
mrbait Documentation
Release 1.1.6

Tyler K. Chafin

Jul 29, 2019

Contents

1 Introduction 3
1.1 Pipeline Description . 3
1.2 Getting Started . 6

1.2.1 Availability . 6
1.2.2 Dependencies . 6
1.2.3 Installation . 6
1.2.4 Running mrbait . 7

1.3 Input files . 7
1.3.1 Assembled genomes . 8
1.3.2 Multiple genome alignments . 9
1.3.3 Reduced representation data . 10

1.4 Usage options . 10
1.4.1 Main Parameters . 10
1.4.2 Filtering using vsearch . 14
1.4.3 Filtering using blast . 16

1.5 Output Files . 17
1.6 Benchmarking and Hardware Requirements . 18

1.6.1 Runtime scaling . 18
1.6.2 Memory Usage . 19

1.7 Acknowledgements . 20
1.8 References . 20

2 Indices and tables 21

i

ii

mrbait Documentation, Release 1.1.6

mrbait is a software pipeline for identifying regions of interest in DNA sequence data and designing probes to enrich
them.

The motivation behind mrbait is ease and flexibility of use. As such, mrbait allows a variety of input types and
facilitates a diverse array of bait design approaches, such as those targeting ultraconserved elements, RAD-capture
methods, or those targeting exons or other genomic elements. mrbait also enables fast and efficient iterative design
(e.g. to explore parameter settings) using native Python parallelization and an SQL database back-end. In this docu-
mentation, you can learn about the overall process employed by mrbait (Pipeline overview), how to install mrbait for
use on a personal desktop or remote workstation or HPC (Getting Started), see a full description of all runtime options
(Running mrbait), and see walltime and memory benchmarking results (Benchmarking)

mrbait code is open-source and freely available at on GitHub

Official releases can be found here

Having issues running or installing mrbait? Contact me at tkchafin@uark.edu or post an Issue on the GitHub page.

Citation: Chafin TK, Douglas MR, Douglas ME (2018) MrBait: Universal identification and design of targeted-
enrichment capture probes. Bioinformatics. https://doi.org/10.1093/bioinformatics/bty548

Software and documentation provided under the GNU Public License v3.0 and distributed “as is” without warranty of
any kind.

Contents 1

https://github.com/tkchafin/mrbait
https://github.com/tkchafin/mrbait
https://github.com/tkchafin/mrbait
https://github.com/tkchafin/mrbait/releases
https://github.com/tkchafin/mrbait
mailto:tkchafin@uark.edu
https://github.com/tkchafin/mrbait/issues
https://doi.org/10.1093/bioinformatics/bty548

mrbait Documentation, Release 1.1.6

2 Contents

CHAPTER 1

Introduction

mrbait is a software pipeline for identifying regions of interest in DNA sequence data and designing probes to enrich
them.

A variety of genome reduction methods have been implemented to reduce costs of applying next-generation sequenc-
ing methods to non-model organisms, or projects with large numbers of samples (e.g. those focusing on the population
scale). These can broadly be classified into those which use restriction enzymes and size selection for subsampling
genomic complexity [e.g. RADseq methods (Baird et al., 2008; Peterson et al., 2012)], and those which enrich for
fragments selected a priori using biotinylated RNA ‘baits’ (Lemmon et al., 2012; McCormack et al., 2012). The latter
benefit from increased specificity, yet require some genomic information for marker development. To mitigate, some
take a hybrid approach by using baits to enrich RAD loci which are most consistently recovered, or to maximize
capture of parsimony-informative variation (Ali et al., 2016; Hoffberg et al., 2016).

Applying these targeted-enrichment methods (either via RAD-capture methods, ultra-conserved elements, or
anchored-enrichment) requires first bioinformatic processing to parse large alignments, identify candidate regions
for bait-design, and design of complementary oligonucleotide sequences for synthesis. Although some developers are
transparent in providing computational resources and workflows to design such probe sets (e.g. see Faircloth 2017),
a generalized and flexible pipeline does not yet exist. The motivation behind MrBait was to provide such a resource,
which could be universally applied to differing bait enrichment strategies (e.g. targeting ultra-conserved regions vs.
functional elements), and facilitate diverse quality control methods to mitigate non-target capture (contamination, etc),
target-target hybridization, ambiguous mapping, and enrichment of repetitive DNA.

mrbait code is open-source and freely available at on GitHub

Official releases can be found here

1.1 Pipeline Description

The general process (summarized in figure below) is built on a relational database in SQLite, populated, accessed,
and parsed in Python. It takes a variety of input file formats, and is written modularly such that adding additional
capabilities (e.g. input file formats, filtering schema) can be done without too much difficulty. The workflow is
divided into 5 steps, as follows:

3

https://github.com/tkchafin/mrbait
https://github.com/tkchafin/mrbait
https://github.com/tkchafin/mrbait
https://github.com/tkchafin/mrbait/releases

mrbait Documentation, Release 1.1.6

1. Alignments (provided as .xmfa, .loci, or .maf) or genomes (provided as .fasta, annotated with .vcf or .gff) will
be used to build a consensus sequence of each locus.

2. A sliding window will be applied to each consensus to find candidate targets for which baits could be designed

3. Targets are then selected (if too close together, or only one allowed per locus), and filtered according to any
number of specified filter (e.g. GC content, flanking SNPs, pairwise alignment)

4. Passing targets are then parsed to design a putative set of baits

5. Baits are then filtered according to selected criteria, and output as FASTA.

6. The pipeline can be resumed and any steps iteratively re-visited by providing the SQLite database file (resulting
in a significant reduction in runtime for successive runs)

4 Chapter 1. Introduction

mrbait Documentation, Release 1.1.6

1.1. Pipeline Description 5

mrbait Documentation, Release 1.1.6

1.2 Getting Started

mrbait has been tested on Mac and Linux operating systems and is primarily supported on those platforms. However,
Windows users can easily install using the built-in Linux subsystem for Windows 10.

In-development code can be found on the Github page: https://github.com/tkchafin/mrbait

If you find any issues with the program, please email me at tkchafin@uark.edu or submit as an issue on Github, which
can also be used for submitting feature requests. When submitting bugs or issues, please include input files, your
command-line call, and any output MrBait produced to the screen or output files.

1.2.1 Availability

Functioning releases can be found at: https://github.com/tkchafin/mrbait/releases

Source code: https://github.com/tkchafin/mrbait

conda package: https://anaconda.org/tylerkchafin/mrbait

1.2.2 Dependencies

mrbait is written for Python3, and requires Python version >= 3.6.0. The recommended method of acquiring Python
and all other dependencies is via the Anaconda distribution, as outlined in Section 3.3. A full list of dependencies is
given below.

• Python >= 3.6

• SQLite3

• BioPython

• Pandas >=0.22

• numpy

• pyVCF

• networkx

mrbait can optionally use the following programs during bait development:

• blast

• vsearch

For these utilities, please cite the following: Camacho C, Coulouris G, Avagyan V, Ma N, Papadopoulos J, Bealer K,
Madden TL. 2009. BLAST+: architecture and applications. BMC Bioinformatics. 1-:410. Doi:10.1186/1471-2105-
10.421

Rognes R, Flouri T, Nichols B, Quince C, Mahe F. 2016. VSEARCH: A versatile and open source tool for metage-
nomics. PeerJ. 4:e2584. Doi: 10.7717/peerj.2584

1.2.3 Installation

By far the easiest way to acquire and install mrbait is via conda, a command line interface for managing and installing
packages. Download and install anaconda for Python 3.6 here: https://www.anaconda.com/download/. If you are
wanting a minimal environment, or a faster install, you can also use the Miniconda distribution (https://conda.io/
miniconda.html) with the same commands. After installation, be sure to test that conda is installed by typing conda
info, which will print information about your installation. Note, you may first need to reload your bash environment

6 Chapter 1. Introduction

https://github.com/tkchafin/mrbait
https://github.com/tkchafin/mrbait
mailto:tkchafin@uark.edu
https://github.com/tkchafin/mrbait/issues
https://github.com/tkchafin/mrbait/releases
https://github.com/tkchafin/mrbait
https://anaconda.org/tylerkchafin/mrbait
https://github.com/tkchafin/mrbait
https://www.python.org/
https://www.sqlite.org/index.html
http://biopython.org/
http://pandas.pydata.org/
http://www.numpy.org/
https://pyvcf.readthedocs.io
https://networkx.github.io/
https://blast.ncbi.nlm.nih.gov/Blast.cgi
https://github.com/torognes/vsearch
https://github.com/tkchafin/mrbait
http://docs.continuum.io/conda/
http://docs.continuum.io/anaconda/install.html
https://www.anaconda.com/download/
https://conda.io/miniconda.html
https://conda.io/miniconda.html

mrbait Documentation, Release 1.1.6

by typing source ~/.bashrc or source ~/.bash_profile on Mac. Assuming success, the installation process is then very
straightforward:

#This command tells conda that the code and dependencies for mrbait can
#be found in ‘channels’ bioconda, conda-forge, and tylerkchafin.
conda install mrbait -c tylerkchafin -c bioconda -c conda-forge

#If you would like to instead install the latest development version, you can
#clone the github repository and
#install MrBait like so (assuming you have git installed):
git clone https://github.com/tkchafin/mrbait.git
cd mrbait
python ./setup.py install

You will then need to manually install both vsearch and blast, only if you install directly from the GitHub source using
the setup.py installation. These will be installed for you if you used conda.

Windows users: MrBait is installable using the built-in Linux subsystem for Windows 10. I have only tested using
the Ubuntu OS subsystem configuration but assume that other Linux distros would work equally well. If you prefer,
you can also use a Linux installation on a virtual machine, or installed portably on a USB-attached drive, although this
may impact performance. Contact me at tkchafin@uark.edu if you have any issues getting mrbait installed, or feel free
to launch an ‘Issue’ on the GitHub page.

HPC users: One of the reasons I recommend using conda to manage your Python environment, is that it keeps your
packages separate from the system environment, which you often will not have permissions to modify. Anaconda
will instead install your own local flavor of Python in your home directory, where is will also install any additional
packages you choose to add.

BLAST and VSEARCH: conda will also install both BLAST and VSEARCH and place them within your conda
environment. If you would like to manually manage versions of these programs, or use an existing installation, you
can provide the paths to those binaries using the –vsearch and –blastn commands for mrbait.

1.2.4 Running mrbait

Assuming you have completed the recommended conda install, mrbait and it’s Dependencies should already be in your
path and is now fully ready to go. You can verify successful installation, and view the help menu, by typing: mrbait -h

Instructions for bait design are provided as arguments (see Section 5 for thorough usage instructions, and Section 8
for tutorials). For example, to generate baits of length 80, tiled across target regions with an overlap of 40 bases, from
a Multiple Alignment File (MAF) “example.maf”:

mrbait -M example.maf -b 80 -s tile=40

Or, to also filter for only alignments including 5 or more individuals, and of length >500:

mrbait -M example.maf -b 80 -s tile=40 -l 500 -c 5

1.3 Input files

This section describes the input file types accepted by MrBait.

1.3. Input files 7

https://github.com/torognes/vsearch
https://blast.ncbi.nlm.nih.gov/Blast.cgi
http://docs.continuum.io/conda/
https://tutorials.ubuntu.com/tutorial/tutorial-create-a-usb-stick-on-ubuntu#0
mailto:tkchafin@uark.edu
https://github.com/tkchafin/mrbait
https://github.com/tkchafin/mrbait
http://docs.continuum.io/conda/
https://github.com/tkchafin/mrbait

mrbait Documentation, Release 1.1.6

1.3.1 Assembled genomes

mrbait only accepts genome assemblies formatted as FASTA. These can represent contigs, scaffolds, or entire chro-
mosomes. According to the FASTA specifications, a sequence should begin with a header line, or short description
(indicated by the “>” symbol), followed by a second line containing sequence data. It does not matter if the following
lines are interleaved or on a single line, and any blank lines in the file will be ignored, as will any leading or trailing
whitespace.

An example FASTA-formatted sequence is given below.

1 >chr1.scaffold1
2 ATAGCTCGGCTACGTGATCGCGTGCTC-ATGCTAGCGCTNNNNNNNNATGATTGCTTTT
3 TGTGTGTGCAAGCACTGCCGRGCTACGCGCTACTGCCRCCTAGTATGTGTGGCCGCTAC
4 TAGTCCGCGCTAGCTtTtagatctcgtggcgccgcgcgcgtcgcacgatcgtacgcgcc
5 >chr1.scaffold2
6 ATCGTGCTGCGGCGCTGCCTCAGC...
7 ...
8 ...
9 ...

Annotating genomes with VCF

mrbait also supports supplementing genomic sequences with coordinate-reference SNP data (e.g. obtained from
population-level sequencing) using the Variant Call Format:

1 ##fileformat=VCFv4.2
2 ##FORMAT=<ID=GT,Number=1,Type=Integer,Description="Genotype">
3 ##FORMAT=<ID=GP,Number=G,Type=Float,Description="Genotype Probabilities">
4 ##FORMAT=<ID=PL,Number=G,Type=Float,Description="Phred-scaled Genotype Likelihoods">
5 #CHROM POS ID REF ALT QUAL FILTER INFO FORMAT SAMP001

→˓SAMP002
6 chr1.scaffold1 48 rs11449 G A . PASS . GT

→˓0/0 0/1
7 chr1.scaffold1 47 rs11449 T A . PASS . GT

→˓0/0 0/1
8 chr1.scaffold2 1 rs84825 A T . PASS . GT:GP 0/1:.

→˓0/1:0.03,0.97,0
9 ...

10 ...

It is important to note that the VCF format can communicate much more information than mrbait will utilize. The
CHROM and POS columns will be parsed to locate the reference position for each SNP, and the REF and ALT columns
to write a new consensus base at that position using IUPAC ambiguity codes (e.g. C/T = Y). More functionality will
be added in future versions of mrbait.

It is highly recommended you add variant data if it is available, as it will be used both for finding adequately conserved
regions for bait design, as well as for filtering target regions for those which capture flanking SNPs.

NOTE: When using VCF, the REF column is ignored. Instead, the reference allele will be taken from the FASTA
reference provided. For cases when the reference allele is an N or gap (-), you can choose to either retain the N/gap
allele, OR attempt to override it using the ALT alleles provided in the VCF for that position (–vcfALT)

Annotating genomes with GFF

mrbait can also make use of genomic features provided using the Generic Feature Format (GFF), independently or
in addition to any variant data provided via VCF. mrbait assumes that input GFF files follow the version 3 GFF

8 Chapter 1. Introduction

https://github.com/tkchafin/mrbait
https://github.com/tkchafin/mrbait
http://samtools.github.io/hts-specs/
https://github.com/tkchafin/mrbait
https://github.com/tkchafin/mrbait
https://github.com/tkchafin/mrbait

mrbait Documentation, Release 1.1.6

specification <https://github.com/The-Sequence-Ontology/Specifications/blob/master/gff3.md>_:

1 ##gff-version 3
2 chr1.scaffold1 . gene 10 180 . + .

→˓ID=gene0001;Alias=targets
3 chr1.scaffold1 . mRNA 20 180 . + .

→˓ID=mrna0001;Parent=gene0001
4 chr1.scaffold1 . exon 10 128 . + .

→˓ID=tfbs00001;Parent=gene0001
5 ...
6 ...

Columns should be separated by tabs and defined according to the GFF3 standard (e.g. column 1 contains the sequence
ID). mrbait will use the sequence ID (column 1) to map coordinates in GFF columns 4 and 5 to the reference provided
in your FASTA file, thus these identifiers must be identical. mrbait will also categorize features internally by the type
(e.g. “exon”) given in column 3, and by any alias assigned in the attributes column (column 9). All other columns are
ignored. You can use either type or alias to tell mrbait to target those features for bait design.

If you are not targeting all of a single type (e.g. CDS, or exon), you can either pre-filter your GFF file prior to loading,
or you can annotate features of interest using the Alias attribute.

1.3.2 Multiple genome alignments

mrbait reads two different input file types for multiple genome alignments. These can be provided using the Multiple
Alignment Format (MAF), or the eXtended Multi-FastA (XMFA) formats.

The MAF format is output by several multiple alignment programs, including MAFFT and Mugsy, and take the
following general form:

1 ##maf version=1 scoring=tba.v8
2 # tba.v8 (((human chimp) baboon) (mouse rat))
3 # multiz.v7
4 # maf_project.v5 _tba_right.maf3 mouse _tba_C
5 # single_cov2.v4 single_cov2 /dev/stdin
6

7 a score=5062.0
8 s hg16.chr7 27699739 6 + 158545518 RAAAGAGATGCTAAGCCAATGAGTTGATGTCTCTCAATGTGTG
9 s panTro1.chr6 28862317 6 + 161576975 RAAAGAGATGCTAAGCCAATGAGTTGTTGTCTCTCAATGTGTG

10 s baboon 241163 6 + 4622798 TAAAGAGATGCTAAGCCAATGAGTTGTTGTCTCTRAATGTGTG
11 s mm4.chr6 53303881 6 + 151104725 TAAAGAGATGCTAAGCCAATGAGTTGTTGTCGCTCAATGTGTG
12 s rn3.chr4 81444246 6 + 187371129 taaggaGATGCTAAGCCAATGAGTTGTTGTCGCTCAATGTGTG
13

14 ...
15 ...
16 ...

Comment lines (starting with “#”) are ignored by mrbait. Alignment blocks (considered by mrbait to each represent
different loci) are started with “a”, followed by sequence lines starting with “s”. Source, strand, and coordinate
positions are not informative for mrbait, nor are lines starting with other letters (which can be used in the MAF format
to communicate additional information about the preceding sequence, such as quality scores).

The eXtended Multi-FastA (XMFA) format output by the multiple-genome aligner MAUVE (which outputs it as
“.alignment”) is an extension of the standard FASTA format to allow alignment blocks from many different loci, with
header lines representing identifiers for the aligned sequence, and start-end coordinates representing the alignment
block location within the genome, followed by the sequence:

1.3. Input files 9

https://github.com/tkchafin/mrbait
https://github.com/tkchafin/mrbait
https://genome.ucsc.edu/FAQ/FAQformat.html#format9.3
https://asap.genetics.wisc.edu/software/mauve/mauve-user-guide/mauve-output-file-formats.php
https://mafft.cbrc.jp/alignment/software/
http://mugsy.sourceforge.net/
https://github.com/tkchafin/mrbait
https://github.com/tkchafin/mrbait
https://github.com/tkchafin/mrbait

mrbait Documentation, Release 1.1.6

1 >1:1-230 +
2 ATAGC-NAATC--GC...
3 >2:210-440 -
4 ATTGGCCAATCCCC...
5 >3:3-230 +
6 TTA-CCAAGC--GC...
7 =
8 ...
9 ...

Alignment blocks are delimited by the “=” symbol. All alignment blocks are assumed by mrbait to represent separate,
discontinuous loci. Note that because no individual ‘alignment block’ in the .xmfa file is guaranteed to contain the
same genome representatives, no reference coordinates are saved by mrbait. This means that additional annotation via
GFF or VCF cannot be added to whole-genome alignments provided in .xmfa format.

1.3.3 Reduced representation data

Alignments from reduced-representation methods such as restriction-site associate DNA sequencing methods (RAD-
seq) can be input using the MAF or XMFA formats, or using the “.loci” format output by the RADseq assembly
pipeline pyrad or its successor ipyrad. This format shows individual loci delimited by a line starting with “//” which
features additional annotation of variants and parsimony-informative sites:

1 >PopA001 GTGTGATAGTAGTGATGTATTTTATAATATATATTATCGGATAT......
2 >PopA002 GTGTGARAGTAGTGATGTATTTTATAATATATATTATCGGATAT......
3 >PopB001 GTGTGACAGTAGTGATGTATTTTATAATATATATTATCGGATAT......
4 >PopB002 GAGTGATAGTAGTGATGTATTTTATAATATATATTATCGGATAT......
5 // * * |1
6 ...
7 ...
8 ...

mrbait ignores annotation information (since it parses variants anyways to generate a consensus sequence), and only
uses the “//” delimiter to distinguish between alignment blocks. Creating a .loci file from other formats can be accom-
plished relatively easily. For example, a series of separate alignments (each as .fasta), could be converted to the .loci
format using the following bash command:

for file in `ls example*.fasta`; do
awk 'BEGIN{ORS=""}$1~/^\>/{print $01"\t";next}{print $0"\n"}' $file
>> example.loci;
echo "//" >> example.loci;

done

1.4 Usage options

mrbait reads all options and inputs using command-line arguments provided after the program name. For a quick look
at all options from the command line, call the help menu by typing mrbait -h from the terminal.

Note that options requiring a floating point number (e.g. -q) allow inputs from 0.0 to 1.0, and options requiring an
integer (e.g. -c) allow inputs ranging from 1 to infinity.

1.4.1 Main Parameters

10 Chapter 1. Introduction

https://github.com/tkchafin/mrbait
https://github.com/dereneaton/pyrad
https://github.com/dereneaton/ipyrad
https://github.com/tkchafin/mrbait

mrbait Documentation, Release 1.1.6

General options

-r, --resume Resume: This flag is used to tell mrbait if you would like to resume work follow-
ing a particular step. Use this option in conjunction with the –db flag to continue
the pipeline if you would like to re-perform filtering steps without needing to
re-load and parse alignments

Usage: -r 1: Continue pipeline after Step 1 (loading alignments) -r 2: Continue
fter Step 2 (target discovery) -r 3: Continue after Step 3 (target filtering) -r 4:
Continue after Step 4 (bait discovery) For example, -r 4 will tell mrbait to re-do
bait filtering and output

--db Database: Use this with the –resume flag to specify a .sqlite database file from
which to start the pipeline.

-T, --threads Threads: Number of threads to use with processes that run in parallel. This will
also be passed to vsearch and/or blast if those are being called. [default=1]

-h, --help Help: Exit and display the help menu

Input Options

-M, --maf MAF input: Use this to provide the path to the multiple alignment MAF file

-X, --xmfa XMFA input: As an alternative to the MAF file, you can provide the .xmfa file
output by the aligner Mauve.

-L, --loci LOCI input: Multiple alignments can also be provided using the .loci file output
by the RADseq assembly pipeline pyRAD.

-A, --assembly FASTA input: Genome assembly provided as FASTA

-V, --vcf VCF input: For use with –assembly: VCF file containing variant data

-G, --gff GFF input: For use with –assembly: GFF file containing feature data

--vcfALT REF calling with VCF: For use with –assembly and –vcf: This option tells
mrbait to attempt to override N/gap characters in the reference sequence using
values from the ALT column in the VCF file. [default=off; boolean]

Alignment filtering/ consensus options (use with -M, -X, -L)

-c, --cov Coverage: Minimum number of individuals/sequences per alignment, for MAF,
XMFA, or LOCI inputs [default=1]

-l, --len Minimum length: Minimum alignment length to attempt bait design [de-
fault=80]

-q, --tresh Bad base threshold: Threshold proportion of gaps or N (ambiguous or poor
quality) characters to over-ride the consensus base. For example, -q 0.2 would
be interpreted as 20% of bases at a nucleotide position must be an “N” or gap
character in order for that character to be represented as the consensus base. [de-
fault=0.1]

-Q, --max_ambig Max bad bases: Maximum allowable proportion of gap/N characters allowed
in a consensus sequence before it will be discarded. -Q 0.5 means a consen-
sus sequence can be 50% N’s or gap characters (“-“) before being dropped from
consideration. [default=0.5]

1.4. Usage options 11

https://github.com/tkchafin/mrbait
https://github.com/torognes/vsearch
https://blast.ncbi.nlm.nih.gov/Blast.cgi

mrbait Documentation, Release 1.1.6

-k, --mask Mask threshold: Threshold proportion of masked characters per nucleotide col-
umn to mask the consensus base call. For use when case represents masking
information (where lowercase = masked), as when using the -xsmall option in Re-
peatMasker to flag low-complexity or repetitive sequences. Case will be retained
in the consensus on a per-base basis according to this threshold. [default=0.1]

-K, --max_mask Max masked bases: Maximum allowable proportion of masked characters al-
lowed in a consensus sequence before it will be discarded. -K 0.5 means a con-
sensus sequence can be 50% masked (lowercase) before being dropped from con-
sideration.[default=0.5].

If lowercase bases do not contain masking information, set to -K 1.0

--dustMask Perform DUST masking: Using this flag will have mrbait mask the consensus
sequences using the DUST algorithm in VSEARCH

General Bait Design Options

-b, --bait Bait length: This is the length of desired baits, and will be used for bait design
as well as the sliding window width for target region discovery [default=80]

-w, --win_shift Sliding window shift distance: Shift distance for sliding window used to dis-
cover target regions. Generally, there should not be a reason to alter this. If target
discovery (step 2) is taking a very long time, adjusting this may make it faster
although it could result in more targets failing filtering [default=1]

-v, --var_max Maximum SNPs per bait: Maximum allowable variants allowed in a bait
sequence. These can be expanded in the final output as each possible non-
ambiguous bait sequence for synthesis. Use this when there are not enough con-
served regions to capture enough loci for your design. [default=0]

-n, --numN Maximum Ns per bait: Maximum allowable ambiguous (N) bases allowed per
bait. This could be increased when there are too many poor quality bases in your
alignment to design a sufficient number of probes, although keep in mind this
will affect the specificity of your resulting probes. [default=0]

-g, --numG Maximum gaps per bait: Maximum allowable gap characters allowed per bait.
If dealing with alignments containing many indels, it might be desirable to allow
a small number per bait sequence. These can be expanded in the final output
using the -x,–expand option, which will expand gap characters as A, G, T, C, and
absent. [default=0]

Target Region Options

These are options primarily used to control which target regions, or regions which could be enriched (e.g. conserved
enough to design baits) will be used to design the final set of bait sequences. Targets will be either passed or failed
depending on these criteria.

For example, you can constrain targets to fail if they are below 200 bases in length, or above 5000 based in length by
specifying -F len=200,5000. In this case, all targets with total lengths outside of this range will fail, and be excluded
from bait design.

-R, --mult_reg Multiple targets per locus: By default, mrbait only chooses one target region
(e.g. conserved region for which baits could be designed) per locus/ alignment.
When multiple are discovered, they are ranked according to the criterion selected
with the -S,–select_r option. When -R,–mult_reg not in use, only a single target
region (and corresponding baits) is chosen per alignment. [default=false]

12 Chapter 1. Introduction

http://www.repeatmasker.org/
http://www.repeatmasker.org/
https://github.com/tkchafin/mrbait

mrbait Documentation, Release 1.1.6

-m, --min_mult Minimum length for multiple targets: Specify this to set a minimum alignment
or locus length to allow multiple target regions to be selected. By default will be
set to the value of -l,–len (thus, when -R,–mult_reg is used, all loci passing length
filter will be allowed multiple targets).

-D, --dist_r Distance between targets: When -R,–mult_reg is in use, use this parameter to
specify the minimum distance between targets. When targets are in conflict (e.g.
they are less than -D,–dist_r bases apart), conflicts will be resolved using the
criterion set with -S,–select_r. [default=100]

--target_all Use all loci as targets: This option tells mrbait to use all passing loci as target
regions for bait design. Note that all target filtering options will still be in effect.
Use this option if your input loci are already curated, and you simply want to
design baits for them [default=False]

-d, --flank_dist Flanking distance for target filtering: Distance from boundaries of target re-
gion to parse for counting SNPs, ambiguities, gaps, etc when filtering target re-
gions (see -S,–select_r and -F,–filter_r) [default=500]. Note that this value will
tell mrbait to search ‘d’ bases to the left AND right of each target region. Note
that currently, the same –flank_dist value will be used for all filters.

-S, --select_r Target selection criterion: Method to resolve conflicts when targets are too
close together (e.g. when -R and -D), or when only choosing one target per lo-
cus/alignment.

Usage: -S snp: Select target with most SNPs within d bases -S bad: Select target
with least gaps/Ns within d bases -S cons: Select target with least SNPs within d
bases -S rand: Randomly select a target [default]

Example: -d 100 -S snp to choose region with most SNPs within 100 flanking
bases

-F, --filter_r Target filtering criteria: Method(s) used to filter all target regions. Can be
specified any number of times to use additional filtering criteria.

Usage: -F len=[x,y]: Length between x (min) and y (max) -F gap=[x]: Maxi-
mum of x indels in target region -F bad=[x]: Maximum of x N characters in target
region -F snp=[x,y]: Between x (min) and y (max) SNPs w/in d -F mask=[x]:
Maximum of x N characters in target region -F gc=[x,y]: G/C propotion between
x (min) and y (max) -F rand=[x]: Randomly retain x targets -F pw=[i,q]: Pair-
wise alignment, removing when i percent identity over at least q proportion of the
sequences -F blast_i=[i,q]: Only retain BLAST hits with i percent identity over
at least q query coverage -F blast_i=[i,q]: Exclude BLAST hits with i percent
identity over at least q query coverage

-F blast_a=[i,q]: Exclude targets with multiple non-overlapping
BLAST hits having i percent identity over at least q query coverage

-F gff=[type]: Only retain targets within d bases of a GFF-annotated feature of
type type. Only for use when -A and -G inputs provided. Use -F gff=all to
target any type of annotated feature. -F gff_a=[alias]: Only retain targets within
d bases of a GFF-annotated feature of tagged with the Alias attribute matching
alias. Only for use when -A and -G inputs provided.

Examples: -F snp=1,10 -d 100 to sample when 1-10 SNPs within 100 bases -F
gc=0.2,0.8 -F rand=100 to keep 100 random targets w/ 20-80% GC -F mask=0.1
to remove targets with >10% masked bases -d 1000 -F gff=exon to keep targets
within 100 bases of an exon

1.4. Usage options 13

https://github.com/tkchafin/mrbait

mrbait Documentation, Release 1.1.6

Bait Selection Options

These options are used to specify how baits will be designed in passing target regions (-s, –select_b) and how designed
baits will be curated to create the final set of sequences for synthesis (-f, –filter_b).

The default behavior is to tile baits across all passing target regions, with an overlap of 50%. This corresponds to ~2X
coverage across the target region. Only passing baits will be included in the final output FASTA file.

-s, --select_b Bait selection scheme: Use this to specify the desired method to design baits
from passing target regions.

Usage: -s tile=[x]: Tile baits over whole region, with x overlap -s center=[n,x]: n
centered baits with x overlap -s calc=[n,x]: Design n baits per target with x max-
imum overlap -s flank=[n,x]: n terminal baits (each end) with x overlap Default
behavior is to tile baits across all targets with 50% overlap

-f, --filter_b Bait filtering criteria: Method(s) used to filter baits. Can be specified any num-
ber of times to use additional filtering criteria.

Usage: -f mask=[x]: Maximum of x N characters in target region -f gc=[x,y]: G/C
propotion between x (min) and y (max) -f rand=[x]: Randomly retain x targets
-f pw=[i,q]: Pairwise alignment, removing when i percent identity over at least
q proportion of the sequences -f rc=[i,q]: Pairwise align reverse complements,
where i and q are as in -f pw -f blast_i=[i,q]: Only retain BLAST hits with i per-
cent identity over at least q query coverage -f blast_i=[i,q]: Exclude BLAST hits
with i percent identity over at least q query coverage -f blast_a=[i,q]: Exclude
baits with multiple non-overlapping BLAST hits having i percent identity over at
least q query coverage

Output Options

Use these options to control the format of your output file, or to specify non-default output files.

-x, --expand Bait format: Boolean. Use this flag if you want any ambiguities in bait sequences
to be expanded (e.g. N = A,G,C,T). IUPAC codes will be fully expanded, and gap
characters will be expanded as all nucleotides and as absent. Bait sequences will
be output as FASTA to $out_baits.fasta

-t, --print_tr Print target regions: Boolean. Use this flag if you would like target regions
to be printed to a FASTA file. FASTA headers will reflect locus number, target
number within locus, and pass=T or pass=F indicating if the target passed or
failed filtering specified using the -F,–filter_r options, as|br| well as any targets
which were excluded due to -S,–select_r criteria. Output file will be named as
$out_targets.fasta.

--print_loc Print locus cataog: Boolean. Prints consensus loci, formatted as in –print_tr

--strand Output strand: Use this if you want to print baits as-designed, or as reverse
complement. Possible values: “+” [default], “-” (reverse-complement), or “both”.

-o, --out Output prefix: Desired prefix for output files. Default is “out”.

1.4.2 Filtering using vsearch

Using the –filter_r or –filter_b ‘pw’ (for pairwise-align) options call an external open-source package vsearch. In-
ternally, this is accomplished using the “allpairs_global” function in vsearch, which performs all-vs-all global align-
ments of target or bait sequences. mrbait then parses the output of vsearch to find pairs of sequences with greater

14 Chapter 1. Introduction

https://github.com/torognes/vsearch
https://github.com/torognes/vsearch
https://github.com/tkchafin/mrbait
https://github.com/torognes/vsearch

mrbait Documentation, Release 1.1.6

than i percent identity over at least q percent of the query sequence. Sequences are first sorted by length, meaning
the q proportion should be measured by the shorter of the two sequences in each pairwise alignment (although when
called with the –filter_b command, all pairs are of equal length). Because all sequences will be compared in a pairwise
fashion, keep in mind that this step could take considerable time, although VSEARCH is exceptionally efficient and
does take advantage of multiple cores for parallel computation (passed using the –threads argument).

If you did NOT install vsearch using the conda installation instructions for mrbait, you may need to point mrbait to
the vsearch executable. You can specify this path, as well asspecify how mrbait parses the results of vsearch using the
following parameters:

vsearch Options

--vsearch VSEARCH binary: Path to vsearch binary. If installed via conda install, the
bioconda recipe will be used, and placed into the bin/ folder for your conda in-
stallation. mrbait, by default, assumes that the vsearch executable is locatable in
your $PATH as “vsearch”. If this is not the case, provide an alternate path using
this flag.

--vthreads VSEARCH threads: Number of threads to use for vsearch. By default, this is
assumed to be the same value as the –threads argument passed to mrbait

--noGraph No conflict graph: By default, mrbait will try to recover as many sequences
as possible from the pairwise alignment results by using a graph structure (see
below) to remove only enough sequences to resolve all conflicts

--noWeightGraph Unweighted conflict resolution: By default, mrbait weights all nodes by the
number of SNPs that the corresponding target or bait captures. Use this option to
turn this off, and instead use the built-in maximal_independent_set function from
the networkx package.

--weightByMin Weight by minimum ambiguity: Instead of trying to keep sequences with the
most flanking SNPs, this option tries to keep sequences with the fewest gap or N
characters in flanking sequences.

--weightMax Maximum size to attempt weighting: Maximum graph size to attempt weighted
algorithm for finding maximal independent set. Graphs larger than this size will
use the maximal_independent_set function from the networkx package, which is
slightly faster.

Graph-based conflict resolution

After vsearch is complete, mrbait will parse the output and represent all ‘conflicting’ sequences (e.g. those which
aligned with i or greater identity and q or greater query coverage) as a graph structure, with nodes as the primary key
(ID) for the SQLite entry corresponding to each sequence, and edges unweighted and representing ‘conflicts’ from the
pairwise alignment. By default, mrbait uses this graph structure to attempt to rescue as many sequences as possible
which failed the pairwise alignment filter by using an algorithm to find the most sequences which can be “kept” while
removing all edges (conflicts) from the graph (e.g. see Figure 2 below).

This is accomplished by searching through all edges, removing the node (target or bait) which captures the least
flanking SNPs in the original alignments, or if this value is equal by removing the node with the most neighbors
(=conflicting sequences). If both quantities are equal, one is chosen at random. Options are provided to turn off this
behavior altogether, or to weight nodes according to how many gap/N characters flank them, or to alternatively use the
maximal_independent_set function from the networkx package. Unfortunately, finding the maximal independent set
of a graph (i.e. the maximum number of nodes to retain while removing all edges) is an extremely hard problem, and
cannot be done in a particularly efficient manner. Thus, with very large sets of target sequences, this can take quite a
while if there is a lot of highly matching alignments among them.

1.4. Usage options 15

https://github.com/torognes/vsearch
http://docs.continuum.io/conda/
https://github.com/tkchafin/mrbait
https://github.com/tkchafin/mrbait
https://github.com/torognes/vsearch
https://github.com/torognes/vsearch
http://docs.continuum.io/conda/
http://docs.continuum.io/conda/
https://github.com/tkchafin/mrbait
https://github.com/torognes/vsearch
https://github.com/torognes/vsearch
https://github.com/tkchafin/mrbait
https://networkx.github.io/
https://networkx.github.io/
https://github.com/torognes/vsearch
https://networkx.github.io/

mrbait Documentation, Release 1.1.6

Figure 2: Example maximal independent set (plotted using the matplotlib for Python!) where nodes in red are those
which have been kept by the algorithm. Black nodes represent sequences which would be deleted (e.g. baits which
fail the ‘pw’ filter). Although red nodes may be indirectly connected by black ‘failed’ nodes (i.e. by multiple edges),
no direct edges remain in the graph after removing failed nodes.

1.4.3 Filtering using blast

The NCBI-BLAST+ package (https://blast.ncbi.nlm.nih.gov/Blast.cgi) can also be called using a similar scheme of
setting a threshold of i sequence identity of hits, and q query coverage. Currently, mrbait supports blastn filtering
using these cutoff values to either exclude (blast_x) or include (blast_i) sequences based on presence of hits.

Usage of the ‘blast_x’ option for either target (–filter_r) or bait (–filter_b) filtering would most generally be used to
prevent non-target matches to potential contaminant DNA, given a representative genome for the putative non-target
organism (for example a common bacterial contaminant). If such a reference genome is lacking, you can also increase
specificity of chosen targets or baits using the ‘blast_i’ option, which only retains queries with hits to a specified
genome.

When using either ‘blast_x’ or ‘blast_i’ options for filtering, a database file must be specified either as a pre-built
BLAST-formatted database using the –blastdb flag, or alternatively as a FASTA file using –fastadb. In the latter case,
mrbait will call the NCBI MakeBlastDB executable. When using the conda install, this is included with all other
BLAST+ binaries (including the blastn executable also required by mrbait for BLAST filtering). If not using the
conda installation instructions, these are both assumed to be accessible in your $PATH as ‘blastn’ and ‘makeblastdb’.

Please note that with particularly large sets of query sequences, this process may take a while, although it does take
advantage of multithreading if passed via the –threads argument.

BLAST options:

--blastn BLASTN binary: Path to blastn binary. If installed via conda install, the bio-
conda recipe will be used, and placed into the bin/ folder for your conda instal-
lation. mrbait, by default, assumes that the blastn executable is locatable in your

16 Chapter 1. Introduction

https://blast.ncbi.nlm.nih.gov/Blast.cgi
http://docs.continuum.io/conda/
http://docs.continuum.io/conda/
http://docs.continuum.io/conda/
https://github.com/tkchafin/mrbait

mrbait Documentation, Release 1.1.6

$PATH as “blastn”. If this is not the case, provide an alternate path using this
flag.

--makedb MakeBlastDB binary: Path to makeblastdb binary. If installed via conda install,
the bioconda recipe will be used, and placed into the bin/ folder for your conda
installation. Mrbait, by default, assumes that the makeblastdb executable is locat-
able in your $PATH as “makeblastdb”. If this is not the case, provide an alternate
path using this flag.

--blastdb Path to BLAST database: Full path to formatted database to search against

--fastadb Path to FASTA database: If database is provided as a FASTA file, and requires
building using the makeblastdb command, provide that path here.

--e_value E-value threshold: Minimum e-value cutoff to report BLAST hits [de-
fault=0.000001]

--gapopen Gap opening penalty: Penalty for opening gaps when performing alignment
[default=5]

--gapextend Gap extension penalty: Penalty for extending gaps when performing alignment
[default=2]

--word_size Word size: Word size [default=11]

--max_hits Max hits: Value for BLAST parameter –max_target_seqs [default=10000]

--nodust Turn off dusting: Use this flag to turn off the low-complexity filter using by
blastn. Depending on what your goals are for BLAST filtering, this may be nec-
essary. Boolean.

--megablast Use megablast: Use this flag to switch to the megablast algorithm. It is recom-
mended you use this if you are trying to exclusively find nearly identical align-
ments to a very closely related genome.

1.5 Output Files

Final output of baits will be formatted as FASTA and named $out_baits.fasta (where $out is defined using the -o/–out
flag). When the -t/–print_tr option is in use, targets will also be output as $out_targets.fasta, with an additional field
in the header indicating if these targets passed or failed target selection and filtering.

By default, baits are reported with any ambiguity sequences included (e.g. as a consensus sequence) like so:

1 >Locus1_Target4_Bait1
2 ATGTAATRAGGTATATG......
3 >Locus1_Target4_Bait2
4 TATGAATGTCGCGCGAT......
5 ...
6 ...
7 ...

If using the -x/–expand option, ambiguities will be reported as all combinations, like so:

1 >Locus2_Target4_Bait1.1
2 ATGTAATAAGGTATATG......
3 >Locus2_Target4_Bait1.1
4 ATGTAATGAGGTATATG......
5 >Locus1_Target4_Bait2.1

(continues on next page)

1.5. Output Files 17

http://docs.continuum.io/conda/

mrbait Documentation, Release 1.1.6

(continued from previous page)

6 TATGAATGTCGCGCGAT......
7 ...
8 ...
9 ...

Baits can also be printed as reverse complement. For example, if the –expand option was specified, in addition to
–strand both:

1 >Locus2_Target4_Bait1.1
2 ATGTAATAAGGTATATG......
3 >Locus2_Target4_Bait1.1_revcomp
4 TACATTATTCCATATAC......
5 >Locus2_Target4_Bait1.1
6 ATGTAATGAGGTATATG......
7 >Locus2_Target4_Bait1.1_revcomp
8 TACATTACTCCATATAC
9 >Locus1_Target4_Bait2.1

10 TATGAATGTCGCGCGAT......
11 >Locus1_Target4_Bait2.1_revcomp
12 ATACTTACAGCGCGCTA......
13 ...
14 ...

mrbait will also produce a .sqlite file (e.g. $out.sqlite) which can be used with the –resume flag to restart the pipeline
at different stages- for example to re-perform bait filtering with different options. This stores the complete database,
including all consensus loci parsed from the alignment input files, all targets, and all bait sequences (including those
which failed filtering) and can be used independently with your own SQLite queries.

1.6 Benchmarking and Hardware Requirements

Use of an HPC or powerful workstation is not necessary, although could speed things up. Testing was performed on a
2014 iMac with a 4-core Intel i7 processor and 32GB of memory, although only a small fraction of this memory was
needed.

1.6.1 Runtime scaling

With a ddRAD dataset sequencing on HiSeq 2500 paired-end with 150bp reads, including 48 individuals and generat-
ing 51,931 alignments, the following command was run:

mrbait -L wtd_run1.loci -T 4 -c 12 -l 150 -b 60 -K 1.0 -d 200 -F snp=1,10 -s tile=30

A total of 46,219 alignments passed filtering, of which 44,808 included a conserved region long enough for target
design. 27,102 targets passed filtering (which was performed based on number of flanking SNPs) and were used to
design 43,342 baits. Total runtime across 4 threads was 392 seconds.

Parallel processing is implemented where practical, primarily in steps 1 and 2. For step 1 (alignment parsing), it splits
alignment files into groups, to be parsed by each daughter process. During parsing, when an entry must be added to
the SQLite database, this cannot be performed in parallel, so a database lock is implemented so that commits to the
database are queued. However, the decrease in runtime due to parallelization far outweighs this:

18 Chapter 1. Introduction

https://github.com/tkchafin/mrbait

mrbait Documentation, Release 1.1.6

Figure 3: Runtime scaling for Step 1 (most time-intensive step) with varying number of threads

The relationship of runtime to number of threads is similar for step 2 (target discovery), as is the general scheme of
preventing database conflicts caused by concurrent database updates. These steps (1 and 2) are by far the most time
consuming, although pairwise alignment or BLAST searching in steps 3 or 5 can take considerable time depending on
dataset size.

Runtime (in seconds) and peak memory usage (total) for varying numbers of threads, with a ~50k loci RADseq
dataset.:

Threads Step
1(s)

Step
2(s)

Step
3(s)

Step
4(s)

Step
5(s)

Total
(s)

Peak mem
(MB)

Step 1 mem
(MB)

1 1182 129 1 25 3 1342 120 80
2 591 69 1 25 3 690 260 100
3 399 49 1 25 3 478 275 110
4 320 41 1 25 3 392 300 125

1.6.2 Memory Usage

Large alignments are processed piecemeal, with only a single alignment loaded at a time, thus even large files can
be processed without excessive memory requirements. The internal data structure of mrbait relies on a file-based
database (SQLite), making it very efficient in terms of memory usage. Because of this, it should run on any normal
(and reasonably modern) desktop computer. Peak memory usage tends to be during step 2 (target discovery), as at
this step all consensus loci are scattered across threads- note that this also means a slight increase in peak memory
requirements as number of threads increases. See Figure 4 for an example of how memory scales throughout the
pipeline steps.

1.6. Benchmarking and Hardware Requirements 19

mrbait Documentation, Release 1.1.6

Figure 4: Memory usage throughout the pipeline (recorded for a 50k loci RADseq dataset). Total memory usage
(black) shows a peak of ~300Mb during step 2. Per-thread memory usage (blue) cumulatively impacts total memory
usage but drops to zero after step 2, as following steps do not utilize parallel computation

1.7 Acknowledgements

Computational resources for testing and benchmarking, as well as assembly of RADseq data for testing MrBait,
was provided by XSEDE allocations for JetStream: Startup Allocation TG-BIO160058 to Michael E. Douglas, and
Research Allocation TG-BIO160065 to Marlis Douglas. Funding to generate RADseq data was provided by by Uni-
versity of Arkansas Endowments (Bruker Professorship in Life Sciences to MRD and 21st Century Chair in Global
Climate Change Biology to MED). Thanks are also extended to colleagues at the University of Arkansas: Zach D.
Zbinden for contributions to the code base, and Pam L. McDill for lab work generating the test dataset.

We also would like to thank the Editors and 2 anonymous reviewers from Bioinformatics for valuable suggestions to
improve the software, its documentation, and the accompanying manuscript submission.

1.8 References

• Ali,O.A. et al. (2016) RAD Capture (Rapture): Flexible and Efficient Sequence-Based Genotyping. Genetics,
202, 389–400.

• Baird,N.A. et al. (2008) Rapid SNP Discovery and Genetic Mapping Using Sequenced RAD Markers. PLoS
One, 3, e3376.

• Faircloth,B.C. (2017) Identifying conserved genomic elements and designing universal bait sets to enrich them.
Methods Ecol. Evol.

• Hoffberg,S.L. et al. (2016) RADcap: sequence capture of dual-digest RADseq libraries with identifiable dupli-
cates and reduced missing data. Mol. Ecol. Resour., 16, 1264–1278.

• Lemmon,A.R. et al. (2012) Anchored hybrid enrichment for massively high-throughput phylogenomics. Syst.
Biol., 61, 727–744.

• McCormack,J.E. et al. (2012) Ultraconserved Elements Are Novel Phylogenomic Markers that Resolve Placen-
tal Mammal Phylogeny when Combined with Species Tree Analysis. Genome Res., 22, 746–754.

• Peterson,B.K. et al. (2012) Double Digest RADseq: An Inexpensive Method for De Novo SNP Discovery and
Genotyping in Model and Non-Model Species. PLoS One, 7, e37135.

20 Chapter 1. Introduction

CHAPTER 2

Indices and tables

• genindex

• modindex

• search

21

	Introduction
	Pipeline Description
	Getting Started
	Availability
	Dependencies
	Installation
	Running mrbait

	Input files
	Assembled genomes
	Multiple genome alignments
	Reduced representation data

	Usage options
	Main Parameters
	Filtering using vsearch
	Filtering using blast

	Output Files
	Benchmarking and Hardware Requirements
	Runtime scaling
	Memory Usage

	Acknowledgements
	References

	Indices and tables

