
motorway Documentation
Release 2.0.38

Plecto ApS

Dec 17, 2018

Contents

1 Pipeline 3

2 Ramps 5

3 Intersections 7

4 Messages 9

5 Contrib modules 11
5.1 Amazon Kinesis . 11
5.2 Amazon SQS . 12

6 License 15

i

ii

motorway Documentation, Release 2.0.38

Contents:

Contents 1

motorway Documentation, Release 2.0.38

2 Contents

CHAPTER 1

Pipeline

class motorway.pipeline.Pipeline(controller_bind_address=’0.0.0.0:7007’,
run_controller=True, run_webserver=True,
run_connection_discovery=True)

definition()
Extend this method in your motorway.pipeline.Pipeline subclass, e.g.:

class WordCountPipeline(Pipeline):
def definition(self):

self.add_ramp(WordRamp, 'sentence')
self.add_intersection(SentenceSplitIntersection, 'sentence', 'word',

→˓processes=2)
self.add_intersection(WordCountIntersection, 'word', 'word_count',

→˓grouper_cls=HashRingGrouper, processes=2)
self.add_intersection(AggregateIntersection, 'word_count', grouper_

→˓cls=HashRingGrouper, processes=1)

run()
Execute the entire pipeline in several sub processes.

3

motorway Documentation, Release 2.0.38

4 Chapter 1. Pipeline

CHAPTER 2

Ramps

class motorway.ramp.Ramp(runs_on_controller=False, process_uuid=None)
All messages must at some point start at a ramp, which ingests data into the pipeline from an external system or
generates data it self (such as random words in the tutorial)

failed(_id)
Called when a message failed somewhere in the pipeline. The message might not be entirely finished
processing at this point and this function might be called multiple times.

Parameters _id – The id of the message that failed

next()
This function is called continuously by the ramp.

Warning: Do not block this for a long time or make a while True loop inside it. Betwen every
motorway.ramp.Ramp.next() run, some essential operations are run, including receiving acks
from the motorway.controller.Controller

Yield motorway.messages.Message instance

should_run()

Subclass to define rules whether this tap should run or not. Mainly used for ensuring a tap only runs once
across the network

Returns bool

success(_id)
Called when a message was successfully ack’ed through the entire pipeline.

Parameters _id – The id of the message that was successful

5

motorway Documentation, Release 2.0.38

6 Chapter 2. Ramps

CHAPTER 3

Intersections

class motorway.intersection.Intersection(process_uuid=None)
Intersections receive messages and generate either:

• A spin-off message

Spin-off messages will keep track of the state of the entire message tree and re-run it if failed. This means that
if you want to re-run the message all the way from the ramp in case of an error, you should make a spin-off
message.

Message.new(message, {

{ ‘word’: ‘hello’, ‘count’: 1

}, grouping_value=’hello’

})

• A brand new message

The message will be created with the intersection as producer. The intersection will not receive feedback if it is
successful or not and hence will not be re-tried in the case of an error.

Message(uuid.uuid4()

process(message)
This function is called continuously by the intersection.

Yield motorway.messages.Message instance

Parameters message – motorway.messages.Message instance or list() if using
motorway.decorators.batch_process()

receive_messages(context=None, output_stream=None, grouper_cls=None)
Continously read and process using _process function

motorway.decorators.batch_process(wait=5, limit=100)

7

motorway Documentation, Release 2.0.38

8 Chapter 3. Intersections

CHAPTER 4

Messages

class motorway.messages.Message(ramp_unique_id, content=None, ack_value=None,
controller_queue=None, grouping_value=None, er-
ror_message=None, process_name=None, pro-
ducer_uuid=None, destination_endpoint=None, destina-
tion_uuid=None)

Parameters

• ramp_unique_id – the unique message ID delivered back upon completion to the ramp

• content – any json serializable content

• grouping_value – String that can be used for routing messages consistently to the same
receiver

Returns

ack(time_consumed=None)
Send a message to the controller that this message was properly processed

fail(error_message=”, capture_exception=True)
Send a message to the controller that this message failed to process

classmethod from_message(message, controller_queue, process_name=None)

Parameters

• message – Message dict (converted from JSON)

• controller_queue –

• process_name – UUID of the process processing this message (as string)

Returns

classmethod new(message, content, grouping_value=None, error_message=None)

Creates a new message, based on an existing message. This has the consequence that it will be tracked together
and the tap will not be notified until every message in the chain is properly ack’ed.

9

motorway Documentation, Release 2.0.38

Parameters

• message – Message instance, as received by the intersection

• content – Any value that can be serialized into json

• grouping_value – String that can be used for routing messages consistently to the
same receiver

send_control_message(controller_queue, time_consumed=None, process_name=None, destina-
tion_endpoint=None, destination_uuid=None, sender=None)

Control messages are notifications that a new message have been created, so the controller can keep track
of this particular message and let the ramp know once the entire tree of messages has been completed.

This is called implicitly on yield Message(_id, ‘message’)

Parameters process_name – UUID of the process processing this message (as string)

10 Chapter 4. Messages

CHAPTER 5

Contrib modules

These are add-ons which is shipped with motorway, but not a part of the “core”

5.1 Amazon Kinesis

The Kinesis ramp is by far the most advanced available. It actually mimicks the behavior of the Amazon Kinesis
Client Library but doesn’t depend on Java like KCL.

The interface is very simple, just subclass motorway.contrib.amazon_kinesis.ramps.KinesisRamp
and add the attribute “stream_name” according to the name you used for the stream in AWS.

Similarly, there is an intersection which allows you to “dump” content into a Kinesis stream. It works the exact same
way.

class motorway.contrib.amazon_kinesis.ramps.KinesisRamp(shard_threads_enabled=True,
**kwargs)

can_claim_shard(shard_id)
Determine whether or not a given shard can be claimed because of

1. It’s currently not being processed by another process

2. It’s unevenly balanced between the consuming nodes/workers

Parameters shard_id –

Returns bool

claim_shard(shard_id)
Atomically update the shard in DynamoDB

Parameters shard_id –

Returns bool

11

motorway Documentation, Release 2.0.38

next()
This function is called continuously by the ramp.

Warning: Do not block this for a long time or make a while True loop inside it. Betwen every
motorway.ramp.Ramp.next() run, some essential operations are run, including receiving acks
from the motorway.controller.Controller

Yield motorway.messages.Message instance

process_shard(shard_id)
Every shard (at startup) has an active thread that runs this function to either consume or wait to be ready
to consume data from a shard

Parameters shard_id –

Returns

success(_id)
Called when a message was successfully ack’ed through the entire pipeline.

Parameters _id – The id of the message that was successful

class motorway.contrib.amazon_kinesis.intersections.KinesisInsertIntersection(**kwargs)

process(messages)
wait 1 second and get up to 500 items Each PutRecords request can support up to 500 records. Each record
in the request can be as large as 1 MB, up to a limit of 5 MB for the entire request, including partition
keys. Each shard can support writes up to 1,000 records per second, up to a maximum data write total of
1 MB per second. This means we can run 2 intersections (2 x 500 records) submitting to the same shard
before hitting the write limit (1000 records/sec) If we hit the write limit we wait 2 seconds and try to send
the records that failed again, rinse and repeat If any other error than ProvisionedThroughputExceededEx-
ception or InternalFailure is returned in the response we log it using loglevel error and dump the message
for replayability instead of raising an exception that would drop the whole batch. So if you are going to
use this intersection in production be sure to monitor and handle the messages with log level error! :param
messages: :return:

5.2 Amazon SQS

class motorway.contrib.amazon_sqs.ramps.SQSRamp(*args, **kwargs)

next()
This function is called continuously by the ramp.

Warning: Do not block this for a long time or make a while True loop inside it. Betwen every
motorway.ramp.Ramp.next() run, some essential operations are run, including receiving acks
from the motorway.controller.Controller

Yield motorway.messages.Message instance

success(_id)
Called when a message was successfully ack’ed through the entire pipeline.

12 Chapter 5. Contrib modules

motorway Documentation, Release 2.0.38

Parameters _id – The id of the message that was successful

class motorway.contrib.amazon_sqs.intersections.SQSInsertIntersection(**kwargs)

process(message)
This function is called continuously by the intersection.

Yield motorway.messages.Message instance

Parameters message – motorway.messages.Message instance or list() if using
motorway.decorators.batch_process()

5.2. Amazon SQS 13

motorway Documentation, Release 2.0.38

14 Chapter 5. Contrib modules

CHAPTER 6

License

Copyright 2014 Plecto ApS

Licensed under the Apache License, Version 2.0 (the “License”); you may not use this file except in compliance with
the License. You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an
“AS IS” BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
License for the specific language governing permissions and limitations under the License.

15

http://www.apache.org/licenses/LICENSE-2.0

motorway Documentation, Release 2.0.38

16 Chapter 6. License

Index

A
ack() (motorway.messages.Message method), 9

B
batch_process() (in module motorway.decorators), 7

C
can_claim_shard() (motor-

way.contrib.amazon_kinesis.ramps.KinesisRamp
method), 11

claim_shard() (motorway.contrib.amazon_kinesis.ramps.KinesisRamp
method), 11

D
definition() (motorway.pipeline.Pipeline method), 3

F
fail() (motorway.messages.Message method), 9
failed() (motorway.ramp.Ramp method), 5
from_message() (motorway.messages.Message class

method), 9

I
Intersection (class in motorway.intersection), 7

K
KinesisInsertIntersection (class in motor-

way.contrib.amazon_kinesis.intersections),
12

KinesisRamp (class in motor-
way.contrib.amazon_kinesis.ramps), 11

M
Message (class in motorway.messages), 9

N
new() (motorway.messages.Message class method), 9
next() (motorway.contrib.amazon_kinesis.ramps.KinesisRamp

method), 11

next() (motorway.contrib.amazon_sqs.ramps.SQSRamp
method), 12

next() (motorway.ramp.Ramp method), 5

P
Pipeline (class in motorway.pipeline), 3
process() (motorway.contrib.amazon_kinesis.intersections.KinesisInsertIntersection

method), 12
process() (motorway.contrib.amazon_sqs.intersections.SQSInsertIntersection

method), 13
process() (motorway.intersection.Intersection method), 7
process_shard() (motor-

way.contrib.amazon_kinesis.ramps.KinesisRamp
method), 12

R
Ramp (class in motorway.ramp), 5
receive_messages() (motorway.intersection.Intersection

method), 7
run() (motorway.pipeline.Pipeline method), 3

S
send_control_message() (motorway.messages.Message

method), 10
should_run() (motorway.ramp.Ramp method), 5
SQSInsertIntersection (class in motor-

way.contrib.amazon_sqs.intersections), 13
SQSRamp (class in motor-

way.contrib.amazon_sqs.ramps), 12
success() (motorway.contrib.amazon_kinesis.ramps.KinesisRamp

method), 12
success() (motorway.contrib.amazon_sqs.ramps.SQSRamp

method), 12
success() (motorway.ramp.Ramp method), 5

17

	Pipeline
	Ramps
	Intersections
	Messages
	Contrib modules
	Amazon Kinesis
	Amazon SQS

	License

