_normalize=False, construct=<class ‘range’>,
with_position=False)

Filter for ranges overlapping with a given range.

Iterate over the range iterable rs, and yield only those ranges having a non-vanishing overlap with range r.

Note: Some of the original ranges are yielded, not their overlapping parts.

If do_normalize evaluates to True, then do not return the original items from rs, but instead normalized range
objects constructed using construct.

If with_position evalues to True, then yield 2-tuples consisting of an int indicating the position of a matching
range within rs and the range itself.

multirange.match_count(rs, r)
Count matches with a gievn range.

Return the number of ranges yielded from iterable rs, which have a non-vanishing overlap with range r.

multirange.overlap_all(rs, construct=<class ‘range’>)
Overlap of all given ranges.

Return the range corresponding to the intersection of the sets of integers corresponding to the ranges obtained
from the iterable rs

Return a normalized result, where the normalized object is constructed using construct.

multirange.is_disjunct(rs, assume_ordered_increasingly=False)
Check for disjointness of all given ranges.

Return whether the range iterable rs consists of mutually disjunct ranges.

If assume_ordered_increasingly is True, only direct neighbors (qua iteration order) are checked for non-
vanishing overlap.

multirange.covering_all(rs, construct=<class ‘range’>)
Return the smallest covering range for the ranges in range iterable rs.

Return a normalized result, where the normalized object is constructed using construct.

multirange.contains(r1, r2)
Check inclusion of two ranges.

Return whether range r1 contains range r2.

multirange.filter_contained(rs, r, do_normalize=False, construct=<class ‘range’>,
with_position=False)

Filter for ranges contained in a given range.

Yield those ranges from range iterable rs, which are contained in range r.

10 Chapter 4. Functions

multirange Documentation, Release 0.3.0

If do_normalize evaluates to True, then do not return the original items from rs, but instead normalized range
objects constructed using construct.

If with_position evalues to True, then yield 2-tuples consisting of an int indicating the position of a matching
range within rs and the range itself.

multirange.is_covered_by(rs, r)
Check inclusion of ranges in a given range.

Return whether range r covers all ranges from range iterable rs.

multirange.symmetric_difference(r1, r2, construct=<class ‘range’>)
Symmetric difference of two ranges.

Return the symmetric difference between range r1 and range r2 as two range-like objects (constructed using
construct, and possibly None), where the first corresponds to a subset or r1 and the second corresponds to a
subset or r2

Instead of ranges, r1 and r2 can also be range-like objects.

Note: The resulting range-like objects correspond to disjunct sets of integers, but they need not be ordered, if r1
and r2 are not.

multirange.intermediate(r1, r2, construct=<class ‘range’>, assume_ordered=False)
Intermediate of two ranges.

Return the range inbetween range r1 and range r2, or None if they overlap or if at least one of them corresponds
to an empty set.

Return a normalized range object constructed using construct.

multirange.sort_by_start(rs)
Sorted list of ranges.

Return a list of (unmodified) ranges obtained from range iterable rs, sorted by their start values, and omitting
empty ranges.

multirange.gaps(rs, construct=<class ‘range’>, assume_ordered=False)
Find gaps between ranges.

Yield the gaps between the ranges from range iterable rs, i.e., the maximal ranges without overlap with any of
the ranges, but within the covering range.

Yield normalized, non-empty range objects constructed using construct.

multirange.is_partition_of(rs, construct=<class ‘range’>, assume_ordered=False)
Check if ranges are a partition.

Return the covering range of the ranges from range iterable rs, if they have no gaps; else return None.

The covering range is constructed using construct.

multirange.difference(r1, r2, construct=<class ‘range’>)
Difference of two ranges.

Return two ranges resulting when the integers from range r2 are removed from range r1.

Return two ranges: the first being the part below r2 and the second the one above r2. They may both be None.
In the special case where r2 after normalization equals None, return (r1, None) (i.e., take the difference to be
the lower part).

The range-like objects are constructed using construct.

multirange.normalize_multi(rs, construct=<class ‘range’>, assume_ordered_increasingly=False)
Return a normalized multirange from the given range iterable rs.

11

multirange Documentation, Release 0.3.0

Overlapping or adjacent ranges are merged into one, and the ranges are ordered increasingly.

Yield normalized ranges. Don’t yield None.

multirange.difference_one_multi(r, mr, construct=<class ‘range’>)
Subtract multirange mr from range r, resulting in a multirange.

The range-like objects generated by this function are constructed using construct.

multirange.multi_intersection(mr1, mr2, construct=<class ‘range’>)
Intersection of two multiranges.

Return a multirange consisting of range-like objects which are intersections of the ranges in multirange mr1 and
multirange mr2.

More precisely, the resulting multirange corresponds to the set of integers which is the intersection of the sets
of integers corresponding to mr1 and mr2.

The range-like objects generated by this function are constructed using construct. (Note: They are newly
constructed, even if items from mr1 or mr2 have the required values for the start and stop attributes.)

multirange.multi_union(mr1, mr2, construct=<class ‘range’>)
Union of two multiranges.

Return a multirange consisting of range-like objects which are unions of the ranges in multirange mr1 and
multirange mr2

More precisely, the resulting multirange corresponds to the set of integers which is the union of the sets of
integers corresponding to mr1 and mr2.

The range-like objects generated by this function are constructed using construct. (Note: They are newly
constructed, even if items from mr1 or mr2 have the required values for the start and stop attributes.)

12 Chapter 4. Functions

Python Module Index

m
multirange, 1

13

multirange Documentation, Release 0.3.0

14 Python Module Index

Index

C
contains() (in module multirange), 10
covering_all() (in module multirange), 10

D
difference() (in module multirange), 11
difference_one_multi() (in module multirange), 12

E
equals() (in module multirange), 9

F
filter_contained() (in module multirange), 10
filter_equal() (in module multirange), 9
filter_nonempty() (in module multirange), 9
filter_normalize() (in module multirange), 9
filter_overlap() (in module multirange), 10

G
gaps() (in module multirange), 11

I
intermediate() (in module multirange), 11
is_adjacent() (in module multirange), 9
is_covered_by() (in module multirange), 11
is_disjunct() (in module multirange), 10
is_partition_of() (in module multirange), 11

M
match_count() (in module multirange), 10
multi_intersection() (in module multirange), 12
multi_union() (in module multirange), 12
multirange (module), 1

N
normalize() (in module multirange), 9
normalize_multi() (in module multirange), 11

O
overlap() (in module multirange), 10

overlap_all() (in module multirange), 10

S
sort_by_start() (in module multirange), 11
symmetric_difference() (in module multirange), 11

15

	Status
	Introduction
	Overview
	Features
	Limitations
	Range
	Generalized range object
	Range iterable
	Multirange

	Usage examples
	Functions
	Python Module Index

