

 Navigation

 	
 index

 	
 next |

 	MozDef 1.8.0 documentation

Table of Contents

	Overview
	Why?

	Goals

	Architecture

	Status

	Roadmap

	Introduction
	Concept of operations

	Installation
	Docker

	Docker config in AWS

	MozDef manual installation process

	Elasticsearch nodes

	Web and Workers nodes

	Manual Installation

	Screenshots
	Health and Status

	Alerts

	Incident Handling

	d3 visualizations

	Geo location of Attackers

	3D interactive Attacker visualization

	3D interactive Attack visualization via Landmass

	Demo Instance

	Usage
	Web Interface

	Sending logs to MozDef

	JSON format

	Writing alerts

	Advanced Settings
	Using local accounts

	Conf files

	Code
	Plugins

	Event Processing

	REST Plugins

	Benchmarking
	Elasticsearch

	Contributors

Indices and tables

	Index

	Module Index

	Search Page

License

Mozilla Public License Version 2.0

Contact

	opsec+mozdef INSERTAT mozilla.com

	Jeff Bryner, jbryner INSERTAT mozilla.com @0x7eff

	Anthony Verez, @netantho

	https://lists.mozilla.org/listinfo/dev-mozdef

 Copyright 2014, Jeff Bryner, Anthony Verez.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	MozDef 1.8.0 documentation

Overview

Why?

The inspiration for MozDef comes from the large arsenal of tools available to attackers.
Suites like metasploit, armitage, lair, dradis and others are readily available to help attackers coordinate, share intelligence and finely tune their attacks in real time.
Defenders are usually limited to wikis, ticketing systems and manual tracking databases attached to the end of a Security Information Event Management (SIEM) system.

The Mozilla Defense Platform (MozDef) seeks to automate the security incident handling process and facilitate the real-time activities of incident handlers.

Goals

High level

	Provide a platform for use by defenders to rapidly discover and respond to security incidents.

	Automate interfaces to other systems like MIG, flowspec, load balancers, etc

	Provide metrics for security events and incidents

	Facilitate real-time collaboration amongst incident handlers

	Facilitate repeatable, predictable processes for incident handling

	Go beyond traditional SIEM systems in automating incident handling, information sharing, workflow, metrics and response automation

Technical

	Replace a Security Information and Event Management (SIEM)

	Scalable, should be able to handle thousands of events per second, provide fast searching, alerting, correlation and handle interactions between teams of incident handlers.

MozDef aims to provide traditional SIEM functionality including:

	Accepting events/logs from a variety of systems

	Storing events/logs

	Facilitating searches

	Facilitating alerting

	Facilitating log management (archiving,restoration)

It is non-traditional in that it:

	Accepts only JSON input

	Provides you open access to your data

	Integrates with a variety of log shippers including heka, logstash, beaver, nxlog and any shipper that can send JSON to either rabbit-mq or an HTTP endpoint.

	Provides easy python plugins to manipulate your data in transit

	Provides realtime access to teams of incident responders to allow each other to see their work simultaneously

Architecture

MozDef is based on open source technologies including:

	Nginx (http(s)-based log input)

	RabbitMQ (message queue and amqp(s)-based log input)

	uWSGI (supervisory control of python-based workers)

	bottle.py (simple python interface for web request handling)

	elasticsearch (scalable indexing and searching of JSON documents)

	Meteor (responsive framework for Node.js enabling real-time data sharing)

	MongoDB (scalable data store, tightly integrated to Meteor)

	VERIS from verizon (open source taxonomy of security incident categorizations)

	d3 (javascript library for data driven documents)

	dc.js (javascript wrapper for d3 providing common charts, graphs)

	three.js (javascript library for 3d visualizations)

	Firefox (a snappy little web browser)

Frontend processing

Frontend processing for MozDef consists of receiving an event/log (in json) over HTTP(S) or AMQP(S),
doing data transformation including normalization, adding metadata, etc. and pushing
the data to elasticsearch.

Internally MozDef uses RabbitMQ to queue events that are still to be processed.
The diagram below shows the interactions between the python scripts (controlled by uWSGI),
the RabbitMQ exchanges and elasticsearch indices.

[image: _images/frontend_processing.png]

Status

MozDef is in production at Mozilla where we are using it to process over 300 million events per day.

Roadmap

Initial Release:

	Facilitate replacing base SIEM functionality including log input, event management, search, alerts, basic correlations

	Enhance the incident workflow UI to enable realtime collaboration

	Enable basic plug-ins to the event input stream for meta data, additional parsing, categorization and basic machine learning

	Support as many common event/log shippers as possible with repeatable recipies

	3D visualizations of threat actors

Mid term:

	Repeatable installation guides

	Ready-made AMIs/downloadable ISOs

	Correlation through machine learning, AI

	Base integration into Mozilla’s defense mechanisms for automation

	Fine tuning of interactions between meteor, mongo, dc.js

	Support a variety of authentication/authorization schemes/technologies

	Plain text version of attackers

	Enhanced search for alerts, events, attackers within the MozDef UI

Long term:

	Integration into common defense mechanisms used outside Mozilla

	Enhanced visualizations and interactions including alternative interfaces (myo, omnidirectional treadmills, oculus rift)

 Copyright 2014, Jeff Bryner, Anthony Verez.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	MozDef 1.8.0 documentation

Introduction

Concept of operations

Event Management

From an event management point of view MozDef relies on Elastic Search for:

	event storage

	event archiving

	event indexing

	event searching

This means if you use MozDef for your log management you can use the features of Elastic Search to store millions of events, archive them to Amazon if needed,
index the fields of your events, and search them using highly capable interfaces like Kibana.

MozDef differs from other log management solutions that use Elastic Search in that it does not allow your log shippers direct contact with Elastic Search itself.
In order to provide advanced functionality like event correlation, aggregation and machine learning, MozDef inserts itself as a shim between your log shippers (rsyslog, syslog-ng, beaver, nxlog, heka, logstash)
and Elastic Search. This means your log shippers interact with MozDef directly and MozDef handles translating their events as they make they’re way to Elastic Search.

Event Pipeline

The logical flow of events is:

 +–––––––––––+ +––––––––––––––+
 | MozDef +––––––––––––––+ |
+––––––––––+ | FrontEnd | Elastic |
| shipper +–––––––+–––––––––––+ | Search |
++++++++++++ | cluster |
++++++++++++ | |
| shipper +–––––––+–––––––––––+ | |
+––––––––––+ | MozDef +-–––––––––––––+ |
 | FrontEnd | |
 +–––––––––––+ | |
 +––––––––––––––+

Choose a shipper (logstash, nxlog, beaver, heka, rsyslog, etc) that can send JSON over http(s). MozDef uses nginx to provide http(s) endpoints that accept JSON posted
over http. Each front end contains a Rabbit-MQ message queue server that accepts the event and sends it for further processing.

You can have as many front ends, shippers and cluster members as you with in any geographic organization that makes sense for your topology. Each front end runs a series
of python workers hosted by uwsgi that perform:

	event normalization (i.e. translating between shippers to a common taxonomy of event data types and fields)

	event enrichment

	simple regex-based alerting

	machine learning on the real-time event stream

Event Enrichment

To facilitate event correlation, MozDef allows you to write plugins to populate your event data with consistent meta-data customized for your environment. Through simple
python plug-ins this allows you to accomplish a variety of event-related tasks like:

	further parse your events into more details

	geoIP tag your events

	correct fields not properly handled by log shippers

	tag all events involving key staff

	tag all events involving previous attackers or hits on a watchlist

	tap into your event stream for ancilary systems

	maintain ‘last-seen’ lists for assets, employees, attackers

Event Correlation/Alerting

Correlation/Alerting is currently handled as a series of queries run periodically against the Elastic Search engine. This allows MozDef to make full use of the lucene
query engine to group events together into summary alerts and to correlate across any data source accessible to python.

Incident Handling

From an incident handling point of view MozDef offers the realtime responsiveness of Meteor in a web interface. This allows teams of incident responders the ability
to see each others actions in realtime, no matter their physical location.

 Copyright 2014, Jeff Bryner, Anthony Verez.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	MozDef 1.8.0 documentation

Installation

The installation process has been tested on CentOS 6, RHEL 6 and Ubuntu 14.

Docker

You can quickly install MozDef with an automated build generation using docker [https://www.docker.io/].

Dockerfile

After installing docker [https://docs.docker.com/installation/#installation], use this to build a new image:

cd docker && sudo make build

Running the container:

sudo make run
(once inside as root)
/etc/init.d/supervisor start

You’re done! Now go to:

	http://localhost:3000 < meteor (main web interface)

	http://localhost:9090 < kibana

	http://localhost:9200 < elasticsearch

	http://localhost:8080 < loginput

	http://localhost:8081 < rest api

Get a terminal in the container

An common problem in Docker is that once you start a container, you cannot enter it as there is no ssh by default.

When you make the container, you will enter it as root by default, but if you
would like to enter it manually use nsenter present in the util-linux > 2.23 package.
Debian and Ubuntu currently provide the 2.20 version so you need to download and compile the source code:

cd /tmp
curl https://www.kernel.org/pub/linux/utils/util-linux/v2.24/util-linux-2.24.tar.gz | tar -zxf-
cd util-linux-2.24
./configure --without-ncurses
make nsenter
cp nsenter /usr/local/bin

Now we can create a script for docker (/usr/local/sbin/dkenter):

#!/bin/bash

CNAME=$1
CPID=$(docker inspect --format '{{ .State.Pid }}' $CNAME)
nsenter --target $CPID --mount --uts --ipc --net --pid

While your MozDef container is running:

docker ps # find the container ID, fc4917f00ead in this example
dkenter fc4917f00ead
root@fc4917f00ead:/# ...
root@fc4917f00ead:/# exit

Docker config in AWS

Summary

If you don’t want to install MozDef with docker on your own machine because for example it doesn’t support docker or you fear you don’t have enough memory, AWS supports docker.

	Create a t2.small instance (enough to test MozDef) with the following details:
	AMI: Ubuntu LTS-14-04 HVM

	In “Configure Instance Details”, expand the “Advanced Details” section. Under “User data”, select “As text”. Enter #include https://get.docker.io into the instance “User data”. It will bootstrap docker in your instance boot.

	In this instance, clone our github repo

	Follow our docker config install instructions [http://mozdef.readthedocs.org/en/latest/installation.html#dockerfile]

	Configure your security group to open the ports you need. Keep in mind that it’s probably a bad idea to have a public facing elasticsearch.

Detailed Steps

Step by Step:

Sign into AWS
Choose EC2
Choose Images->AMIs
Find Public Image ami-a7fdfee2 or a suitable Ubuntu 14.04 LTS(HVM) SSD 64bit server with HVM virtualization.
Choose Launch
Choose an instance type according to your budget. (at least a t2.small)
Choose next: configure instance details
Choose a network or create a VPC
Choose or create a new subnet
Choose to Assign a public IP
Under advanced details: user data choose 'as text' and enter #include https://get.docker.io
Choose next: add storage and add appropriate storage according to your budget
Choose next and add any tags you may want
Choose next and select any security group you may want to limit incoming traffic.
Choose launch and select an ssh key-pair or create a new one for ssh access to the instance.

For easy connect instructions, select your instance in the Ec2 dashboard->instances menu and choose connect for instructions.
ssh into your new instance according to the instructions ^^

clone the github repo to get the latest code:
from your home directory (/home/ubuntu if using the AMI instance from above)
 sudo apt-get update
 sudo apt-get install git
 git clone https://github.com/jeffbryner/MozDef.git

change the settings.js file to match your install:
vim /home/ubuntu/MozDef/docker/conf/settings.js
 <change rootURL,rootAPI, kibanaURL from localhost to the FQDN or ip address of your AMI instance: i.e. http://1.2.3.4 >

Inbound port notes:
You will need to allow the AWS/docker instance to talk to the FQDN or ip address you specify in settings.js
or the web ui will likely fail as it tries to contact internal services.
i.e. you may need to setup custom TCP rules in your AWS security group to allow the instance to talk to itself
if you use the public IP on the ports specified in settings.js. (usually 3000 for meteor, 8081 for rest api, 9090 for kibana and 9200 for kibana/ES)

build docker:
 cd MozDef/docker
 sudo apt-get install make
 sudo make build (this will take awhile)
 [make build-no-cache (if needed use to disable docker caching routines or rebuild)
 [at the end you should see a message like: Successfully built e8e075e66d8d]

starting docker:
 <build dkenter which will allow you to enter the docker container and control services, change settings, etc>
 sudo apt-get install gcc
 cd /tmp
 curl https://www.kernel.org/pub/linux/utils/util-linux/v2.24/util-linux-2.24.tar.gz | tar -zxf-
 cd util-linux-2.24
 ./configure --without-ncurses
 make nsenter
 sudo cp nsenter /usr/local/bin

 sudo vim /usr/local/bin/dkenter
 #!/bin/bash

 CNAME=$1
 CPID=$(docker inspect --format '{{ .State.Pid }}' $CNAME)
 nsenter --target $CPID --mount --uts --ipc --net --pid

 sudo chmod +x /usr/local/bin/dkenter

 cd && cd MozDef/docker/
 screen
 sudo make run
 (once inside the container)
 #/etc/init.d/supervisor start

 Browse to http://youripaddress:3000 for the MozDef UI

Build notes:

You can sign in using any Persona-enabled service (i.e. any yahoo or gmail account will work)
supervisor config that starts everything is in /etc/supervisor/conf.d/supervisor.conf
MozDef runs as root in /opt/MozDef
Logs are in /var/log/mozdef
MozDef will automatically start sending sample events to itself. To turn this off:
 0) get a new screen (ctrl a c)
 1) sudo docker ps (to get the container id)
 2) sudo dkenter <containerid>
 3) supervisorctl
 4) stop realTimeEvents

MozDef manual installation process

	This section explains the manual installation process for the MozDef system.

	git clone https://github.com/jeffbryner/MozDef.git

Elasticsearch nodes

This section explains the manual installation process for Elasticsearch nodes (search and storage).

ElasticSearch

Installation instructions are available on Elasticsearch website [http://www.elasticsearch.org/overview/elkdownloads/].
You should prefer packages over archives if one is available for your distribution.

Marvel plugin

Marvel [http://www.elasticsearch.org/overview/marvel/] is a monitoring plugin developed by Elasticsearch (the company).

WARNING: this plugin is NOT open source. At the time of writing, Marvel is free for development but you have to get a license for production.

To install Marvel, on each of your elasticsearch node, from the Elasticsearch home directory:

sudo bin/plugin -i elasticsearch/marvel/latest
sudo service elasticsearch restart

You should now be able to access to Marvel at http://any-server-in-cluster:9200/_plugin/marvel

Web and Workers nodes

This section explains the manual installation process for Web and Workers nodes.

Python

Create a mozdef user:

adduser mozdef

We need to install a python2.7 virtualenv.

On Yum-based systems:

sudo yum install make zlib-devel bzip2-devel openssl-devel ncurses-devel sqlite-devel readline-devel tk-devel pcre-devel gcc gcc-c++ mysql-devel

On APT-based systems:

sudo apt-get install make zlib1g-dev libbz2-dev libssl-dev libncurses5-dev libsqlite3-dev libreadline-dev tk-dev libpcre3-dev libpcre++-dev build-essential g++ libmysqlclient-dev

Then:

su - mozdef
wget http://python.org/ftp/python/2.7.6/Python-2.7.6.tgz
tar xvzf Python-2.7.6.tgz
cd Python-2.7.6
./configure --prefix=/home/mozdef/python2.7 --enable-shared
make
make install

cd /home/mozdef

wget https://bootstrap.pypa.io/get-pip.py
export LD_LIBRARY_PATH=/home/mozdef/python2.7/lib/
./python2.7/bin/python get-pip.py
./python2.7/bin/pip install virtualenv
mkdir ~/envs
cd ~/envs
~/python2.7/bin/virtualenv mozdef
source mozdef/bin/activate
pip install -r MozDef/requirements.txt

At this point when you launch python, It should tell you that you’re using Python 2.7.6.

Whenever you launch a python script from now on, you should have your mozdef virtualenv actived and your LD_LIBRARY_PATH env variable should include /home/mozdef/python2.7/lib/

RabbitMQ

RabbitMQ [https://www.rabbitmq.com/] is used on workers to have queues of events waiting to be inserted into the Elasticsearch cluster (storage).

To install it, first make sure you enabled EPEL repos [http://fedoraproject.org/wiki/EPEL/FAQ#howtouse]. Then you need to install an Erlang environment.
On Yum-based systems:

sudo yum install erlang

You can then install the rabbitmq server:

sudo rpm --import http://www.rabbitmq.com/rabbitmq-signing-key-public.asc
sudo yum install rabbitmq-server

To start rabbitmq at startup:

chkconfig rabbitmq-server on

On APT-based systems

sudo apt-get install rabbitmq-server
sudo invoke-rc.d rabbitmq-server start

Meteor

Meteor [https://www.meteor.com/] is a javascript framework used for the realtime aspect of the web interface.

We first need to install Mongodb [https://www.mongodb.org/] since it’s the DB used by Meteor.

On Yum-based systems:

In /etc/yum.repo.d/mongo, add:

[mongodb]
name=MongoDB Repository
baseurl=http://downloads-distro.mongodb.org/repo/redhat/os/x86_64/
gpgcheck=0
enabled=1

Then you can install mongodb:

sudo yum install mongodb

On APT-based systems:

sudo apt-get install mongodb-server

For meteor, in a terminal:

curl https://install.meteor.com/ | sh

wget http://nodejs.org/dist/v0.10.26/node-v0.10.26.tar.gz
tar xvzf node-v0.10.26.tar.gz
cd node-v0.10.26
./configure
make
sudo make install

Make sure you have meteorite/mrt (run as root/admin):

npm install -g meteorite

Then from the meteor subdirectory of this git repository (/home/mozdef/MozDef/meteor) run:

mrt add iron-router
mrt add accounts-persona

You may want to edit the app/lib/settings.js file to properly point to your elastic search server:

elasticsearch={
 address:"http://servername:9200/",
 healthurl:"_cluster/health",
 docstatsurl:"_stats/docs"
}

Then start meteor with:

meteor

Node

Alternatively you can run the meteor UI in ‘deployment’ mode using a native node installation.

First install node:

yum install bzip2 gcc gcc-c++ sqlite sqlite-devel
wget http://nodejs.org/dist/v0.10.25/node-v0.10.25.tar.gz
tar xvfz node-v0.10.25.tar.gz
cd node-v0.10.25
python configure
make
make install

Then bundle the meteor portion of mozdef:

cd <your meteor mozdef directory>
meteor bundle mozdef.tgz

You can then deploy the meteor UI for mozdef as necessary:

scp mozdef.tgz to your target host
tar -xvzf mozdef.tgz

This will create a ‘bundle’ directory with the entire UI code below that directory.

You will need to update the settings.js file to match your servername/port:

vim bundle/programs/server/app/app/lib/settings.js

If your development OS is different than your production OS you will also need to update
the fibers node module:

cd bundle/programs/server/node_modules
rm -rf fibers
sudo npm install fibers@1.0.1

Then run the mozdef UI via node:

export MONGO_URL=mongodb://mongoservername:3002/meteor
export ROOT_URL=http://meteorUIservername/
export PORT=443
node bundle/main.js

Nginx

We use nginx [http://nginx.org/] webserver.

You need to install nginx:

sudo yum install nginx

On apt-get based system:

sudo apt-get nginx

If you don’t have this package in your repos, before installing create /etc/yum.repos.d/nginx.repo with the following content:

[nginx]
name=nginx repo
baseurl=http://nginx.org/packages/centos/6/$basearch/
gpgcheck=0
enabled=1

UWSGI

We use uwsgi [http://projects.unbit.it/uwsgi/] to interface python and nginx:

wget http://projects.unbit.it/downloads/uwsgi-2.0.2.tar.gz
tar zxvf uwsgi-2.0.2.tar.gz
cd uwsgi-2.0.2
~/python2.7/bin/python uwsgiconfig.py --build
~/python2.7/bin/python uwsgiconfig.py --plugin plugins/python core
cp python_plugin.so ~/envs/mozdef/bin/
cp uwsgi ~/envs/mozdef/bin/

cp -r ~/MozDef/rest ~/envs/mozdef/
cp -r ~/MozDef/loginput ~/envs/mozdef/
mkdir ~/envs/mozdef/logs

cd ~/envs/mozdef/rest
modify config file
vim index.conf
modify uwsgi.ini
vim uwsgi.ini
uwsgi --ini uwsgi.ini

cd ../loginput
modify uwsgi.ini
vim uwsgi.ini
uwsgi --ini uwsgi.ini

sudo cp nginx.conf /etc/nginx
modify /etc/nginx/nginx.conf
sudo vim /etc/nginx/nginx.conf
sudo service nginx restart

Kibana

Kibana [http://www.elasticsearch.org/overview/kibana] is a webapp to visualize and search your Elasticsearch cluster data:

wget https://download.elasticsearch.org/kibana/kibana/kibana-3.0.0milestone5.tar.gz
tar xvzf kibana-3.0.0milestone5.tar.gz
mv kibana-3.0.0milestone5 kibana
configure /etc/nginx/nginx.conf to target this folder
sudo service nginx reload

To initialize elasticsearch indices and load some sample data:

cd examples/es-docs/
python inject.py

Start Services

Start the following services

cd ~/MozDef/mq
./esworker.py

cd ~/MozDef/alerts
celery -A celeryconfig worker –loglevel=info –beat

cd ~/MozDef/examples/demo
./syncalerts.sh
./sampleevents.sh

Manual Installation

Use sudo whereever required

(Currently only for apt-based systems)

	Cloning repository

$ export MOZDEF_PATH=/opt/MozDef
$ git clone https://github.com/jeffbryner/MozDef.git $MOZDEF_PATH

	Installing dependencies

RabbitMQ
$ apt-get install -y rabbitmq-server
$ rabbitmq-plugins enable rabbitmq_management

MongoDB
$ apt-get install -y mongodb

NodeJS and NPM
$ curl -sL https://deb.nodesource.com/setup_0.12 | sudo bash -
$ apt-get install -y nodejs npm

Nginx
$ apt-get install -y nginx-full
$ cp $MOZDEF_PATH/docker/conf/nginx.conf /etc/nginx/nginx.conf

Libraries
$ apt-get install -y python2.7-dev python-pip curl supervisor wget libmysqlclient-dev
$ pip install -U pip

	Installing python libraries

$ pip install uwsgi celery virtualenv

$ export PATH_TO_VENV=$HOME/.mozdef_env
$ virtualenv $PATH_TO_VENV
$ source $PATH_TO_VENV/bin/activate

(.mozdef_env)$ pip install -r $MOZDEF_PATH/requirements.txt

	Setting up uwsgi for rest and loginput

$ mkdir /var/log/mozdef
$ mkdir -p /run/uwsgi/apps/
$ touch /run/uwsgi/apps/loginput.socket
$ chmod 666 /run/uwsgi/apps/loginput.socket
$ touch /run/uwsgi/apps/rest.socket
$ chmod 666 /run/uwsgi/apps/rest.socket

	Setting up local settings

$ cp $MOZDEF_PATH/docker/conf/supervisor.conf /etc/supervisor/conf.d/supervisor.conf
$ cp $MOZDEF_PATH/docker/conf/settings.js $MOZDEF_PATH/meteor/app/lib/settings.js
$ cp $MOZDEF_PATH/docker/conf/config.py $MOZDEF_PATH/alerts/lib/config.py
$ cp $MOZDEF_PATH/docker/conf/sampleData2MozDef.conf $MOZDEF_PATH/examples/demo/sampleData2MozDef.conf
$ cp $MOZDEF_PATH/docker/conf/mozdef.localloginenabled.css $MOZDEF_PATH/meteor/public/css/mozdef.css

	Installing Kibana

$ cd /tmp/
$ curl -L https://download.elasticsearch.org/kibana/kibana/kibana-3.1.0.tar.gz | tar -C /opt -xz
$ /bin/ln -s /opt/kibana-3.1.0 /opt/kibana
$ cp $MOZDEF_PATH/examples/kibana/dashboards/alert.js /opt/kibana/app/dashboards/alert.js
$ cp $MOZDEF_PATH/examples/kibana/dashboards/event.js /opt/kibana/app/dashboards/event.js

	Installing Elasticsearch

$ wget https://gist.githubusercontent.com/yashmehrotra/3209a7e2c696c2ac5110/raw/9161ffb32ee79d48f4bce224f8710ac8c7e85922/ElasticSearch.sh
You can download any version of ELasticSearch
$./ElasticSearch.sh 1.6.0

	Setting up Meteor

$ curl -L https://install.meteor.com/ | /bin/sh
$ npm install -g meteorite
$ cd $MOZDEF_PATH/meteor
$ meteor

	Inserting some sample data

Elasticsearch server should be running
$ service elasticsearch start
$ source $PATH_TO_VENV/bin/activate
(.mozdef_env)$ cd $MOZDEF_PATH/examples/es-docs && python inject.py

	Installing Supervisord to enable Alerting on events.

$ sudo -i -u mozdef -g mozdef
$ cd /home/mozdef/envs/mozdef
$ source bin/activate
$ cd bin
$ pip install supervisor

Start Services

To start the following services you can place the init scripts under /etc/init.d/ and set them to executable. You can find the init scripts in the MozDef/initscripts directory. Or you can start them manually.

The initscripts included will match the following startup commands:

	/etc/init.d/rabbitmq-server start or systemctl start rabbitmq-server

$ invoke-rc.d rabbitmq-server start

	/etc/init.d/elasticsearch start or systemctl start elasticsearch

$ service elasticsearch start

	/etc/init.d/nginx start or systemctl start nginx

$ service nginx start

	/etc/init.d/mozdefloginput start

$ cd $MOZDEF_PATH/loginput && uwsgi –ini uwsgi.ini

	/etc/init.d/mozdefrestapi start

$ cd $MOZDEF_PATH/rest && uwsgi –ini uwsgi.ini

	/etc/init.d/mozdefmq start

$ cd $MOZDEF_PATH/mq && uwsgi –ini uwsgi.ini

	/etc/init.d/mozdefalerts start

$ cd $MOZDEF_PATH/bin && supervisord -c /home/mozdef/envs/mozdef/alerts/supervisord.alerts.conf

	/etc/init.d/mozdefalertsplugin start

$ cd $MOZDEF_PATH/alerts && uwsgi –ini uwsgi-alertsplugin.ini

	/etc/init.d/mozdefweb start

$ cd $MOZDEF_PATH/meteor && meteor run

 Copyright 2014, Jeff Bryner, Anthony Verez.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	MozDef 1.8.0 documentation

Screenshots

Here are a few screen captures of key portions of the MozDef user interface.

Health and Status

MozDef includes an integrated health and status screen under the ‘about’ menu showing key performance indicators like events per second from rabbit-mq and elastic search cluster health.

You can have as many front-end processors running rabbit-mq as you like in whatever geographic distribution makes sense for your environment. The hot threads section shows you what your individual elastic search nodes are up to.

The entire display updates in real time as new information is retrieved.

[image: _images/HealthAndStatus.png]

Alerts

Alerts are simply python jobs run as celery tasks that query elastic search for either individual events, or correlate
multiple events into an alert.

The alerts screen shows the latest 100 alerts and allows interactive filtering by category, severity, time frame and free-form regex.

The display updates in real time as new alerts are received and any IP address in an alert is decorated with a menu allowing
you to query whois, dshield, CIF, etc to get context on the item. If your facilities include blocking, you can also
integrate that into the menu to allow you to block an IP directly from this screen.

[image: _images/Alerts.png]

Incident Handling

MozDef includes an integrated, real time incident handling facility that allows multiple responders to work collaboratively
on a security incident. As they add information to the incident they are able to see each others changes as they happen, in real time.

MozDef includes integration into the VERIS classification system to quickly tag incidents with metadata by dragging tags onto
the incident which allows you to aggregate metrics about your incidents.

[image: _images/IncidentHandling.png]

d3 visualizations

The d3.js library is included in MozDef to allow you custom visualizations of your data. The is a sample
visualization of login counts (success vs failed) that you can integrate into your central authentication directory
for quick context into user activity.

[image: _images/d3Visualizations.png]

Geo location of Attackers

MozDef includes the WebGL globe as a three.js visualization that geolocates attackers to give you quick, interactive context about
threat actors.

[image: _images/AttackerGlobe.png]

3D interactive Attacker visualization

MozDef correlates alerts and events into a 3D visual representation of attackers as ogres. You can use this
to quickly filter attackers by category or timeframe and get easy access to recent alerts and events from attackers in 3D.

[image: _images/AttackerOgres.png]

3D interactive Attack visualization via Landmass

MozDef has a service-oriented visualization where you will get see various animations on a landmass service wise.
There are also options for handling attacks, and a sidebar which gives you detailed info into the attacks

[image: _images/AttacksLandmass.png]

Demo Instance

Mozilla maintains a demo instance of MozDef that you can use try out the UI and get a feel for it in a live environment
with test/random data.

Simply browse to http://demo.mozdef.com:3000 and login using any gmail or yahoo email address. No credentials/passwords are
sent to the demo instance, though your email will be logged. If you’d prefer you can also use mozdef@mockmyid.com as a userID which will not prompt for any credentials.

 Copyright 2014, Jeff Bryner, Anthony Verez.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	MozDef 1.8.0 documentation

Usage

Web Interface

MozDef uses the Meteor framework [https://www.meteor.com/] for the web interface and bottle.py for the REST API.
For authentication, MozDef ships with native support for Persona [https://login.persona.org/about].
Meteor (the underlying UI framework) also supports many authentication options [http://docs.meteor.com/#accounts_api] including google, github, twitter, facebook, oath, native accounts, etc.

Events visualizations

Since the backend of MozDef is Elastic Search, you get all the goodness of Kibana with little configuration.
The MozDef UI is focused on incident handling and adding security-specific visualizations of SIEM data to help you weed through the noise.

Alerts

Alerts are implemented as Elastic Search searches. MozDef provides a plugin interface to allow open access to event data for enrichment, hooks into other systems, etc.

Incident handling

Sending logs to MozDef

Events/Logs are accepted as json over http(s) with the POST or PUT methods or over rabbit-mq.
Most modern log shippers support json output. MozDef is tested with support for:

	heka [https://github.com/mozilla-services/heka]

	beaver [https://github.com/josegonzalez/beaver]

	nxlog [http://nxlog-ce.sourceforge.net/]

	logstash [http://logstash.net/]

	native python code [https://github.com/gdestuynder/mozdef_lib]

	AWS cloudtrail [https://aws.amazon.com/cloudtrail/] (via native python)

We have some configuration snippets [https://github.com/jeffbryner/MozDef/tree/master/examples]

What should I log?

If your program doesn’t log anything it doesn’t exist. If it logs everything that happens it becomes like the proverbial boy who cried wolf. There is a fine line between logging too little and too much but here is some guidance on key events that should be logged and in what detail.

	Event
	Example
	Rationale

	Authentication
Events
	Failed/Success logins
	Authentication is always an important
event to log as it establishes
traceability for later events and
allows correlation of user actions
across systems.

	Authorization
Events
	Failed attempts to
insert/update/delete a
record or access a
section of an application.
	Once a user is authenticated they
usually obtain certain permissions.
Logging when a user’s permissions do
not allow them to perform a function
helps troubleshooting and can also
be helpful when investigating
security events.

	Account
Lifecycle
	Account
creation/deletion/update
	Adding, removing or changing accounts
are often the first steps an attacker
performs when entering a system.

	Password/Key
Events
	Password changed, expired,
reset. Key expired,
changed, reset.
	If your application takes on the
responsibility of storing a user’s
password (instead of using a
centralized source) it is
important to note changes to a users
credentials or crypto keys.

	Account
Activations
	Account lock, unlock,
disable, enable
	If your application locks out users
after failed login attempts or allows
for accounts to be inactivated,
logging these events can assist in
troubleshooting access issues.

	Application
Exceptions
	Invalid input,
fatal errors,
known bad things
	If your application catches errors
like invalid input attempts on web
forms, failures of key components,
etc creating a log record when these
events occur can help in
troubleshooting and tracking security
patterns across applications. Full
stack traces should be avoided however
as the signal to noise ratio is
often overwhelming.

It is also preferable to send a single
event rather than a multitude of
events if it is possible for your
application to correlate a significant
exception.

For example, some systems are
notorious for sending a connection
event with source IP, then sending an
authentication event with a session ID
then later sending an event for
invalid input that doesn’t include
source IP or session ID or username.
Correctly correlating these events
across time is much more difficult
than just logging all pieces of
information if it is available.

JSON format

This section describes the structure JSON objects to be sent to MozDef.
Using this standard ensures developers, admins, etc are configuring their application or system to be easily integrated into MozDef.

Background

Mozilla used CEF as a logging standard for compatibility with Arcsight and for standardization across systems. While CEF is an admirable standard, MozDef prefers JSON logging for the following reasons:

	Every development language can create a JSON structure

	JSON is easily parsed by computers/programs which are the primary consumer of logs

	CEF is primarily used by Arcsight and rarely seen outside that platform and doesn’t offer the extensibility of JSON

	A wide variety of log shippers (heka, logstash, fluentd, nxlog, beaver) are readily available to meet almost any need to transport logs as JSON.

	JSON is already the standard for cloud platforms like amazon’s cloudtrail logging

Description

As there is no common RFC-style standard for json logs, we prefer the following structure adapted from a combination of the graylog GELF and logstash specifications.

Note all fields are lowercase to avoid one program sending sourceIP, another sending sourceIp, another sending SourceIPAddress, etc.
Since the backend for MozDef is elasticsearch and fields are case-sensitive this will allow for easy compatibility and reduce potential confusion for those attempting to use the data.
MozDef will perform some translation of fields to a common schema but this is intended to allow the use of heka, nxlog, beaver and retain compatible logs.

Mandatory Fields

	Field
	Purpose
	Sample Value

	category
	General category/type of event
matching the ‘what should I log’
section below
	Authentication, Authorization,
Account Creation, Shutdown,
Startup, Account Deletion,
Account Unlock, brointel,
bronotice

	details
	Additional, event-specific fields
that you would like included with
the event. Please completely spell
out a field rather an abbreviate:
i.e. sourceipaddress instead of
srcip.
	“dn”: “john@example.com,o=com,
dc=example”, “facility”: “daemon”

	hostname
	The fully qualified domain name of
the host sending the message
	server1.example.com

	processid
	The PID of the process sending the
log
	1234

	processname
	The name of the process sending the
log
	myprogram.py

	severity
	RFC5424 severity level of the event
in all caps: DEBUG, INFO, NOTICE,
WARNING, ERROR, CRITICAL, ALERT,
EMERGENCY
	INFO

	source
	Source of the event (file name,
system name, component name)
	/var/log/syslog/2014.01.02.log

	summary
	Short human-readable version of the
event suitable for IRC, SMS, etc.
	john login attempts over
threshold, account locked

	tags
	An array or list of any tags you
would like applied to the event
	vpn, audit

nsm,bro,intel

	timestamp
	Full date plus time timestamp of
the event in ISO format including
the timezone offset
	2014-01-30T19:24:43+00:00

Details substructure (mandatory if such data is sent, otherwise optional)

	Field
	Purpose
	Sample Value

	destinationipaddress
	Destination IP of a
network flow
	8.8.8.8

	destinationport
	Destination port of a
network flow
	80

	sourceipaddress
	Source IP of a network
flow
	8.8.8.8

	sourceport
	Source port of a network
flow
	42297

	sourceuri
	Source URI such as a
referer
	https://www.mozilla.org/

	destinationuri
	Destination URI as in
“wget this URI”
	https://www.mozilla.org/

	error
	Action resulted in an
error or failure
	true/false

	username
	Username, email, login,
etc.
	kang@mozilla.com

	useragent
	Program agent string
	curl/1.76 (Windows; 5.1)

Examples

{
 "timestamp": "2014-02-14T11:48:19.035762739-05:00",
 "hostname": "somemachine.in.your.company.com",
 "processname": "/path/to/your/program.exe",
 "processid": 3380,
 "severity": "INFO",
 "summary": "joe login failed",
 "category": "authentication",
 "source": "ldap",
 "tags": [
 "ldap",
 "adminAccess",
 "failure"
],
 "details": {
 "username": "joe",
 "task": "access to admin page /admin_secret_radioactiv",
 "result": "10 authentication failures in a row"
 }
}

Writing alerts

Alerts allow you to create notifications based on events stored in elasticsearch.
You would usually try to aggregate and correlate events that are the most severe and on which you have response capability.
Alerts are stored in the alerts [https://github.com/jeffbryner/MozDef/tree/master/alerts] folder.

There are two types of alerts:

	simple alerts that consider events on at a time. For example you may want to get an alert everytime a single LDAP modification is detected.

	aggregation alerts allow you to aggregate events on the field of your choice. For example you may want to alert when more than 3 login attempts failed for the same username.

To narrow the events your alert sees, you need to specify filters. You can either use pyes [http://pyes.readthedocs.org/] to do that or load them from a Kibana dashboard.

You’ll find documented examples in the alerts [https://github.com/jeffbryner/MozDef/tree/master/alerts] folder.

Once you’ve written your alert, you need to configure it in celery to be launched periodically.
If you have a AlertBruteforceSsh class in a alerts/bruteforce_ssh.py file for example, in alerts/lib/config you can configure the task to run every minute:

ALERTS = {
 'bruteforce_ssh.AlertBruteforceSsh': crontab(minute='*/1'),
}

 Copyright 2014, Jeff Bryner, Anthony Verez.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	MozDef 1.8.0 documentation

Advanced Settings

Using local accounts

MozDef ships with support for persona which is Mozilla’s open source, browser-based authentication system. You should be
to use any gmail or yahoo account to login to get started.

To change authentication to something less public like local accounts here are the steps:

Assuming Meteor 9.1 (current as of this writing) which uses it’s own package manager:

	From the mozdef meteor directory run ‘$ meteor remove mrt:accounts-persona’

	‘meteor add accounts-password’

	Alter app/server/mozdef.js Accounts.config section to: forbidClientAccountCreation: false,

	Restart Meteor

This will allow people to create accounts using almost any combination of username/password. To add restrictions, limit domains, etc please see: http://docs.meteor.com/#accounts_api

Conf files

MozDef python scripts in almost all cases expect to be given a -c path/to/file.conf command line option to specify configuration/run time options.

These files all follow the same format:

[options]
setting1=value1
setting2=value2

All programs do their best to set reasonable, sane defaults and most will run fine without a conf file. By default programname.py will look for programname.conf as it’s configuration file so if you follow that convention you don’t even need to specify the -c path/to/file.conf option.

Special Config Items

Here are some tips for some key settings:

[options]
esservers=http://server1:9200,http://server2:9200,http://server3:9200

is how you can specify servers in your elastic search cluster.

[options]
defaulttimezone=US/Pacific

is how you set the default timezone to something other than UTC

[options]
backup_indices = intelligence,kibana-int,alerts,events,complianceitems,.jsp,.marvel-kibana,vulnerabilities
backup_dobackup = 1,1,1,1,1,1,1,1
backup_rotation = none,none,monthly,daily,none,none,none,none
backup_pruning = 0,0,0,20,0,0,0,0

is how you would configure the backupSnapshot.py and pruneIndexes.py programs to backup selected elastic search indexes, rotate selected indexes and prune certain indexes at selected intervals. In the case above we are backing up all indexes mentioned, rotating alerts monthly, rotating events daily and pruning events indices after 20 days.

[options]
aggregations = category1,category2
aggregationthresholds = 200,120

is how you would configure eventStatsAlerts.py to alert you when you receive a 200% variance in events of category1 and a 120% variance in category2. All other categories will alert at a 100% variance by default.

[options]
autocategorize = True
categorymapping = [{"bruteforce":"bruteforcer"},{"nothing":"nothing"}]

is how you would configure collectAttackers.py to do autocategoization of attackers that it discovers and specify a list of mappings matching alert categories to attacker category.

Myo with TLS/SSL

MozDef supports the Myo armband to allow you to navigate the attackers scene using gestures. This works fine if meteor is hosted using http WITHOUT TLS/SSL as the browser will allow you to connect to the server and to the Myo connect which runs a local webserver at http://127.0.0.1:10138 by default. The browser makes a websocket connection to Myo connect and everyone is happy.

When hosting MozDef/Meteor on a TLS/SSL-enabled server things go south quickly. The browser doesn’t like (or permit) a https:// hosted page from accessing a plain text websocket resource such as ws://127.0.0.1:10138.

Luckily you can use nginx to work around this.

On you local workstation you can setup a nginx reverse proxy to allow the browser to do TLS/SSL connections, and use nginx to redirect that 127.0.0.1 traffic from TLS to plain text Myo. Here’s some configs:

First in mozdef you need to add a myoURL option to settings.js:

mozdef = {
 rootURL: "http://yourserver",
 port: "3000",
 rootAPI: "https://yourserver:8444/",
 enableBlockIP: true,
 kibanaURL: "http://yourkibanaserver:9090",
 myoURL: "wss://127.0.0.1:8444/myo/"
}

This tells MozDef to initialize Myo using a local TLS connection to port 8444.

Now install nginx and set a nginx.conf file like so:

http {
 include mime.types;
 default_type application/octet-stream;
 ssl_session_cache shared:SSL:10m;
 ssl_session_timeout 10m;
 ssl_certificate /path/to/localhost.crt;
 ssl_certificate_key /path/to/localhost.key;

 sendfile on;
 keepalive_timeout 65;

 proxy_headers_hash_max_size 51200;
 proxy_headers_hash_bucket_size 6400;
 ##ssl version of myo connect##
 server{
 listen *:8444 ssl;
 #access_log /dev/null main;
 location /{
 proxy_pass http://127.0.0.1:10138;
 proxy_read_timeout 90;
 # WebSocket support (nginx 1.4)
 proxy_http_version 1.1;
 proxy_set_header Upgrade $http_upgrade;
 proxy_set_header Connection "upgrade";
 proxy_redirect default;
 }
 }
}

You’ll need a SSL certificate that your browser trusts, you can issue a self-signed one and accept it by just browsing to https://127.0.0.1:8443 and accept the cert if necessary.

Start up MozDef, start up your Myo and enjoy!

 Copyright 2014, Jeff Bryner, Anthony Verez.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	MozDef 1.8.0 documentation

Code

Plugins

Plugins are supported in several places: Event Processing and the REST api.

Event Processing

The front-end event processing portion of MozDef supports python plugins [https://github.com/jeffbryner/MozDef/tree/master/mq/plugins] to allow customization of the input chain.
Plugins are simple python modules than can register for events with a priority, so they only see events with certain
dictionary items/values and will get them in a predefined order.

To create a plugin, make a python class that presents a registration dictionary and a priority as follows:

class message(object):
 def __init__(self):
 '''register our criteria for being passed a message
 as a list of lower case strings or values to match with an event's dictionary of keys or values
 set the priority if you have a preference for order of plugins to run.
 0 goes first, 100 is assumed/default if not sent
 '''
 self.registration = ['sourceipaddress', 'destinationipaddress']
 self.priority = 20

To process a message, define an onMessage function within your class as follows:

def onMessage(self, message, metadata):
 #do something interesting with the message or metadata
 return (message, metadata)

The plugin will receive a copy of the incoming event as a python dictionary in the ‘message’ variable. The plugin can do whatever it wants with this dictionary and return it to MozDef. Plugins will be called in priority order 0 to 100 if the incoming event matches their registration criteria. i.e. If you register for sourceipaddress you will only get events containing the sourceipaddress field.

If you return the message as None (i.e. message=None) the message will be dropped and not be processed any further.
If you modify the metadata the new values will be used when the message is posted to elastic search. You can use this
to assign custom document types, set static document _id values, etc.

Simply place the .py file in the plugins directory where the esworker.py is located, restart the esworker.py process
and it will recognize the plugin and pass it events as it sees them.

REST Plugins

The REST API for MozDef also supports python plugins [https://github.com/jeffbryner/MozDef/tree/master/rest/plugins] which allow you to customize your handling of API calls to suit your environment.
Plugins are simple python modules than can register for REST endpoints with a priority, so they only see calls for that endpoint
and will get them in a predefined order.

To create a REST API plugin simply create a python class that presents a registration dictionary and priority as follows:

class message(object):
 def __init__(self):
 '''register our criteria for being passed a message
 as a list of lower case strings to match with an rest endpoint
 (i.e. blockip matches /blockip)
 set the priority if you have a preference for order of plugins
 0 goes first, 100 is assumed/default if not sent

 Plugins will register in Meteor with attributes:
 name: (as below)
 description: (as below)
 priority: (as below)
 file: "plugins.filename" where filename.py is the plugin code.

 Plugin gets sent main rest options as:
 self.restoptions
 self.restoptions['configfile'] will be the .conf file
 used by the restapi's index.py file.

 '''

 self.registration = ['blockip']
 self.priority = 10
 self.name = "Banhammer"
 self.description = "BGP Blackhole"

The registration is the REST endpoint for which your plugin will receive a copy of the request/response objects to use or modify.
The priority allows you to order your plugins if needed so that they operate on data in a defined pattern.
The name and description are passed to the Meteor UI for use in dialog boxes, etc so the user can make choices when needed
to include/exclude plugins. For example the /blockip endpoint allows you to register multiple methods of blocking an IP
to match your environment: firewalls, BGP tables, DNS blackholes can all be independently implemented and chosen by the user
at run time.

To process a message, define an onMessage function within your class as follows:

def onMessage(self, request, response):
 '''
 request: http://bottlepy.org/docs/dev/api.html#the-request-object
 response: http://bottlepy.org/docs/dev/api.html#the-response-object

 '''
 response.headers['X-PLUGIN'] = self.description

It’s a good idea to add your plugin to the response headers if it acts on a message to facilitate troubleshooting.
Other than that, you are free to perform whatever processing you need within the plugin being sure to
return the request, response object once done:

return (request, response)

Simply place the .py file in the alerts/plugins directory, restart the esworker.py process located in the alerts directory and it will recognize the plugin and pass it events as it sees them.

 Copyright 2014, Jeff Bryner, Anthony Verez.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	MozDef 1.8.0 documentation

Benchmarking

Performance is important for a SIEM because it’s where you want to store, search and analyze all your security events.

You will want it to handle a significant number of new events per second, be able to search quickly and perform fast correlation.
Therefore, we provide some benchmarking scripts for MozDef to help you determine the performance of your setup. Performance tuning of elastic search can be complex and we highly recommend spending time tuning your environment.

Elasticsearch

Elasticsearch is the main backend component of MozDef.
We strongly recommend you to have a 3+ nodes cluster to allow recovery and load balancing.
During our tests, Elasticsearch recovered well after being pushed to the limits of hardware, loosing and regaining nodes, and a variety of valid/invalid data. We provide the following scripts for you to use to test your own implementation.

The scripts for Elasticsearch benchmarking are in benchmarking/es/.
They use nodejs [http://nodejs.org/] to allow asynchronous HTTP requests.

insert_simple.js

insert_simple.js sends indexing requests with 1 log/request.

Usage: node ./insert_simple.js <processes> <totalInserts> <host1> [host2] [host3] [...]

	processes: Number of processes to spawn

	totalInserts: Number of inserts to perform, please note after a certain number node will slow down. You want to have a lower number if you are in this case.

	host1, host2, host3, etc: Elasticsearch hosts to which you want to send the HTTP requests

insert_bulk.js

insert_bulk.js sends bulk indexing requests (several logs/request).

Usage: node ./insert_bulk.js <processes> <insertsPerQuery> <totalInserts> <host1> [host2] [host3] [...]

	processes: Number of processes to spawn

	insertsPerQuery: Number of logs per request

	totalInserts: Number of inserts to perform, please note after a certain number node will slow down. You want to have a lower number if you are in this case.

	host1, host2, host3, etc: Elasticsearch hosts to which you want to send the HTTP requests

search_all_fulltext.js

search_all_fulltext.js performs search on all indices, all fields in fulltext. It’s very stupid.

Usage: node ./search_all_fulltext.js <processes> <totalSearches> <host1> [host2] [host3] [...]

	processes: Number of processes to spawn

	totalSearches: Number of search requests to perform, please note after a certain number node will slow down. You want to have a lower number if you are in this case.

	host1, host2, host3, etc: Elasticsearch hosts to which you want to send the HTTP requests

 Copyright 2014, Jeff Bryner, Anthony Verez.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 previous |

 	MozDef 1.8.0 documentation

Contributors

Here is the list of the awesome contributors helping us or that have helped us in the past:

	Yohann Lepage (@2xyo) yohann INSERTAT lepage INSERTDOT info (docker configuration)

	Björn Arnelid bjorn.arnelid INSERTAT gmail INSERTDOT com

 Copyright 2014, Jeff Bryner, Anthony Verez.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	MozDef 1.8.0 documentation

Index

 Copyright 2014, Jeff Bryner, Anthony Verez.
 Created using Sphinx 1.3.5.

 _static/plus.png

_static/ajax-loader.gif

_static/down.png

public_api.html

 Navigation

 		
 index

 		MozDef 1.8.0 documentation »

Public API

 © Copyright 2014, Jeff Bryner, Anthony Verez.
 Created using Sphinx 1.3.5.

_static/up.png

_static/down-pressed.png

_images/IncidentHandling.png
") MOZDEF «iBanaDasHBOoARDS ALERTS INCIDENTS VISUALIZATIONS ABOUT mozilla

Save changes now - Undo - Redo

impact.loss.rating.Major
impact.loss.rating.Moderate
impact.loss.rating.Minor
impact.loss.rating.None
impact.loss.rating.Unknown
impact.loss.variety.Asset and fraud
impact.loss.variety.Brand damage
impact.loss.variety.Business disruption
impact.loss.variety.Operating costs
impact.loss.variety.Legal and regulatory

_ impact.loss.variety.Competitive advantage

long description

impact.loss.variety.Response and recovery
impact.overall_rating.Insignificant
impact.overall_rating.Distracting
impact.overall_rating.Painful
impact.overall_rating.Damaging

B 08/ 014 0 25 PM
=
Identification j
impact.overall_rating.Catastrophic
impact.overall_rating.Unknown
drag here to add a tag iso_currency_code.AED
iso_currency_code.AFN

iso_currency_code.ALL
Reported iso_currency_code.AMD
iso_currency_code.ANG

Heike iso_currency_code.AOA
Mitigated iso_currency_code.ARS

e iso_currency_code.AUD
Contained iso_currency_code.AWG

iso_currency_code.AZN
iso_currency_code.BAM

P T o oy

_images/AttackerOgres.png
e WDEF KIBANA DASHBOARDS ALERTS INCIDENTS VISUALIZATIONS ABOUT JBRYNER@MOZILLA.COM

_images/HealthAndStatus.png
©) MOZDEF «iBaNADASHBOARDS ~ ALERTS INCIDENTS VISUALIZATIONS ABOUT mozilla

EPS: 26 LOAD AVERAGE

256 3.42

LAST UPDATE: 2014-08-21T01:11:16.615403+00:00

ES Cluster Name Cluster Status Nodes DataNodes Active Shards Active Primary Shards Relocating Shards Initializing Shards Unassigned Shards

elasticsearch yellow 1 1 21 21 0 0 21
Frontend Node Load Average Queue Messages Ready Messages Unacknowledged EPS IN EPS to ElasticSearch
localhost 3.42,1.05,0.55 (0] 25.6 25.6
eventtask 0 12 25.6 25.6
ES Node CPU % Load Average JVM Memory % Disk Free (GB) Disk Total (GB)

2ead358e122d 32 3.05,1.08,0.57 17 968 984

_static/up-pressed.png

_images/AttacksLandmass.png
| IMOZDEE}

_images/d3Visualizations.png
0 M OZ D E F KIBANA DASHBOARDS ALERTS INCIDENTS VISUALIZATIONS ABOUT

_images/frontend_processing.png
Publishes

Log in JSON over

W os [Publishes
or HTTPS (8443)
AmaQP AMQP
or AMQPS or AMQPS
(s671) (671)
Publishes Pulls from

Login Publishes

AMQP
or AMQPS (5671)

search.html

 Navigation

 		
 index

 		MozDef 1.8.0 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2014, Jeff Bryner, Anthony Verez.
 Created using Sphinx 1.3.5.

license.html

 Navigation

 		
 index

 		MozDef 1.8.0 documentation »

Mozilla Public License Version 2.0

1. Definitions

		1.1. “Contributor”

		means each individual or legal entity that creates, contributes to
the creation of, or owns Covered Software.

		1.2. “Contributor Version”

		means the combination of the Contributions of others (if any) used
by a Contributor and that particular Contributor’s Contribution.

		1.3. “Contribution”

		means Covered Software of a particular Contributor.

		1.4. “Covered Software”

		means Source Code Form to which the initial Contributor has attached
the notice in Exhibit A, the Executable Form of such Source Code
Form, and Modifications of such Source Code Form, in each case
including portions thereof.

		1.5. “Incompatible With Secondary Licenses”

		means

		that the initial Contributor has attached the notice described
in Exhibit B to the Covered Software; or

		that the Covered Software was made available under the terms of
version 1.1 or earlier of the License, but not also under the
terms of a Secondary License.

		1.6. “Executable Form”

		means any form of the work other than Source Code Form.

		1.7. “Larger Work”

		means a work that combines Covered Software with other material, in
a separate file or files, that is not Covered Software.

		1.8. “License”

		means this document.

		1.9. “Licensable”

		means having the right to grant, to the maximum extent possible,
whether at the time of the initial grant or subsequently, any and
all of the rights conveyed by this License.

		1.10. “Modifications”

		means any of the following:

		any file in Source Code Form that results from an addition to,
deletion from, or modification of the contents of Covered
Software; or

		any new file in Source Code Form that contains any Covered
Software.

		1.11. “Patent Claims” of a Contributor

		means any patent claim(s), including without limitation, method,
process, and apparatus claims, in any patent Licensable by such
Contributor that would be infringed, but for the grant of the
License, by the making, using, selling, offering for sale, having
made, import, or transfer of either its Contributions or its
Contributor Version.

		1.12. “Secondary License”

		means either the GNU General Public License, Version 2.0, the GNU
Lesser General Public License, Version 2.1, the GNU Affero General
Public License, Version 3.0, or any later versions of those
licenses.

		1.13. “Source Code Form”

		means the form of the work preferred for making modifications.

		1.14. “You” (or “Your”)

		means an individual or a legal entity exercising rights under this
License. For legal entities, “You” includes any entity that
controls, is controlled by, or is under common control with You. For
purposes of this definition, “control” means (a) the power, direct
or indirect, to cause the direction or management of such entity,
whether by contract or otherwise, or (b) ownership of more than
fifty percent (50%) of the outstanding shares or beneficial
ownership of such entity.

2. License Grants and Conditions

2.1. Grants

Each Contributor hereby grants You a world-wide, royalty-free,
non-exclusive license:

		under intellectual property rights (other than patent or trademark)
Licensable by such Contributor to use, reproduce, make available,
modify, display, perform, distribute, and otherwise exploit its
Contributions, either on an unmodified basis, with Modifications, or
as part of a Larger Work; and

		under Patent Claims of such Contributor to make, use, sell, offer
for sale, have made, import, and otherwise transfer either its
Contributions or its Contributor Version.

2.2. Effective Date

The licenses granted in Section 2.1 with respect to any Contribution
become effective for each Contribution on the date the Contributor first
distributes such Contribution.

2.3. Limitations on Grant Scope

The licenses granted in this Section 2 are the only rights granted under
this License. No additional rights or licenses will be implied from the
distribution or licensing of Covered Software under this License.
Notwithstanding Section 2.1(b) above, no patent license is granted by a
Contributor:

		for any code that a Contributor has removed from Covered Software;
or

		for infringements caused by: (i) Your and any other third party’s
modifications of Covered Software, or (ii) the combination of its
Contributions with other software (except as part of its Contributor
Version); or

		under Patent Claims infringed by Covered Software in the absence of
its Contributions.

This License does not grant any rights in the trademarks, service marks,
or logos of any Contributor (except as may be necessary to comply with
the notice requirements in Section 3.4).

2.4. Subsequent Licenses

No Contributor makes additional grants as a result of Your choice to
distribute the Covered Software under a subsequent version of this
License (see Section 10.2) or under the terms of a Secondary License (if
permitted under the terms of Section 3.3).

2.5. Representation

Each Contributor represents that the Contributor believes its
Contributions are its original creation(s) or it has sufficient rights
to grant the rights to its Contributions conveyed by this License.

2.6. Fair Use

This License is not intended to limit any rights You have under
applicable copyright doctrines of fair use, fair dealing, or other
equivalents.

2.7. Conditions

Sections 3.1, 3.2, 3.3, and 3.4 are conditions of the licenses granted
in Section 2.1.

3. Responsibilities

3.1. Distribution of Source Form

All distribution of Covered Software in Source Code Form, including any
Modifications that You create or to which You contribute, must be under
the terms of this License. You must inform recipients that the Source
Code Form of the Covered Software is governed by the terms of this
License, and how they can obtain a copy of this License. You may not
attempt to alter or restrict the recipients’ rights in the Source Code
Form.

3.2. Distribution of Executable Form

If You distribute Covered Software in Executable Form then:

		such Covered Software must also be made available in Source Code
Form, as described in Section 3.1, and You must inform recipients of
the Executable Form how they can obtain a copy of such Source Code
Form by reasonable means in a timely manner, at a charge no more
than the cost of distribution to the recipient; and

		You may distribute such Executable Form under the terms of this
License, or sublicense it under different terms, provided that the
license for the Executable Form does not attempt to limit or alter
the recipients’ rights in the Source Code Form under this License.

3.3. Distribution of a Larger Work

You may create and distribute a Larger Work under terms of Your choice,
provided that You also comply with the requirements of this License for
the Covered Software. If the Larger Work is a combination of Covered
Software with a work governed by one or more Secondary Licenses, and the
Covered Software is not Incompatible With Secondary Licenses, this
License permits You to additionally distribute such Covered Software
under the terms of such Secondary License(s), so that the recipient of
the Larger Work may, at their option, further distribute the Covered
Software under the terms of either this License or such Secondary
License(s).

3.4. Notices

You may not remove or alter the substance of any license notices
(including copyright notices, patent notices, disclaimers of warranty,
or limitations of liability) contained within the Source Code Form of
the Covered Software, except that You may alter any license notices to
the extent required to remedy known factual inaccuracies.

3.5. Application of Additional Terms

You may choose to offer, and to charge a fee for, warranty, support,
indemnity or liability obligations to one or more recipients of Covered
Software. However, You may do so only on Your own behalf, and not on
behalf of any Contributor. You must make it absolutely clear that any
such warranty, support, indemnity, or liability obligation is offered by
You alone, and You hereby agree to indemnify every Contributor for any
liability incurred by such Contributor as a result of warranty, support,
indemnity or liability terms You offer. You may include additional
disclaimers of warranty and limitations of liability specific to any
jurisdiction.

4. Inability to Comply Due to Statute or Regulation

If it is impossible for You to comply with any of the terms of this
License with respect to some or all of the Covered Software due to
statute, judicial order, or regulation then You must: (a) comply with
the terms of this License to the maximum extent possible; and (b)
describe the limitations and the code they affect. Such description must
be placed in a text file included with all distributions of the Covered
Software under this License. Except to the extent prohibited by statute
or regulation, such description must be sufficiently detailed for a
recipient of ordinary skill to be able to understand it.

5. Termination

5.1. The rights granted under this License will terminate automatically
if You fail to comply with any of its terms. However, if You become
compliant, then the rights granted under this License from a particular
Contributor are reinstated (a) provisionally, unless and until such
Contributor explicitly and finally terminates Your grants, and (b) on an
ongoing basis, if such Contributor fails to notify You of the
non-compliance by some reasonable means prior to 60 days after You have
come back into compliance. Moreover, Your grants from a particular
Contributor are reinstated on an ongoing basis if such Contributor
notifies You of the non-compliance by some reasonable means, this is the
first time You have received notice of non-compliance with this License
from such Contributor, and You become compliant prior to 30 days after
Your receipt of the notice.

5.2. If You initiate litigation against any entity by asserting a patent
infringement claim (excluding declaratory judgment actions,
counter-claims, and cross-claims) alleging that a Contributor Version
directly or indirectly infringes any patent, then the rights granted to
You by any and all Contributors for the Covered Software under Section
2.1 of this License shall terminate.

5.3. In the event of termination under Sections 5.1 or 5.2 above, all
end user license agreements (excluding distributors and resellers) which
have been validly granted by You or Your distributors under this License
prior to termination shall survive termination.

6. Disclaimer of Warranty

Covered Software is provided under this License on an “as is”
basis, without warranty of any kind, either expressed, implied, or
statutory, including, without limitation, warranties that the
Covered Software is free of defects, merchantable, fit for a
particular purpose or non-infringing. The entire risk as to the
quality and performance of the Covered Software is with You.
Should any Covered Software prove defective in any respect, You
(not any Contributor) assume the cost of any necessary servicing,
repair, or correction. This disclaimer of warranty constitutes an
essential part of this License. No use of any Covered Software is
authorized under this License except under this disclaimer.

7. Limitation of Liability

Under no circumstances and under no legal theory, whether tort
(including negligence), contract, or otherwise, shall any
Contributor, or anyone who distributes Covered Software as
permitted above, be liable to You for any direct, indirect,
special, incidental, or consequential damages of any character
including, without limitation, damages for lost profits, loss of
goodwill, work stoppage, computer failure or malfunction, or any
and all other commercial damages or losses, even if such party
shall have been informed of the possibility of such damages. This
limitation of liability shall not apply to liability for death or
personal injury resulting from such party’s negligence to the
extent applicable law prohibits such limitation. Some
jurisdictions do not allow the exclusion or limitation of
incidental or consequential damages, so this exclusion and
limitation may not apply to You.

8. Litigation

Any litigation relating to this License may be brought only in the
courts of a jurisdiction where the defendant maintains its principal
place of business and such litigation shall be governed by laws of that
jurisdiction, without reference to its conflict-of-law provisions.
Nothing in this Section shall prevent a party’s ability to bring
cross-claims or counter-claims.

9. Miscellaneous

This License represents the complete agreement concerning the subject
matter hereof. If any provision of this License is held to be
unenforceable, such provision shall be reformed only to the extent
necessary to make it enforceable. Any law or regulation which provides
that the language of a contract shall be construed against the drafter
shall not be used to construe this License against a Contributor.

10. Versions of the License

10.1. New Versions

Mozilla Foundation is the license steward. Except as provided in Section
10.3, no one other than the license steward has the right to modify or
publish new versions of this License. Each version will be given a
distinguishing version number.

10.2. Effect of New Versions

You may distribute the Covered Software under the terms of the version
of the License under which You originally received the Covered Software,
or under the terms of any subsequent version published by the license
steward.

10.3. Modified Versions

If you create software not governed by this License, and you want to
create a new license for such software, you may create and use a
modified version of this License if you rename the license and remove
any references to the name of the license steward (except to note that
such modified license differs from this License).

10.4. Distributing Source Code Form that is Incompatible With Secondary
Licenses

If You choose to distribute Source Code Form that is Incompatible With
Secondary Licenses under the terms of this version of the License, the
notice described in Exhibit B of this License must be attached.

Exhibit A - Source Code Form License Notice

This Source Code Form is subject to the terms of the Mozilla Public
License, v. 2.0. If a copy of the MPL was not distributed with this
file, You can obtain one at http://mozilla.org/MPL/2.0/.

If it is not possible or desirable to put the notice in a particular
file, then You may include the notice in a location (such as a LICENSE
file in a relevant directory) where a recipient would be likely to look
for such a notice.

You may add additional accurate notices of copyright ownership.

Exhibit B - “Incompatible With Secondary Licenses” Notice

This Source Code Form is “Incompatible With Secondary Licenses”, as
defined by the Mozilla Public License, v. 2.0.

 © Copyright 2014, Jeff Bryner, Anthony Verez.
 Created using Sphinx 1.3.5.

_images/Alerts.png
e MOZDEF isana pastBoarps

CATEGORIES: BRO, BRUTEFORCE

ALERTS

INCIDENTS VISUALIZATIONS ABOUT mozilla

4

VOLUME SEVERITY:

NOTICE

CETTTT D
TIMESTAMP LINKS SEVERITY CATEGORY SUMMARY

Wed, 06PM

Wed Aug 20 2014 18:30:00 ‘-~ NOTICE bro MozillaHTTPErrors::Excessive_HTTP_Errors_Attacker Excessive HTTP errors for requests from -
GMT-0700 (PDT) kibana 144.0.0.2 120in 1.0 hr, eps: 0

Wed Aug 20 2014 18:30:00 -~ NOTICE bro MozillaHTTPErrors::Excessive_HTTP_Errors_Attacker Excessive HTTP errors for requests from -
GMT-0700 (PDT) kibana 116.10.191.1 1201in 1.0 hr, eps: 0

Wed Aug 20 2014 18:30:00 "~ NOTICE bro MozillaHTTPErrors::Excessive_HTTP_Errors_Attacker Excessive HTTP errors for requests from -
GMT-0700 (PDT) kibana 144.0.0.1 120in 1.0 hr, eps: 0

Wed Aug 20 2014 18:30:00 "~ NOTICE bro MozillaHTTPErrors::Excessive_HTTP_Errors_Attacker Excessive HTTP errors for requests from -
GMT-0700 (PDT) kibana 144.0.0.1 120in 1.0 hr, eps: 0

Wed Aug 20 2014 18:30:00 © NOTICE bruteforce 22 ssh bruteforce attempts by 222.73.115.2 -
GMT-0700 (PDT) kibana

Wed Aug 20 2014 18:30:00 . NOTICE bruteforce 12 ssh bruteforce attempts by 74.52.193.242 =
GMT-0700 (PDT) kibana

Wed Aug 20 2014 18:30:00 . NOTICE bruteforce 12 ssh bruteforce attempts by 31.77.30.108 =
GMT-0700 (PDT) kibana

Wed Aug 20 2014 18:30:00 ~ NOTICE bruteforce 12 ssh bruteforce attempts by 192.32.103.90 -

AT N7NN DA

Lilhmma

_static/comment-close.png

_static/comment-bright.png

_images/AttackerGlobe.png
e M OZ D E F KIBANA DASHBOARDS ALERTS INCIDENTS VISUALIZATIONS ABOUT JBRYNER@MOZILLA.COM ~ I“ul II’

JERIST

Controls:
« use arrow key or mouse to move
« wheel: (un)zoom
« space: spin that thing

Powered by WebGL Globe

_static/comment.png

_static/minus.png

_static/file.png

