
moz_inapp_pay Documentation
Release 1.0

Kumar McMillan and contributors

October 20, 2015

Contents

1 Installation 3

2 Verify a postback 5

3 Verify a chargeback 7

4 Use It With Django 9

5 JWT Verification API 11

6 Exceptions 13

7 Source Code and Bug Tracker 15

8 Developers 17

9 Changelog 19

10 Indices and tables 21

Python Module Index 23

i

ii

moz_inapp_pay Documentation, Release 1.0

A Python module to make web payments with Mozilla’s navigator.mozPay().

You can read all about how web payments work in the developer docs.

Mozilla’s web payments allow you to operate an app (or website) that accepts payments for digital goods. As payments
are completed, the Firefox Marketplace needs to communicate the transaction ID to your app. You can use this library
to validate the signature of that communication. All communication is done via signed JWT (JSON Web Token).

This also includes some generic ways to validate JWT objects. Hmm, maybe that should be extracted for more general
use.

• Installation
• Verify a postback
• Verify a chargeback
• Use It With Django
• JWT Verification API
• Exceptions
• Source Code and Bug Tracker
• Developers
• Changelog
• Indices and tables

Contents 1

https://wiki.mozilla.org/WebAPI/WebPayment
https://developer.mozilla.org/en-US/docs/Apps/Publishing/In-app_payments
http://openid.net/specs/draft-jones-json-web-token-07.html
http://openid.net/specs/draft-jones-json-web-token-07.html

moz_inapp_pay Documentation, Release 1.0

2 Contents

CHAPTER 1

Installation

With pip or easy_install, run:

pip install mozpay

Or install it from source:

pip install git+git://github.com/mozilla/mozpay-py.git

3

http://www.pip-installer.org/

moz_inapp_pay Documentation, Release 1.0

4 Chapter 1. Installation

CHAPTER 2

Verify a postback

import logging
from mozpay import InvalidJWT, process_postback
try:

data = process_postback(signed_request,
app_key,
app_secret)

print data['response']['transactionID']
except InvalidJWT:

loggging.exception('in postback')

5

moz_inapp_pay Documentation, Release 1.0

6 Chapter 2. Verify a postback

CHAPTER 3

Verify a chargeback

import logging
from mozpay import InvalidJWT, process_chargeback
try:

data = process_chargeback(signed_request,
app_key,
app_secret)

print data['response']['transactionID']
print data['response']['reason']

except InvalidJWT:
logging.exception('in chargeback')

7

moz_inapp_pay Documentation, Release 1.0

8 Chapter 3. Verify a chargeback

CHAPTER 4

Use It With Django

If you use the Django framework, there’s an app you can plug right into your urls.py.

Add the app in your settings.py file:

INSTALLED_APPS = [
...
'mozpay.djangoapp',

]

Add your key and secret that was granted by the Firefox Marketplace to your local settings.py file:

MOZ_APP_KEY = '<from marketplace.mozilla.org>'
MOZ_APP_SECRET = '<from marketplace.mozilla.org>'

Note: Do not commit your secret to a public repo. Always keep it secure on your server. Never expose it to the
client in JavaScript or anywhere else.

Add the postback / chargeback URLs to your urls.py file:

from django.conf.urls.defaults import patterns, include

urlpatterns = patterns('',
('^moz/', include('mozpay.djangoapp.urls')),

)

This will add /moz/postback and /moz/chargeback to your URLs. You’ll enter these callback URLs into the
in-app payment config screen on the Firefox Marketplace.

If you want to do further processing on the postbacks, you can connect to a few signals. Here is an example of code to
go in your app (probably in models.py):

import logging
from django.dispatch import receiver

from mozpay.djangoapp.signals import (moz_inapp_postback,
moz_inapp_chargeback)

@receiver(moz_inapp_postback)
def mozmarket_postback(request, jwt_data, **kwargs):

logging.info('transaction ID %s processed ok'
% jwt_data['response']['transactionID'])

9

https://www.djangoproject.com/

moz_inapp_pay Documentation, Release 1.0

@receiver(moz_inapp_chargeback)
def mozmarket_chargeback(request, jwt_data, **kwargs):

logging.info('transaction ID %s charged back; reason: %r'
% (jwt_data['response']['transactionID'],

jwt_data['response']['reason']))

Exceptions are logged to the channel mozpay.djangoapp.views so be sure to add the appropriate handlers to
that.

When an InvalidJWT exception occurs, a 400 Bad Request is returned.

10 Chapter 4. Use It With Django

CHAPTER 5

JWT Verification API

Helper functions to verify JWT (JSON Web Token) objects. Some are specific to Firefox Marketplace payments,
others are more generic.

mozpay.verify.verify_jwt(signed_request, expected_aud, secret, validators=[], re-
quired_keys=(‘request.pricePoint’, ‘request.name’, ‘request.description’,
‘response.transactionID’), algorithms=None)

Verifies a postback/chargeback JWT.

Returns the trusted JSON data from the original request. When there’s an error, an exception derived from
mozpay.exc.InvalidJWT will be raised.

This is an all-in-one function that does all verification you’d need. There are some low-level functions you can
use to just verify certain parts of a JWT.

Arguments:

signed_request JWT byte string.

expected_aud The expected value for the aud (audience) of the JWT. See
mozpay.verify.verify_audience().

secret A shared secret to validate the JWT with. See mozpay.verify.verify_sig().

validators A list of extra callables. Each one is passed a JSON Python dict representing the JWT after it has
passed all other checks.

required_keys A list of JWT keys to validate. See mozpay.verify.verify_keys().

algorithms A list of valid JWT algorithms to accept. By default this will only include HS256 because that’s
what the Firefox Marketplace uses.

mozpay.verify.verify_sig(signed_request, secret, issuer=None, algorithms=None, ex-
pected_aud=None)

Verify the JWT signature.

Given a raw JWT, this verifies it was signed with secret, decodes it, and returns the JSON dict.

mozpay.verify.verify_claims(app_req, issuer=None)
Verify JWT claims.

All times must be UTC unix timestamps.

These claims will be verified:

•iat: issued at time. If JWT was issued more than an hour ago it is rejected.

•exp: expiration time.

11

http://openid.net/specs/draft-jones-json-web-token-07.html

moz_inapp_pay Documentation, Release 1.0

All exceptions are derived from mozpay.exc.InvalidJWT. For expirations a
mozpay.exc.RequestExpired exception will be raised.

mozpay.verify.verify_keys(app_req, required_keys, issuer=None)
Verify all JWT object keys listed in required_keys.

Each required key is specified as a dot-separated path. The key values are returned as a list ordered by how you
specified them.

Take this JWT for example:

{
"iss": "...",
"aud": "...",
"request": {

"pricePoint": 1,
}

}

You could verify the presence of all keys and retrieve their values like this:

iss, aud, price = verify_keys(jwt_dict,
('iss',
'aud',
'request.pricePoint'))

Do you see how the comma separated assigned variables match the keys that were extracted? The order is
important.

12 Chapter 5. JWT Verification API

CHAPTER 6

Exceptions

Exceptions that might be raised during JWT processing.

exception mozpay.exc.InvalidJWT(msg, issuer=None)
The JWT received by an issuer is invalid.

exception mozpay.exc.RequestExpired(msg, issuer=None)
The JWT request expired.

13

moz_inapp_pay Documentation, Release 1.0

14 Chapter 6. Exceptions

CHAPTER 7

Source Code and Bug Tracker

The source code is hosted on https://github.com/mozilla/mozpay-py and you can submit pull requests and bugs over
there.

15

https://github.com/mozilla/mozpay-py

moz_inapp_pay Documentation, Release 1.0

16 Chapter 7. Source Code and Bug Tracker

CHAPTER 8

Developers

Hello! To work on this module, check out the source from git and be sure you have the tox tool. To run the test suite,
cd into the root and type:

tox

This will run all tests in a virtualenv using the supported versions of Python.

To build the documentation, create a virtualenv then run:

pip install -r docs/requirements.txt

Build the docs from the root like this:

make -C docs/ html

Et voila:

open docs/_build/html/index.html

17

http://tox.testrun.org/latest/

moz_inapp_pay Documentation, Release 1.0

18 Chapter 8. Developers

CHAPTER 9

Changelog

• 2.1.0

– Added algorithms list to verification functions to adjust what JWT algorithms are accepted. By default
only HS256 is accepted now.

– Upgraded PyJWT to the latest version.

– Removed M2Crypto as a dependency because that is no longer needed and it wasn’t actually used for our
signing purposes anyway.

• 2.0.0

– Changed postback/chargeback from reading a JWT in the post body to reading it from the notice pa-
rameter. See https://bugzilla.mozilla.org/show_bug.cgi?id=838066 for details.

• 1.0.4

– First working release.

19

https://github.com/jpadilla/pyjwt
https://bugzilla.mozilla.org/show_bug.cgi?id=838066

moz_inapp_pay Documentation, Release 1.0

20 Chapter 9. Changelog

CHAPTER 10

Indices and tables

• genindex

• modindex

• search

21

moz_inapp_pay Documentation, Release 1.0

22 Chapter 10. Indices and tables

Python Module Index

m
mozpay.exc, 13
mozpay.verify, 11

23

moz_inapp_pay Documentation, Release 1.0

24 Python Module Index

Index

I
InvalidJWT, 13

M
mozpay.exc (module), 13
mozpay.verify (module), 11

R
RequestExpired, 13

V
verify_claims() (in module mozpay.verify), 11
verify_jwt() (in module mozpay.verify), 11
verify_keys() (in module mozpay.verify), 12
verify_sig() (in module mozpay.verify), 11

25

	Installation
	Verify a postback
	Verify a chargeback
	Use It With Django
	JWT Verification API
	Exceptions
	Source Code and Bug Tracker
	Developers
	Changelog
	Indices and tables
	Python Module Index

