

Welcome to the MRtrix user documentation!

MRtrix provides a large suite of tools for image processing, analysis and visualisation, with a focus on the analysis of white matter using diffusion-weighted MRI Features include the estimation of fibre orientation distributions using constrained spherical deconvolution (Tournier et al.. 2004 [http://www.ncbi.nlm.nih.gov/pubmed/15528117]; Tournier et al., 2007 [http://www.ncbi.nlm.nih.gov/pubmed/17379540]; Jeurissen et al., 2014 [https://www.ncbi.nlm.nih.gov/pubmed/25109526]), a probabilisitic streamlines algorithm for fibre tractography of white matter (Tournier et al., 2012 [http://onlinelibrary.wiley.com/doi/10.1002/ima.22005/abstract]), fixel-based analysis of apparent fibre density and fibre cross-section (Raffelt et al., 2012 [https://www.ncbi.nlm.nih.gov/pubmed/22036682]; Raffelt et al., 2015 [https://www.ncbi.nlm.nih.gov/pubmed/26004503]; Raffelt et al., 2016 [https://www.ncbi.nlm.nih.gov/pubmed/27639350]), quantitative structural connectivity analysis (Smith et al., 2012 [https://www.ncbi.nlm.nih.gov/pubmed/22705374]; Smith et al., 2013 [https://www.ncbi.nlm.nih.gov/pubmed/23238430]; Smith et al., 2015 [https://www.ncbi.nlm.nih.gov/pubmed/26163802]; Christiaens et al., 2015 [https://www.ncbi.nlm.nih.gov/pubmed/26272729]), and non-linear spatial registration of fibre orientation distribution images (Raffelt et al., 2011 [https://www.ncbi.nlm.nih.gov/pubmed/21316463]).

These applications have been written from scratch in C++, using the functionality provided by Eigen [http://eigen.tuxfamily.org/], and Qt [http://qt-project.org/]. The software is currently capable of handling DICOM, NIfTI and AnalyseAVW image formats, amongst others. The source code is distributed under the Mozilla Public License [http://mozilla.org/MPL/2.0/].

Install

	Before you install

	Linux installation

	macOS installation

	Windows installation

	HPC clusters installation

Getting started

	Key features

	Commands and scripts

	Beginner DWI tutorial

	Images and other data

	Command-line usage

	Configuration file

DWI Pre-processing

	DWI denoising

	DWI distortion correction using dwipreproc

Constrained Spherical Deconvolution

	Response function estimation

	Maximum spherical harmonic degree lmax

	Multi-tissue constrained spherical deconvolution

Quantitative Structural Connectivity

	Anatomically-Constrained Tractography (ACT)

	Spherical-deconvolution Informed Filtering of Tractograms (SIFT)

	Structural connectome construction

	Using the connectome visualisation tool

	labelconvert: Explanation & demonstration

	Global tractography

	ISMRM tutorial - Structural connectome for Human Connectome Project (HCP)

Fixel-Based Analysis

	Fibre density and cross-section - Single shell DWI

	Fibre density and cross-section - Multi-tissue CSD

	Expressing the effect size relative to controls

	Displaying results with streamlines

Spatial Normalisation

	Warping images using warps generated from other packages

Concepts

	Diffusion gradient scheme handling

	Global intensity normalisation

	Orthonormal Spherical Harmonic basis

	Dixels and Fixels

	Motivation for afdconnectivity

Tips and Tricks

	DICOM handling

	Batch processing with foreach

Troubleshooting

	Frequently Asked Questions (FAQ)

	Display issues

	Unusual symbols on terminal

	Compiler error during build

	Hanging or Crashing

	Advanced debugging

Reference

	List of MRtrix3 commands

	List of MRtrix3 scripts

	List of MRtrix3 configuration file options

	MRtrix 0.2 equivalent commands

Before you install

Acknowledging this work

If you wish to include results generated using the MRtrix3 package in a publication, please include a line such as the following to acknowledge this work:

	Fibre-tracking was performed using the MRtrix package (J-D Tournier, Brain Research Institute, Melbourne, Australia, https://github.com/MRtrix3/mrtrix3) (Tournier et al. 2012)

Note

Many features have been published and included in MRtrix3 since the above 2012 paper. Please check the references listed on the specific application’s page to ensure the appropriate reference is included so that more recent contributors to MRtrix3 are acknowledged.

 Linux installation

Linux installation

We outline the steps for installing MRtrix3 on a Linux machine. Please consult
the MRtrix3 forum [http://community.mrtrix.org/] if you encounter any
issues with the configure, build or runtime operations of MRtrix3.

Check requirements

To install MRtrix3, you will need the following:

	a C++11 [https://en.wikipedia.org/wiki/C%2B%2B11] compliant
compiler (GCC version >= 4.9, clang)

	Python [https://www.python.org/] version >= 2.7

	The zlib [http://www.zlib.net/] compression library

	Eigen [http://eigen.tuxfamily.org] version >= 3.2

	Qt [http://www.qt.io/] version >= 4.7 [GUI components only]

Warning

To run the GUI components of MRtrix3 (mrview &
shview), you will also need:

	an OpenGL [https://en.wikipedia.org/wiki/OpenGL] 3.3 compliant graphics card and corresponding software driver

Note that this implies you cannot run the GUI components over a remote
X11 connection, since it can’t support OpenGL 3.3+ rendering - see
Display issues for details.

 macOS installation

macOS installation

We outline the steps for installing MRtrix3 on macOS. Please consult
the MRtrix3 forum [http://community.mrtrix.org/] if you encounter any issues
with the configure, build or runtime operations of MRtrix3.

Check requirements

To install MRtrix3 , you will need the following:

	a C++11 [https://en.wikipedia.org/wiki/C%2B%2B11] compliant
compiler (e.g. clang [http://clang.llvm.org/] in Xcode)

	Python [https://www.python.org/] version >= 2.7 (already included in macOS)

	The zlib [http://www.zlib.net/] compression library (already included in macOS)

	Eigen [http://eigen.tuxfamily.org/] version >= 3.2

	Qt [http://www.qt.io/] version >= 5.1 [GUI components only] -
important: versions prior to this will not work

Warning

To run the GUI components of MRtrix3 (mrview & shview), you will also need:

	an OpenGL [https://en.wikipedia.org/wiki/OpenGL] 3.3 compliant
graphics card and corresponding software driver - thankfully OpenGL 3.3
is supported across the entire macOS range with OS versions >= 10.9.

 Windows installation

Windows installation

We outline the steps for installing MRtrix3 for Windows using
MSYS2 [https://github.com/msys2/msys2/wiki].
Please consult the MRtrix3 forum [http://community.mrtrix.org/] if you
encounter any issues with the configure, build or runtime operations of
MRtrix3.

Warning

Some of the Python scripts provided with MRtrix3 are dependent on
external software tools (for instance FSL). If these packages are
not available on Windows, then the corresponding MRtrix3 scripts
also cannot be run on Windows. A virtual machine may therefore be
required in order to use these particular scripts; though MRtrix3
may still be installed natively on Windows for other tasks.

 HPC clusters installation

HPC clusters installation

These instructions outline a few issues specific to high-performance
computing (HPC) systems.

Installing MRtrix3

Most HPC clusters will run some flavour of GNU/Linux and hence
a cluster administrator should be able to follow the steps outlined for a Linux installation.
In particular, if your sysadmin is able to install the required dependencies (the
preferred option), you should be able to subsequently Build MRtrix3.

However, it is not uncommon for HPC systems to run stable, and hence
relatively old distributions, with outdated dependencies. This is
particularly problematic since MRtrix3 relies on recent technologies
(C++11, OpenGL 3.3), which are only available on recent distributions.
There is therefore a good chance these dependencies simply cannot be
installed (certainly not without a huge amount of effort on the part of
your sysadmin). In such cases, one can instead attempt a Standalone installation on Linux.
Alternatively, if you (and your sysadmin) are comfortable with installation
of dependencies from source within your home directory, you can try the
instructions below.

Installation of MRtrix3 and dependencies from source

The following instructions list the steps I used to compile MRtrix3
natively on a local HPC cluster. Replicating these instructions line-for-line
may not work on another system; I’m just providing these instructions here
in case they help to point somebody in the right direction, or encourage users
to try a native installation rather than resorting to transferring binaries
compiled on another system.

	Installing a C++11-compliant g++ from source

Note that during this process, there will be three gcc directories
created: one is for the source code (including that of some prerequisites),
one is for compilation objects, and one is the target of the final
installation (since you almost certainly won’t be able to install this
version of gcc over the top of whatever is provided by the HPC
sysadmin).

svn co svn://gcc.gnu.org/svn/gcc/branches/gcc-5-branch gcc_src/

(Don’t checkout the trunk gcc code; MRtrix3 will currently not compile with it)

The following gcc dependencies will be built as part of the gcc
compilation, provided that they are placed in the correct location [https://gcc.gnu.org/install/prerequisites.html]
within the gcc source directory.

wget https://gmplib.org/download/gmp/gmp-6.1.1.tar.bz2
tar -xf gmp-6.1.1.tar.bz2
mv gmp-6.1.1/ gcc_src/gmp/
wget ftp://ftp.gnu.org/gnu/mpc/mpc-1.0.3.tar.gz
tar -xf mpc-1.0.3.tar.gz
mv mpc-1.0.3/ gcc_src/mpc/
wget http://www.mpfr.org/mpfr-current/mpfr-3.1.4.tar.gz
tar -xf mpfr-3.1.4.tar.gz
mv mpfr-3.1.4/ gcc_src/mpfr/

With the following, the configure script (which resides within the
gcc_src directory in this example) must not be executed within that
directory; rather, it must be executed from an alternative directory, which
will form the target location for the compilation object files. The target
installation directory (set using the --prefix option below) must be a
location for which you have write access; most likely somewhere in your
home directory.

mkdir gcc_obj; cd gcc_obj/
../gcc_src/configure --prefix=/path/to/installed/gcc --disable-multilib
make && make install

	Installing Python3 from source

My local HPC cluster provided Python version 2.6.6, which was not adequate
to successfully run the configure and build scripts in MRtrix3.
Therefore this necessitated a manual Python install - a newer version of
Python 2 would also work, but downloading Python 3 should result in less
ambiguity about which version is being run.

wget https://www.python.org/ftp/python/3.5.2/Python-3.5.2.tgz
tar -xf Python-3.5.2.tgz
mv Python-3.5.2/ python3/
cd python3/
./configure
./make
cd ../

	Installing Eigen3

wget http://bitbucket.org/eigen/eigen/get/3.2.8.tar.gz
tar -xf 3.2.8.tar.gz
mv eigen* eigen3/

	Installing MRtrix3

Personally I prefer to install a no-GUI version of MRtrix3 on
high-performance computing systems, and transfer files to my local system
if I need to view anything; so I use the -nogui flag for the
configure script.

git clone https://github.com/MRtrix3/mrtrix3.git
cd mrtrix3/
export CXX=/path/to/installed/gcc/bin/g++
export EIGEN_CFLAGS="-isystem /path/to/eigen3/"
export LD_LIBRARY_PATH="/path/to/installed/gcc/lib64:$LD_LIBRARY_PATH"
../python3/python configure -nogui
../python3/python build

If you encounter issues when running MRtrix3 commands that resemble
the following:

mrconvert: /usr/lib64/libstdc++.so.6: version `GLIBCXX_3.4.9' not found (required by mrconvert)

This indicates that the shared library of the compiler version installed on
the cluster is being found before that of the C++11-compliant compiler
installed manually. The lib64/ directory of the manually-installed
gcc version must appear before that of the version installed on the
cluster in the LD_LIBRARY_PATH environment variable.

Remote display

Most people would expect to be able to run mrview on the server using
X11 forwarding. Unfortunately, this will not work without some effort -
please refer to Display issues for details.

Configuration

There are a number of parameters that can be set in the configuration
file that are highly relevant in a HPC environment, particularly when
the user’s home folder is stored over a network-based filesystem (as is
often the case). The MRtrix3 configuration file is located either
system-wide in /etc/mrtrix.conf, and/or in each user’s home folder
in ~/.mrtrix.conf. Entries consist of key: value entries, one
per line, stored as ASCII text.

	NumberOfThreads (default: hardware
concurrency [http://en.cppreference.com/w/cpp/thread/thread/hardware_concurrency],
as reported by the system): by default, MRtrix3 will use as many
threads as the system reports being able to run concurrently. You may
want to change that number to a lower value, to prevent MRtrix3 from
taking over the system entirely. This is particularly true if you
anticipate many users running many MRtrix3 commands concurrently.

	TmpFileDir (default: ‘/tmp’): any image data passed from one
MRtrix3 command to the next using a Unix pipeline is actually stored
in a temporary file, and its filename passed to the next command.
While this is fine if the filesystem holding the temporary file is
locally backed and large enough, it can cause significant slowdown
and bottlenecks if it resides on a networked filesystems, as the
temporary file will most likely need to be transferred in its
entirety over the network and back again. Also, if the filesystem is
too small, MRtrix3 commands may abort when processing large files. In
general, the /tmp folder is likely to be the most appropriate
(especially if mounted as
tmpfs [http://en.wikipedia.org/wiki/Tmpfs]). If however it is not
locally mounted, or too small, you may want to set this folder to
some other more suitable location.

	TrackWriterBufferSize (default: 16777216). When writing out track
files, MRtrix3 will buffer up the output and write out in chunks of
16MB, to limit the frequency of write() calls and the amount of IO
requests. More importantly, when several instances of MRtrix3 are
generating tracks concurrently and writing to the same filesystem,
frequent small writes will result in massive fragmentation of the
output files. By setting a large buffer size, the chances of writes
being concurrent is reduced drastically, and the output files are
much less likely to be badly fragmented. Note that fragmentation can
seriously affect the performance of subsequent commands that need to
read affected data. Depending on the type of operations performed, it
may be beneficial to use larger buffer sizes, for example 256MB. Note
that larger numbers imply greater RAM usage to hold the data prior to
write-out, so it is best to keep this much smaller than the total RAM
capacity.

 Key features

Key features

While MRtrix3 is primarily intended to be used for the analysis of
diffusion MRI data, at its fundamental level it is designed as a
general-purpose library for the analysis of any type of MRI data. As such,
it provides a back-end to simplify a large number of operations, many of
which will be invisible to the end-user. Specifically, MRtrix3 features:

	a consistent command-line interface, with
inline documentation for each command

	universal import/export capabilities when
accessing image data across all MRtrix3 applications.

	Multi-file numbered image support to load multiple images as a
single multi-dimensional dataset

	efficient use of Unix Pipelines for complex workflows

	high performance on modern multi-core systems, with multi-threading
used extensively throughout MRtrix3;

	available on all common modern operating systems (GNU/Linux,
MacOSX, Windows);

	a consistent Coordinate system with most
operations performed in scanner/world coordinates where possible.

 Commands and scripts

Commands and scripts

The MRtrix3 software package includes a suite of tools for image analysis and visualisation. With the exception of mrview and shview, all MRtrix3 executables are designed to be run via a terminal using a consistent command-line interface. While many of the tools and features are discussed within tutorials found in this documentation, a comprehensive List of MRtrix3 commands and List of MRtrix3 scripts can be found in the reference section. These lists provide links to the help page (manual) for each executable, which can also be accessed by typing the -help option after the executable name on the terminal.

 Beginner DWI tutorial

Beginner DWI tutorial

This tutorial will hopefully provide enough information for a novice
user to get from the raw DW image data to performing some streamlines
tractography. It may also be useful for experienced MRtrix users in
terms of identifying some of the new command names.

For all MRtrix3 scripts and commands, additional information on the
command usage and available command-line options can be found by
invoking the command with the -help option. Note that this tutorial
includes commands and scripts for which there are relevant journal
articles for citation; these are listed on the help pages also.

DWI geometric distortion correction

If the user has access to reversed phase-encode spin-echo image data,
this can be used to correct the susceptibility-induced geometric
distortions present in the diffusion images, as well as any eddy
current-induced distortions and inter-volume subject motion. Procedures
for this correct are not yet implemented in MRtrix3, though we do provide
a script called dwipreproc for interfacing with the relevant FSL tools.
Due to the nuances of the operation of this script, the reader is referred
to the DWI distortion correction using dwipreproc page.

DWI brain mask estimation

In previous versions of MRtrix, a heuristic was used to derive this mask;
a dedicated command is now provided:

$ dwi2mask <Input DWI> <Output mask>
$ mrview <Input DWI> -roi.load <Output mask>

Note that if you are working with ex-vivo data, this command will likely
not give the desired results. It can also give inconsistent results in
cases of low SNR, strong B1 bias field, or even with good-quality images;
it is recommended that the output of this command should always be
checked (and corrected if necessary) before proceeding with further
processing.

Response function estimation

To perform spherical deconvolution, the DWI signal emanating from a
single coherently-oriented fibre bundle must be estimated. We provide a
script for doing this, which has a range of algorithms and
parameters. This example will use
fairly sensible defaults:

$ dwi2response tournier <Input DWI> <Output response text file>
$ shview <Output response text file>

Fibre Orientation Distribution estimation

This command performs Constrained Spherical Deconvolution (CSD) based on
the response function estimated previously.

$ dwi2fod csd <Input DWI> <Input response text file> <Output FOD image> -mask <Input DWI mask>
$ mrview <Input DWI> -odf.load_sh <Output FOD image>

Whole-brain streamlines tractography

For the sake of this tutorial, we will perform whole-brain streamlines
tractography, using default reconstruction parameters.

$ tckgen <Input FOD image> <Output track file> -seed_image <Input DWI mask> -mask <Input DWI mask> -select <Number of tracks>
$ mrview <Input DWI> -tractography.load <Output track file>

Note: Loading a very large number of tracks can inevitably make the mrview software run very slowly. When this occurs, it may be preferable to instead view only a subset of the generated tracks, e.g.:

$ tckedit <Track file> <Smaller track file> -number <Smaller number of tracks>
$ mrview <Input DWI> -tractography.load <Smaller track file>

Track Density Imaging (TDI)

TDI can be useful for visualising the results of tractography,
particularly when a very large number of streamlines is generated.

$ tckmap <Input track file> <Output TDI> -vox <Voxel size in mm>
$ mrview <Output TDI>

 Images and other data

Images and other data

Image format handling in MRtrix3

MRtrix3 provides a flexible data input/output back-end in the shared
library, which is used across all applications. This means that all
applications in MRtrix3 can read or write images in all the supported
formats - there is no need to explicitly convert the data to a given
format prior to processing.

However, some specialised applications may expect additional information
to be present in the input image. The MRtrix .mif/.mih formats are both
capable of storing such additional information data in their header, and
will hence always be supported for such applications. Most image formats
however cannot carry additional information in their header (or at
least, not easily) - this is in fact one of the main motivations for the
development of the MRtrix image formats. In such cases, it would be
necessary to use MRtrix format images. Alternatively, it may be
necessary to provide the additional information using command-line
arguments (this is the case particularly for the DW gradient table, when
providing DWI data in NIfTI format for instance).

Image file formats are recognised by their file extension. One exception
to this is DICOM: if the filename corresponds to a folder, it is assumed
to contain DICOM data, and the entire folder will be scanned recursively
for DICOM images.

It is also important to note that the name given as an argument will not
necessarily correspond to an actual file name on disk: in many cases,
images may be split over several files. What matters is that the text
string provided as the image specifier is sufficient to unambiguously
identify the full image.

Coordinate system

All MRtrix3 applications will consistently use the same coordinate
system, which is identical to the
NIfTI [http://nifti.nimh.nih.gov/nifti-1] standard. Note that this
frame of reference differs from the DICOM
standard [https://www.dabsoft.ch/dicom/3/C.7.6.2.1.1/] (typically the
x & y axis are reversed). The convention followed by MRtrix3 applications
is as follows:

	dimensional

	description

	0 (x)

	increasing from left to right

	1 (y)

	increasing from posterior to anterior

	2 (z)

	increasing from inferior to superior

All coordinates or vector components supplied to MRtrix3 applications
should be provided with reference to this coordinate system.

Multi-file numbered image support

It is possible to access a numbered series of images as a single
multi-dimensional dataset, using a syntax specific to MRtrix. For example:

$ mrinfo MRI-volume-[].nii.gz

will collate all images that match the pattern
MRI-volume-<number>.nii.gz, sort them in ascending numerical order,
and access them as a single dataset with dimensionality one larger than
that contained in the images. In other words, assuming there are 10
MRI-volume-0.nii.gz to MRI-volume-9.nii.gz, and each volume is a
3D image, the result will be a 4D dataset with 10 volumes.

Note that this isn’t limited to one level of numbering:

$ mrconvert data-[]-[].nii combined.mif

will collate all images that match the data-number-number.nii
pattern and generate a single dataset with dimensionality two larger
than its constituents.

Finally, it is also possible to explicitly request specific numbers,
using Number sequences and floating-point lists
within the square brackets:

$ mrconvert data-[10:20].nii combined.mif

Data types

MRtrix3 applications can read and write data in any of the common data types.
Many MRtrix3 commands also support the -datatype option to specify the
data type for the output image. For example:

$ mrconvert DICOM_images/ -datatype float32 output.nii

Note

Not all image formats support all possible datatypes. The MRtrix image file
formats are designed to handle all of the possibilities listed below, while
other image formats may only support a subset. When a data type is requested
that isn’t supported by the image format, a hopefully suitable alternative
data type will be used instead.

 Command-line usage

Command-line usage

MRtrix3 generally follows a relatively standard Unix syntax, namely:

$ command [options] argument1 argument2 ...

If you need to become familiar with using the command-line, there are
plenty of tutorials online to get you started. There are however a few notable
features specific to MRtrix3, which are outlined below.

Ordering of options on the command-line

Options can typically occur anywhere on the command-line, in any order -
they do not usually need to precede the arguments.

For instance, all three of the lines below will have the same result:

$ command -option1 -option2 argument1 argument2
$ command argument1 argument2 -option1 -option2
$ command -option2 argument1 argument2 -option1

Care must however be taken in cases where a command-line option itself
has an associated compulsory argument. For instance, consider a command-line
option -number, which allows the user to manually provide a numerical
value in order to control some behaviour. The user’s desired value
must be provided immediately after ‘-number’ appears on the
command-line in order to be correctly associated with that particular option.

For instance, the following would be interpreted correctly:

$ command -number 10 argument1 argument2

But the following would not:

$ command -number argument1 10 argument2

The following cases would also not be interpreted correctly by MRtrix3,
even though some other softwares may interpret their command-line options in
such ways:

$ command -number10 argument1 argument2
$ command --number=10 argument1 argument2

There are a few cases in MRtrix3 where the order of options on the
command-line does matter, and hence the above demonstration does not apply:

	mrcalc: mrcalc is a stack-based calculator, and as such, the
order of inputs and operations on the command-line determine how the
mathematical expression is formed.

	mrview: mrview includes a number of command-line options for
automatically configuring the viewing window, and importing data into
its various tools. Here the order of such options does matter: the
command line contents are read from left to right, and any command-line
options that alter the display of a particular image or data open within
a tool is applied to the most recent data (image or otherwise) opened
by the tool associated with that option.

	Scripts: A subset of the Python scripts provided with MRtrix3
(currently 5ttgen and dwi2response) require the selection
of an algorithm, which defines the approach that the script will use to
arrive at its end result based on the data provided. The name of this
algorithm must be the first argument on the command-line; any
command-line options provided prior to this algorithm name will be
silently ignored.

Number sequences and floating-point lists

Some options expect arguments in the form of number sequences or
floating-point lists of numbers. The former consists or a series of
integers separated by commas or colons (no spaces), with colons
indicating a range, optionally with an increment (if different from 1).
For example:

	1,4,8 becomes [1 4 8]

	3,6:12,2 becomes [3 6 7 8 9 10 11 12 2]

	1:3:10,8:2:0 becomes [1 4 7 10 8 6 4 2 0]

Note that the sign of the increment does not matter, it will always run
in the direction required.

Likewise, floating-point lists consist of a comma-separated list of
numbers, for example:

	2.47,-8.2223,1.45e-3

Using shortened option names

Options do not need to be provided in full, as long as the initial part
of the option provided is sufficient to unambiguously identify it.

For example:

$ mrconvert -debug in.mif out.nii.gz

is the same as:

$ mrconvert -de in.mif out.nii.gz

but will conflict with the -datatype option if shortened any
further:

$ mrconvert -d in.mif out.nii.gz
mrconvert: [ERROR] several matches possible for option "-d": "-datatype, "-debug"

Unix Pipelines

The output of one program can be fed straight through to the input of
another program via Unix
pipes [http://en.wikipedia.org/wiki/Pipeline_%28Unix%29] in a single
command. The appropriate syntax is illustrated in this example:

$ dwi2tensor /data/DICOM_folder/ - | tensor2metric - -vector ev.mif
dwi2tensor: [done] scanning DICOM folder "/data/DICOM_folder/"
dwi2tensor: [100%] reading DICOM series "ep2d_diff"...
dwi2tensor: [100%] reformatting DICOM mosaic images...
dwi2tensor: [100%] loading data for image "ACME (hm) [MR] ep2d_diff"...
dwi2tensor: [100%] estimating tensor components...
tensor2metric: [100%] computing tensor metrics...

This command will execute the following actions:

	dwi2tensor will load the input diffusion-weighted data in DICOM
format from the folder /data/DICOM_folder/ and compute the
corresponding tensor components. The resulting data set is then fed
into the pipe.

	tensor2metric will access the data set from the pipe, generate an
eigenvector map and store the resulting data set as ev.mif.

The two stages of the pipeline are separated by the | symbol, which
indicates to the system that the output of the first command is to be
used as input for the next command. The image that is to be fed to or
from the pipeline is specified for each program using a single dash
- where the image would normally be specified as an argument.

For this to work properly, it is important to know which arguments each
program will interpret as input images, and which as output images. For
example, this command will fail:

dwi2tensor - /data/DICOM_folder/ | tensor2metric - ev.mif

In this example, dwi2tensor will hang waiting for input data (its
first argument should be the input DWI data set). This will also cause
tensor2metric to hang while it waits for dwi2tensor to provide some
input.

Advanced pipeline usage

Such pipelines are not limited to two programs. Complex operations can
be performed in one line using this technique. Here is a longer example:

$ dwi2tensor /data/DICOM_folder/ - | tensor2metric - -vector - | mrcalc -
mask.nii -mult - | mrview -
dwi2tensor: [done] scanning DICOM folder "/data/DICOM_folder/"
dwi2tensor: [100%] reading DICOM series "ep2d_diff"...
dwi2tensor: [100%] reformatting DICOM mosaic images...
dwi2tensor: [100%] loading data for image "ACME (hm) [MR] ep2d_diff"...
dwi2tensor: [100%] estimating tensor components...
tensor2metric: [100%] computing tensor metrics...
mrcalc: [100%] computing: (/tmp/mrtrix-tmp-VihKrg.mif * mask.nii) ...

This command will execute the following actions:

	dwi2tensor will load the input diffusion-weighted data in DICOM
format from the folder /data/DICOM_folder/ and compute the
corresponding tensor components. The resulting data set is then fed
into the pipe.

	tensor2metric will access the tensor data set from the pipe,
generate an eigenvector map and feed the resulting data into the next
stage of the pipeline.

	mrcalc will access the eigenvector data set from the pipe,
multiply it by the image mask.nii, and feed the resulting data into
the next stage of the pipeline.

	mrview will access the masked eigenvector data set from the pipe
and display the resulting image.

How is it implemented?

The procedure used in MRtrix3 to feed data sets down a pipeline is somewhat
different from the more traditional use of pipes. Given the large amounts of
data typically contained in a data set, the ‘standard’ practice of feeding the
entire data set through the pipe would be prohibitively inefficient. MRtrix3
applications access the data via memory-mapping (when this is possible), and do
not need to explicitly copy the data into their own memory space. When using
pipes, MRtrix3 applications will simply generate a temporary file and feed
its filename through to the next stage once their processing is done. The next
program in the pipeline will then simply read this filename and access the
corresponding file. The latter program is then responsible for deleting the
temporary file once its processing is done.

This implies that any errors during processing may result in undeleted
temporary files. By default, these will be created within the /tmp folder
(on Unix, or the current folder on Windows) with a filename of the form
mrtrix-tmp-XXXXXX.xyz (note this can be changed by specifying a custom
TmpFileDir and TmpFilePrefix in the Configuration file). If a piped
command has failed, and no other MRtrix programs are currently running, these
can be safely deleted.

Really advanced pipeline usage

As implemented, MRtrix3 commands treat image file names that start with
the TmpFilePrefix (default is mrtrix-tmp-) as temporary. When
reading the image name from the previous stage in the pipeline, the
image file name will trivially match this. But this also means that it
is possible to provide such a file as a normal argument, and it will
be treated as a temporary piped image. For example:

$ mrconvert /data/DICOM/ -datatype float32 -
mrconvert: [done] scanning DICOM folder "/data/DICOM/"
mrconvert: [100%] reading DICOM series "ep2d_diff"...
mrconvert: [100%] reformatting DICOM mosaic images...
mrconvert: [100%] copying from "ACME (hm) [MR] ep2d_diff" to "/tmp/mrtrix-tmp-zcD1nr.mif"...
/tmp/mrtrix-tmp-zcD1nr.mif

Notice that the name of the temporary file is now printed on the
terminal, since the command’s stdout has not be piped into another
command, and we specified - as the second argument. You’ll also see
this file is now present in the /tmp folder. You can use this file
by copy/pasting it as an argument to another MRtrix command (be
careful though, it will be deleted once this command exits):

$ mrstats /tmp/mrtrix-tmp-zcD1nr.mif
 channel mean median std. dev. min max count
 [0] 1053.47 96 1324.71 0 3827 506880
 [1] 173.526 84 140.645 0 549 506880
...

This allows for a non-linear arrangement of pipelines, whereby multiple
pipelines can feed into a single command. This is achieved by using the
shell’s output capture feature to insert the temporary file name of one
pipeline as an argument into a second pipeline. In BASH, output capture
is achieved using the $(commands) syntax, or equivalently using
backticks: `commands`. For example:

$ dwi2tensor /data/DICOM/ - | tensor2metric - -mask $(dwi2mask /data/DICOM/ - | maskfilter - erode -npass 3 -) -vec ev.mif -fa - | mrthreshold - -top 300 highFA.mif
dwi2mask: [done] scanning DICOM folder "/data/DICOM/"
dwi2tensor: [done] scanning DICOM folder "/data/DICOM/"
dwi2mask: [100%] reading DICOM series "ep2d_diff"...
dwi2tensor: [100%] reading DICOM series "ep2d_diff"...
dwi2mask: [100%] reformatting DICOM mosaic images...
dwi2tensor: [100%] reformatting DICOM mosaic images...
dwi2mask: [100%] loading data for image "ACME (hm) [MR] ep2d_diff"...
dwi2tensor: [100%] loading data for image "ACME (hm) [MR] ep2d_diff"...
dwi2mask: [100%] finding min/max of "mean b=0 image"...
dwi2mask: [done] optimising threshold...
dwi2mask: [100%] thresholding...
dwi2tensor: [100%] estimating tensor components...
dwi2mask: [100%] finding min/max of "mean b=1000 image"...
dwi2mask: [done] optimising threshold...
dwi2mask: [100%] thresholding...
dwi2mask: [done] computing dwi brain mask...
maskfilter: [100%] applying erode filter to image -...
tensor2metric: [100%] computing tensor metrics...
mrthreshold: [100%] thresholding "/tmp/mrtrix-tmp-UHvhc2.mif" at 300th top voxel...

In this one command, we asked the system to perform this non-linear
pipeline:

 dwi2tensor \
 |--> tensor2metric ---> mrthreshold
dwi2mask ---> maskfilter /

More specifically:

	dwi2tensor will load the input diffusion-weighted data in DICOM
format from the folder /data/DICOM/ and compute the corresponding
tensor components. The resulting data set is then fed into the pipe.

	meanwhile, dwi2mask will generate a brain mask from the DWI
data, and feed the result into a second pipeline.

	maskfilter will access the mask from this second pipeline,
erode the mask by 3 voxels, and output the name of the temporary
file for use as an argument by the next stage.

	tensor2metric will access the tensor data set from the first
pipe, generate eigenvector and FA maps within the mask provided as an
argument by the second pipeline, store the eigenvector map in
ev.mif and feed the FA map into the next stage of the pipeline.

	mrthreshold will access the FA image from the pipe, identify the
300 highest-valued voxels, and produce a mask of these voxels, stored
in highFA.mif.

 Configuration file

Configuration file

The behaviour of a number of aspects of MRtrix3 can be controlled by
the user via the MRtrix3 configuration file. Note, that this file is distinct
from the build configuration file that is generated as part of the MRtrix3
installation, but rather is used to specify default settings for a number of
parameters, many of which relate to data visualisation when using mrview.

For all available configurable options, please refer to the
configuration file options page.

Location

MRtrix3 applications will attempt to read configuration information from a two
locations. The system-wide configuration file /etc/mrtrix.conf is read
first if present, followed by the user-specific configuration
~/.mrtrix.conf. If both system and user-specific configuration files
exist, the parameters specified in the two configuration files will be
aggregated, with user-specified configuration options taking precedence in the
case of a conflict. In the case that a particular configuration parameter is
not defined, MRtrix3 will resort to hard-coded defaults.

Format

The configuration files are text files, with each line containing a key:
value pair. For example

Analyse.LeftToRight: false
NumberOfThreads: 2

Note

Key names are case-sensitive.

 DWI denoising

DWI denoising

MRtrix now includes a new command dwidenoise which implements DWI data
denoising and noise map estimation by exploiting data redundancy in the PCA
domain (Veraart et al., 2016a, 2016b). The method uses the
prior knowledge that the eigenspectrum of random covariance matrices is
described by the universal Marchenko Pastur distribution.

Recommended use

Image denoising must be performed as the first step of the image-processing
pipeline. Interpolation or smoothing in other processing steps, such as motion
and distortion correction, may alter the noise characteristics and thus
violate the assumptions upon which MP-PCA is based.

Typical use will be:

dwidenoise dwi.mif out.mif -noise noise.mif

where dwi.mif contains the raw input DWI image, out.mif is the denoised
DWI output, and noise.mif is the estimated spatially-varying noise level.

We always recommend eyeballing the residuals, i.e. out - in, as part of the
quality control. The lack of anatomy in the residual maps is a marker of
accuracy and signal-preservation during denoising. The residuals can be easily
obtained with

mrcalc dwi.mif out.mif -subtract res.mif
mrview res.mif

The kernel size, default 5x5x5, can be chosen by the user (option: -extent).
For maximal SNR gain we suggest to choose N>M for which M is typically the
number of DW images in the data (single or multi-shell), where N is the
number of kernel elements. However, in case of spatially varying noise, it
might be beneficial to select smaller sliding kernels, e.g. N~M, to balance
between precision, accuracy, and resolution of the noise map.

Note that this function does not correct for non-Gaussian noise biases yet.

References

	J. Veraart, E. Fieremans, and D.S. Novikov Diffusion MRI noise mapping
using random matrix theory. Magn. Res. Med. 76(5), pp. 1582-1593 (2016),
doi: 10.1002/mrm.26059 [http://dx.doi.org/10.1002/mrm.26059]

	J. Veraart, D.S. Novikov, D. Christiaens, B. Ades-aron, J. Sijbers, and E. Fieremans
Denoising of diffusion MRI using random matrix theory. NeuroImage 142, pp. 394-406 (2016),
doi: 10.1016/j.neuroimage.2016.08.016 [http://dx.doi.org/10.1016/j.neuroimage.2016.08.016]

 DWI distortion correction using dwipreproc

DWI distortion correction using dwipreproc

The dwipreproc script, responsible for performing general pre-processing of
DWI series, has been completely re-designed as part of the MRtrix3
3.0_RC1 update. Although the ‘guts’ of the script are completely new, the
fundamental operation - eddy current-induced distortion correction, motion
correction, and (optionally) susceptibility-induced distortion correction,
using FSL’s eddy / topup / applytopup tools, remains the same.
While the user interface remains reasonably similar to that provided
previously (examples to come), they are slightly different.

The major benefit of the new design is that MRtrix3 is now capable of not
only capturing the relevant phase encoding information from DICOM headers,
but also using that information within dwipreproc to internally generate
the necessary phase encoding table files in order to run these FSL tools. This
comes with a number of benefits:

	It makes it possible to acquire and process a wider range of DWI acquisition
designs, without requiring that the user laboriously manually construct the
phase encoding tables that these FSL tools require.

	It means that automated pre-processing pipelines (e.g. these two works [https://github.com/BIDS-Apps/FibreDensityAndCrosssection]-in-progress [https://github.com/BIDS-Apps/MRtrix3_connectome]) can be applied to
provided data without requiring manual intervention to specify this
information.

	Over time, as MRtrix 0.3.16 code is used to import DICOMs (and hence
capture the phase encoding information) and the relevant code is thoroughly
tested, there will be less onus on users to track and specify the type of
phase encoding acquisition performed.

Note

Although the dwipreproc script is provided as part of MRtrix3 in the
hope that users will find it useful, the major image processing steps
undertaken by this script are still performed using tools developed at FMRIB
and provided as part of FSL. It is therefore essential that the appropriate
references be cited whenever this script is used!

 Response function estimation

Response function estimation

A compulsory step in spherical deconvolution is deriving the ‘response
function (RF)’, which is used as the kernel during the deconvolution
step. For the white matter, this is the signal expected for a voxel
containing a single, coherently-oriented fibre bundle. While some groups
prefer to define this function using some ad-hoc template function
(e.g. a diffusion tensor with empirical diffusivities), the MRtrix
contributors are in preference of deriving this function directly from
the image data, typically by averaging the diffusion signal from a set
of empirically-determined ‘single-fibre (SF)’ voxels.

The process of estimating this function from the data is however
non-trivial; there is no single unambiguous way in which this should be
done. Earlier in the beta version of MRtrix3, we provided a command
dwi2response that advertised automated determination of the response
function, based on a published
method [http://www.sciencedirect.com/science/article/pii/S1053811913008367]
with a few additional enhancements. Unfortunately user testing showed
that this algorithm would not produce the desired result in a number of
circumstances, and the available command-line options for altering its
behaviour were not intuitive.

As a result, we are now instead providing dwi2response as a
script. This was done for a few reasons. Firstly, it means that we can
provide multiple different mechanisms / algorithms for response function
estimation, all accessible within the one script, allowing users to
experiment with different approaches. Secondly, because these Python
scripts are more accessible to most users than C++ code, the algorithms
themselves can be modified, or some may even choose to try devising
their own heiristics for response function estimation. Thirdly, it
reinforces the fact that there is unfortunately not a black-box,
one-size-fits-all solution to this problem.

Here I will discuss some of the technical aspects of response function
estimation, and describe the mechanisms by which the currently provided
algorithms work. If however you are not interested in the nitty-gritty
of this process, feel free to scroll to the bottom of the page.

Necessary steps

Looking at the process of response function estimation in full detail,
there are four crucial steps. For each of these, I will also briefly
mention the typical process used.

	Select those image voxels that are to be used when determining the
response function - the ‘single-fibre mask’. Typical: Varies.

	Estimate the direction of the underlying fibres in each voxel.
Typical: Often the diffusion tensor fit is still used for this
purpose; though CSD itself can also be used as long as an initial
response function estimate is available.

	Rotate the signal measured in each single-fibre voxel in such a way
that the estimated fibre direction coincides with the z-axis.
Typical: This may be done by rotating the diffusion gradient table
according to the estimated fibre direction; or if the diffusion
signal is converted to spherical harmonics, then a spherical
convolution can be used.

	Combine these signals to produce a single response function.
Typical: The m=0 terms of the spherical harmonic series (which
are rotationally symmetric about the z-axis) are simply averaged
across single-fibre voxels.

Of these steps, the first is the one that has caused the greatest
difficulty, and is also the principle mechanism where the provided
response function estimation algorithms vary. It will therefore be the
primary focus of this document, though note that the other aspects of
this process may also change with ongoing development.

dwi2response algorithms

fa

In the previous version of MRtrix (‘0.2’), the following heuristic was
suggested in the documentation for deriving the response function:

	Erode a brain mask by a few voxels, to omit any voxels near the edge
of the brain;

	Select those voxels within the mask that have a Fractional Anisotropy
(FA) of 0.7 or greater;

	The estimate_response command would then be used to generate a
response function, which would internally perform diffusion tensor
estimation to get the fibre directions as well as the gradient
reorientation.

Rather than this series of commands, dwi2response now provides a
similar heuristic in-built as the fa algorithm. The primary
difference is that by default, it will instead select the 300 voxels
with the highest FA (though this can be modified at the command-line).

This algorithm is provided partly for nostalgic purposes, but it also
highlights the range of possibilities for single-fbre voxel selection.
One of the problems associated with this approach (over and above the
feeling of uncleanliness from using the tensor model) is that in white
matter regions close to CSF, Gibbs ringing can make the signal in b=0
images erroneously low, which causes an artificial increase in FA, and
therefore such voxels get included in the single-fibre mask.

manual

This algorithm is provided for cases where none of the available
algorithms give adequate results, for deriving multi-shell multi-tissue
response functions in cases where the voxel mask for each tissue must be
defined manually, or for anyone who may find it useful if trying to
devise their own mechanism for response function estimation. It requires
manual definition of both the single-fibre voxel mask (or just a voxel
mask for isotropic tissues); the fibre directions can also be provided
manually if necessary (otherwise a tensor fit will be used).

msmt_5tt

This algorithm is intended for deriving multi-shell, multi-tissue
response functions that are compatible with the new Multi-Shell
Multi-Tissue (MSMT) CSD algorithm. The response function estimation
algorithm is identical to that described in the
manuscript [http://linkinghub.elsevier.com/retrieve/pii/S1053-8119(14)00644-2]:
As long as EPI inhomogeneity field correction has been performed, and a
tissue-segmented anatomical image (prepared in the 5TT format for
ACT) is provided with good
prior rigid-body alignment to the diffusion images, then these
high-resolution tissue segmentations can be used to identify
single-tissue voxels in the diffusion images. This algorithm is
hard-wired to provide response functions for the most typical use case
for MSMT CSD: An isotropic grey matter response, an anisotropic white
matter response, and an isotropic CSF response; the output response
functions are provided in the format expected by the dwi2fod
command. Those wishing to experiment with different multi-tissue
response function configurations will need to use the manual
algorithm (which will provide a multi-shell response function if the
input DWI contains such data).

For reference, this algorithm operates as follows:

	Resample the 5TT segmented image to diffusion image space.

	For each of the three tissues (WM, GM, CSF), select those voxels that
obey the following criteria:

	The tissue partial volume fraction must be at least 0.95.

	For GM and CSF, the FA must be no larger than 0.2.

	For WM, use the mask derived from step 2 as the initialisation to the
tournier algorithm, to select single-fibre voxels.

	Derive a multi-shell response for each tissue for each of these three
tissues. For GM and CSF, use lmax=0 for all shells.

tax

This algorithm is a fairly accurate reimplementation of the approach
proposed by Tax et
al. [http://www.sciencedirect.com/science/article/pii/S1053811913008367].
The operation of the algorithm can be summarized as follows:

	Initialise the response function using a relatively ‘fat’ profile,
and the single-fibre mask using all brain voxels.

	Perform CSD in all single-fibre voxels.

	Exclude from the single-fibre voxel mask those voxels where the
resulting FOD detects more than one discrete fibre population, e.g.
using the ratio of the amplitudes of the first and second tallest
peaks.

	Re-calculate the response function using the updated single-fibre
voxel mask.

	Return to step 2, repeating until some termination criterion is
achieved.

The following are the differences between the implementation in
dwi2response and this manuscript:

	Deriving the initial response function. In the manuscript, this is
done using a tensor model with a low FA. I wasn’t fussed on this
approach myself, in part because it’s difficult to get the correct
intensity sscaling. Instead, the script examines the mean and
standard deviation of the raw DWI volumes, and derives an initial
lmax=4 response function based on these.

	The mechanism used to identify the peaks of the FOD. In
dwi2response, the FOD segmentation algorithm described in the
SIFT paper (Appendix
2) [http://www.sciencedirect.com/science/article/pii/S1053811912011615]
is used to locate the FOD peaks. The alternative is to use the
sh2peaks command, which uses a Newton search from 60 pre-defined
directions to locate these peaks. In my experience, the latter is
slower, and may fail to identify some FOD peaks because the seeding
directions are not sufficiently dense.

For the sake of completeness, the following are further modifications
that were made to the algorithm as part of the earlier dwi2response
binary, but have been removed from the script as it is now provided:

	Rather than using the ratio of amplitudes between the tallest and
second-tallest peaks, this command instead looked at the ratio of the
AFD of the largest FOD lobe, and the sum of the AFD of all other
(positive) lobes in the voxel. Although this in some way makes more
sense from a physical perspective (comparing the volume occupied by
the primary fibre bundle to the volume of ‘everything else’), it’s
possible that due to the noisy nature of the FODs at small
amplitudes, this may have only introduced variance into the
single-fibre voxel identification process. Therefore the script has
reverted to the original & simpler peak amplitude ratio calculation.

	A second, more stringent pass of SF voxel exclusion was performed,
which introduced two more criteria that single-fibre voxels had to
satisfy:

	Dispersion: A measure of dispersion of an FOD lobe can be derived as
the ratio between the integral (fibre volume) and the peak amplitude.
As fibre dispersion increases, the FOD peak amplitude decreases, but
the fibre volume is unaffected; therefore this ratio increases. The
goal here was to explicitly exclude voxels from the single-fibre mask
if significant orientation dispersion was observed; this can be taken
into account somewhat by using the FOD peak amplitudes (as
orientation dispersion will decrease the amplitude of the tallest
peak), but from my initial experimentation I wanted something more
stringent. However as before, given the difficulties that many users
experienced with the dwi2response command, this algorithm in the
new script errs on the side of simplicity, so this test is not
performed.

	Integral: By testing only the ratio of the tallest to second-tallest
FOD peak amplitude, the absolute value of the peak amplitude is
effectively ignored. This may or may not be considered problematic,
for either small or large FOD amplitudes. If the peak amplitude / AFD
is smaller than that of other voxels, it’s possible that this voxel
experiences partial volume with CSF: this may satisfy the peak ratio
requirement, but using such a voxel is not ideal in response function
estimation as its noise level will be higher and the Rician noise
bias will be different. Conversely, both in certain regions of the
brain and in some pathologies, some voxels can appear where the AFD
is much higher due to T2 shine-through; it may seem appealing to use
such voxels in response function estimation as the SNR is higher, but
as for the low-signal case, the Rician noise bias will be different
to that in the rest of the brain. The previous dwi2response
binary attempted to exclude such voxels by looking at the mean and
standard deviation of AFD within the single-fibre mask, and excluding
voxels above or below a certain threshold. As before, while this
heuristic may or may not seem appropriate depending on your point of
view, it has been excluded from the new dwi2response script to
keep things as simple as possible.

tournier

Independently and in parallel, Donald also developed a newer method for
response function estimation based on CSD itself; it was used in this
manuscript [http://dx.doi.org/10.1002/nbm.3017]. It bears some
resemblance to the tax algorithm, but relies on a threshold on the
number of voxels in the single-fibre mask, rather than the ratio between
tallest and second-tallest peaks. The operation is as follows:

	Define an initial response function that is as sharp as possible
(ideally a flat disk, but will be fatter due to spherical harmonic
truncation). Limit this initial function to lmax=4, as this makes
the FODs less noisy in the first iteration.

	Run CSD for all voxels within the mask (initially, this is the whole
brain).

	Select the 300 ‘best’ single-fibre voxels. This is not precisely the
ratio between tallest and second-tallest peaks; instead, the
following equation is used, which also biases toward selection of
voxels where the tallest FOD peak is larger:
sqrt(|peak1|) * (1 - |peak2| / |peak1|)^2. Use these voxels to
generate a new response fuction.

	Test to see if the selection of single-fibre voxels has changed; if
not, the script is completed.

	Derive a mask of voxels to test in the next iteration. This is the
top 3,000 voxels according to the equation above, and dilated by one
voxel.

	Go back to step 2.

This approach appears to be giving reasonable results for the datasets
on which it has been tested. However if you are involved in the
processing of non-human brain images in particular, you may need to
experiment with the number of single-fibre voxels as the white matter is
typically smaller.

TL;DR

If this document appears far too long for your liking, or you’re not
particularly interested in the details and just want to know what option
to use so that you can continue with your processing, the following are
our ‘cautious’ recommendations. However we emphasize that this script
may not work flawlessly for all data; if it did, we wouldn’t be
providing a script with so many options! Furthermore, these
recommendations may change over time, so check in every now and then,
and make sure to sign up to the new community
forum.

	If you’re processing single-shell data, the tournier algorithm
appears to be fairly robust.

	If you’re processing multi-shell data, and are able to perform EPI
inhomogeneity distortion correction, msmt_5tt is currently the
only fully-automated method for getting multi-shell multi-tissue
response functions.

 Maximum spherical harmonic degree lmax

Maximum spherical harmonic degree lmax

What determines lmax for my image data?

For any command or script operating on data in the spherical harmonic
basis, it should be possible to manually set the maximum harmonic degree
of the output using the -lmax command-line option. If this is not
provided, then an appropriate value will be determined automatically.

The mechanisms by which this automatic determination of lmax occurs
are as follows:

	Determine the maximum value for lmax that is supported by the number
of DWI volumes in the shell being processed (or the total number of
non-b=0 volumes in a single-shell acquisition). This is the number of
coefficients required to store an anitipodally-symmetric spherical
harmonic function:

	lmax

	Required volumes

	2

	6

	4

	15

	6

	28

	8

	45

	10

	66

	12

	91

	…

	…

	If lmax exceeds 8, reduce to 8. This is primarily based on the
findings in this paper [http://onlinelibrary.wiley.com/doi/10.1002/nbm.3017/abstract].

	Check the condition of the transformation between DWIs and spherical
harmonics. If the transformation is ill-conditioned (usually indicating
that the diffusion sensitisation gradient directions are not evenly
distributed over the sphere or half-sphere), reduce lmax until the
transformation is well-conditioned.

As an example: concatenating two repeats of a 30 direction acquisition
to produce 60 volumes will not support an lmax=8 fit: the angular
resolution of the data set is equivalent to 30 unique directions, and
so lmax=6 would be selected (and this would be accompanied by a
command-line warning to the user).

	In the case of spherical deconvolution, the lmax selected for FOD
estimation will also be reduced if lmax of the provided response
function is less than that calculated as above.

The exception to these rules is the new amp2response command, which
is now called by default in all dwi2response script algorithms. This
command converts amplitudes on the half-sphere (most likely in the form
of raw DWI image intensities) into a response function intended for use
in spherical deconvolution. This command behaves differently for two
reasons in combination:

	The image data from multiple voxels are combined together in a single
fitting procedure, therefore having a much greater number of samples
when performing the transformation.

	The data are transformed not to the spherical harmonic basis, but
directly to the zonal spherical harmonic basis (this is the spherical
harmonic basis containing only the m = 0 terms). This basis requires
far fewer coefficients for any given value of lmax: 2 for
lmax=2, 3 for lmax=4, 4 for lmax=6, 5 for
lmax=8 and so on.

The value of lmax that can be used in this command is therefore
practically unconstrained; though the power in higher harmonic degrees
is much smaller than that in lower degrees. The command is currently
configured to select lmax=10 by default, regardless of b-value;
interested readers can find the discussion here [https://github.com/MRtrix3/mrtrix3/pull/786].

Reduced lmax in particular subjects

If you find that certain subjects within a cohort have a reduced lmax
compared to the rest of the cohort when using any command relating to
spherical harmonics, the most likely cause is premature termination of the
diffusion sequence during scanning of those subjects, resulting in a reduced
number of diffusion volumes, and therefore a reduced lmax according to
the table above.

Setting lmax in different applications

The range of permissible values for lmax depends on the particular
command being used; e.g.:

	For any command that maps image data directly to spherical harmonics, it
is impossible to set lmax to a value higher than that supported by the
image data. The transformation from DWI data to spherical harmonics simply
cannot be done in such a case, as the problem is under-determined. You can
of course set lmax to a lower value than that supported by the data.

	In spherical deconvolution, it is possible to set a higher lmax
than that supported by the data - so-called super-resolved spherical
deconvolution. Here, additional information is provided by the non-negativity
constraint to make estimation of additional spherical harmonic coefficients
possible. However this is not guaranteed: sometimes the algorithm will fail
in particular voxels, in cases where there are an insufficient number of
directions in which the initial FOD estimate is negative, as the problem
remains under-determined.

	If performing Track Orientation Density Imaging (TODI) using
tckmap -tod, then the apodized point spread functions (aPSFs) can be
generated at any value of lmax for which aPSF data are available
(currently lmax=16, since the angular resolution of the original image
data is not a limiting factor here.

	As described previously, the amp2response command is a special case,
and the maximum permissible lmax is vastly greater than the maximum
practical value.

 Multi-tissue constrained spherical deconvolution

Multi-tissue constrained spherical deconvolution

Introduction

Multi-tissue constrained spherical deconvolution (CSD) of multi-shell data exploits the unique b-value dependencies of the different macroscopic tissue types (WM/GM/CSF) to estimate a multi-tissue orientation distribution function (ODF) as explained in Jeurissen et al. (2014). As it includes separate compartments for each tissue type, it can produce a map of the WM/GM/CSF signal contributions directly from the DW data. In addition, the more complete modelling of the DW signal results in more accurate apparent fiber density (AFD) measures and more precise fibre orientation estimates at the tissue interfaces.

User guide

Multi-tissue CSD can be performed as:

dwi2fod msmt_csd dwi.mif wm.txt wm.mif gm.txt gm.mif csf.txt csf.mif

where

	dwi.mif is the dwi data set (input)

	<tissue>.txt is the tissue-specific response function (input)

	<tissue>.mif is the tissue-specific ODF (output)

Note that input response functions and their corresponding output ODFs need to be specified in pairs.

Typically, you will also want to use the -mask to avoid calculations in non-brain voxels:

dwi2fod msmt_csd -mask mask.mif dwi.mif wm.txt wm.mif gm.txt gm.mif csf.txt csf.mif

RGB tissue signal contribution maps can be obtained as follows:

mrconvert -coord 3 0 wm.mif - | mrcat csf.mif gm.mif - vf.mif

The resulting WM fODFs can be displayed together with the tissue signal contribution map as:

mrview vf.mif -odf.load_sh wm.mif

Per tissue response function estimation

Input response functions for CSF, GM and single fibre WM can be estimated from the data using prior tissue segmentations, similarly to that described in Jeurissen et al. (2014) using the dwi2response msmt_5tt command:

dwi2response msmt_5tt dwi.mif 5tt.mif wm.txt gm.txt csf.txt

where

	dwi.mif is the same dwi data set as used above (input)

	5tt.mif is a tissue type segmentation of a coregistered T1 data set from the same subject (input)

	<tissue>.txt is the tissue-specific response function as used above (output)

Prior tissue type segmentation can be obtained from a structural T1 scan using the 5ttgen script:

5ttgen fsl T1.mif 5tt.mif

where

	T1.mif is a coregistered T1 data set from the same subject (input)

	5tt.mif is the tissue type segmentation used above (output)

The difference between the default behaviour of dwi2response msmt_5tt and the method described in Jeurissen et al. (2014) is that instead of selecting WM single-fibre voxels using an FA threshold, the dwi2response tournier algorithm is instead used.

Note that this process is dependent on accurate correction of EPI geometric distortions, and rigid-body registration between the DWI and T1 modalities, such that the T1 image can be reliably used to select pure-tissue voxels in the DWI volumes. Failure to achieve these may result in inappropriate voxels being used for response function estimation, with concomitant errors in tissue estimates.

References

	B. Jeurissen, J.D. Tournier, T. Dhollander, A. Connelly, and J.
Sijbers. Multi-tissue constrained spherical deconvolution for
improved analysis of multi-shell diffusion MRI data. NeuroImage, 103
(2014), pp. 411–426 [SD
link [http://www.sciencedirect.com/science/article/pii/S1053811914006442]]

 Anatomically-Constrained Tractography (ACT)

Anatomically-Constrained Tractography (ACT)

This page describes the recommended processing steps for taking advantage of the Anatomically-Constrained Tractography (ACT) framework, the image format used, and the commands available for manipulating these data. There are also instructions for anyone looking to make use of alternative tissue segmentation approaches.

References

For full details on ACT, please refer to the following journal article:

Smith, R. E., Tournier, J.-D., Calamante, F., & Connelly, A. (2012). Anatomically-constrained tractography: Improved diffusion MRI streamlines tractography through effective use of anatomical information. NeuroImage, 62(3), 1924–1938. doi:10.1016/j.neuroimage.2012.06.005 [http://www.ncbi.nlm.nih.gov/pubmed/22705374/]

If you use ACT in your research, please cite the article above in your manuscripts.

Pre-processing steps

DWI distortion correction

For the anatomical information to be incorporated accurately during the tractography reconstruction process, any geometric distortions present in the diffusion images must be corrected. The FSL 5.0 commands topup and eddy are effective in performing this correction based on a reversed phase-encode acquisition, though their interfaces can be daunting. We therefore provide a wrapper script, dwipreproc, which interfaces with these tools to perform correction of multiple forms of image distortion (motion, eddy current and inhomogeneity). Please read the DWI distortion correction using dwipreproc page, and the dwipreproc help page for further details.

Image registration

My personal preference is to register the T1-contrast anatomical image to the diffusion image series before any further processing of the T1 image is performed. By registering the T1 image to the diffusion series rather than the other way around, reorientation of the diffusion gradient table is not necessary; and by doing this registration before subsequent T1 processing, any subsequent images derived from the T1 are inherently aligned with the diffusion image series. This registration should be rigid-body only; if the DWI distortion correction is effective, a higher-order registration is likely to only introduce errors.

DWI pre-processing

Because the anatomical image is used to limit the spatial extent of streamlines propagation rather than a binary mask derived from the diffusion image series, I highly recommend dilating the DWI brain mask prior to computing FODs; this is to make sure that any errors in derivation of the DWI mask do not leave gaps in the FOD data within the brain white matter, and therefore result in erroneous streamlines termination.

Tissue segmentation

So far I have had success with using FSL tools to also perform the anatomical image segmentation; FAST is not perfect, but in most cases it’s good enough, and most alternative software I tried provided binary mask images only, which is not ideal. The 5ttgen script using the fsl algorithm interfaces with FSL to generate the necessary image data from the raw T1 image, using BET, FAST and FIRST. Note that this script also crops the resulting image so that it contains no more than the extracted brain (as this reduces the file size and therefore improves memory access performance during tractography); if you want the output image to possess precisely the same dimensions as the input T1 image, you can use the -nocrop option.

Using ACT

Once the necessary pre-processing steps are completed, using ACT is simple: just provide the tissue-segmented image to the tckgen command using the -act option.

In addition, since the propagation and termination of streamlines is primarily handled by the 5TT image, it is no longer necessary to provide a mask using the -mask option. In fact, for whole-brain tractography, it is recommend that you _not_ provide such an image when using ACT: depending on the accuracy of the DWI brain mask, its inclusion may only cause erroneous termination of streamlines inside the white matter due to exiting this mask. If the mask encompasses all of the white matter, then its inclusion does not provide any additional information to the tracking algorithm.

The 5TT format

When the ACT framework is invoked, it expects the tissue information to be provided in a particular format; this is referred to as the ‘five-tissue-type (5TT)’ format. This is a 4D, 32-bit floating-point image, where the dimension of the fourth axis is 5; that is, there are five 3D volumes in the image. These five volumes correspond to the different tissue types. In all brain voxels, the sum of these five volumes should be 1.0, and outside the brain it should be zero. The tissue type volumes must appear in the following order for the anatomical priors to be applied correctly during tractography:

	Cortical grey matter

	Sub-cortical grey matter

	White matter

	CSF

	Pathological tissue

The first four of these are described in the ACT NeuroImage paper. The fifth can be optionally used to manually delineate regions of the brain where the architecture of the tissue present is unclear, and therefore the type of anatomical priors to be applied are also unknown. For any streamline entering such a region, no anatomical priors are applied until the streamline either exists that region, or stops due to some other streamlines termination criterion.

The following binaries are provided for working with the 5TT format:

	5tt2gmwmi: Produces a mask image suitable for seeding streamlines from the grey matter - white matter interface (GMWMI). The resulting image should then be provided to the tckgen command using the -seed_gmwmi option.

	5tt2vis: Produces a 3D greyscale image suitable for visualisation purposes.

	5ttedit: Allows the user to edit the tissue segmentations. Useful for manually correcting tissue segmentations that are known to be erroneous (e.g. dark blobs in the white matter being labelled as grey matter); see the command’s help page for more details.

Alternative tissue segmentation software

Users who wish to experiment with using tissue segmentations from different software sources are encouraged to do so; if a particular approach is shown to be effective we can add an appropriate script to MRtrix. The 5ttgen script has a second algorithm, freesurfer, which demonstrates how the output of different software can be manipulated to provide the tissue segmentations in the appropriate format. It is however not recommended to actually use this alternative algorithm for patient studies; many midbrain structures are not segmented by FreeSurfer, so the tracking may not behave as desired.

Users who wish to try manipulating the tissue segmentations from some alternative software into the 5TT format may find it most convenient to make a copy of one of the existing algorithms within the lib/mrtrix3/_5ttgen/ directory, and modify accordingly. The 5ttgen script will automatically detect the presence of the new algorithm, and make it available at the command-line.

 Spherical-deconvolution Informed Filtering of Tractograms (SIFT)

Spherical-deconvolution Informed Filtering of Tractograms (SIFT)

SIFT, or ‘Spherical-deconvolution Informed Filtering of Tractograms’, is
a novel approach for improving the quantitative nature of whole-brain
streamlines reconstructions. By producing a reconstruction where the
streamlines densities are proportional to the fibre densities as
estimated by spherical deconvolution throughout the white matter, the
number of streamlines connecting two regions becomes a proportional
estimate of the cross-sectional area of the fibres connecting those two
regions. We therefore hope that this method will attract usage in a
range of streamlines tractography applications.

The actual usage of SIFT can be found in the help page of the
tcksift command. In this page I’ll outline some issues that are
worth thinking about if you are looking to apply this method.

References

For full details on SIFT, please refer to the following journal article:

Smith, R. E., Tournier, J.-D., Calamante, F., & Connelly, A.
(2013). SIFT: Spherical-deconvolution informed filtering of
tractograms. NeuroImage, 67, 298–312.
doi:10.1016/j.neuroimage.2012.11.049 [http://www.ncbi.nlm.nih.gov/pubmed/23238430]

If you use SIFT in your research, please cite the article above in your
manuscripts.

DWI bias field correction

DWI volumes often have a non-negligible B1 bias field, mostly due to
high-density receiver coils. If left uncorrected, SIFT will incorrectly
interpret this as a spatially-varying fibre density. Therefore bias
field correction is highly recommended. We generally estimate the bias
field based on the mean b=0 image, and apply the estimated field to
all DWI volumes. This can currently be achieved using the
dwibiascorrect script, which can employ either the FAST tool in FSL
or the N4 algorithm in ANTS to perform the field estimate.

Number of streamlines pre / post SIFT

In diffusion MRI streamlines tractography, we generate discrete samples
from a continuous fibre orientation field. The more streamlines we
generate, the better our reconstruction of that field. Furthermore, the
greater number of streamlines we generate, the less influence the
discrete quantification of connectivity has on the connectome (e.g.
would rather be comparing 1,000 v.s. 2,000 streamlines to 1 v.s. 2; it’s
less likely to be an artefact of random / discrete sampling). So the
more streamlines the better, at the cost of execution speed & hard drive
consumption.

However we also have the added confound of SIFT. The larger the number
of streamlines that can be fed to SIFT the better, as it can make better
choices regarding which streamlines to keep/remove; but it also
introduces a memory constraint. SIFT can deal with approximately 4-8
million streamlines per GB of RAM (depending on the seeding mechanism
used and the spatial resolution of your diffusion images), so ideally
you’ll want access to dedicated high-performance computing hardware. On
top of this, there’s the issue of how many streamlines to have remaining
in the reconstruction after SIFT; the more streamlines that SIFT
removes, the better the streamlines reconstruction will fit the image
data, but the more likely you are to run into quantisation issues with
the resulting tractogram.

So when you design your image processing pipeline, you need to consider
the compromise between these factors:

	Initially generating a larger number of streamlines is beneficial for
both the quality and the density of the filtered reconstruction, at
the expense of longer computation time (both in generating the
streamlines, and running SIFT), and a higher RAM requirement for
running SIFT.

	Filtering a greater number of streamlines will always produce a
superior fit to the image data, at the expense of having a
lower-density reconstruction to work with afterwards, and a slightly
longer computation time.

Unfortunately there’s no single answer of how many streamlines are
required, as it will depend on the diffusion model, tractography
algorithm, and spatial extent of your target regions / connectome
parcellation granularity. There are a couple of papers / abstracts on
the topic if you look hard enough, but nothing definitive, and nothing
involving SIFT. I would recommend testing using your own data to find
numbers that are both adequate in terms of test-retest variability, and
computationally reasonable.

Personally I have been using a FreeSurfer parcellation (84 nodes),
generating 100 million streamlines and filtering to 10 million using
SIFT (I’m a physicist; I like orders of magnitude). In retrospect, I
would say that when using white matter seeding, filtering by a factor of
10 is inadequate (i.e. the fit of the reconstruction to the data is not
good enough); and with grey matter - white matter interface seeding, a
final number of 10 million is inadequate (the streamlines are mostly
very short, so the appearance of the reconstruction is quite sparse).
Another alternative is ‘dynamic seeding’, which uses the SIFT model
during tractogram generation to only seed streamlines in pathways that
are poorly reconstructed (see the -seed_dynamic option in
tckgen); this provides a better initial estimate, so the percentage
of streamlines that need to be removed in order to achieve a good fit is
reduced. I will leave it to the end user to choose numbers that they
deem appropriate (unless we do a paper on the topic, in which case you
will use our published values without question).

Normalising connection density between subjects

An ongoing issue with our Apparent Fibre Density (AFD) work is how to
guarantee that a smaller FOD in a subject actually corresponds to a
reduced density of fibres. Structural connectome studies have a similar
issue with regards to streamline counts; Even if SIFT is applied, this
only guarantees correct proportionality between different connection
pathways within a subject, not necessarily between subjects. The
simplest and most common solution is simply to use an identical number
of streamlines for every subject in connectome construction; however
this isn’t perfect:

	The distribution of streamlines lengths may vary between subjects,
such that the reconstructed streamlines ‘density’ differs.

	A subject may have decreased fibre density throughout the brain, but
be morphologically normal; if the same number of streamlines are
generated, this difference won’t be reflected in the tractogram
post-SIFT.

	If the white matter volume varies between subjects, but the actual
number of fibres within a given volume is consistent, then the
subject with a larger brain may have an elevated total number of
fibre connections; this would also be missed if the number of
streamlines were fixed between subjects.

It’s also possible to scale by the total white matter volume of each
subject; this would however fail to take into account any differences in
the density of fibres within a fixed volume between subjects.

An alternative approach is to try to achieve normalisation of FOD
amplitudes across subjects, as is done using AFD. This requires a couple
of extra processing steps, namely inter-subject intensity normalisation
and use of a group average response function, which are also far from
error-free. But if this can be achieved, it means that a fixed density
of streamlines should be used to reconstruct a given FOD amplitude
between subjects, and then the cross-sectional area of fibres
represented by each streamline is also identical between subjects; this
can be achieved by terminating SIFT at a given value of the
proportionality coefficient using the -term_mu option. One potential
disadvantage of this approach (in addition to the issues associated with
intensity normalisation) is that using a group average response function
instead of the individual subject response may result in spurious peaks
or incorrect relative volume fractions in the FODs, which could
influence the tracking results.

Ideally, a diffusion model would provide the absolute partial volume of
each fibre population, rather than a proportional quantity: this could
then be used directly in SIFT. However the diffusion models that do
provide such information tend to get the crossing fibre geometry wrong
in the first place…

If anyone has any ideas on how to solve this pickle, let us know.

No DWI distortion correction available

SIFT should ideally be used in conjunction with ACT; by passing the ACT
5TT image to tcksift using the -act option, the command will
automatically derive a processing mask that will limit the contribution
of non-pure-white-matter voxels toward the model. Without this
information, non-pure-white-matter voxels adversely affect both
streamlines tractography, and the construction of the SIFT model.

If you are looking to apply SIFT without correction of DWI geometric
distortions (and therefore without reliable high-resolution
co-registered anatomical image data), these are some points that you may
wish to consider:

	The spatial extent of the DWI mask may have a large influence on your
streamlines tractography results. Therefore greater care should
perhaps be taken to validate this mask, including manual editing if
necessary.

	It is possible to manually provide a processing mask to tcksift
using the -proc_mask option. If users are capable of
heuristically generating an approximate white matter partial volume
image from the DWI data alone, this may be appropriate information to
provide to the SIFT model.

Use of SIFT for quantifying pathways of interest

In some circumstances, researchers may be interested in the connection
density of one or two specific pathways of interest, rather than that of
the whole brain. SIFT is still applicable in this scenario; however the
SIFT algorithm itself is only applicable to whole-brain fibre-tracking
data. Therefore, the workflow in this scenario should be: * Generate a
whole-brain tractogram; * Apply SIFT; * Extract the pathway(s) of
interest using tckedit. * Get the streamline count using
tckinfo.

The SIFT algorithm is not directly applicable to targeted tracking
data. The underlying biophysical model in SIFT assumes that the
estimated density of each fibre population in every voxel of the image
should be proportionally reconstructed by streamlines; if only a subset
of pathways in the brain are permitted to be reconstructed by the
tractography algorithm, this will clearly not be the case, so
appplication of SIFT in this instance will provide erroneous results.

 Structural connectome construction

Structural connectome construction

Included in this new version of MRtrix are some useful tools for
generating structural connectomes based on streamlines tractography.
Here I will describe the steps taken to produce a connectome, and some
issues that should be taken into consideration. Note that I will not
be going into appropriate parcellations or network measures or anything
like that; once you’ve generated your connectomes, you’re on your own.

Preparing a parcellation image for connectome generation

Parcellations are typically provided as an integer image, where each
integer corresponds to a particular node, and voxels where there is no
parcellation node have a value of 0. However, for all of the
parcellation schemes I’ve looked at thus far, the values used for the
nodes do not increase monotonically from 1, but rather have some
non-linear distribution; a text file (or ‘lookup table’) is then
provided that links node indices to structure names. This is however
undesirable for connectome construction; it would be preferable for the
node indices to increase monotonically from 1, so that each integer
value corresponds to a row/column position in the connectome matrix.

This functionality is provided in the command labelconvert. It takes
as its input a parcellation image that has been provided by some other
software package, and converts the label indices; this is done so
that the code that actually generates the connectome can be ‘dumb and
blind’, i.e. the integer values at the streamline endpoints correspond
to the row & column of the connectome matrix that should be incremented.
In addition, this processing chain design provides flexibility in terms
of both the source of the parcellation data, and the way in which the
user wishes to customise the layout of their connectome.

Please consult the tutorial labelconvert: Explanation & demonstration for a guide on
how to use the labelconvert command.

Generating the connectome

The command tck2connectome is responsible for converting the
tractogram into a connectome matrix, based on the provided parcellation
image. By default, the streamline count is used as the connectivity
metric; run tck2connectome -help to see alternative heuristics /
measures.

A factor in structural connectome production commonly overlooked or not
reported in the literature is the mechanism used to assign streamlines
to grey matter parcels. If done incorrectly this can have a large
influence on the resulting connectomes. This is one aspect where
Anatomically-Constrained Tractography (ACT) really shines; because streamlines can only terminate precisely at the grey matter -
white matter interface, within sub-cortical grey matter, or at the
inferior edge of the image, this assignment becomes relatively trivial.
The default assignment mechanism is a radial search outwards from the
streamline termination point, out to a maximum radius of 2mm; and the
streamline endpoint is only assigned to the first non-zero node index.
If you do not have the image data necessary to use the ACT framework,
see the ‘No DWI distortion correction available’ section below.

SIFT and the structural connectome

If you are generating structural connectomes, you should be using
Spherical-deconvolution Informed Filtering of Tractograms (SIFT).

Extracting pathways of interest from a connectome

The command connectome2tck can be used to extract specific
connections of interest from a connectome for further interrogation or
visualisation. Note that since the resulting connectome matrix does not
encode precisely which parcellation node pair each streamline was
assigned to, the streamlines are re-assigned to parcellation nodes as
part of this command. Run connectome2tck -help to see the various
ways in which streamlines may be selected from the connectome.

Also: Beware of running this command on systems with distributed network
file storage. This particular command uses an un-buffered file output
when writing the streamlines files, which re-opens the output file and
writes data for individual streamlines at a time (necessary as many
files may be generated at once); such systems tend to be optimised for
large-throughput writes, so this command may cause performance issues.

No DWI distortion correction available

If you can’t perform DWI susceptibility distortion correction, it
severely limits how accurately you can estimate the structural
connectome. If this is the case for you, below is a few points that are
worth considering.

Non-linear registration

Rather than actually correcting the DWI geometric distortions, some
people try to do a non-linear registration between DWI and T1 images. In
general I’m against this: the registration is fairly ill-posed due to
the differing contrasts, and an off-the-shelf non-linear registration
will have too many degrees of freedom. Pursue at your own risk.

Grey matter parcellation

With good spatial alignment, parcellations that highlight only the
cortial ribbon (e.g. FreeSurfer) are highly accurate and effective, and
the assignment of streamlines to those parcellations will also be robust
if ACT is used. But without these, residual registration errors may have
a large influence, and assigning streamlines to parcellations only as
thick as the cortex may also be erroneous (streamlines may terminate
prior to the parcel, or travel through and extend well beyond it). A
parcellation with large-volume nodes that is based on atlas registration
(e.g. AAL) is likely more appropriate in this case.

Assignment of streamlines to parcellation nodes

Without ACT, streamlines will terminate pretty much anywhere within the
DWI brain mask. Not only this, but they may traverse multiple
parcellation nodes, turn around within a node and traverse elsewhere,
terminate just prior to entering a node, all sorts of weirdness. I have
provided a few assignment mechanisms that you can experiment with - run
tck2connectome -help to see the list and parameters for each.
Alternatively if anyone has a better idea for how this could potentially
be done, I’d love to hear it.

 Using the connectome visualisation tool

Using the connectome visualisation tool

The connectome tool bar in MRtrix3 has been designed from scratch, with
the intention of providing a simple, data-driven mechanism for visually
assessing individual connectomes as well as the results of network-based
group statistics. The interface may therefore vary considerably from
other connectome visualisation packages, and may be intimidating for new
users who simply want to ‘see the connectome’. I hope I can convince you
in this tutorial that the design of this tool allows you, the user, to
dictate exactly how you want to visualise the connectome, rather than
being forced to conform to a particular prior expectation of how such
things should be visualised.

Initialising the tool

My suspicion is that new users will load the tool, and immediately
think: ‘Where do I load my connectome?’. Well, let’s take a step
backwards. If you were to give the software a connectome matrix, with no
other data, there would be no way to visualise that connectome in the
space of an MR image: the software has no information about the spatial
locations of the nodes upon which that connectome is based. So the first
step is actually to load an image to provide the tool with this
information, using the “Node image” button at the top of the toolbar.
The desired image is the output of the labelconvert command, as
detailed in the Structural connectome construction guide: the
tool uses this image to localise each parcel in 3D space in preparation
for visualisation. Alternatively, you can load the relevant parcellation
image from the command-line when you first run mrview, using the
-connectome.init option.

Attention

If you still do not see anything in the mrview main window, this is
likely because you have not yet opened a primary image in mrview. This
is currently necessary for mrview to correctly set up the camera
positioning. The easiest solution is to open your parcellation image not
only to initialise the connectome tool, but also as a standard image in
mrview; then simply hide the main image using the ‘View’ menu.

 labelconvert: Explanation & demonstration

labelconvert: Explanation & demonstration

The labelconvert (previously labelconfig) step in
Structural connectome construction has proven to be a hurdle for
many. It may be a ‘unique’ step in so far as that other software
packages probably deal with this step implicitly, but in MRtrix we
prefer things to be explicit and modular. So here I’ll go through an
example to demonstrate exactly what this command does.

Worked example

For this example, let’s imagine that we’re going to generate a
structural connectome for Bert, the quintessential FreeSurfer subject.
Also, we’re going to generate the connectome based on the
Desikan-Killiany atlas. The default FreeSurfer pipeline provides the
volumetric image aparc+aseg.mgz; this is the file that will be used to
define the nodes of our connectome.

[image: labelconvert_before]

Looking at the raw image itself, each node possesses a particular
intensity, corresponding to a particular integer value. If we focus on
the superior frontal gyrus in the right hemisphere, we can see that the
image intensity is 2028 for this structure.

This immediately presents a problem for constructing a connectome: if
any streamline encountering this region were written to row/column 2028,
our connectome would be enormous, and consist mostly of zeroes (as most
indices between 1 and 2028 do not correspond to any structure). Therefore,
what we’d prefer is to map the unique integer index of this structure to
a particular row/column index of the connectome; this should be done in
such a way that all structures of interest have a unique integer value
between 1 and N, where N is the number of nodes in the connectome.

Now looking at the file FreeSurferColorLUT.txt provided with FreeSurfer,
we see the following:

...
2026 ctx-rh-rostralanteriorcingulate 80 20 140 0
2027 ctx-rh-rostralmiddlefrontal 75 50 125 0
2028 ctx-rh-superiorfrontal 20 220 160 0
2029 ctx-rh-superiorparietal 20 180 140 0
2030 ctx-rh-superiortemporal 140 220 220 0
...

This gives us a meaningful name for this structure based on the
integer index. It also gives us some colour information, but let’s not
worry about that for now.

Our goal then is to determine a new integer index for this structure,
that will determine the row/column of our connectome matrix that this
structure corresponds to. This is dealt with by mapping the structure
indices of this lookup table to a new lookup table. For this example,
let’s imagine that we’re using the default MRtrix lookup table for the
FreeSurfer Desikan-Killiany atlas segmentation: this is provided at
shared/mrtrix3/labelconvert/fs_default.txt.Examining this file in detail,
we see the following:

...
74 R.RACG ctx-rh-rostralanteriorcingulate 80 20 140 255
75 R.RMFG ctx-rh-rostralmiddlefrontal 75 50 125 255
76 R.SFG ctx-rh-superiorfrontal 20 220 160 255
77 R.SPG ctx-rh-superiorparietal 20 180 140 255
78 R.STG ctx-rh-superiortemporal 140 220 220 255
...

(This file is in a slightly different format to
FreeSurferColorLUT.txt; don’t worry about this for the time being)

This file contains the same structure name as the FreeSurfer look-up
table, but it is assigned a different integer index (76)! What’s going
on?

The following is what the labelconvert command is actually going to
do under the bonnet, using these two lookup table files:

	Read the integer value at each voxel of the input image

	Convert the integer value into a string, based on the input lookup
table file (FreeSurferColorLUT.txt)

	Find this string in the output lookup table file
(fs_default.txt)

	Write the integer index stored in the output lookup table file
for this structure to the voxel in the output image

This is what the actual command call looks like:

labelconvert $FREESURFER_HOME/subjects/bert/mri/aparc+aseg.mgz $FREESURFER_HOME/FreeSurferColorLUT.txt ~/mrtrix3/src/connectome/config/fs_default.txt bert_parcels.mif

And this is what the resulting image looks like:

[image: labelconvert_after]

The integer labels of the underlying grey matter parcels have been
converted from the input lookup table to the output lookup table (hence
the name labelconvert). They now increase monotonically from 1 to the
maximum index, with no ‘gaps’ (i.e. ununsed integer values) in between.
Therefore, when you construct your connectome using tck2connectome,
the connectome matrix will only be as big as it needs to be to store all
of the node-node connectivity information.

Design rationale

Making this step of re-indexing parcels explicit in connectome
construction has a few distinct advantages:

	You can use parcellations from any software / atlas: just provide the
structure index / name lookup table that comes with whatever
software / atlas provides the parcellation, and define an appropriate
target lookup table that defines which index you want each structure to
map to.

	tck2connectome can be ‘dumb and blind’: it reads the integer indices
at either end of the streamline, and that’s the row/column of the connectome
matrix that needs to be incremented.

	You can have your grey matter parcels appear in any order in your
matrices: just define a new lookup table file. Doing this prior to connectome
construction is less likely to lead to heartache than re-ordering the rows
and columns in e.g. Matlab, where you may lose track of which matrices have
been re-ordered and which have not.

	You can remove structures from the connectome, or merge multiple structures
into a single parcel, just by omitting or duplicating indices appropriately in
the target lookup table file.

	Looking at your matrices and need to find out what structure corresponds to
a particular row/column? Just look at the config file!

Obviously if your parcellation image already has node indices that increase
monotonically from 1, and you’re happy enough with the numerical order of the
nodes, you don’t actually need to use the labelconvert step at all.

Custom design connectomes

Some notes for anybody that wishes to define their own configuration
files (either for re-ordering nodes, changing selection of nodes, or
using parcellations from alternative sources):

	If you wish to omit nodes from your connectome (e.g. the cerebellar
hemispheres), you may be better off making these nodes the largest
indices in your connectome, but then cropping them from the connectome
matrices retrospectively, rather than omitting them from the parcellation
image entirely: If you were to do the latter, streamlines that would
otherwise be assigned to your unwanted nodes may instead be
erroneously assigned to the nearest node that is part of your
connectome (exactly what happens here will depend on the
streamline-node assignment mechanism used).

	The command labelconvert is capable of reading in look-up
tables in a number of formats. If you wish to define your own lookup
table, you will need to conform to one of these formats in order for
MRtrix commands to be able to import it. If you are using an atlas
where the look-up table does not conform to any of these formats (and
hence MRtrix refuses to import it), you can either manually manipulate
it into a recognized format, or if it is likely that multiple users will
be using that parcellation scheme, we may choose to add a parser to the
MRtrix code: contact the developers directly if this is the case.

 Global tractography

Global tractography

Introduction

Global tractography is the process of finding the full track
configuration that best explains the measured DWI data. As opposed to
streamline tracking, global tractography is less sensitive to noise, and
the density of the resulting tractogram is directly related to the data
at hand.

As of version 3.0, MRtrix supports global tractography using a
multi-tissue spherical convolution model, as introduced in Christiaens
et al. (2015). This method extends the method of
Reisert et al. (2011) to multi-shell response
functions, estimated from the data, and adopts the multi-tissue model
presented in Jeurissen et al. (2014) to account for
partial voluming.

User guide

For multi-shell DWI data, the most common use will be:

tckglobal dwi.mif wmr.txt -riso csfr.txt -riso gmr.txt -mask mask.mif -niter 1e9 -fod fod.mif -fiso fiso.mif tracks.tck

In this example, dwi.mif is the input dataset, including the
gradient table, and tracks.tck is the output tractogram. wmr.txt,
gmr.txt and csfr.txt are tissue response functions (cf. next
section). Optional output images fod.mif and fiso.mif contain the
predicted WM fODF and isotropic tissue fractions of CSF and GM
respectively, estimated as part of the global optimization and thus
affected by spatial regularization.

Input response functions

Input response functions for (single fibre) white matter, grey matter,
and CSF can be estimated from multi-shell data in prior tissue segmentations, as
described in Jeurissen et al. (2014) and Christiaens
et al. (2015).

Obtaining good segmentations of WM, GM and CSF will typically require T1
data. While MRtrix doesn’t implement segmentation methods itself, it does
provide a script that calls the relevant FSL or Freesurfer tools to obtain
a tissue segmentation in the appropriate format, for example:

5ttgen fsl T1.mif 5tt.mif

Note that the T1 image must be aligned with (e.g. registered to) the DWI data.
See this page [http://mrtrix.readthedocs.org/en/latest/workflows/act.html#tissue-segmentation]
for more information.

Response functions for single-fibre WM, GM, and CSF, can then be
estimated using:

dwi2response msmt_5tt dwi.mif 5tt.mif wm.txt gm.txt csf.txt

For a detailed explanation of different strategies for response function
estimation, have a look at this page [http://mrtrix.readthedocs.org/en/latest/concepts/response_function_estimation.html#msmt-5tt].

Parameters

-niter: The number of iterations in the optimization. Although the
default value is deliberately kept low, a full brain reconstruction will
require at least 100 million iterations.

-lmax: Maximal order of the spherical harmonics basis.

-length: Length of each track segment (particle), which determines
the resolution of the reconstruction.

-weight: Weight of each particle. Decreasing its value by a factor
of two will roughly double the number of reconstructed tracks, albeit at
increased computation time.

Particle potential -ppot: The particle potential essentially
associates a cost to each particle, relative to its weight. As such,
we are in fact trying to reconstruct the data as well as possible, with
as few particles as needed. This ensures that there is sufficient
proof for each individual particle, and hence avoids that a bit of
noise in the data spurs generation of new (random) particles. Think of
it as a parameter that balances sensitivity versus specificity. A higher
particle potential requires more proof in the data and therefore leads
to higher specificity; a smaller value increases sensitivity.

Connection potential -cpot: The connection potential is the driving
force for connecting segments and hence building tracks. Higher values
increase connectivity, at the cost of increased invalid connections.

Ancillary outputs

-fod: Outputs the predicted fibre orientation distribution function
(fODF) as an image of spherical harmonics coefficients.
This fODF is estimated as part of the global track optimization, and
therefore incorporates the spatial regularization that it imposes.
Internally, the fODF is represented as a discrete sum of apodized point
spread functions (aPSF) oriented along the directions of all particles in
the voxel, akin to track orientation distribution imaging (TODI,
Dhollander et al., 2014). This internal representation
is used to predict the DWI signal upon every change to the particle
configuration.

-fiso: Outputs the estimated density of all isotropic tissue
components, as multiple volumes in one 4-D image in the same order as
their respective -riso kernels were provided.

-eext: Outputs the residual data energy image, including the
L1-penalty imposed by the particle potential.

References

	D. Christiaens, M. Reisert, T. Dhollander, S. Sunaert, P. Suetens,
and F. Maes. Global tractography of multi-shell diffusion-weighted
imaging data using a multi-tissue model. NeuroImage, 123 (2015) pp.
89–101 [SD
link [http://www.sciencedirect.com/science/article/pii/S1053811915007168]]

	M. Reisert, I. Mader, C. Anastasopoulos, M. Weigel, S. Schnell, and
V. Kiselev. Global fiber reconstruction becomes practical.
NeuroImage, 54 (2011) pp. 955–962 [SD
link [http://www.sciencedirect.com/science/article/pii/S1053811910011973]]

	B. Jeurissen, J.D. Tournier, T. Dhollander, A. Connelly, and J.
Sijbers. Multi-tissue constrained spherical deconvolution for
improved analysis of multi-shell diffusion MRI data. NeuroImage, 103
(2014), pp. 411–426 [SD
link [http://www.sciencedirect.com/science/article/pii/S1053811914006442]]

	T. Dhollander, L. Emsell, W. Van Hecke, F. Maes, S. Sunaert, and P.
Suetens. Track Orientation Density Imaging (TODI) and Track
Orientation Distribution (TOD) based tractography. NeuroImage, 94
(2014), pp. 312–336 [SD
link [http://www.sciencedirect.com/science/article/pii/S1053811913012676]]

 ISMRM tutorial - Structural connectome for Human Connectome Project (HCP)

ISMRM tutorial - Structural connectome for Human Connectome Project (HCP)

This document duplicates the information provided during the MRtrix3
demonstration at ISMRM 2015 in Toronto. We will generate a structural
connectome for quintessential Human Connectome Project subject 100307.
Some of these instructions will be specific to HCP data, others will be
more general recommendations.

Note that this page is being retained as a reference of the steps
demonstrated during the ISMRM 2015 meeting; it does not constitute an
up-to-date ‘recommended’ processing pipeline for HCP data.

Necessary files

To duplicate our methods and results, you will need to download the
appropriate files, accessible through the following steps:

	https://db.humanconnectome.org/

	WU-Minn HCP Data - 900 Subjects + 7T

	Download Image Data: Single subject

	Session Type: 3T MRI

	Processing level: Preprocessed

	Package Type: MSM-Sulc + MSM-All

	add Structural Preprocessed and Diffusion Preprocessed to queue

The actual files within these compressed downloads that we will make use
of are:

Diffusion preprocessed files

	bvals

	bvecs

	data.nii.gz

	nodif_brain_mask.nii.gz

Structural preprocessed files

	aparc+aseg.nii.gz

	T1w_acpc_dc_restore_brain.nii.gz

Structural image processing

	Generate a tissue-segmented image appropriate for
Anatomically-Constrained
Tractography:

5ttgen fsl T1w_acpc_dc_restore_brain.nii.gz 5TT.mif -premasked

Note that it is not necessary to use a tissue-segmented image that has
the same resolution as the diffusion images; MRtrix3 will happily acquire
interpolated values from each of them separately as tracking is
performed. This allows ACT to exploit the higher spatial resolution of
the tissue-segmented anatomical image, but still use the diffusion image
information at its native resolution also.

	Collapse the multi-tissue image into a 3D greyscale image for
visualisation:

5tt2vis 5TT.mif vis.mif; mrview vis.mif

If the tissue segmentation image contains clearly erroneous tissue
labels, you can delineate them manually using the ROI editor tool
in mrview, then apply your corrections to the tissue data using the
5ttedit command.

	Modify the integer values in the parcellated image, such that the
numbers in the image no longer correspond to entries in FreeSurfer’s
colour lookup table, but rows and columns of the connectome:

labelconvert aparc+aseg.nii.gz FreeSurferColorLUT.txt fs_default.txt nodes.mif

File FreeSurferColorLUT.txt is provided with FreeSurfer in its root
directory. The target lookup table file (fs_default.txt in this case)
is a handy text file that provides a structure name for every row / column
of the connectome matrix: it is provided as part of MRtrix3, and located at
shared/mrtrix3/labelconvert/fs_default.txt within the MRtrix3 folder.

	Replace FreeSurfer’s estimates of sub-cortical grey matter structures
with estimates from FSL’s FIRST tool:

labelsgmfix nodes.mif T1w_acpc_dc_restore_brain.nii.gz fs_default.txt nodes_fixSGM.mif -premasked

Diffusion image processing

	Convert the diffusion images into a non-compressed format (not
strictly necessary, but will make subsequent processing faster),
embed the diffusion gradient encoding information within the image
header, re-arrange the data strides to make volume data contiguous
in memory for each voxel, and convert to floating-point representation
(makes data access faster in subsequent commands):

mrconvert data.nii.gz DWI.mif -fslgrad bvecs bvals -datatype float32 -stride 0,0,0,1

	Generate a mean b=0 image (useful for visualisation):

dwiextract DWI.mif - -bzero | mrmath - mean meanb0.mif -axis 3

(If you are not familiar with the ‘|’ piping symbol, read more about it
here)

	Estimate the response function;
note that here we are estimating multi-shell, multi-tissue
response functions:

dwi2response msmt_5tt DWI.mif 5TT.mif RF_WM.txt RF_GM.txt RF_CSF.txt -voxels RF_voxels.mif

mrview meanb0.mif -overlay.load RF_voxels.mif -overlay.opacity 0.5 (check
appropriateness of response function voxel selections)

	Perform Multi-Shell, Multi-Tissue Constrained Spherical Deconvolution:

dwi2fod msmt_csd DWI.mif RF_WM.txt WM_FODs.mif RF_GM.txt GM.mif RF_CSF.txt CSF.mif -mask nodif_brain_mask.nii.gz

mrconvert WM_FODs.mif - -coord 3 0 | mrcat CSF.mif GM.mif - tissueRGB.mif -axis 3

This generates a 4D image with 3 volumes, corresponding to the tissue
densities of CSF, GM and WM, which will then be displayed in mrview
as an RGB image with CSF as red, GM as green and WM as blue (as was
presented in the MSMT CSD manuscript).

mrview tissueRGB.mif -odf.load_sh WM_FODs.mif (visually make sure that
both the tissue segmentations and the white matter FODs are sensible)

Connectome generation

	Generate the initial tractogram:

tckgen WM_FODs.mif 100M.tck -act 5TT.mif -backtrack -crop_at_gmwmi -seed_dynamic WM_FODs.mif -maxlength 250 -select 100M -cutoff 0.06

Explicitly setting the maximum length is highly recommended for HCP
data, as the default heuristic - 100 times the voxel size - would result
in a maximum length of 125mm, which would preclude the reconstruction of
some longer pathways.

We also suggest a reduced FOD amplitude cutoff threshold for tracking when
using the MSMT CSD algorithm in conjunction with ACT; this allows streamlines
to reach the GM-WM interface more reliably, and does not result in
significant false positives since the MSMT algorithm does not produce many
erroneous small FOD lobes.

	Apply the Spherical-deconvolution Informed Filtering of Tractograms
(SIFT) algorithm

This method reduces the overall streamline count, but provides more
biologically meaningful estimates of structural connection density:

tcksift 100M.tck WM_FODs.mif 10M_SIFT.tck -act 5TT.mif -term_number 10M

If your system does not have adequate RAM to perform this process, the
first recommendation is to reduce the spatial resolution of the FOD
image and provide this alternative FOD image to SIFT (this should have
little influence on the outcome of the algorithm, but will greatly
reduce memory consumption):

mrresize WM_FODs.mif FOD_downsampled.mif -scale 0.5 -interp sinc

If this still does not adequately reduce RAM usage, you will need to
reduce the number of input streamlines to a level where your processing
hardware can successfully execute the tcksift command, e.g.:

tckedit 100M.tck 50M.tck -number 50M

Alternatively, if you’re feeling brave, you can give
SIFT2 a try…

	Map streamlines to the parcellated image to produce a connectome:

tck2connectome 10M_SIFT.tck nodes_fixSGM.mif connectome.csv

mrview nodes_fixSGM.mif -connectome.init nodes_fixSGM.mif -connectome.load connectome.csv

 Fibre density and cross-section - Single shell DWI

Fibre density and cross-section - Single shell DWI

Introduction

This tutorial explains how to perform fixel-based analysis of fibre density and cross-section [https://www.ncbi.nlm.nih.gov/pubmed/27639350] using single-shell data. While the focus here is on the analysis of Apparent Fibre Density (AFD) [http://www.ncbi.nlm.nih.gov/pubmed/22036682] derived from FODs, other fixel-based measures related to fibre density can also be analysed with a few minor modifications to these steps (as outlined below). We note that high b-value (>2000s/mm2) data is recommended to aid the interpretation of AFD being related to the intra-axonal space. See the original paper [http://www.ncbi.nlm.nih.gov/pubmed/22036682] for more details.

All steps in this tutorial have written as if the commands are being run on a cohort of images, and make extensive use of the foreach script to simplify batch processing. This tutorial also assumes that the imaging dataset is organised with one directory identifying the subject, and all files within identifying the image type. For example:

study/subjects/001_patient/dwi.mif
study/subjects/001_patient/wmfod.mif
study/subjects/002_control/dwi.mif
study/subjects/002_control/wmfod.mif

Note

All commands in this tutorial are run from the subjects path up until step 20, where we change directory to the template path

 Fibre density and cross-section - Multi-tissue CSD

Fibre density and cross-section - Multi-tissue CSD

Introduction

This tutorial explains how to perform fixel-based analysis of fibre density and cross-section [https://www.ncbi.nlm.nih.gov/pubmed/27639350] with fibre orientation distributions (FODs) computing using multi-tissue CSD using single-shell [https://www.researchgate.net/publication/301766619_A_novel_iterative_approach_to_reap_the_benefits_of_multi-tissue_CSD_from_just_single-shell_b0_diffusion_MRI_data] data or multi-shell data [https://www.ncbi.nlm.nih.gov/pubmed/25109526]. We note that high b-value (>2000s/mm2) data is recommended to aid the interpretation of AFD being related to the intra-axonal space. See the original paper [http://www.ncbi.nlm.nih.gov/pubmed/22036682] for more details.

All steps in this tutorial have written as if the commands are being run on a cohort of images, and make extensive use of the foreach script to simplify batch processing. This tutorial also assumes that the imaging dataset is organised with one directory identifying the subject, and all files within identifying the image type. For example:

study/subjects/001_patient/dwi.mif
study/subjects/001_patient/wmfod.mif
study/subjects/002_control/dwi.mif
study/subjects/002_control/wmfod.mif

Note

All commands in this tutorial are run from the subjects path up until step 19, where we change directory to the template path

 Expressing the effect size relative to controls

Expressing the effect size relative to controls

The apparent Fibre Density (FD) and Fibre Density and Cross-section (FDC) are relative measures and have arbitrary units. Therefore the units of abs_effect.mif output from fixelcfestats are not directly interpretable. In a patient-control group comparison, one way to present results is to express the absolute effect size as a percentage relative to the control group mean.

To compute FD and FDC percentage decrease effect size use:

mrcalc fd_stats/abs_effect.mif fd_stats/beta1.mif -div 100 -mult fd_stats/percentage_effect.mif

where beta1.mif is the beta output that corresponds to your control population mean.

Because the Fibre Cross-section (FC) measure is a scale factor it is slightly more complicated to compute the percentage decrease. The FC ratio between two subjects (or groups) tells us the direct scale factor between them.

For example, for a given fixel if the patient group mean FC is 0.7, and control mean is 1.4, then this implies encompassing fibre tract in the patients is half as big as the controls: 0.7/1.4 = 0.5. I.e. this is a 50% reduction wrt to the controls: 1 - (FC_patients/FC_controls)

Because we peform FBA of log(FC), the abs_effect that is output from fixelcfestats is: abs_effect = log(FC_controls) - log(FC_patients) = log(FC_controls/FC_patients). Therefore to get the percentage effect we need to perform 1 - 1/exp(abs_effect):

mrcalc 1 1 fc_stats/abs_effect.mif -exp -div -sub fc_stats/fc_percentage_effect.mif

 Displaying results with streamlines

Displaying results with streamlines

Fixels rendered as lines using the fixel plot tool of mrview are appropriate for viewing 2D slices (e.g. Fig. 6 in this paper [http://www.sciencedirect.com/science/article/pii/S1053811916304943]); however to better appreciate all the fibre pathways affected and to visualise the full extent of the results in 3D, we developed a visualisation approach based on the whole-brain template-derived tractogram (as explained by Fig 4 [http://www.sciencedirect.com/science/article/pii/S1053811916304943]).

First use tckedit to reduce the whole-brain template tractogram to a sensible number of streamlines (2 million is too many for typical graphics cards to render smoothly). This step assumes you have the same folder structure and filenames from the FBA tutorials. From the template directory:

tckedit tracks_2_million_sift.tck -num 200000 tracks_200k_sift.tck

Map fixel values to streamline points, save them in a “track scalar file”. For example:

fixel2tsf stats_fdc/fwe_pvalue.mif tracks_200k_sift.tck fdc_fwe_pvalue.tsf
fixel2tsf stats_fdc/abs_effect_size.mif tracks_200k_sift.tck fdc_abs_effect_size.tsf

Visualise track scalar files using the tractogram tool in MRview. First load the streamlines (tracks_200k_sift.tck). Then right click and select ‘colour by (track) scalar file’. For example you might load the abs_effect_size.tsf file. Then to dynamically threshold (remove) streamline points by p-value select the “Thresholds” dropdown and select “Separate Scalar file” to load fwe_pvalue.tsf.

Note that you can also threshold and view all brain fixels by deselecting “crop to slice” in the fixel plot tool. However it can be harder to appreciate the specific pathways affected. The downside to viewing and colouring results by streamline, then viewing all streamlines (uncropped to slice), is that without transparency you only see the colours on the outside of the significant pathways, where normally the effect size/p-value is most severe in the ‘core’ of the fibre pathway.

 Warping images using warps generated from other packages

Warping images using warps generated from other packages

The mrtransform command applies warps in a deformation field format (i.e. where each voxel specifies the scanner space position in the corresponding image).
However, you can also use mrtransform to apply warps generated from other packages that are in any format using the following steps.

	Generate an identity warp using the input moving image (i.e. the image you wish to warp):

warpinit input_fod_image.mif identity_warp[].nii

	Compute a MRtrix compatible warp by transforming the identity warp using your registration of choice. For example if you are using the ANTs registration package:

for i in {0..2};
do;
 WarpImageMultiTransform 3 identity_warp${i}.nii mrtrix_warp{i}.nii -R template.nii ants_warp.nii ants_affine.txt;
done;

	Correct the mrtrix warp. When transforming identity_warp.nii and producing the mrtrix_warp images, most registration packages will output 0.0 as the default value when the transformation maps outside the input image. This will result in many voxels in the output mrtrix_warp (which is a deformation field) pointing to the origin (0.0, 0.0, 0,0), particularly around the edge of the warp if an affine registration was performed. To correct this and convert all voxels with 0.0,0.0,0.0 to nan,nan,nan (suitable for mrtransform):

warpcorrect mrtrix_warp[].nii mrtrix_warp_corrected.mif

	Warp the image. mrtransform can warp any 3D or 4D image, however if the number of volumes in the 4th dimension equals the number of coefficients in an antipodally symmetric spherical harmonic series (i.e. 6, 15, 28 etc), then it assumes the image to be an FOD image and reorientation [http://www.ncbi.nlm.nih.gov/pubmed/22183751] is automatically applied. Also note that FOD modulation [http://www.ncbi.nlm.nih.gov/pubmed/22036682] can be applied using the option -modulation. This preserves the total apparent fibre density across the width of each bundle before and after warping:

mrtransform input_fod_image.mif -warp mrtrix_warp_corrected.mif warped_fod_image.mif

 Diffusion gradient scheme handling

Diffusion gradient scheme handling

An essential piece of information for DWI processing is the diffusion-weighted
(DW) gradient scheme, also known as the “DW gradient table”, the “DW encoding”,
the “b-vectors”, the “bvecs”, and other variations on the theme. This table
provides information about the diffusion sensitisation gradients applied during
acquisition of each imaging volume in a DWI dataset, usually in the form of the
b-value and the (unit) vector for the DW gradient direction. In this page we
will describe the details of how this information is typically stored /
represented, and how MRtrix3 handles / manipulates this data.

Gradient table storage

MRtrix3 allows the DW gradient table to be read directly from, or written to,
the image headers for specific image formats; notably DICOM (folder or .dcm)
(read-only) and the MRtrix image formats (.mih / .mif) (read/write). MRtrix3
applications will automatically make use of this information when it is available
for the input dataset through storage of the table within the image header,
without requiring explicit intervention from the user. In addition, MRtrix3
commands can also import or export this information from/to two different
external file formats: typically referred to as the MRtrix format and the
FSL format. These differ in a number of respects, as outlined below.

MRtrix format

This format consists of a single ASCII text file, with no restrictions on the
filename. It consists of one row per entry (i.e. per DWI volume), with each row
consisting of 4 space-separated floating-point values; these correspond to
[x y z b], where [x y z] are the components of the gradient vector,
and b is the b-value in units of s/mm². A typical MRtrix format DW
gradient table file might look like this:

grad.b:

 0 0 0 0
 0 0 0 0
-0.0509541 0.0617551 -0.99679 3000
 0.011907 0.955047 0.296216 3000
 -0.525115 0.839985 0.136671 3000
 -0.785445 -0.6111 -0.0981447 3000
 0.060862 -0.456701 0.887536 3000
 0.398325 0.667699 0.6289 3000
 -0.680604 0.689645 -0.247324 3000
 0.237399 0.969995 0.0524565 3000
 0.697302 0.541873 -0.469195 3000
 -0.868811 0.407442 0.28135 3000

...

It is important to note that in this format, the direction vectors are assumed
to be provided with respect to real or scanner coordinates. This is the same
convention as is used in the DICOM format. Also note that the file does not
need to have the file type extension .b (or any other particular suffix);
this is simply a historical convention.

Image header

When using the MRtrix image formats (.mih / .mif), MRtrix3 has the capability of
embedding the diffusion gradient table within the header of the image file.
This provides significant advantages when performing image processing:

	The table accompanies the image data at all times, which means that the user
is not responsible for tracking which diffusion gradient table corresponds to
which image file, or whether or not a particular gradient table file reflects
some manipulation that has been applied to an image.

	In MRtrix3 commands that require a diffusion gradient table, and/or make
modifications to the image data that require corresponding modifications to
the diffusion gradient table, these data will be utilised (and/or modified)
automatically, without requiring explicit intervention from the user.

For these reasons, the general recommendation of the MRtrix3 team is to make
use of the MRtrix image formats (.mih / .mif) whenever possible.

This embedding is achieved by writing an entry into the Image
Header key-value pairs, using the key dw_scheme. The value of this
entry is the complete diffusion gradient table, stored in the MRtrix format.
However, this entry should generally not be accessed or manipulated directly
by users; instead, users should rely on the internal handling of these data as
performed by MRtrix3 commands, or where relevant, use the command-line
options provided as part of specific MRtrix3 commands, as detailed later.

FSL format

This format consists of a pair of ASCII text files, typically named bvecs & bvals
(or variations thereof). The bvals file consists of a single row of
space-separated floating-point values, all in one row, with one value per
volume in the DWI dataset. The bvecs file consists of 3 rows of space-separated
floating-point values, with the first row corresponding to the x-component
of the DW gradient vectors, one value per volume in the dataset; the second
row corresponding to the y-component, and the third row to the z-component.
A typical pair of FSL format DW gradient files might look like:

bvecs:

0 0 -4.30812931665e-05 -0.00028279245503 -0.528846962834659 -0.781281266220383 0.014299684287952 0.36785999072309 -0.66507232482745 0.237350171404029 0.721877079467007 -0.880754419294581 0 -0.870185851757858 ...
0 0 -0.002606397951389 -0.97091525561761 -0.846605326714759 0.615840299891175 0.403330065122241 -0.70377676751476 -0.67378508548543 -0.971399047063277 -0.513131073140676 -0.423391107245363 0 -0.416501756655988 ...
0 0 -0.999996760803023 0.23942421337746 0.059831733802001 -0.101684552642539 0.914942902775223 0.60776414747636 -0.32201498900359 0.007004078617919 -0.464317089148873 0.212157919445896 0 -0.263255013300656 ...

bvals:

0 0 3000 3000 3000 3000 3000 3000 3000 3000 3000 3000 ...

It is important to note that in this format, the gradient vectors are provided
with respect to the image axes, not in real or scanner coordinates
(actually, it’s a little bit more complicated than that, refer to the FSL wiki [https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FDT/FAQ#What_conventions_do_the_bvecs_use.3F]
for details). This is a rich source of confusion, since seemingly innocuous
changes to the image can introduce inconsistencies in the b-vectors. For
example, simply reformatting the image from sagittal to axial will effectively
rotate the b-vectors, since this operation changes the image axes. It is
also important to remember that a particular bvals/bvecs pair is only valid
for the particular image that it corresponds to.

Using the DW gradient table in MRtrix3 applications

Querying the DW gradient table

As mentioned above, MRtrix3 will use the DW gradient table from the image
headers when it is available. Currently, only the DICOM (folder or .dcm) and
MRtrix image formats (.mih / .mif) support this. The DW gradient table can be queried
for any particular image using the mrinfo command in combination with the
-dwgrad option. For example:

$ mrinfo DICOM/ -dwgrad
mrinfo: [done] scanning DICOM folder "DICOM/"
mrinfo: [100%] reading DICOM series "BRI 64 directions ep2d_diff_3scan_trace_p2"
 0 0 0 0
 -0.999994 0.00167109 0.00300897 3000
 -0 0.999996 0.00299996 3000
 0.0261389 0.65148 -0.758215 3000
 -0.590138 -0.767763 -0.249553 3000
 0.236087 -0.527069 -0.816371 3000
 0.893005 -0.261931 -0.36597 3000
 -0.797405 0.126351 -0.590068 3000
 -0.233751 0.930868 -0.280794 3000
 -0.936406 0.141569 -0.321095 3000
 -0.505355 -0.845584 0.17206 3000
 -0.346203 -0.848909 0.39937 3000
 -0.457204 -0.633042 0.624678 3000
 0.48716 -0.391994 -0.780395 3000
 0.617871 0.674589 -0.403938 3000
 0.577709 -0.102522 0.809779 3000
 0.825818 -0.523076 -0.210752 3000

...

Exporting the DW gradient table

This information can also be exported from the image headers using the
-export_grad_mrtrix option (for the MRtrix format) or
-export_grad_fsl option (for the FSL format) in commands that support
it. For example:

$ mrinfo dwi.mif -export_grad_mrtrix grad.b

results in a grad.b file in MRtrix format, while:

$ mrconvert DICOM/ dwi.nii.gz -export_grad_fsl bvecs bvals
mrconvert: [done] scanning DICOM folder "DICOM/"
mrconvert: [100%] reading DICOM series "BRI 64 directions ep2d_diff_3scan_trace_p2"
mrconvert: [100%] reformatting DICOM mosaic images
mrconvert: [100%] copying from "DICOM data...ns ep2d_diff_3scan_trace_p2" to "dwi.nii.gz"
mrconvert: [100%] compressing image "dwi.nii.gz"

converts the DWI data in the DICOM/ folder to
Compressed NIfTI (.nii.gz), and exports the DW gradient table to FSL
format if found in the DICOM headers, resulting in a pair of bvecs &
bvals files.

Importing the DW gradient table

If the image header already contain the DW information, then no further action
is required - the MRtrix3 application will be able to find it and use it
directly. If this is not the case (e.g. the image format does not support
including it in the header), or the information contained is not correct,
MRtrix3 applications also allow the DW gradient table to be imported using
the -grad option (for the MRtrix format) or the -fslgrad option (for
the FSL format). Note that this will override the information found in the
image headers if it was there. This can be used during conversion using
mrconvert, or at the point of use. For example:

$ mrconvert dwi.nii -fslgrad dwi_bvecs dwi_bvals dwi.mif

will convert the dwi.nii from NIfTI & NIfTI-2 (.nii) to
MRtrix image formats (.mih / .mif), embedding the DW gradient table information found
in the dwi_bvecs & dwi_bvals files (in FSL format) directly into the
output image header. As another example:

$ dwi2tensor DICOM/ -grad encoding.b tensor.nii

will process the DWI dataset found in the DICOM/ folder (in
DICOM (folder or .dcm) format), but override any DW gradient information
in the DICOM data with the table stored in the MRtrix format file encoding.b.

Operations performed by MRtrix3 when handling DW gradient tables

MRtrix3 applications will perform a number of sanity checks and modifications
to the information in the DW gradient table, depending on the nature of the
operation, and its original format.

When using the FSL format

In this format, the gradient vectors are provided relative to the image axes
(as detailed in the FSL wiki [https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FDT/FAQ#What_conventions_do_the_bvecs_use.3F]).
To convert them to the internal representation used in MRtrix3 (and in the
MRtrix format gradient table), these vectors need to be transformed into the
real / scanner coordinate system. To do this requires knowledge of the DWI
dataset these vectors correspond to, in particular the image transform. In
essence, this consists of rotating the gradient vectors according to the
rotation part of the transform (i.e. the top-left 3×3 part of the matrix). This
will introduce differences between the components of the gradient vectors when
stored in MRtrix format compared to the FSL format, particularly for images
not acquired in a pure axial orientation (i.e. images where the rotation part of
the image transform is identity). Indeed, as mentioned earlier, there is an
additional confound related to the handed-ness of the coordinate system; see the
FSL wiki [https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FDT/FAQ#What_conventions_do_the_bvecs_use.3F]
for details.

Warning

Never perform a manual conversion between MRtrix and FSL
gradient table formats using a text editor or basic shell script. This
poses a risk of introducing an unwanted rotation / reflection of the
gradient directions, with concomitant errors in later processing.

 Global intensity normalisation

Global intensity normalisation

Most DWI models derive quantitative measures by using the ratio of the DW signal to the b=0 signal within each voxel. This voxel-wise b=0 normalisation implicitly removes intensity variations due to T2-weighting and RF inhomogeneity. However, unless all compartments within white matter (e.g. intra- and extra-axonal space, myelin, cerebral spinal fluid (CSF) and grey matter partial volumes) are modelled accurately (i.e. with appropriate assumptions/modelling of both the compartment diffusion and T2), the proportion of one compartment in a voxel may influence another. For example, if CSF partial volume at the border of white matter and the ventricles is not taken into account, then a voxel-wise normalisation performed by dividing by the b=0 (which has a long T2 and appears brighter in CSF than white matter in the T2-weighted b=0 image), will artificially reduce the DW signal from the white matter intra-axonal (restricted) compartment, ultimately changing the derived quantitative measures.

In our previous work investigating differences in Apparent Fibre Density (AFD) [http://www.ncbi.nlm.nih.gov/pubmed/22036682] we opt to perform a global intensity normalisation between subjects. This avoids the aforementioned issues, but also comes with its own set of challenges and assumptions inherent to specific strategies to deal with this. Aside from the problem of how to select the region to perform global intensity normalisation (that is unbiased with respect to the groups in the analysis), the data must also be bias field corrected first, to eliminate low frequency intensity inhomogeneities across the image.

In theory, a sound approach to global intensity normalisation would be to normalise based on the median CSF b=0 intensity across all subjects (on the assumption that the CSF T2 is unlikely to be affected by pathology). However, in practice it is surprisingly difficult to obtain a robust partial-volume-free estimate of the CSF intensity due to the typical low resolution of DW images. For participants less than 50 years old, due to reasonably small ventricles, it can be difficult to identify pure CSF voxels at 2-2.5mm resolutions. We therefore recommend performing a global intensity normalisation using the median white matter b=0 intensity. While the white matter b=0 intensity may be influenced by pathology-induced changes in T2, our assumption is that such changes will be local to the pathology and therefore have little influence on the median b=0 value.

We have included the dwiintensitynorm script in MRtrix to perform an automatic global normalisation using the median white matter b=0 value. The script input requires two folders: a folder containing all DW images in the study (in .mif format) and a folder containing the corresponding whole brain mask images (with the same filename prefix). The script runs by first computing diffusion tensor Fractional Anisotropy (FA) maps, registering these to a study-specific template, then thresholding the template FA map to obtain an approximate white matter mask. The mask is then transformed back into the space of each subject image and used in the dwinormalise command to normalise the input DW images to have the same b=0 white matter median value. All intensity normalised data will be output in a single folder. As previously mentioned all DWI data must be bias field corrected before using dwiintensitynorm, for example using dwibiascorrect.

As an alternative to the dwiintensitynorm script, we have recently provided a new command called mtnormalise, which performs multi-tissue informed intensity normalisation in the log-domain. The benefit of the mtnormalise command is that normalisation can be performed independently on each subject, and therefore does not require a computationally expensive registration step to a group template. However, to perform multi-tissue CSD with 3 tissue types (WM, GM, CSF) currently requires DWI data with multiple b-values (this will change at some stage, when the implementation of single-shell 3-tissue CSD becomes available).

 Orthonormal Spherical Harmonic basis

Orthonormal Spherical Harmonic basis

An important change between the old and new versions of MRtrix is a
modification to the Spherical Harmonic (SH) basis functions. This change
has important consequences in terms of data that were generated prior to
the user changing to the new version, or any data that may be used
interchangeably between the two versions.

Important: note that although it is possible to use and display FODs
generated using MRtrix 0.2.x in the newer MRtrix3 applications (and
vice-versa), the FODs will NOT be correct. Moreover, it is very
difficult to tell the difference on simple visual inspection - the FODs
will still look reasonable, but will give incorrect results if used
for tractography or in quantitative analyses. To ensure your images are
correct, you should use the shbasis application included in MRtrix3,
as described below.

The problem

For Spherical Deconvolution (SD) as implemented in MRtrix, processing is
done in the Spherical Harmonic (SH) basis; this mathematical formulation
provides a smooth representation of data distributed on the sphere. When
we do SD, the resulting Fibre Orientation Distributions (FODs) are
written to an image. These FOD images contain coefficients in this SH
basis, that when interpreted correctly, produce the FOD butterflies we
all know and love. If you’ve ever looked at the raw image volumes from
an FOD image, you’ll know that all but the first one are basically not
interpretable.

Here’s where it gets tricky. In all previous versions of MRtrix, there
was a ‘bug’ in the SH basis functions. Mathematically, the basis was
‘non-orthonormal’; you don’t necessarily need to know what this means,
just appreciate that the formulation of this mathematical basis was not
optimal.

Now this ‘bug’ didn’t actually cause any problems; the previous version
of MRtrix was self-consistent in its handling of the issue throughout
the code. It was annoying for any users transferring data between MRtrix
and other packages though. For the release of the new MRtrix3, we have
decided to correct the underlying error in the SH basis once and for
all, as there are various mathematical operations that are greatly
simplified when the basis is orthonormal. This does however introduce a
problem for anyone that has done prior image processing using the old
MRtrix 0.2 and wants to be able to use that data with MRtrix3: if you
have image data that was generated using the old SH basis, but read it
using MRtrix code that was compiled using the new SH basis, the data
will not be interpreted correctly.

The solution

There is a solution, but it takes a bit of manual labour on your part.
We have provided a new command called shbasis. This command
will read your image data, and tell you which SH basis it thinks your
image data are stored in (or if it’s unable to make this decision).

Furthermore, it includes a command-line option for changing the SH
basis of the underlying image data: -convert. The most important
choice for this option is -convert native. This option identifies
the SH basis that MRtrix3 is compiled for (this is the
new orthonormal basis by default); and if the image data is not
currently stored in this basis, it modifies the image data in-place so
that it conforms to the correct basis.

Any data that you generate after this update has occurred will
automatically be produced in the new SH basis, and therefore will not
need to be converted using shbasis. However if you are uncertain
whether or not a particular image does or does not need to be converted,
shbasis can always be used to verify whether or not the image data
are in the correct SH basis; and if you provide the -convert native
option despite the image data already being in the new SH basis, no
modification of the image data will take place.

My recommendation is therefore as follows. When you commit to using the
new version of MRtrix, you should go through all of your diffusion
image data on all systems that you use, and run
shbasis -convert native on all images that contain spherical
harmonic data (only FOD images; raw DWIs / response functions / TDIs /
etc. do not need to be converted).

Also: Remember I said that data previously generated will not be
interpreted correctly by MRtrix3 commands without the SH basis
conversion? The same applies in the other direction. So if you load FOD
images that have either been generated using MRtrix, or have
been previously converted using shbasis, commands from the previous
version of MRtrix (0.2) won’t interpret them correctly. We hope that
once we have feature completeness in MRtrix3, the old version
will no longer be necessary, and therefore this will not be a problem.

Problematic data

In some circumstances, the shbasis command will give an error
something like this:

shbasis [WARNING]: Cannot make unambiguous decision on SH basis of image csd.mif (power ratio regressed to l=0 is 1.58446)

shbasis uses a data-driven approach to automatically determine the
SH basis that the image data are currently stored in; however a number
of issues can arise that lead to a breakdown of the numerical assumption
that it is based on, and it can no longer make this decision.

If this occurs, but you are confident that your image data are in the
old non-orthonormal basis and need to be converted to the new
orthonormal basis, you can run:
shbasis <image> -convert force_oldtonew. This will inform
shbasis that even though it’s unable to determine the current SH
basis, you’re confident that you do know it, and therefore it should
perform the conversion anyway. It will give you a couple of loud
warnings just to make sure you appreciate the danger in what you’re
doing, so you should only ever use this setting for problematic data;
for the vast majority of conversions, -convert native is much
better.

 Dixels and Fixels

Dixels and Fixels

So internally we have created a couple of new terms that we find
invaluable when discussing diffusion MRI processing methods and
statistics. We’d like to share these with our user base in the hope that
others will gain advantages from using the same terminology, and also so
that we all know what everyone else is talking about! Anyone using
MRtrix3 to develop their own software may also see these terms scattered
throughout the library code, so will need to know what they represent.

All MRtrix users should be familiar with the terms ‘pixel’ and ‘voxel’;
these correspond to ‘picture element’ and ‘volume element’ respectively.
However in Diffusion MRI we also deal with orientation information
within each image volume element, so we wanted terminology to allow us
to convey the types of discrete elements that we deal with on a daily
basis.

We have settled on the following terms; note that this may conflict with
presentations that we have done in the past, but this is now what we are
sticking to.

‘Dixel’: Directional Element

Imagine a single image voxel, the data for which is in fact a function
on the sphere (i.e. varies with orientation). We now take samples of
that function along a set of pre-defined directions on the unit sphere.
Each of those samples is referred to as a dixel: a directional element
within a specific voxel. Each dixel is described by the voxel in which
it resides, the direction along which the relevant spherical function
was sampled, and the intensity of the function in that direction.

Importantly, it is the combination of the voxel location and sampling
direction that describe the dixel. If a different direction were used to
sample the spherical function, that would be a different dixel with a
different value; likewise, if the spherical function in an adjacent
voxel were sampled along the same direction, that would also be a
different dixel with a different value. Each dixel is a unique sample of
a spatially-varying spherical function.

Most commonly, the term dixel is used to refer to the situation where a
set of directions on the unit sphere has been used to sample a Fibre
Orientation Distribution (FOD) that is otherwise continuous as expressed
in the Spherical Harmonic basis. However, by the definition of the term,
‘dixel’ could also be used to describe a single voxel within a
particular image volume in a HARDI experiment; if the HARDI signal in a
single voxel is considered to be discrete samples of the orientation
dependence of the diffusion signal in that voxel, then each of those
samples could be labelled a dixel.

Although we find this term useful in our internal discussions, and the
original Apparent Fibre Density (AFD) statistical method was based
around this concept, it is not a term that we expect to be adopted by
others, as its applicability for the end user is limited.

‘Fixel’: Fibre bundle element

It will be more common to hear use of the term fixel; this refers to a
specific fibre bundle within a specific voxel. Each fixel is therefore
parametrized by the voxel in which it resides, the estimated mean
direction of the underlying fibres attributed to that bundle, a fibre
density (or partial volume fraction), and potentially other metrics.

At this point it is important to distinguish between ‘dixel’ and
‘fixel’. A ‘dixel’ is typically assumed to represent a sample of a
spherical function along some pre-determined direction, where that
direction belongs to some basis set of equally-distributed unit
directions that has been used to sample an otherwise continuous
spherical function. ‘Fixel’, on the other hand, is used to describe a
set of fibres within a voxel that are sufficiently similar in
orientation that they are indistinguishable from one another, and
therefore form a fibre ‘bundle’ within that voxel.

In reality, fixels have been used in the field of Diffusion MRI for a
long time: multi-tensor fitting, ball-and-sticks, any diffusion model
that is capable of fitting multiple anisotropic elements to each image
voxel, can be considered as providing fixels. We’ve just resorted to
long-winded explanations to describe what we’re on about. With MRtrix we
are historically more accustomed to dealing with FODs that are
continuous functions on the sphere, and are utilised as such during
processing; however, if the FOD is segmented in any way (either
through peak-finding, the segmentation approach as described in the
appendices of the
SIFT NeuroImage paper,
or more advanced methods), each discrete feature of a particular FOD can
be labelled a fixel, as each represents a set of fibres within that voxel
that form a coherent bundle in orientation space.

The term ‘fixel’ has now appeared in the literature with the publication
of our new statistical method,
Connectivity-based Fixel Enhancement [http://www.sciencedirect.com/science/article/pii/S1053811915004218],
which allows for the inference of group differences not just at the voxel
level, but the fixel level; that is, if only one fibre bundle within a
crossing-fibre voxel is affected in a cohort, we hope to both identify the
bundle affected, and quantify the group effect that is specific to that bundle.

 Motivation for afdconnectivity

Motivation for afdconnectivity

Due to the interest in the afdconnectivity command, I thought I’d
explain the reasoning behind the approach, the rationale behind the
improvements made in commit 40ccdb62, and the argument for why we
recommend the use of Spherical-deconvolution Informed Filtering of Tractograms (SIFT) as an alternative if possible.

The afdconnectivity command was originally written as a ‘hack’ for a
colleague who wanted to obtain quantitative measures of ‘connectivity’
in the absence of EPI distortion correction. Without EPI distortion
correction Anatomically-Constrained Tractography (ACT) cannot
be applied, and consequently streamlines may terminate within white
matter. Streamline count (as a measure of connectivity) between two grey
matter regions will therefore not include those streamlines that
terminate in white matter (and therefore the estimated connectivity may
not be accurate).

The afdconnectivity command attempts to get around this issue by
estimating a measure of ‘connectivity’ as follows:

	The integral of a discrete lobe of an FOD
(fixel) is proportional to the volume of
the MR-visible tissue (intra-cellular at high b-value) aligned in
that direction.

	By taking a set of streamlines corresponding to a pathway of
interest, and summing the integrals of all FOD lobes traversed by the
bundle, you obtain an estimate of the total fibre volume of the
pathway of interest.

	If you then divide by the length of the bundle (taken as the mean
streamline length), you get an estimate of the cross-sectional area
of the bundle, which is a measure of ‘connectivity’ independent of
fibre length.

The major problem with this approach is the assumption that all of the
fibre volume in each fixel traversed by the streamlines of interest
belong to the bundle of interest; clearly not the case in various
circumstances. The changes I have made to afdconnectivity are aimed
at improving the behaviour in the presence of partial volume and
erroneous streamlines.

The default behaviour is as before: determine a fixel mask using some
bundle of streamlines, sum the apparent fibre density (a volume) of the
fixels within the mask, and divide by mean streamline length (to get an
estimate of cross-sectional area of the pathway).

Now, you can optionally provide a whole-brain fibre-tracking data set
using the -wbft option (your bundle .tck file should then be a
subset of this tractogram). In this case, the program determines the
total streamlines density attributed to each fixel, and for those fixels
traversed by the streamlines of interest, some fraction of the fibre
volume of that fixel is contributed to the result. This fraction is
determined for each fixel by the ratio of streamlines density from the
bundle of interest, to the total streamlines density from the
tractogram. The fibre volume of each fixel is therefore divided ‘fairly’
between the bundle of interest and the rest of the tractogram.

Although this may be an improvement in many circumstances, it’s still
not our recommended method. Effectively what’s happening in this
scenario is that for each streamline, a fibre volume is determined,
based on its ‘fair share’ of each fixel it traverses. However this means
that the effective cross-sectional area of that streamline is allowed
to vary drastically along its length; this is clearly not physically
realistic. Furthermore, due to the relative over- or
under-reconstruction of different pathways in whole-brain
fibre-tracking, there’s no guarantee that this proportional ‘sharing’ of
fibre volume between streamlines is biologically accurate.

Now consider the alternative: filtering a tractogram using
Spherical-deconvolution Informed Filtering of Tractograms (SIFT), then selecting a subset of the remaining streamlines
corresponding to your pathway of interest. By the model underlying SIFT,
each streamline represents a constant cross-sectional area of fibres; so
the streamline count becomes your estimate of bundle cross-sectional
area and therefore ‘connectivity’ (with the SIFT proportionality
coefficient providing the conversion between streamline count and AFD if
you so choose).

This argument also holds if you are looking to use the image output from
afdconnectivity, which provides the estimated fibre volume of the
pathway of interest within each voxel. I have already stated why this is
a poor interpretation with the default afdconnectivity behaviour;
it’s improved with use of the -wbft option, but is noisy in regions
where fixels are traversed by very few streamlines, and still may not
share the fibre volume of each fixel appropriately. Again, SIFT provides
the better alternative: an equivalent map can be produced by selecting
your streamlines of interest post-SIFT, and running tckmap -precise
(sums streamline lengths within each voxel rather than counting
streamlines). Remember: a product of cross-sectional area and length gives a volume!

This is also an important message for interpretation of AFD results,
both in this context and others. FOD amplitude (in any guise) is in no
way a measure of “tissue integrity”, no matter how many quotation marks
you use; it’s a measure of density. This is the reasoning behind the
modulation step in
AFD [http://www.sciencedirect.com/science/article/pii/S1053811911012092],
and is the entire premise behind the SIFT method.

Anyways, rant over. We are considering writing a technical note that
will discuss this issue, so we are trusting the MRtrix3 beta user base
not to do anything scientifically unethical with this information /
command until we can create the relevant article for citation.

 DICOM handling

DICOM handling

MRtrix3 includes its own fast DICOM handling backend, allowing all MRtrix3
applications to seamlessly support DICOM images as input. While this works well
in most cases, it can fail in some circumstances. Issues specific to this
format are outlined below.

How MRtrix3 handles DICOM data

When interpreting the argument provided for an input image to any MRtrix3
command, the image handling backend will assume that the data are in DICOM
format if the argument corresponds to a folder, or ends with the .dcm
suffix. The DICOM handling backend will then quickly scan through the files
(recursively through the entire folder if one was provided), and build a
table of contents. This consists of a tree, containing one or more
patients, each containing one or more studies, each of which consists of
one of more image series. When multiple choices are possible (e.g. multiple
series are available), the application will present a menu to select the data
of interest. For example:

$ mrinfo "Siemens Trio/"
mrinfo: [done] scanning DICOM folder "Siemens Trio/"
Select series ('q' to abort):
 0 - 9 MR images 10:20:52 localizer_sf (*fl2d1) [1]
 1 - 21 MR images 10:24:39 diff 20DW 2NEX ALL (*ep_b1000#17) [2]
 2 - 54 MR images 10:24:40 diff 20DW 2NEX ALL_ADC (*ep_b0_1000) [3]
 3 - 54 MR images 10:24:40 diff 20DW 2NEX ALL_TRACEW (*ep_b1000t) [4]
 4 - 54 MR images 10:24:40 diff 20DW 2NEX ALL_FA (*ep_b0_1000) [5]
 5 - 21 MR images 10:28:52 ep2d_diff_MDDW_AT_WIP (ep_b1000#2) [7]
 6 - 54 MR images 10:28:53 ep2d_diff_MDDW_AT_WIP_ADC (ep_b0_1000) [8]
 7 - 54 MR images 10:28:53 ep2d_diff_MDDW_AT_WIP_TRACEW (ep_b1000t) [9]
 8 - 54 MR images 10:28:54 ep2d_diff_MDDW_AT_WIP_FA (ep_b0_1000) [10]
?

The user should then enter the integer corresponding to the study of interest,
for example (following from the above):

...

? 5
mrinfo: [100%] reading DICOM series "ep2d_diff_MDDW_AT_WIP"
**
Image: "TOURNIER DONALD (1) [MR] ep2d_diff_MDDW_AT_WIP"
**
 Dimensions: 84 x 84 x 54 x 21
 Voxel size: 2.5 x 2.5 x 2.5 x ?
 Data strides: [-1 -2 3 4]
 Format: DICOM
 Data type: unsigned 16 bit integer (little endian)
 Intensity scaling: offset = 0, multiplier = 1
 Transform: 0.9986 4.186e-08 -0.05229 -99.76
 -0.002193 0.9991 -0.04188 -83.83
 0.05