
Matt’s astro python toolbox
Documentation

Release 0.1

Matt Craig

February 24, 2017

Contents

1 Contents 1
1.1 Overview . 1
1.2 Installation . 2
1.3 Automated header processing . 4
1.4 Manual header processing . 15
1.5 Image Management . 16
1.6 Header processing . 20
1.7 Index . 34

Python Module Index 35

i

ii

CHAPTER 1

Contents

Overview

This package provides two types of functionality; only the first is likely to be of general interest.

Classes for managing a collection of FITS files

The class ImageFileCollection provides a table summarizing the values of FITS keywords in the files in a
directory and provides easy ways to iterate over the HDUs, headers or data in those files. As a quick example:

>>> from msumastro import ImageFileCollection
>>> ic = ImageFileCollection('.', keywords=['imagetyp', 'filter'])
>>> for hdu in ic.hdus(imagetype='LIGHT', filter='I'):
... print hdu.header, hdu.data.mean()

does what you would expect: it loops over all of the images in the collection whose image type is ‘LIGHT’ and filter
is ‘I’. For more details see Image Management.

The TableTree constructs, from the summary table of an ImageFileCollection, a tree organized by values
in the FITS headers of the collection. See Image Management for more details and examples.

Header processing of images from the Feder Observatory

Semi-automatic image processing

Command line scripts for automated updating of FITS header keywords. The intent with these is that they will rarely
need to be used manually once a data preparation pipeline is set up.

The simplest option here is to use run_standard_header_process which will chain together all of
the steps in data preparation for you. When using run_standard_header_process consider using the
--scripts-only option, which generates bash scripts to carry out the data preparation. This gives you a complete
record of the commands run in addition to the log files that are always generated.

All of these scripts can also be run from your python code if desired.

Manual header or image manipulation

Command lines scripts that easily automate a small number of tasks that occur frequently enough that it is convenient
to have them available at the command line instead of requiring that new code to be written each time they are used.

1

Matt’s astro python toolbox Documentation, Release 0.1

There are currently two examples of this:

• quick_add_keys_to_file, for modifying the values of FITS header keywords with minimal effort.

• sort_files for Sorting files based on image properties

All of these scripts can also be run from your python code if desired.

Installation

This software

Users

This software requires a python distribution that includes numpy and other packages that support scientific work with
python. The easiest way to get these is to download and install the Anaconda python distribution. Note that the
Anaconda distribution includes astropy.

Install the way you install most python software:

pip install msumastro

followed (optionally) by:

pip install astropysics

only if you need the Feder Observatory stuff. You do not need astropysics for the image management features likely
to be of broadest interest.

Developers

Install this software by downloading a copy from the github page for the code. On Mac/Linux do this by typing, in a
terminal in the directory in which you want to run the code:

git clone https://github.com/mwcraig/msumastro.git

Navigate to the directory in which you downloaded it and run:

python setup.py develop

With this setup any changes you make to the source code will be immediately available to you without additional steps.

Dependencies

Python

This software has only been tested in python 2.7.x. It does not work in 3.x.

Note: Most of the requirements below will be taken care of automatically if you install msumastro with pip or
setup.py as described above. The exceptions are numpy and scipy

2 Chapter 1. Contents

http://www.numpy.org/
http://www.continuum.io/downloads
http://pythonhosted.org/Astropysics/
https://github.com/mwcraig/msumastro
http://www.numpy.org/
http://www.scipy.org/

Matt’s astro python toolbox Documentation, Release 0.1

Python packages

Required

Nothing will work without these:

• numpy (included with anaconda): If you need to install it, please see the instructions at the SciPy download site.
Some functionality may require SciPy.

• astropy (included with anaconda): If you need to install it, do so with:

pip install astropy

Required for some features

Most of the header patching functionality requires astropysics:

• astropysics: Install with:

pip install astropysics

Very strongly recommended if you want to test your install

• pytest_capturelog: Install with:

pip install pytest-capturelog

Required to build documentation

You only need to install the packages below if you want to build the documentation yourself:

• numpydoc: Install using either pip, or, if you have the Anaconda python distribution, like this:

conda install numpydoc

• sphinx_argparse: Install it this way:

pip install sphinx-argparse

(mostly) Non-python software: astrometry.net

Note: There is one piece of python software you need for astrometry.net and for now you need to install it manually:

pip install pyfits

If you want to be able to use the script Adding astrometry: run_astromtery.py you need a local installation of astrome-
try.net and sextractor (the latter works better than the source detection built into astrometry.net) The easiest way to do
that (on a Mac) is with homebrew. Once you have installed homebrew the rest is easy (unless it fails, of course...):

• brew tap homebrew/science (only needs to be done once; connects the set of homebrew science for-
mulae)

• brew install sextractor (note this can take a a few minutes)

1.2. Installation 3

http://www.numpy.org/
http://www.scipy.org/scipylib/download.html
http://www.astropy.org/
http://pythonhosted.org/Astropysics/
http://pythonhosted.org/Astropysics/
http://bitbucket.org/memedough/pytest-capturelog/overview
https://github.com/numpy/numpydoc
http://www.continuum.io/downloads
https://github.com/ribozz/sphinx-argparse
http://astrometry.net
http://astrometry.net
http://astrometry.net
http://www.astromatic.net/software/sextractor
http://brew.sh/
http://brew.sh/
http://brew.sh/

Matt’s astro python toolbox Documentation, Release 0.1

• brew install --env=std astrometry.net [Note the option --env=std. It is necessary to ensure
homebrew sees your python installation.]

Automated header processing

Overview

The scripts described here are intended primarily to be run in an automated way whenever new images are uploaded
to the physics server. Each can also be run manually, either from the command line or from python.

Both these ways of invoking the script (from the command line or from python) is are wrappers around the python
functions that do the real work. References to those functions, which provide more control over what you can do at
the expense of taking more effort to understand, are provided below where appropriate.

The purpose of the header processing is to:

• Modify or add keywords to the FITS header to make working with other software easier:

– Standardize names instead using the MaxIm DL defaults (e.g. RA and Dec instead of OBJCTRA and
OBJCTDEC)

– Set IMAGETYP to IRAF default, i.e. “BIAS”, “DARK”, “FLAT” or “LIGHT”

– Add convenient keywords that MaxImDL does not always include (e.g. AIRMASS, HA, LST)

– Add keywords indicating the overscan region, if any, in the image.

• Add astrometry to the FITS header so that RA/Dec can be extracted/displayed for sources in the image.

• Add object names to the HEADER where possible.

• Identify images that need manual action to add any of the information above.

• Create a table of images in each directory with columns for several FITS header keywords to facilitate indexing
of images taken at Feder.

Intended workflow

The three primary scripts are, in the order in which they are intended (though not required, necessarily) to run:

• run_patch to do a first round of header patching that puts site information, LST, airmass (where appropriate)
and RA/Dec information (where appropriate) into the files. See Header patching: run_patch.py for details.

• run_triage (details at Find problems and create summary: run_triage.py) to:

• generate a table summarizing properties of images in a directory. Each image is one row in the table and the
columns are keywords from the FITS headers.

• create files with lists of images missing key information.

• Fix any problems identified by run_triage. The script quick_add_keys_to_file may be useful for
this; it is an easy way to add/modify the values of keywords in FITS headers from the command line; see details
at Manual intervention: quick_add_keys_to_file.py. After fixing these problems you may need to re-run patch,
particularly if you have added pointing information or changed the IMAGETYP of any of the images.

• run_astrometry to use astrometry.net to add WCS (astrometry) information to the file. See Adding astrom-
etry: run_astromtery.py for details. Note that this requires a local installation of astrometry.net.

• If desired, run_triage again to regenerate the table of image information.

4 Chapter 1. Contents

http://brew.sh/
http://astrometry.net
http://astrometry.net

Matt’s astro python toolbox Documentation, Release 0.1

The intended workflow will not work when...

The workflow above works great when the images that come off the telescope contain pointing information (i.e.
RA/Dec), filter information and the image type in the header matches the actual image type.

Manual intervention will be required in any of these circumstances:

• There is no pointing information in the files. In files that are produced at Feder Observatory the pointing
information is contained in the FITS keywords OBJCTRA and OBJCTDEC. If there is no pointing information,
astrometry will not be added to the image headers. astrometry.net can actually do blind astrometry, but it is
fairly time consuming. Alternatives are suggested below.

– How to identify this case: There are two ways this problem may be noted. If run_triage has been run
(and it is run in the standard workflow) then a file called “NEEDS_POINTING_INFO.txt” will be created
that lists all of the light files missing pointing information. In addition, one file with suffix .blind will be
created for each light file which contains no pointing information.

• Filter information is missing for light or flat images. All of the data preparation will occur if the FILTER
keyword is missing from the headers for light or flat images, but the filter needs to be added to make the images
useful.

– How to identify this case: A file called “NEEDS_FILTER.txt” will be created as part of the standard
workflow that lists each file that needs filter information.

• Incorrect image type set for image. If the incorrect image type is set it can prevent some data preparation steps
to be omitted that should actually occur or cause steps to be attempted that shouldn’t be. For example, if an
image is really a LIGHT image but is labeled in the header as a FLAT, then no attempt will be made to calculate
an apparent position (Alt/Az) for the frame or to add astrometry. If the mistake is reversed, with a FLAT image
labeled as LIGHT an attempt will be made to add astrometry which will fail.

– How to identify this case: Manual inspection of affected images is the only reliable way to do this. A
good place to start looking is at light files for which adding astrometry failed, file names whose name
implies a different type than its IMAGETYP in the FITS header (e.g. a file with IMAGETYP = LIGHT
whose name is flat-001R.fit)

• The object being observed is not in the master object list. The standard workflow has run but object names
have not been add to all of the light files. This occurs when the object of the image was not in the list of objects
used by run_patch.py or the object’s RA/Dec was too far from the center of the image to be matched.

– How to identify this case: The script run_triage.py, part of the standard workflow, will produce a
file called “NEEDS_OBJECT.txt” with a list of light files for which there is no object.

Fixes for cases that require intervention

The discussion below is deliberately broad. For some concrete examples see Manual header processing

• Adding pointing information: There are a few options here:

– Use quick_add_keys_to_file to add the OBJECT keyword to the header, then
add_ra_dec_from_object_name() to add pointing information, then run_astrometry
to add astrometry to the images.

– Use quick_add_keys_to_file to add the OBJECT, RA, DEC, OBJCTRA and OBJCTDEC to the
headers, then run_astrometry to add astrometry to the images. This route is not recommended
because it is easy to use a format for RA/Dec that isn’t understood (or is misinterpreted) by the code that
adds astrometry.

– Do blind astrometry to add pointing information, then use add_object_info() to add object
names. There are no inherent with with this approach, though it may be simpler to add the astrometry

1.3. Automated header processing 5

http://astrometry.net

Matt’s astro python toolbox Documentation, Release 0.1

then re-run the standard processing workflow to add any missing keywords than it is to manually use
add_object_info()

• Adding filter information: The hard part here is not adding the filter keyword, it is figuring out what filter was
used when the image was taken. You are on your own in figuring out that piece. Once you know what the filter
should be, use quick_add_keys_to_file to add the keyword FILTER to the relevant files.

• Adding filter information: As with adding filter information, the hard part is figuring out what the image type
should be. In practice most cases of this are light images misidentified as flat and vice versa and it ought to
be easy to determine which of those an image is at a glance (arguably, if you can’t tell at a glance then the
image is probably useful as neither a light nor a flat image). Once you know what the image type should be, use
quick_add_keys_to_file to set the keyword IMAGETYP to the appropriate value in the relevant files.
Allowed values for IMAGETYP are “BIAS”, “DARK”, “FLAT” or “LIGHT”.

• Adding object information: Assuming pointing information is already in the header for the images that need
object information this is fairly straightforward. One way to do it is to add the object to the master object
list and run add_object_info() (or even just re-run run_patch, which will end up re-doing some of
the keyword-patching work). Another way to approach is to use quick_add_keys_to_file to set the
OBJECT keyword directly. Either way you are encouraged to upadte the master object list.

Detailed list of keywords changed

Keywords purged before further processing

Some keywords are purged from the original headers because I don’t trust the values that MaxImDL v5 puts in:

OBJECT
JD
JD-HELIO
OBJCTALT
OBJCTAZ
OBJCTHA
AIRMASS

Keywords modified for all files

The keywords that are currently added/modified by patch_headers for all files are:

IMAGETYP: Type of image
LATITUDE: [degrees] Observatory latitude
LONGITUD: [degrees east] Observatory longitude
ALTITUDE: [meters] Observatory altitude
LST: Local Sidereal Time at start of observation
JD-OBS: Julian Date at start of observation
MJD-OBS: Modified Julian date at start of observation
BIASSEC: Region of the image useful for subtracting overscan
TRIMSEC: Region to which the image should be trimmed after removing overscan

Keywords modified only for light files

The keywords that are currently added/modified by patch_header for light files only are:

RA: Approximate RA at EQUINOX
DEC: Approximate DEC at EQUINOX
OBJECT: Target of the observations

6 Chapter 1. Contents

Matt’s astro python toolbox Documentation, Release 0.1

HA: Hour angle
AIRMASS: Airmass (Sec(Z)) at start of observation
ALT-OBJ: [degrees] Altitude of object, no refraction
AZ-OBJ: [degrees] Azimuth of object, no refraction

Reference/API

Command-line scripts

Each of the command-line scripts described below is also callable from python. The details of how you call it from
python are described below.

Both these ways of invoking the script (from the command line or from python) is are wrappers around the python
functions that do the real work. References to those functions, which tend to provide more control over what you can
do at the expense of taking more effort to understand, are provided below where appropriate.

Running the complete standard workflow: run_standard_header_process.py

Usage summary
usage: run_standard_header_process.py [-h]

(--dest-root DEST_ROOT | --overwrite-source)
[--scripts-only] [-r {a,t,p}]
[--no-blind] [-o OBJECT_LIST]
[--quiet-console] [--silent-console]
[--debug] [--quiet-log]
source_root

Positional arguments:

source_root All directories below this one that contain images will be processed

optional arguments

--dest-root If set, image directories below ‘‘source-root‘‘ will be copied into this di-
rectory tree. Only directories that contain image files will be copied; any
intermediary directories required to contain directories that contain images
will also be created.

--overwrite-source=False This flag must be used to overwrite images in the course directory.

--scripts-only=False This script will write a single shell script with the name provided in this
option. No images will be modified or directories created, but the script
can be run to do those things.

-r, --run-only Select which scripts you want to run. This can be any combination of
[p]atch, [a]strometry and [t]riage.

Possible choices: a, t, p

--no-blind=False Disable astrometry for images without pointing information

-o, --object-list Path to or URL of file containing list (and optionally coordinates of) objects
that might be in these files. If not provided it defaults to looking for a file
called obsinfo.txt in the directory being processed

--quiet-console=False Log only errors (or worse) to console while running scripts

1.3. Automated header processing 7

Matt’s astro python toolbox Documentation, Release 0.1

--silent-console=False Turn off all logging output to console

--debug=False Turn on very detailed logging output

--quiet-log=False Log only warnings (or worse) to FILES AND CONSOLE while running
scripts

Header patching: run_patch.py

For a detailed description of which header keywords are modified see Keywords purged before further processing.

Warning: This script OVERWRITES the image files in the directories specified on the command line unless you
use the –destination-dir option.

Usage summary
usage: run_patch.py [-h] [-v] [-d DESTINATION_DIR] [--debug] [-n]

[--quiet-console] [--silent-console] [-o OBJECT_LIST]
[--overscan-only]
dir [dir ...]

Positional arguments:

dir Directory to process

optional arguments

-v=False, --verbose=False provide more information during processing

-d, --destination-dir Directory in which output from this script will be stored

--debug=False Turn on very detailed logging output

-n=False, --no-log-destination=False Do not write log files to destination directory

--quiet-console=False Log only errors (or worse) to console while running scripts

--silent-console=False Turn off all logging output to console

-o=https://raw.github.com/mwcraig/feder-object-list/master/feder_object_list.csv, --object-list=https://raw.github.com/mwcraig/feder-object-list/master/feder_object_list.csv
Path to or URL of file containing list (and optionally coordinates of) ob-
jects that might be in these files. If not provided it defaults to looking for a
file called obsinfo.txt in the directory being processed

--overscan-only=False Only add appropriate overscan keywords

DESCRIPTION For each directory provided on the command line the headers all of the FITS files in that directory
are modified to add information like LST, apparent object position, and more. See the full documentation for a list of
the specific keywords that are modified.

Header patching This is basically a wrapper around the function patch_headers.patch_headers() with
the options set so that:

• “Bad” keywords written by MaxImDL 5 are purged.

• IMAGETYP keyword is changed from default MaxIM DL style to IRAF style (e.g. “Bias Frame” to “BIAS”)

8 Chapter 1. Contents

Matt’s astro python toolbox Documentation, Release 0.1

• Additional useful times like LST, JD are added to the header.

• Apparent position (Alt/Az, hour angle) are added to the header.

• Information about overscan is added to the header.

• Files are overwritten.

For more control over what is patched and where the patched files are saved see the documentation for
patch_headers at patch_headers.patch_headers().

Adding OBJECT keyword run_patch also adds the name of the object being observed when appropriate (i.e.
only for light files) and possible. It needs to be given a list of objects; looking up the coordinates for those objects
requires an Internet connection. See

For a detailed description of the object list file see Object file format.

for a detailed description of the function that actually adds the object name see
patch_headers.add_object_info().

If no object list is specified or present in the directory being processed the OBJECT keyword is simply not added to
the FITS header.

Note: This script is NOT RECURSIVE; it will not process files in subdirectories of the the directories supplied on
the command line.

Warning: This script OVERWRITES the image files in the directories specified on the command line unless you
use the –destination-dir option.

EXAMPLES Invoking this script from the command line:

run_patch.py /my/folder/of/images

To work on the same folder from within python, do this:

from msumastro.scripts import run_patch
run_patch.main(['/my/folder/of/images'])

To use the same object list for several different directories do this:

run_patch.py --object-list path/to/list.txt dir1 dir2 dir3

where path/to/list.txt is the path to your object list and dir1, dir2, etc. are the directories you want to
process.

From within python this would be:

from msumastro.scripts import run_patch
run_patch.main(['--object-list', 'path/to/list.txt',

'dir1', 'dir2', 'dir3'])

1.3. Automated header processing 9

Matt’s astro python toolbox Documentation, Release 0.1

Adding astrometry: run_astromtery.py

Warning: This script OVERWRITES the image files in the directories specified on the command line unless you
use the –destination-dir option.

Usage summary
usage: run_astrometry.py [-h] [-v] [-d DESTINATION_DIR] [--debug] [-n]

[--quiet-console] [--silent-console] [-b] [-c]
[-o ODDS_RATIO]
[--astrometry-config ASTROMETRY_CONFIG]
dir [dir ...]

Positional arguments:

dir Directory to process

optional arguments

-v=False, --verbose=False provide more information during processing

-d, --destination-dir Directory in which output from this script will be stored

--debug=False Turn on very detailed logging output

-n=False, --no-log-destination=False Do not write log files to destination directory

--quiet-console=False Log only errors (or worse) to console while running scripts

--silent-console=False Turn off all logging output to console

-b=False, --blind=False Turn ON blind astrometry; disabled by default because it is so slow.

-c=False, --custom-sextractor=False Use Feder-specific SExtractor settings

-o, --odds-ratio Change the odds-ratio for accepting a match from the default of 1e9.

--astrometry-config File to use for configuring astrometry engine, including, e.g., the location
of index files.

DESCRIPTION

For each directory provided on the command line add astrometry to the light files (those with
IMAGETYP=’LIGHT’ in the FITS header).

By default, astrometry is added only for those files with pointing information in the header (specifically,
RA and Dec) because blind astrometry is fairly slow. It may be faster to insert RA/Dec into those files
before doing astrometry.

The functions called by this script set the WCS reference pixel to the center of the image, which turns out
to make aligning images a little easier.

For more control over the parameters see add_astrometry() and for even more control,
call_astrometry().

Note: This script is NOT RECURSIVE; it will not process files in subdirectories of the the directories
supplied on the command line.

10 Chapter 1. Contents

Matt’s astro python toolbox Documentation, Release 0.1

Warning: This script OVERWRITES the image files in the directories specified on the command
line unless you use the –destination-dir option.

EXAMPLES

Invoking this script from the command line:

run_astrometry.py /my/folder/of/images

To work on the same folder from within python, do this:

from msumastro.scripts import run_astrometry
run_astrometry.main(['/my/folder/of/images'])

Find problems and create summary: run_triage.py

Usage summary
usage: run_triage.py [-h] [--debug] [-v] [-d DESTINATION_DIR] [-n]

[--quiet-console] [--silent-console] [-k KEY] [-l] [-a]
[-t TABLE_NAME] [-o OBJECT_NEEDED_LIST]
[-p POINTING_NEEDED_LIST] [-f FILTER_NEEDED_LIST]
[-y ASTROMETRY_NEEDED_LIST]
[dir [dir ...]]

Positional arguments:

dir Directory to process

optional arguments

--debug=False Turn on very detailed logging output

-v=False, --verbose=False provide more information during processing

-d, --destination-dir Directory in which output from this script will be stored

-n=False, --no-log-destination=False Do not write log files to destination directory

--quiet-console=False Log only errors (or worse) to console while running scripts

--silent-console=False Turn off all logging output to console

-k=[], --key=[] FITS keyword to add to table in addition to the defaults; for multiple key-
words use this option multiple times.

-l=False, --list-default=False Print default list keywords put into table and exit

-a=False, --all=False Construct table from all FITS keywords present in headers and the list of
default keywords.

-t=Manifest.txt, --table-name=Manifest.txt Name of file in which table is saved; default is
Manifest.txt

-o=NEEDS_OBJECT_NAME.txt, --object-needed-list=NEEDS_OBJECT_NAME.txt
Name of file to which list of files that need object name is saved; default is
NEEDS_OBJECT_NAME.txt

1.3. Automated header processing 11

Matt’s astro python toolbox Documentation, Release 0.1

-p=NEEDS_POINTING_INFO.txt, --pointing-needed-list=NEEDS_POINTING_INFO.txt
Name of file to which list of files that need pointing name is saved; default
is NEEDS_POINTING_INFO.txt

-f=NEEDS_FILTER.txt, --filter-needed-list=NEEDS_FILTER.txt Name of file to which list
of files that need filter is saved; default is NEEDS_FILTER.txt

-y=NEEDS_ASTROMETRY.txt, --astrometry-needed-list=NEEDS_ASTROMETRY.txt
Name of file to which list of files that need astrometry is saved; default is
NEEDS_ASTROMETRY.txt

DESCRIPTION

For each directory provided on the command line create a table in that directory with one row for each
FITS file in the directory. The columns are FITS keywords extracted from the header of each file.

The list of default keywords extracted is available through the command line option --list-default.

Note: This feature is available only from the command line.

For more control over the parameters see triage_fits_files()

Note: This script is NOT RECURSIVE; it will not process files in subdirectories of the the directories
supplied on the command line.

EXAMPLES

Invoking this script from the command line:

python run_triage.py /my/folder/of/images

Get list of default keywords included in summary table:

python run_triage.py --list-default

To work on the same folder from within python, do this:

from msumastro.scripts import run_triage
run_triage.main(['/my/folder/of/images'])
or...
run_triage.main(['--list-default'])

Manual intervention: quick_add_keys_to_file.py

Warning: This script OVERWRITES the image files in the directories specified on the command line. There is
NO WAY TO DISABLE this behavior.

Usage summary

12 Chapter 1. Contents

Matt’s astro python toolbox Documentation, Release 0.1

usage: quick_add_keys_to_file.py [-h] [--file-list FILE_LIST]
(--key-file KEY_FILE | --key-value KEY_VALUE KEY_VALUE)
[files [files ...]]

Positional arguments:

files Files in which to add/change keywords

optional arguments

--file-list File with list of files in which keywords are to be changed

--key-file File with keywords and values to be set

--key-value Keyword to add/change

Add/modify keywords in FITS files.

DESCRIPTION

Add each of the keywords in either the key_file or specified on the command line to each of the files
either listed in the file file_list or specified on the command line. If the keyword is already present
its value is updated to the value in key_file. A HISTORY comment is added to the header for each
keyword indicating which keyword was modified.

Warning: This script OVERWRITES the image files in the list specified on the command line. There
is NO WAY to override this behavior.

Sorting files based on image properties

Note: By default this script makes a copy of the images being sorted. There is an option for moving the files instead.

This type of sorting is handy for working with images in GUI software like AstroImageJ or MaxImDL, but will make
it harder to process the data programmatically in python.

Usage summary
usage: sort_files.py [-h] [-v] [-d DESTINATION_DIR] [--debug] [-n]

[--quiet-console] [--silent-console] [--move]
dir [dir ...]

Positional arguments:

dir Directory to process

optional arguments

-v=False, --verbose=False provide more information during processing

-d, --destination-dir Directory in which output from this script will be stored

--debug=False Turn on very detailed logging output

-n=False, --no-log-destination=False Do not write log files to destination directory

--quiet-console=False Log only errors (or worse) to console while running scripts

1.3. Automated header processing 13

Matt’s astro python toolbox Documentation, Release 0.1

--silent-console=False Turn off all logging output to console

--move=False, -m=False Move files instead of copying them.

DESCRIPTION

For the directory provided on the command line sort the FITS files in this way:

destination
|
|
|
|---'BIAS'
|
|---'DARK'
| |---exposure_time_1
| |---exposure_time_2, etc.
|
|---'FLAT'
| |---filter_1
| | |---exposure_time_1
| | |---exposure_time_2, etc.
| |
| |---filter_2, etc.
|
|---'LIGHT'

|---object_1
| |---filter_1
| | |---exposure_time_1
| | |---exposure_time_2, etc.
| |
| |---filter_2, etc.
|
|---object_2
| |---filter_1
| |---filter_2, etc.
|
|---object_3, etc.
|
|---'no_object'

|---filter_1
|---filter_2, etc.

The names in single quotes, like ‘bias’, appear exactly as written in the directory tree created. Names
like exposure_time_1 are replaced with a value, for example 30.0 if the first dark exposure time is 30.0
seconds.

The directory destination/calibration/flat/R will contain all of the FITS files that are R-
band flats.

Note: This script is NOT RECURSIVE; it will not process files in subdirectories of the the directories
supplied on the command line.

Warning: Unless you explicitly supply a destination using the –destination-dir option the files will be
copied/moved in the directory in which they currently exist. While this should not lead to information
loss, since files are moved or copied but never deleted, you have been warned.

14 Chapter 1. Contents

Matt’s astro python toolbox Documentation, Release 0.1

EXAMPLES

Manual header processing

Overview

Sometimes the standard data preparation will fail at one stage or another, most often because pointing information
is missing for an image or because no object was found matching the RA/Dec of the image. Your tool of choice in
such cases, either to add pointing information or to add object names is quick_add_keys_to_file. A broad
discussion of using it is at Fixes for cases that require intervention.

This document provides some examples of using quick_add_keys_to_file from the command line. See the
documentation for add_keys() for use from python scripts.

Examples

Command line only

Add the keyword “OBJECT”, with value “EY UMa”, to the file image.fit:

quick_add_keys_to_file.py --key-value object "EY UMa" image.fits

The same, but for all of the files that match the pattern ey-uma*.fit:

quick_add_keys_to_file.py --key-value object "EY UMa" ey-uma*.fits

The rest of the command line examples you have created a file called keys.txt with a list of keyword/value pairs
and a list of files called files.txt (you can call the files whatever you want, of course)

Command line and supporting files

Format of the keyword file

A keyword file looks like this (you need the header line):

Keyword,Value
OBJECT,"EY UMa"
RA,"09:02:20.79"
DEC,"+49:49:09.7"

You can include as many keywords as you want, and they can have numerical values instead of string values in
appropriate. If the value has two words, like the value for the keyword “OBJECT” above, it must be in quotes, like
“EY UMa”.

Keyword names are case insensitive because keywords in the FITS standard are case insensitive.

Format of the file list

A file list looks like this (yes, you need the header line):

1.4. Manual header processing 15

Matt’s astro python toolbox Documentation, Release 0.1

File
MyFirstFile.fit
another_fits_file.fits
/or/even/the/full/path/to/a/fits/file.fit

Examples using keyword file/file list

Add all of the keywords in keys.txt to all of the files in files.txt:

quick_add_keys_to_file.py --key-file keys.txt --file-list files.txt

Add all of the keywords in keys.txt to the files image1.fit and image2.fit:

quick_add_keys_to_file.py --key-file keys.txt image1.fit image2.fit

Add keywords from the command line to all of the files in files.txt:

quick_add_keys_to_file.py --key-value my_key "some value" --file-list files.txt

Image Management

Working with a directory of images

For the sake of argument all of the examples below assume you are working in a directory that contains FITS images.

The class ImageFileCollection is meant to make working with a directory of FITS images easier by allowing
you select the files you act on based on the values of FITS keywords in their headers.

It is initialized with the name of a directory containing FITS images and a list of FITS keywords you want the
ImageFileCollection to be aware of. An example initialization looks like:

>>> from msumastro import ImageFileCollection
>>> keys = ['imagetyp', 'object', 'filter', 'exposure']
>>> ic1 = ImageFileCollection('.', keywords=keys) # only keep track of keys

You can use the wildcard * in place of a list to indicate you want the collection to use all keywords in the headers:

>>> ic_all = ImageFileCollection('.', keywords='*')

Most of the useful interaction with the image collection is via its .summary property, an ‘~astropy.table.Table‘_ of
the value of each keyword for each file in the collection:

>>> ic1.summary.colnames
['imagetyp', 'object', 'filter']
>>> ic_all.summary.colnames
long list of keyword names omitted

Selecting files

Selecting the files that match a set of criteria, for example all images in the I band with exposure time less than 60
seconds you could do:

>>> matches = (ic1.summary['filter'] == 'I' & ic1.summary['exposure'] < 60)
>>> my_files = summary['file'][matches]

16 Chapter 1. Contents

Matt’s astro python toolbox Documentation, Release 0.1

The column file is added automatically when the image collection is created.

For more simple selection, when you just want files whose keywords exactly match particular values, say all ‘I’ band
images with exposure time of 30 seconds, there is a convenience method .files_filtered:

>>> my_files = ic1.files_filtered(filter='I', exposure=30)

The optional arguments to files_filtered are used to filter the list of files.

Iterating over hdus, headers or data

Three methods are provided for iterating over the images in the collection, optionally filtered by keyword values.

For example, to iterate over all of the I band light images with exposure of 30 seconds, performing some basic operation
on the data (very contrived example):

>>> for hdu in ic1.hdus(imagetyp='LiGhT', filter='I', exposure=30):
... hdu.header['exposure']
... new_data = hdu.data - hdu.data.mean()

Note that the names of the arguments to hdus here are the names of FITS keywords in the collection and the values
are the values of those keywords you want to select. Note also that string comparisons are not case sensitive.

The other iterators are headers and data.

All of them have the option to also provide the file name in addition to the hdu (or header or data):

>>> for hdu, fname in ic1.hdus(return_fname=True,
... imagetyp='LiGhT', filter='I', exposure=30):
... hdu.header['meansub'] = True
... hdu.data = hdu.data - hdu.data.mean()
... hdu.writeto(fname + '.new')

That last use case, doing something to several files and wanting to same them somewhere afterwards, is common
enough that the iterators provide arguments to automate it.

Automatic saving from the iterators

There are three ways of triggering automatic saving.

1. One is with the argument save_with_name; it adds the value of the argument to the file name between the
original base name and extension. The example below has (almsot) the same effect of the example above, subtracting
the mean from each image and saving to a new file:

>>> for hdu in ic1.hdus(save_with_name='_new',
... imagetyp='LiGhT', filter='I', exposure=30):
... hdu.header['meansub'] = True
... hdu.data = hdu.data - hdu.data.mean()

It saves, in the ``location`` of the image collection, a new FITS file with
the mean subtracted from the data, with ``_new`` added to the name; as an
example, if one of the files iterated over was ``intput001.fit`` then a new
file, in the same directory, called ``input001_new.fit`` would be created.

2. You can also provide the directory to which you want to save the files with save_location; note that you do not
need to actually do anything to the hdu (or header or data) to cause the copy to be made. The example below copies
all of the I-band light files with 30 second exposure from the original location to "other_dir":

1.5. Image Management 17

Matt’s astro python toolbox Documentation, Release 0.1

>>> for hdu in ic1.hdus(save_location='other_dir',
... imagetyp='LiGhT', filter='I', exposure=30):
... pass

This option can be combined with the previous one to also give the files a
new name.

3. Finally, if you want to live dangerously, you can overwrite the files in the location with the overwrite argument;
use it carefully because it preserves no backup. The example below replaces each of the I-band light files with 30
second exposure with a file that has had the mean subtracted:

>>> for hdu in ic1.hdus(overwrite=True,
... imagetyp='LiGhT', filter='I', exposure=30):
... hdu.header['meansub'] = True
... hdu.data = hdu.data - hdu.data.mean()

msumastro.image_collection Module

ImageFileCollection(*arg, **kwd)

Classes

ImageFileCollection
class msumastro.image_collection.ImageFileCollection(*arg, **kwd)

Bases: ccdproc.image_collection.ImageFileCollection

Turning an image collection into a tree

The class TableTree turns an Astropy Table into a tree based on the values in a particular column or columns.

TableTree(*args, **kwd) Base class for grouping images hierarchically into a tree based on metadata.
RecursiveTree() A dict-base recursive tree.

TableTree

class msumastro.table_tree.TableTree(*args, **kwd)
Bases: msumastro.table_tree.RecursiveTree

Base class for grouping images hierarchically into a tree based on metadata.

Parameters table : astropy.table.Table instance

Table containing the metadata to be used for grouping images.

tree_keys : list of str

Keys to be used in grouping images. Each key must be the name of a column in table.

index_key : str

Key which is used to indicate which rows of the input table are in each group; it must
be the name of one of the columns in table. Values of the index must uniquely identify

18 Chapter 1. Contents

Matt’s astro python toolbox Documentation, Release 0.1

rows of the table (in database parlance, index must be able to serve as a primary key for
the table).

Raises TypeError

Raised if the number of initialization arguments is incorrect or the types of any of the
arguments is incorrect.

Attributes

table astropy.table.Table of metadata used to group rows.
tree_keys list of str, Table columns to be used in grouping the rows.
index_key str, Name of column whose values uniquely identify each row.

Attributes Summary

index_key str, Name of column whose values uniquely identify each row.
table astropy.table.Table of metadata used to group rows.
tree_keys list of str, Table columns to be used in grouping the rows.

Methods Summary

walk(*args, **kwd) Walk the grouped tree

Attributes Documentation

index_key
str, Name of column whose values uniquely identify each row.

table
astropy.table.Table of metadata used to group rows.

tree_keys
list of str, Table columns to be used in grouping the rows.

Methods Documentation

walk(*args, **kwd)
Walk the grouped tree

The functionality provided is similar to that in os.walk: starting at the top of tree, yield a tuple of return
values indicating parents, children and rows at each level of the tree.

Parameters None

Returns parents, children, index : lists

parents : list

Dictionary keys that led to this return

children : list

1.5. Image Management 19

Matt’s astro python toolbox Documentation, Release 0.1

Child nodes at this level

index : list

Index values for the items in the table that correspond to the values in parents

RecursiveTree

class msumastro.table_tree.RecursiveTree
Bases: collections.OrderedDict

A dict-base recursive tree.

Methods Summary

add_keys(keys[, value])

Methods Documentation

add_keys(keys, value=None)

Header processing

Introduction

The msumastro.header_processing subpackage contains classes and functions that do the work of modifying headers.
There are several scripts for Automated header processing and Manual header processing provided to carry out the
most common types of headers processing.

Reference/API

msumastro.header_processing.fitskeyword Module

Classes

FITSKeyword([name, value, comment, synonyms]) Represents a FITS keyword, which may have several synonyms.

FITSKeyword
class msumastro.header_processing.fitskeyword.FITSKeyword(name=None, value=None,

comment=None, syn-
onyms=None)

Bases: object

Represents a FITS keyword, which may have several synonyms.

Parameters name : str, optional

Name of the keyword; case insensitive

value : str or numeric type, optional

20 Chapter 1. Contents

Matt’s astro python toolbox Documentation, Release 0.1

Value of the keyword; this class imposes no constraints on the type of the keyword but
if you intend to save the value in a FITS header you should be aware of the restrictions
the FITS standard places on keyword values.

comment : str, optional

Description of the keyword.

synonyms : str or list of str, optional

Synonyms for this keyword. Synonyms are to look for a value in a FITS header and to
set multiple keywords to the same value in a FITS header.

Attributes Summary

name Primary name of the keyword.
names All names, including synonyms, for this keyword, as a list.
synonyms List of synonyms for the keyword.

Methods Summary

add_to_header(hdu_or_header[, ...]) Add keyword to FITS header.
history_comment([with_name]) Produce a string describing changes to the keyword value.
set_value_from_header(hdu_or_header) Set value of keyword from FITS header.

Attributes Documentation

name
Primary name of the keyword.

names
All names, including synonyms, for this keyword, as a list.

synonyms
List of synonyms for the keyword.

Methods Documentation

add_to_header(hdu_or_header, with_synonyms=True, history=False)
Add keyword to FITS header.

Parameters hdu_or_header : astropy.io.fits.Header or astropy.io.fits.PrimaryHDU

Header/HDU to which the keyword is to be added.

with_synonyms : bool, optional

Control whether a keyword is added for each of the synonyms for the keyword. Default
is True.

history : bool, optional

Control whether a history comment is added to the header; if True a history comment is
added for each of the keyword names added to the header, including synonyms.

1.6. Header processing 21

Matt’s astro python toolbox Documentation, Release 0.1

history_comment(with_name=None)
Produce a string describing changes to the keyword value.

Parameters with_name : str, optional

Name to use for the keyword in the history comment. Default is the name attribute of
the Keyword.

set_value_from_header(hdu_or_header)
Set value of keyword from FITS header.

Values are obtained from the header by looking for the keyword by its primary name and any synonyms.
If multiple values are found they are checked for consistency.

Parameters hdu_or_header: astropy.io.fits.Header or astrop.io.fits.PrimaryHDU

Header from which the keyword value should be taken.

Raises ValueError

If hdu_or_header is of the wrong type, or the keyword (or synonyms) are not found in
the header, or multiple non-identical values are found.

msumastro.header_processing.astrometry Module

Functions

call_astrometry(filename[, sextractor, ...]) Wrapper around astrometry.net solve-field.
add_astrometry(filename[, overwrite, ...]) Add WCS headers to FITS file using astrometry.net

call_astrometry
msumastro.header_processing.astrometry.call_astrometry(filename, sextrac-

tor=False, cus-
tom_sextractor_config=False,
feder_settings=True,
no_plots=True, min-
imal_output=True,
save_wcs=False, ver-
ify=None, ra_dec=None,
overwrite=False,
wcs_reference_image_center=True,
odds_ratio=None, astrome-
try_config=None)

Wrapper around astrometry.net solve-field.

Parameters sextractor : bool or str, optional

True to use sextractor, or a str with the path to sextractor.

custom_sextractor_config : bool, optional

If True, use a sexractor configuration file customized for Feder images.

feder_settings : bool, optional

Set True if you want to use plate scale appropriate for Feder Observatory Apogee Alta
U9 camera.

no_plots : bool, optional

22 Chapter 1. Contents

Matt’s astro python toolbox Documentation, Release 0.1

True to suppress astrometry.net generation of plots (pngs showing object location and
more)

minimal_output : bool, optional

If True, suppress, as separate files, output of: WCS header, RA/Dec object list, match-
ing objects list, but see also save_wcs

save_wcs : bool, optional

If True, save WCS header even if other output is suppressed with minimial_output

verify : str, optional

Name of a WCS header to be used as a first guess for the astrometry fit; if this plate
solution does not work the solution is found as though verify had not been specified.

ra_dec : list or tuple of float

(RA, Dec); also limits search radius to 1 degree.

overwrite : bool, optional

If True, perform astrometry even if astrometry.net files from a previous run are present.

wcs_reference_image_center :

If True, force the WCS reference point in the image to be the image center.

add_astrometry
msumastro.header_processing.astrometry.add_astrometry(filename, over-

write=False, ra_dec=None,
note_failure=False,
save_wcs=False,
verify=None,
try_builtin_source_finder=False,
custom_sextractor=False,
odds_ratio=None, astrome-
try_config=None)

Add WCS headers to FITS file using astrometry.net

Parameters overwrite : bool, optional

Set True to overwrite the original file. If False, the file astrometry.net generates is kept.

ra_dec : list or tuple of float or str

(RA, Dec) of field center as either decimal or sexagesimal; also limits search radius to
1 degree.

note_failure : bool, optional

If True, create a file with extension “failed” if astrometry.net fails. The “failed” file
contains the error messages genreated by astrometry.net.

try_builtin_source_finder : bool

If true, try using astrometry.net’s built-in source extractor if sextractor fails.

save_wcs :

verify :

See call_astrometry()

1.6. Header processing 23

Matt’s astro python toolbox Documentation, Release 0.1

Returns bool

True on success.

Notes

Tries a couple strategies before giving up: first sextractor, then, if that fails, astrometry.net’s built-in source
extractor.

It also cleans up after astrometry.net, keeping only the new FITS file it generates, the .solved file, and, if desired,
a ”.failed” file for fields which it fails to solve.

For more flexible invocation of astrometry.net, see call_astrometry()

msumastro.header_processing.feder Module

Classes

FederSite The Feder Observatory site.
ImageSoftware(name[, fits_name, ...]) Represents software that takes images at telescope.
Instrument(name[, fits_names, rows, ...]) Telescope instrument with simple properties.
ApogeeAltaU9() The Apogee Alta U9
MaximDL4() Represents MaximDL version 4, all sub-versions
MaximDL5() Represents MaximDL version 5, all sub-versions.

FederSite
class msumastro.header_processing.feder.FederSite

Bases: astropy.coordinates.earth.EarthLocation

The Feder Observatory site.

An astropy location with the observatory location pre-set to:

•lat = 46.86678 degrees North

•long = -96.453278 degrees East

•height = 311.8 meters

and a few additional properties/methods that are convenient:

•name = Feder Observatory

Attributes Summary

name

Attributes Documentation

name

ImageSoftware

24 Chapter 1. Contents

Matt’s astro python toolbox Documentation, Release 0.1

class msumastro.header_processing.feder.ImageSoftware(name, fits_name=None,
major_version=None,
minor_version=None,
bad_keywords=None,
fits_keyword=None,
purged_flag_keyword=None)

Bases: object

Represents software that takes images at telescope.

Parameters name : str

Name of the software. Can be the same is the name in the FITS file, or not.

fits_keyword : str

Name of the FITS keyword that contains the name of the software.

fits_name : list of str

Name of the software as written in the FITS file

major_version : int

Major version number of the software.

minor_version : int

Minor version number of the software.

bad_keywords : list of strings

Names of any keywords that should be removed from the FITS before further process-
ing.

purged_flag_keyword : str, optional

Name of the keyword which indicates whether bad keywords have already been purged.
Default value is ‘PURGED’

Methods Summary

created_this(version_string) Indicate whether version string matches this software

Methods Documentation

created_this(version_string)
Indicate whether version string matches this software

Parameters version_string : str

String from FITS header that indicates software version.

Returns bool

True if the version string matches the software instance.

Instrument

1.6. Header processing 25

Matt’s astro python toolbox Documentation, Release 0.1

class msumastro.header_processing.feder.Instrument(name, fits_names=None, rows=0,
columns=0, image_unit=None,
trim_region=None, use-
ful_overscan_region=None)

Bases: object

Telescope instrument with simple properties.

Parameters name : str

Name of the instrument.

fits_names : list of str

List of names by which the instrument is known in FITS headers

rows : int

Number of rows in an image produced by this instrument, including overscan.

columns : int

Number of columns in an image produced by this instrument, including overscan.

image_unit : astropy.units.Unit

Unit of the image; default value is None

trim_region : string

Region of the CCD that should be preserved after overscan subtraction. Should use
FITS conventions for specifying slices (i.e. slice starts at 1, includes endpoint, and uses
FITS NAXIS1, NAXIS2 for order of indices).

useful_overscan_region : string

Complete specification of the region of the CCD actually useful for overscan calibration.
This may (or may not) be smaller than the entire portion of the chip the manufacturer
labels as overscan. Should use FITS conventions for specifying slices (i.e. slice starts
at 1, includes endpoint, and uses FITS NAXIS1, NAXIS2 for order of indices).

Examples

Consider an image whose dimensions as given in its FITS header are NAXIS1 = 3085 and NAXIS2 =
2048 with an overscan region that begins at position 3073 along axis 1. The useful part of that overscan is
from FITS column 3076 up to and including, 3079, and the full range of rows (NAXIS2). The correct overscan
settings for this instrument are:

Note not all of the overscan region is actually useful.
useful_overscan_region = '[3076:3079, :]'
But the whole overscan region should be trimmed away in reduction.
trim_region = '[1:3073, :]'

Methods Summary

has_overscan(image_dimensions) Determine whether an image taken by this instrument has overscan

26 Chapter 1. Contents

Matt’s astro python toolbox Documentation, Release 0.1

Methods Documentation

has_overscan(image_dimensions)
Determine whether an image taken by this instrument has overscan

Parameters image_dimensions : list-like with two elements

Shape of the image; can be any type as long as it has two elements. The order should be
the FITS order, NAXIS1 then NAXIS2.

Returns bool

Indicates whether or not image has overscan present.

ApogeeAltaU9
class msumastro.header_processing.feder.ApogeeAltaU9

Bases: msumastro.header_processing.feder.Instrument

The Apogee Alta U9

MaximDL4
class msumastro.header_processing.feder.MaximDL4

Bases: msumastro.header_processing.feder.ImageSoftware

Represents MaximDL version 4, all sub-versions

MaximDL5
class msumastro.header_processing.feder.MaximDL5

Bases: msumastro.header_processing.feder.ImageSoftware

Represents MaximDL version 5, all sub-versions.

Subversions are included by listing the FITS names of all versions that have been used at Feder Observatory.

msumastro.header_processing.patchers Module

Functions

IRAF_image_type(image_type) Convert MaximDL default image type names to IRAF
add_image_unit(header[, history]) Add unit of image to header.
add_object_info([directory, object_list, ...]) Add object information to FITS files that contain pointing information given a list of objects.
add_object_pos_airmass(header[, history]) Add object information, such as RA/Dec and airmass.
add_overscan_header(header[, history]) Add overscan information to a FITS header.
add_ra_dec_from_object_name([directory, ...]) Add RA/Dec to FITS file that has object name but no pointing.
add_time_info(header[, history]) Add JD, MJD, LST to FITS header
change_imagetype_to_IRAF(header[, history]) Change IMAGETYP to default used by IRAF
get_software_name(header[, file_name, ...]) Determine the name of the software that created FITIS header
history(function[, mode, time]) Construct nicely formatted start/end markers in FITS history.
list_name_is_url(name)
patch_headers([dir, new_file_ext, ...]) Add minimal information to Feder FITS headers.
purge_bad_keywords(header[, history, force, ...]) Remove keywords from FITS header that may be incorrect
read_object_list([directory, input_list, ...]) Read a list of objects from a text file.

1.6. Header processing 27

Matt’s astro python toolbox Documentation, Release 0.1

IRAF_image_type
msumastro.header_processing.patchers.IRAF_image_type(image_type)

Convert MaximDL default image type names to IRAF

Parameters image_type : str

Value of the FITS header keyword IMAGETYP; acceptable values are below in Notes.

Returns str

IRAF image type (one of ‘BIAS’, ‘DARK’, ‘FLAT’ or ‘LIGHT’)

Notes

The MaximDL default is, e.g. ‘Bias Frame’, which IRAF calls ‘BIAS’. Can safely be called with an IRAF-style
image_type.

add_image_unit
msumastro.header_processing.patchers.add_image_unit(header, history=True)

Add unit of image to header.

Parameters header : astropy.io.fits.Header

Header object in which image type is to be changed.

history : bool, optional

If True, add history of keyword modification to header.

add_object_info
msumastro.header_processing.patchers.add_object_info(directory=None, ob-

ject_list=None, ob-
ject_list_dir=None,
match_radius=20.0,
new_file_ext=None,
save_location=None,
overwrite=False, de-
tailed_history=True)

Add object information to FITS files that contain pointing information given a list of objects.

Parameters directory : str

Directory containing the FITS files to be fixed. Default is the current directory, ..

object_list : str, optional

Name of file containing list of objects. Default is set by read_object_list()
which also explains the format of this file.

object_list_dir : str, optional

Directory in which the object_list is contained. Default is directory.

match_radius : float, optional

Maximum distance, in arcmin, between the RA/Dec of the image and a particular object
for the image to be considered an image of that object.

new_file_ext : str, optional

28 Chapter 1. Contents

Matt’s astro python toolbox Documentation, Release 0.1

Name added to the FITS files with updated header information. It is added to the base
name of the input file, between the old file name and the .fit or .fits extension. Default
is ‘new’.

save_location : str, optional

Directory to which the patched files should be written, if not dir.

overwrite : bool, optional

Set to True to replace the original files.

add_object_pos_airmass
msumastro.header_processing.patchers.add_object_pos_airmass(header, his-

tory=False)
Add object information, such as RA/Dec and airmass.

Parameters header : astropy..io.fits.Header

FITS header to be modified.

history : bool

If True, write history for each keyword changed.

Notes

Has side effect of setting feder site JD to JD-OBS, which means it also assume JD.value has been set.

add_overscan_header
msumastro.header_processing.patchers.add_overscan_header(header, history=True)

Add overscan information to a FITS header.

Parameters header : astropy.io.fits.Header

Header object to which overscan is to be added.

history : bool, optional

If True, add history of keyword modification to header.

Returns list of str

List of the keywords added to the header by this function.

add_ra_dec_from_object_name
msumastro.header_processing.patchers.add_ra_dec_from_object_name(directory=None,

new_file_ext=None,
ob-
ject_list=None,
ob-
ject_list_dir=None)

Add RA/Dec to FITS file that has object name but no pointing.

Parameters dir : str, optional

Directory containing the files to be patched. Default is the current directory, .

new_file_ext : str, optional

1.6. Header processing 29

Matt’s astro python toolbox Documentation, Release 0.1

Name added to the FITS files with updated header information. It is added to the base
name of the input file, between the old file name and the .fit or .fits extension. Default
is ‘new’.

object_list : str, optional

Name of file containing list of objects. Default is set by read_object_list()
which also explains the format of this file.

object_list_dir : str, optional

Directory in which the object_list is contained. Default is directory.

add_time_info
msumastro.header_processing.patchers.add_time_info(header, history=False)

Add JD, MJD, LST to FITS header

Parameters header : astropy..io.fits.Header

FITS header to be modified.

history : bool

If True, write history for each keyword changed.

change_imagetype_to_IRAF
msumastro.header_processing.patchers.change_imagetype_to_IRAF(header, his-

tory=True)
Change IMAGETYP to default used by IRAF

Parameters header : astropy.io.fits.Header

Header object in which image type is to be changed.

history : bool, optional

If True, add history of keyword modification to header.

get_software_name
msumastro.header_processing.patchers.get_software_name(header, file_name=None,

use_observatory=None)
Determine the name of the software that created FITIS header

Parameters header : astropy.io.fits Header

Header from a FITS extension/hdu

file_name : str, optional

Name of the file containing this header; used to add information to error/warning mes-
sages.

use_observatory : msumastro.Feder instance, optional

Object that contains names of FITS keywords that might be present and contain name
of the software that made this header. The default value is the instance defined at the
beginning of this module

Returns msumastro.feder.Software object

30 Chapter 1. Contents

Matt’s astro python toolbox Documentation, Release 0.1

history
msumastro.header_processing.patchers.history(function, mode=None, time=None)

Construct nicely formatted start/end markers in FITS history.

Parameters function : func

Function calling history

mode : str, ‘begin’ or ‘end’

A different string is produced for the beginning and the end. Default is ‘begin’.

time : datetime

If not set, defaults to current date/time.

list_name_is_url
msumastro.header_processing.patchers.list_name_is_url(name)

patch_headers
msumastro.header_processing.patchers.patch_headers(dir=None, new_file_ext=None,

save_location=None,
overwrite=False,
purge_bad=True, add_time=True,
add_apparent_pos=True,
add_overscan=True,
fix_imagetype=True,
add_unit=True)

Add minimal information to Feder FITS headers.

Parameters dir : str, optional

Directory containing the files to be patched. Default is the current directory, .

new_file_ext : str, optional

Name added to the FITS files with updated header information. It is added to the base
name of the input file, between the old file name and the .fit or .fits extension. Default
is ‘new’.

save_location : str, optional

Directory to which the patched files should be written, if not dir.

overwrite : bool, optional

Set to True to replace the original files.

purge_bad : bool, optional

Remove “bad” keywords form header before any other processing. See
purge_bad_keywords() for details.

add_time : bool, optional

If True, add time information (e.g. JD, LST); see add_time_info() for details.

add_apparent_pos : bool, optional

If True, add apparent position (e.g. alt/az) to headers. See
add_object_pos_airmass() for details.

add_overscan : bool, optional

1.6. Header processing 31

Matt’s astro python toolbox Documentation, Release 0.1

If True, add overscan keywords to the headers. See add_overscan_header()
for details.

fix_imagetype : bool, optional

If True, change image types to IRAF-style. See
change_imagetype_to_IRAF() for details.

add_unit : bool, optional

If True, add image unit to FITS header.

purge_bad_keywords
msumastro.header_processing.patchers.purge_bad_keywords(header, his-

tory=False, force=False,
file_name=None)

Remove keywords from FITS header that may be incorrect

Parameters header : astropy.io.fits.Header

Header from which the bad keywords (as defined by the software that recorded the
image) should be purged.

history : bool

If True write detailed history for each keyword removed.

force : bool

If True, force keywords to be purged even if the FITS header indicates it has already
been purged.

file_name : str, optional

Name of file containing the header; if provided it is used to generate more informative
log messages.

read_object_list
msumastro.header_processing.patchers.read_object_list(directory=None,

input_list=None,
skip_consistency_check=False,
check_radius=20.0,
skip_lookup_from_object_name=False)

Read a list of objects from a text file.

Parameters directory : str

Directory containing the file. Default is the current directory, .

input_list : str, optional

Name of the file or URL of file. Default value is obsinfo.txt. If the name is a URL
the directory argument is ignored.

skip_consistency_check : bool optional

If True, skip checking whether objects on the list have unique coordinates given
check_radius.

check_radius : float, optional

Match radius, in arcminutes. Objects on the list must be separated by an angular dis-
tance greater than this for the list to be self-consistent.

32 Chapter 1. Contents

Matt’s astro python toolbox Documentation, Release 0.1

skip_lookup_from_object_name : bool, optional

Set to True to skip lookup of coordinates from Simbad if RA/Dec are not in the object
file.

Notes

There are two file formats; one contains just a list of objects, the other has an RA and Dec for each object.

In both types any lines that start with # are ignored and treated as comments.

File with list of objects only:

• Object coordinates are determined by lookup with Simbad. You should make sure the object names
you use are known to simbad.

• The first non-comment line MUST be the word object and only the word object. It is case
sensitive; Object or OBJECT will not work.

• Remaining line(s) are name(s) of object(s), one per line. Case does not matter for object name.

• Example:

my list is below
object
m101
sz lyn
the next object is after this comment
RR LYR

File with object name and position:

• RA and Dec must be J2000.

• RA must be given in hours, though it can be either sexagesimal (e.g. 19:25:27.9) or decimal
(e.g. 19.423861).

• Dec must be given in degrees, though it can be either sexagesimal (e.g. 42:47:3.69) or decimal
(e.g. 42.7843583)

• The first non-comment line MUST be these words: object,RA,Dec. These are column headings
for your file. It is not case sensitive; for example, using DEC instead of Dec will work.

• Each remaining line should be an object name, object RA and Dec. Case does not matter for object
name.

• Example:

my list with RA and Dec
RA and Dec are assumed to be J2000
RA MUST BE IN HOURS
DEC MUST BE IN DEGREES
object,RA,Dec
m101,14:03:12.583, +54:20:55.50
note that the leading sign for the Dec is optional if Dec is
positive
sz lyn,08:09:35.748, 44:28:17.61
You can mix sexagesimal and decimal RA/Dec.
RR Lyr, 19.423861,42.7843583

1.6. Header processing 33

http://simbad.u-strasbg.fr/simbad/

Matt’s astro python toolbox Documentation, Release 0.1

Index

• genindex

• modindex

34 Chapter 1. Contents

Python Module Index

m
msumastro.header_processing.astrometry,

22
msumastro.header_processing.feder, 24
msumastro.header_processing.fitskeyword,

20
msumastro.header_processing.patchers,

27
msumastro.image_collection, 18
msumastro.scripts.quick_add_keys_to_file,

13
msumastro.scripts.run_astrometry, 10
msumastro.scripts.run_patch, 8
msumastro.scripts.run_standard_header_process,

8
msumastro.scripts.run_triage, 12
msumastro.scripts.sort_files, 14
msumastro.table_tree, 18

35

Matt’s astro python toolbox Documentation, Release 0.1

36 Python Module Index

Index

A
add_astrometry() (in module msumas-

tro.header_processing.astrometry), 23
add_image_unit() (in module msumas-

tro.header_processing.patchers), 28
add_keys() (msumastro.table_tree.RecursiveTree

method), 20
add_object_info() (in module msumas-

tro.header_processing.patchers), 28
add_object_pos_airmass() (in module msumas-

tro.header_processing.patchers), 29
add_overscan_header() (in module msumas-

tro.header_processing.patchers), 29
add_ra_dec_from_object_name() (in module msumas-

tro.header_processing.patchers), 29
add_time_info() (in module msumas-

tro.header_processing.patchers), 30
add_to_header() (msumas-

tro.header_processing.fitskeyword.FITSKeyword
method), 21

ApogeeAltaU9 (class in msumas-
tro.header_processing.feder), 27

C
call_astrometry() (in module msumas-

tro.header_processing.astrometry), 22
change_imagetype_to_IRAF() (in module msumas-

tro.header_processing.patchers), 30
created_this() (msumas-

tro.header_processing.feder.ImageSoftware
method), 25

F
FederSite (class in msumastro.header_processing.feder),

24
FITSKeyword (class in msumas-

tro.header_processing.fitskeyword), 20

G
get_software_name() (in module msumas-

tro.header_processing.patchers), 30

H
has_overscan() (msumas-

tro.header_processing.feder.Instrument
method), 27

history() (in module msumas-
tro.header_processing.patchers), 31

history_comment() (msumas-
tro.header_processing.fitskeyword.FITSKeyword
method), 21

I
ImageFileCollection (class in msumas-

tro.image_collection), 18
ImageSoftware (class in msumas-

tro.header_processing.feder), 24
index_key (msumastro.table_tree.TableTree attribute), 19
Instrument (class in msumastro.header_processing.feder),

25
IRAF_image_type() (in module msumas-

tro.header_processing.patchers), 27

L
list_name_is_url() (in module msumas-

tro.header_processing.patchers), 31

M
MaximDL4 (class in msumas-

tro.header_processing.feder), 27
MaximDL5 (class in msumas-

tro.header_processing.feder), 27
msumastro.header_processing.astrometry (module), 22
msumastro.header_processing.feder (module), 24
msumastro.header_processing.fitskeyword (module), 20
msumastro.header_processing.patchers (module), 27
msumastro.image_collection (module), 18
msumastro.scripts.quick_add_keys_to_file (module), 13
msumastro.scripts.run_astrometry (module), 10
msumastro.scripts.run_patch (module), 8

37

Matt’s astro python toolbox Documentation, Release 0.1

msumastro.scripts.run_standard_header_process (mod-
ule), 8

msumastro.scripts.run_triage (module), 12
msumastro.scripts.sort_files (module), 14
msumastro.table_tree (module), 18

N
name (msumastro.header_processing.feder.FederSite at-

tribute), 24
name (msumastro.header_processing.fitskeyword.FITSKeyword

attribute), 21
names (msumastro.header_processing.fitskeyword.FITSKeyword

attribute), 21

P
patch_headers() (in module msumas-

tro.header_processing.patchers), 31
purge_bad_keywords() (in module msumas-

tro.header_processing.patchers), 32

R
read_object_list() (in module msumas-

tro.header_processing.patchers), 32
RecursiveTree (class in msumastro.table_tree), 20

S
set_value_from_header() (msumas-

tro.header_processing.fitskeyword.FITSKeyword
method), 22

synonyms (msumastro.header_processing.fitskeyword.FITSKeyword
attribute), 21

T
table (msumastro.table_tree.TableTree attribute), 19
TableTree (class in msumastro.table_tree), 18
tree_keys (msumastro.table_tree.TableTree attribute), 19

W
walk() (msumastro.table_tree.TableTree method), 19

38 Index

	Contents
	Overview
	Installation
	Automated header processing
	Manual header processing
	Image Management
	Header processing
	Index

	Python Module Index

