

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	Morris 1.2 documentation

Welcome to Morris’ documentation!

Contents:

	Morris - an announcement (signal/event) system for Python
	Features

	Installation

	Usage
	morris – announcement (signal/event) system for Python

	Reference

	Internals

	Contributing
	Types of Contributions

	Get Started!

	Pull Request Guidelines

	Tips

	Credits
	Development Lead

	Contributors

	History
	1.2 (2015-02-030

	1.1 (2015-02-02)

	1.0 (2014-09-21)

	2012-2014

Indices and tables

	Index

	Module Index

	Search Page

 Copyright 2014, Zygmunt Krynicki.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Morris 1.2 documentation

Morris - an announcement (signal/event) system for Python

[image: https://badge.fury.io/py/morris.png]
 [http://badge.fury.io/py/morris][image: https://travis-ci.org/zyga/morris.png?branch=master]
 [https://travis-ci.org/zyga/morris][image: https://pypip.in/d/morris/badge.png]
 [https://pypi.python.org/pypi/morris]
Features

	Free software: LGPLv3 license

	Documentation: https://morris.readthedocs.org.

	Create signals with a simple decorator morris.signal

	Send signals by calling the decorated method or function

	Connect to and disconnect from signals with morris.signal.connect()
and morris.signal.disconnect().

	Test your code with morris.SignalTestCase.watchSignal(),
morris.SignalTestCase.assertSignalFired(),
morris.SignalTestCase.assertSignalNotFired()
and morris.SignalTestCase.assertSignalOrdering()

 Copyright 2014, Zygmunt Krynicki.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Morris 1.2 documentation

Installation

At the command line:

$ easy_install morris

Or, if you have virtualenvwrapper installed:

$ mkvirtualenv morris
$ pip install morris

 Copyright 2014, Zygmunt Krynicki.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Morris 1.2 documentation

Usage

morris – announcement (signal/event) system for Python

The morris module defines two main classes signal and
SignalTestCase.

Defining Signals

Note

Since version 1.1 Signal.define and signal are identical

You can import the signal class and use idiomatic code like:

>>> from morris import signal

>>> # NOTE: classic python 2.x classes are not supported
>>> class Klass(object):
... @signal
... def on_foo(self):
... pass

>>> @signal
... def on_bar():
... pass

Connecting signal listeners

Connecting signals is equally easy, just call signal.connect()

>>> def handler():
... print("handling signal")

>>> obj = Klass()
>>> obj.on_foo.connect(handler)
>>> on_bar.connect(handler)

Firing signals

To fire a signal simply call the signal object:

>>> obj.on_foo()
handling signal
>>> on_bar()
handling signal

Typically you will want to pass some additional arguments. Both positional
and keyword arguments are supported:

>>> @signal
... def on_bar_with_args(arg1, arg2):
... print("fired!")

>>> on_bar_with_args('foo', arg2='bar')
fired!

If you are working in a tight loop it is slightly faster to construct the list
of positional arguments and the dictionary of keyword arguments and call the
Signal.fire() method directly:

>>> args = ('foo',)
>>> kwargs = {'arg2': 'bar'}
>>> for i in range(3):
... on_bar_with_args.fire(args, kwargs)
fired!
fired!
fired!

Passing additional meta-data to the signal listener

In some cases you may wish to use a generic signal handler that would benefit
from knowing which signal has triggered it. To do that first make sure that
your handler has a signal argument and then call sig.connect(handler,
pass_signal=True):

>>> def generic_handler(*args, **kwargs):
... signal = kwargs.pop('signal')
... print("Handling signal {}: {} {}".format(signal, args, kwargs))

Let’s define two signals now:

>>> @signal
... def login(user, password):
... pass
>>> @signal
... def logout(user):
... pass

And connect both to the same handler:

>>> login.connect(generic_handler, pass_signal=True)
>>> logout.connect(generic_handler, pass_signal=True)

Now we can fire either one and see our handler work:

>>> login(str('user'), password=str('pass'))
Handling signal <signal name:'login'>: ('user',) {'password': 'pass'}
>>> logout(str('user'))
Handling signal <signal name:'logout'>: ('user',) {}

Note

The example uses str(...) to have identical output on Python
2.7 and 3.x but str() it is otherwise useless.

This also works with classes:

>>> class App(object):
... def __repr__(self):
... return "app"
... @signal
... def login(self, user, password):
... pass
... @signal
... def logout(self, user):
... pass
>>> app = App()
>>> app.login.connect(generic_handler, pass_signal=True)
>>> app.logout.connect(generic_handler, pass_signal=True)

We can now fire the signals, just as before:

>>> app.login(str('user'), password=str('pass'))
...
Handling signal <signal name:'...login' (specific to app)>:
 ('user',) {'password': 'pass'}
>>> app.logout(str('user'))
Handling signal <signal name:'...logout' (specific to app)>: ('user',) {}

Disconnecting signals

To disconnect a signal handler call signal.disconnect() with the same
listener object that was used in connect():

>>> obj.on_foo.disconnect(handler)
>>> on_bar.disconnect(handler)

Threading considerations

Morris doesn’t do anything related to threads. Threading is diverse enough that
for now it was better to just let uses handle it. There are two things that
are worth mentioning though:

	signal.connect() and signal.disconnect() should be safe to
call concurrently with signal.fire() since fire() operates on
a copy of the list of listeners

	Event handlers are called from the thread calling signal.fire(),
not from the thread that was used to connect to the signal handler. If you
need special provisions for working with signals in a specific thread
consider calling a thread-library-specific function that calls a callable
in a specific thread context.

Support for writing unit tests

Morris ships with support for writing tests for signals. You can use
SignalTestCase‘s support methods such as
watchSignal(),
assertSignalFired(),
assertSignalNotFired() and
assertSignalOrdering() to simplify your tests.

Here’s a simple example using all of the above:

>>> class App(object):
... @signal
... def on_login(self, user):
... pass
... @signal
... def on_logout(self, user):
... pass
... def login(self, user):
... self.on_login(user)
... def logout(self, user):
... self.on_logout(user)

>>> class AppTests(SignalTestCase):
... def setUp(self):
... self.app = App()
... self.watchSignal(self.app.on_login)
... self.watchSignal(self.app.on_logout)
... def test_login(self):
... # Log the user in, then out
... self.app.login("user")
... self.app.logout("user")
... # Ensure that both login and logout signals were sent
... event1 = self.assertSignalFired(self.app.on_login, 'user')
... event2 = self.assertSignalFired(self.app.on_logout, 'user')
... # Ensure that signals were fired in the right order
... self.assertSignalOrdering(event1, event2)
... # Ensure that we didn't login as admin
... self.assertSignalNotFired(self.app.on_login, 'admin')

>>> import sys
>>> suite = unittest.TestLoader().loadTestsFromTestCase(AppTests)
>>> runner = unittest.TextTestRunner(stream=sys.stdout, verbosity=2)
>>> runner.run(suite)
test_login (morris.AppTests) ... ok

--
Ran 1 test in ...s

OK
<unittest.runner.TextTestResult run=1 errors=0 failures=0>

Implementation notes

At some point in time one may need to peek under the cover and understand where
the list of signal listeners is being stored and how signals interact with
classes. First of all, the signal class can be used as a Python
descriptor. Descriptors are objects that have methods such as __get__,
__set__ or __delete__.

You have most certainly used descriptors before, in fact the well-known
@property decorator is nothing more than a class with methods such as
listed above.

When used as a descriptor, a signal object will create new signal objects
each time it is being accessed on an instance of some class. The instance of
some class will be injected with a __signals__ dictionary that contains
signals that have been accessed.

Consider this example:

>>> class Foo(object):
... @signal
... def ping(self):
... pass

Here Foo.ping is one instance of signal. When that instance
is being accessed on a class it simply returns itself.

>>> Foo.ping
<signal name:'...ping'>

Note

While this looks similar to decorating a function it is functioning in a
totally different way. Signals decorating plain functions (outside of a
class definition body) are not using their descriptor nature.

Now, let’s instantiate Foo and see what’s inside:

>>> foo = Foo()
>>> foo.__dict__
{}

Nothing is inside, but there will be once we access foo.ping. Morris will
create a new signal object associated with both the foo instance
and the foo.ping method. It will look for foo.__signals__ and not
having found any will create one from an empty dictionary. Lastly morris will
add the newly created signal object to the dictionary. This way each time we
access foo.ping (on the particular foo object) we’ll get exactly the
same signal object in return.

>>> foo.ping
<signal name:'...ping' (specific to <...Foo object at ...>)>
>>> foo.__dict__
{'__signals__':
 {'...ping': <signal name:'...ping'
 (specific to <...Foo object at ...>)>}}

This all happens transparently the first time that code such as
foo.ping.connect(...) is executed. When you connect a signal morris simply
needs a place to store the list of listeners and that is in a signal object
itself. We can now register a simple listener.

>>> def handler():
... pass
>>> foo.ping.connect(handler)

Handlers are stored in the signal.listeners() attribute. They are stored
as a list of listenerinfo tuples. Note that the first responder (the
decorated function itself) is also present, here it is wrapped in the special
(specific to morris) boundmethod class.

>>> foo.ping.listeners
[listenerinfo(listener=<...boundmethod object at ...>, pass_signal=False),
 listenerinfo(listener=<function handler at ...>, pass_signal=False)]

Now, let’s compare this to using signals as a function decorator:

>>> @signal
... def standalone():
... pass

The standalone() function is now replaced by the correspondingly-named
signal object:

>>> standalone
<signal name:'standalone'>

The original function is connected as the first responder though:

>>> standalone.listeners
[listenerinfo(listener=<function ...standalone at ...>, pass_signal=False)]

Since there are no extra objects, there is no __dict__ and no
__signals__ either.

Using @signal on class with __slots__

Since (having read the previous section) you already know that signal
descriptors access the __signals__ attribute on objects of classes they
belong to, to use signals on a class that uses __slots__ you need to
reserve the __signals__ slot up-front.

>>> class Slotted(object):
... __slots__ = ('__signals__')
... @signal
... def ping(self):
... pass
>>> Slotted.ping
<signal name:'...ping'>
>>> slotted = Slotted()
>>> slotted.ping
<signal name:'...ping' (specific to <...Slotted object at ...>)>
>>> slotted.__signals__
{'...ping': <signal name:'...ping'
 (specific to <...Slotted object at ...>)>}

Creating signals explicitly

In all of the examples above we’ve been using signal as a decorator for
existing methods or functions. This is fine for the vast majority of code but
in some cases it may be beneficial to create signal objects explicitly. This
may be of use in meta-programming, for example.

	The signal class may be instantiated in the two following ways:

	
	with the signal name (and no listeners)

	with the first responder function (which becomes the first listener)

The second mode also has a special special case where the first responder.
Let’s examine than now. First, the plain signal object:

>>> signal(str("my-signal"))
<signal name:'my-signal'>

This is a normal signal object, we can call it to fire the signal, we can use
the signal.connect() method to add listeners, etc. If you want to
create standalone signals, this is the best way to do it.

Now let’s examine the case where we pass a signal handler instead of the name:

>>> def my_signal2_handler():
... pass
>>> signal(my_signal2_handler)
<signal name:'my_signal2_handler'>

Here the name of the signal is derived from the name of the handler function.
We can customize the name, if desired, by passing the signal_name argument
(preferably as a keyword argument to differentiate it from the pass_signal
argument):

>>> signal(my_signal2_handler, signal_name='my-signal-2')
<signal name:'my-signal-2'>

Both examples that pass a handler are identical to what happens when decorating
a regular function. There is nothing special about this mode either.

The last, and somewhat special, mode is where the handler is an instance of
boundmethod (which is implemented inside morris). In the Python 2.x
world, python had bound methods but they were removed. We still benefit from
them, a little, hence they are back.

>>> class C(object):
... def handler(self):
... pass
>>> signal(boundmethod(C(), C.handler))
<signal name:'...handler' (specific to <...C object at ...>)>

Note

It is possible to remove boundmethod and rely func.__self__ but this
was not done, yet. Contributions are welcome!

To summarize this section, some simple rules:

	each signal object has a list of listeners

	signal objects act as descriptors and create per-instance signal objects

	signal object created this way are stored in per-instance __signals__
attribute

Reference

	
class morris.signal(name_or_first_responder, pass_signal=False, signal_name=None)[source]

	Basic signal that supports arbitrary listeners.

While this class can be used directly it is best used with the helper
decorator Signal.define on a function or method. See the documentation
for the morris module for details.

	Attr _name:	Name of the signal, typically accessed via name().

	Attr _listeners:

		List of signal listeners. Each item is a tuple (listener,
pass_signal) that encodes how to call the listener.

	
__call__(*args, **kwargs)[source]

	Call fire() with all arguments forwarded transparently

This is provided for convenience so that a signal can be fired just
by a simple method or function call and so that signals can be passed
to other APIs that don’t understand the fire() method.

	
__get__(instance, owner)[source]

	Descriptor __get__ method

This method is called when a signal-decorated method is being accessed
via an object or a class. It is never called for decorated functions.

	Parameters:	
	instance – Instance of the object the descriptor is being used on.
This is None when the descriptor is accessed on a class.

	owner – The class that the descriptor is defined on.

	Returns:	If instance is None we return ourselves, this is what
descriptors typically do. If instance is not None we return a
unique Signal instance that is specific to that object and
signal. This is implemented by storing the signal inside the
object’s __signals__ attribute.

	
__init__(name_or_first_responder, pass_signal=False, signal_name=None)[source]

	Construct a signal with the given name

	Parameters:	
	name_or_first_responder – Either the name of the signal to construct or a callable which
will be the first responder. In the latter case the callable is
used to obtain the name of the signal.

	pass_signal – An optional flag that instructs morris to pass the signal object
itself to the first responder (as the signal argument). This is
only used in the case where name_or_first_responder is a
callable.

	signal_name – Optional name of the signal. This is meaningful only when the first
argument name_or_first_responder is a callable. When that
happens this argument is used and no guessing based on __qualname__
or __name__ is being used.

	
__repr__()[source]

	A representation of the signal.

	There are two possible representations:

	
	a signal object created via a signal descriptor on an object

	a signal object acting as a descriptor or function decorator

	
__weakref__

	list of weak references to the object (if defined)

	
connect(listener, pass_signal=False)[source]

	Connect a new listener to this signal

	Parameters:	
	listener – The listener (callable) to add

	pass_signal – An optional argument that controls if the signal object is
explicitly passed to this listener when it is being fired.
If enabled, a signal= keyword argument is passed to the
listener function.

	Returns:	None

The listener will be called whenever fire() or
__call__() are called. The listener is appended to the list of
listeners. Duplicates are not checked and if a listener is added twice
it gets called twice.

	
define

	alias of signal

	
disconnect(listener, pass_signal=False)[source]

	Disconnect an existing listener from this signal

	Parameters:	
	listener – The listener (callable) to remove

	pass_signal – An optional argument that controls if the signal object is
explicitly passed to this listener when it is being fired.
If enabled, a signal= keyword argument is passed to the
listener function.

Here, this argument simply aids in disconnecting the right
listener. Make sure to pass the same value as was passed to
connect()

	Raises ValueError:

		If the listener (with the same value of pass_signal) is not present

	Returns:	None

	
fire(args, kwargs)[source]

	Fire this signal with the specified arguments and keyword arguments.

Typically this is used by using __call__() on this object which
is more natural as it does all the argument packing/unpacking
transparently.

	
first_responder[source]

	The first responder function.

This is the function that the signal may have been instantiated
with. It is only relevant if the signal itself is used as a
descriptor in a class (where it decorates a method).

For example, contrast the access of the signal on the class and on a
class instance:

>>> class C(object):
... @signal
... def on_foo(self):
... pass

Class access gives uses the descriptor protocol to expose the
actual signal object.

>>> C.on_foo
<signal name:'...on_foo'>

Here we can use the first_responder property to see the actual
function.

>>> C.on_foo.first_responder
<function ...on_foo at ...>

Object access is different as now the signal instance is specific to
the object:

>>> C().on_foo
<signal name:'...on_foo' (specific to <morris.C object at ...)>

And now the first responder is gone (it is now buried inside the
listeners() list):

>>> C().on_foo.first_responder

	
listeners[source]

	List of listenerinfo objects associated with this signal

The list of listeners is considered part of an implementation detail
but is exposed for convenience. This is always the real list. Keep
this in mind while connecting and disconnecting listeners. During
the time fire() is called the list of listeners can be changed
but won’t take effect until after fire() returns.

	
name[source]

	Name of the signal

For signals constructed manually (i.e. by calling Signal())
the name is arbitrary. For signals constructed using either
Signal.define() or signal the name is obtained
from the decorated function.

On python 3.3+ the qualified name is used (see PEP 3155 [http://www.python.org/dev/peps/pep-3155]), on earlier
versions the plain name is used (without the class name). The name is
identical regardless of how the signal is being accessed:

>>> class C(object):
... @signal
... def on_meth(self):
... pass

As a descriptor on a class:

>>> C.on_meth.name
'...on_meth'

As a descriptor on an object:

>>> C().on_meth.name
'...on_meth'

As a decorated function:

>>> @signal
... def on_func():
... pass
>>> on_func.name
'on_func'

	
signal_name

	Name of the signal

For signals constructed manually (i.e. by calling Signal())
the name is arbitrary. For signals constructed using either
Signal.define() or signal the name is obtained
from the decorated function.

On python 3.3+ the qualified name is used (see PEP 3155 [http://www.python.org/dev/peps/pep-3155]), on earlier
versions the plain name is used (without the class name). The name is
identical regardless of how the signal is being accessed:

>>> class C(object):
... @signal
... def on_meth(self):
... pass

As a descriptor on a class:

>>> C.on_meth.name
'...on_meth'

As a descriptor on an object:

>>> C().on_meth.name
'...on_meth'

As a decorated function:

>>> @signal
... def on_func():
... pass
>>> on_func.name
'on_func'

	
class morris.SignalInterceptorMixIn[source]

	A mix-in class for TestCase-like classes that adds extra methods for
working with and testing signals. This class may be of use if the base
TestCase class is not the standard unittest.TestCase class but the user
still wants to take advantage of the extra methods provided here.

	
assertSignalFired(signal, *args, **kwargs)[source]

	Assert that a signal was fired with appropriate arguments.

	Parameters:	
	signal – The Signal that should have been fired.
Typically this is SomeClass.on_some_signal reference

	args – List of positional arguments passed to the signal handler

	kwargs – List of keyword arguments passed to the signal handler

	Returns:	A 3-tuple (signal, args, kwargs) that describes that event

	
assertSignalNotFired(signal, *args, **kwargs)[source]

	Assert that a signal was fired with appropriate arguments.

	Parameters:	
	signal – The Signal that should not have been fired.
Typically this is SomeClass.on_some_signal reference

	args – List of positional arguments passed to the signal handler

	kwargs – List of keyword arguments passed to the signal handler

	
assertSignalOrdering(*expected_events)[source]

	Assert that a signals were fired in a specific sequence.

	Parameters:	expected_events – A (varadic) list of events describing the signals that were fired
Each element is a 3-tuple (signal, args, kwargs) that describes
the event.

Note

If you are using assertSignalFired() then the return value
of that method is a single event that can be passed to this method

	
watchSignal(signal)[source]

	Setup provisions to watch a specified signal

	Parameters:	signal – The Signal to watch for.

After calling this method you can use assertSignalFired()
and assertSignalNotFired() with the same signal.

	
class morris.SignalTestCase(methodName='runTest')[source]

	Bases: unittest.case.TestCase, morris.SignalInterceptorMixIn

A unittest.TestCase subclass that simplifies testing uses of
the Morris signals. It provides three assertion methods and one utility
helper method for observing signal events.

	
addCleanup(function, *args, **kwargs)

	Add a function, with arguments, to be called when the test is
completed. Functions added are called on a LIFO basis and are
called after tearDown on test failure or success.

Cleanup items are called even if setUp fails (unlike tearDown).

	
addTypeEqualityFunc(typeobj, function)

	Add a type specific assertEqual style function to compare a type.

This method is for use by TestCase subclasses that need to register
their own type equality functions to provide nicer error messages.

	Args:

	
	typeobj: The data type to call this function on when both values

	are of the same type in assertEqual().

	function: The callable taking two arguments and an optional

	msg= argument that raises self.failureException with a
useful error message when the two arguments are not equal.

	
assertAlmostEqual(first, second, places=None, msg=None, delta=None)

	Fail if the two objects are unequal as determined by their
difference rounded to the given number of decimal places
(default 7) and comparing to zero, or by comparing that the
between the two objects is more than the given delta.

Note that decimal places (from zero) are usually not the same
as significant digits (measured from the most signficant digit).

If the two objects compare equal then they will automatically
compare almost equal.

	
assertCountEqual(first, second, msg=None)

	An unordered sequence comparison asserting that the same elements,
regardless of order. If the same element occurs more than once,
it verifies that the elements occur the same number of times.

	self.assertEqual(Counter(list(first)),

	Counter(list(second)))

	Example:

	
	[0, 1, 1] and [1, 0, 1] compare equal.

	[0, 0, 1] and [0, 1] compare unequal.

	
assertDictContainsSubset(subset, dictionary, msg=None)

	Checks whether dictionary is a superset of subset.

	
assertEqual(first, second, msg=None)

	Fail if the two objects are unequal as determined by the ‘==’
operator.

	
assertFalse(expr, msg=None)

	Check that the expression is false.

	
assertGreater(a, b, msg=None)

	Just like self.assertTrue(a > b), but with a nicer default message.

	
assertGreaterEqual(a, b, msg=None)

	Just like self.assertTrue(a >= b), but with a nicer default message.

	
assertIn(member, container, msg=None)

	Just like self.assertTrue(a in b), but with a nicer default message.

	
assertIs(expr1, expr2, msg=None)

	Just like self.assertTrue(a is b), but with a nicer default message.

	
assertIsInstance(obj, cls, msg=None)

	Same as self.assertTrue(isinstance(obj, cls)), with a nicer
default message.

	
assertIsNone(obj, msg=None)

	Same as self.assertTrue(obj is None), with a nicer default message.

	
assertIsNot(expr1, expr2, msg=None)

	Just like self.assertTrue(a is not b), but with a nicer default message.

	
assertIsNotNone(obj, msg=None)

	Included for symmetry with assertIsNone.

	
assertLess(a, b, msg=None)

	Just like self.assertTrue(a < b), but with a nicer default message.

	
assertLessEqual(a, b, msg=None)

	Just like self.assertTrue(a <= b), but with a nicer default message.

	
assertListEqual(list1, list2, msg=None)

	A list-specific equality assertion.

	Args:

	list1: The first list to compare.
list2: The second list to compare.
msg: Optional message to use on failure instead of a list of

differences.

	
assertLogs(logger=None, level=None)

	Fail unless a log message of level level or higher is emitted
on logger_name or its children. If omitted, level defaults to
INFO and logger defaults to the root logger.

This method must be used as a context manager, and will yield
a recording object with two attributes: output and records.
At the end of the context manager, the output attribute will
be a list of the matching formatted log messages and the
records attribute will be a list of the corresponding LogRecord
objects.

Example:

with self.assertLogs('foo', level='INFO') as cm:
 logging.getLogger('foo').info('first message')
 logging.getLogger('foo.bar').error('second message')
self.assertEqual(cm.output, ['INFO:foo:first message',
 'ERROR:foo.bar:second message'])

	
assertMultiLineEqual(first, second, msg=None)

	Assert that two multi-line strings are equal.

	
assertNotAlmostEqual(first, second, places=None, msg=None, delta=None)

	Fail if the two objects are equal as determined by their
difference rounded to the given number of decimal places
(default 7) and comparing to zero, or by comparing that the
between the two objects is less than the given delta.

Note that decimal places (from zero) are usually not the same
as significant digits (measured from the most signficant digit).

Objects that are equal automatically fail.

	
assertNotEqual(first, second, msg=None)

	Fail if the two objects are equal as determined by the ‘!=’
operator.

	
assertNotIn(member, container, msg=None)

	Just like self.assertTrue(a not in b), but with a nicer default message.

	
assertNotIsInstance(obj, cls, msg=None)

	Included for symmetry with assertIsInstance.

	
assertNotRegex(text, unexpected_regex, msg=None)

	Fail the test if the text matches the regular expression.

	
assertRaises(excClass, callableObj=None, *args, **kwargs)

	Fail unless an exception of class excClass is raised
by callableObj when invoked with arguments args and keyword
arguments kwargs. If a different type of exception is
raised, it will not be caught, and the test case will be
deemed to have suffered an error, exactly as for an
unexpected exception.

If called with callableObj omitted or None, will return a
context object used like this:

with self.assertRaises(SomeException):
 do_something()

An optional keyword argument ‘msg’ can be provided when assertRaises
is used as a context object.

The context manager keeps a reference to the exception as
the ‘exception’ attribute. This allows you to inspect the
exception after the assertion:

with self.assertRaises(SomeException) as cm:
 do_something()
the_exception = cm.exception
self.assertEqual(the_exception.error_code, 3)

	
assertRaisesRegex(expected_exception, expected_regex, callable_obj=None, *args, **kwargs)

	Asserts that the message in a raised exception matches a regex.

	Args:

	expected_exception: Exception class expected to be raised.
expected_regex: Regex (re pattern object or string) expected

to be found in error message.

callable_obj: Function to be called.
msg: Optional message used in case of failure. Can only be used

when assertRaisesRegex is used as a context manager.

args: Extra args.
kwargs: Extra kwargs.

	
assertRegex(text, expected_regex, msg=None)

	Fail the test unless the text matches the regular expression.

	
assertSequenceEqual(seq1, seq2, msg=None, seq_type=None)

	An equality assertion for ordered sequences (like lists and tuples).

For the purposes of this function, a valid ordered sequence type is one
which can be indexed, has a length, and has an equality operator.

	Args:

	seq1: The first sequence to compare.
seq2: The second sequence to compare.
seq_type: The expected datatype of the sequences, or None if no

datatype should be enforced.

	msg: Optional message to use on failure instead of a list of

	differences.

	
assertSetEqual(set1, set2, msg=None)

	A set-specific equality assertion.

	Args:

	set1: The first set to compare.
set2: The second set to compare.
msg: Optional message to use on failure instead of a list of

differences.

assertSetEqual uses ducktyping to support different types of sets, and
is optimized for sets specifically (parameters must support a
difference method).

	
assertSignalFired(signal, *args, **kwargs)

	Assert that a signal was fired with appropriate arguments.

	Parameters:	
	signal – The Signal that should have been fired.
Typically this is SomeClass.on_some_signal reference

	args – List of positional arguments passed to the signal handler

	kwargs – List of keyword arguments passed to the signal handler

	Returns:	A 3-tuple (signal, args, kwargs) that describes that event

	
assertSignalNotFired(signal, *args, **kwargs)

	Assert that a signal was fired with appropriate arguments.

	Parameters:	
	signal – The Signal that should not have been fired.
Typically this is SomeClass.on_some_signal reference

	args – List of positional arguments passed to the signal handler

	kwargs – List of keyword arguments passed to the signal handler

	
assertSignalOrdering(*expected_events)

	Assert that a signals were fired in a specific sequence.

	Parameters:	expected_events – A (varadic) list of events describing the signals that were fired
Each element is a 3-tuple (signal, args, kwargs) that describes
the event.

Note

If you are using assertSignalFired() then the return value
of that method is a single event that can be passed to this method

	
assertTrue(expr, msg=None)

	Check that the expression is true.

	
assertTupleEqual(tuple1, tuple2, msg=None)

	A tuple-specific equality assertion.

	Args:

	tuple1: The first tuple to compare.
tuple2: The second tuple to compare.
msg: Optional message to use on failure instead of a list of

differences.

	
assertWarns(expected_warning, callable_obj=None, *args, **kwargs)

	Fail unless a warning of class warnClass is triggered
by callable_obj when invoked with arguments args and keyword
arguments kwargs. If a different type of warning is
triggered, it will not be handled: depending on the other
warning filtering rules in effect, it might be silenced, printed
out, or raised as an exception.

If called with callable_obj omitted or None, will return a
context object used like this:

with self.assertWarns(SomeWarning):
 do_something()

An optional keyword argument ‘msg’ can be provided when assertWarns
is used as a context object.

The context manager keeps a reference to the first matching
warning as the ‘warning’ attribute; similarly, the ‘filename’
and ‘lineno’ attributes give you information about the line
of Python code from which the warning was triggered.
This allows you to inspect the warning after the assertion:

with self.assertWarns(SomeWarning) as cm:
 do_something()
the_warning = cm.warning
self.assertEqual(the_warning.some_attribute, 147)

	
assertWarnsRegex(expected_warning, expected_regex, callable_obj=None, *args, **kwargs)

	Asserts that the message in a triggered warning matches a regexp.
Basic functioning is similar to assertWarns() with the addition
that only warnings whose messages also match the regular expression
are considered successful matches.

	Args:

	expected_warning: Warning class expected to be triggered.
expected_regex: Regex (re pattern object or string) expected

to be found in error message.

callable_obj: Function to be called.
msg: Optional message used in case of failure. Can only be used

when assertWarnsRegex is used as a context manager.

args: Extra args.
kwargs: Extra kwargs.

	
debug()

	Run the test without collecting errors in a TestResult

	
doCleanups()

	Execute all cleanup functions. Normally called for you after
tearDown.

	
fail(msg=None)

	Fail immediately, with the given message.

	
failureException

	alias of AssertionError

	
setUp()

	Hook method for setting up the test fixture before exercising it.

	
setUpClass()

	Hook method for setting up class fixture before running tests in the class.

	
shortDescription()

	Returns a one-line description of the test, or None if no
description has been provided.

The default implementation of this method returns the first line of
the specified test method’s docstring.

	
skipTest(reason)

	Skip this test.

	
subTest(msg=None, **params)

	Return a context manager that will return the enclosed block
of code in a subtest identified by the optional message and
keyword parameters. A failure in the subtest marks the test
case as failed but resumes execution at the end of the enclosed
block, allowing further test code to be executed.

	
tearDown()

	Hook method for deconstructing the test fixture after testing it.

	
tearDownClass()

	Hook method for deconstructing the class fixture after running all tests in the class.

	
watchSignal(signal)

	Setup provisions to watch a specified signal

	Parameters:	signal – The Signal to watch for.

After calling this method you can use assertSignalFired()
and assertSignalNotFired() with the same signal.

Internals

	
class morris.listenerinfo

	listenerinfo(listener, pass_signal)

	
count(value) integer -- return number of occurrences of value

	

	
index(value[, start[, stop]]) integer -- return first index of value.

	Raises ValueError if the value is not present.

	
listener

	Alias for field number 0

	
pass_signal

	Alias for field number 1

	
class morris.boundmethod(instance, func)[source]

	A helper class that allows us to emulate a bound method

This class emulates a bond method by storing an object instance,
function func and calling instance.``func``() whenever the
boundmethod object itself is called.

 Copyright 2014, Zygmunt Krynicki.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Morris 1.2 documentation

Contributing

Contributions are welcome, and they are greatly appreciated! Every
little bit helps, and credit will always be given.

You can contribute in many ways:

Types of Contributions

Report Bugs

Report bugs at https://github.com/zyga/morris/issues.

If you are reporting a bug, please include:

	Your operating system name and version.

	Any details about your local setup that might be helpful in troubleshooting.

	Detailed steps to reproduce the bug.

Fix Bugs

Look through the GitHub issues for bugs. Anything tagged with “bug”
is open to whoever wants to implement it.

Implement Features

Look through the GitHub issues for features. Anything tagged with “feature”
is open to whoever wants to implement it.

Write Documentation

Morris could always use more documentation, whether as part of the
official Morris docs, in docstrings, or even on the web in blog posts,
articles, and such.

Submit Feedback

The best way to send feedback is to file an issue at
https://github.com/zyga/morris/issues.

If you are proposing a feature:

	Explain in detail how it would work.

	Keep the scope as narrow as possible, to make it easier to implement.

	Remember that this is a volunteer-driven project, and that contributions
are welcome :)

Get Started!

Ready to contribute? Here’s how to set up morris for local development.

	Fork the morris repo on GitHub.

	Clone your fork locally:

$ git clone git@github.com:your_name_here/morris.git

	Install your local copy into a virtualenv. Assuming you have
virtualenvwrapper installed, this is how you set up your fork for local
development:

$ mkvirtualenv morris
$ cd morris/
$ python setup.py develop

	Create a branch for local development:

$ git checkout -b name-of-your-bugfix-or-feature

Now you can make your changes locally.

	When you’re done making changes, check that your changes pass flake8 and
the tests, including testing other Python versions with tox:

$ flake8 morris
$ python setup.py test
$ tox

To get flake8 and tox, just pip install them into your virtualenv.

	Commit your changes and push your branch to GitHub:

$ git add .
$ git commit -m "Your detailed description of your changes."
$ git push origin name-of-your-bugfix-or-feature

	Submit a pull request through the GitHub website.

Pull Request Guidelines

Before you submit a pull request, check that it meets these guidelines:

	The pull request should include tests.

	If the pull request adds functionality, the docs should be updated. Put
your new functionality into a function with a docstring, and add the
feature to the list in README.rst.

	The pull request should work for Python 2.7, 3.2, 3.3, and 3.4, and for
PyPy. Check https://travis-ci.org/zyga/morris/pull_requests
and make sure that the tests pass for all supported Python versions.

Tips

To run a subset of tests:

$ python -m unittest morris.tests

 Copyright 2014, Zygmunt Krynicki.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Morris 1.2 documentation

Credits

Development Lead

	Zygmunt Krynicki <zygmunt.krynicki@canonical.com>

While under development as a part of the Plainbox project. Sylvain Pineau
has contributed a number of improvements. Thanks Sylvain!

Contributors

None yet. Why not be the first?

 Copyright 2014, Zygmunt Krynicki.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 previous |

 	Morris 1.2 documentation

History

1.2 (2015-02-030

	Merge backwards compatibility features for Plainbox migration.
(signal_name, SignalInterceptorMixIn)

	Fix a bug in signal.__repr__()

	Document internals better

1.1 (2015-02-02)

	Merge Signal and signal into one class.

	Make Signal an alias of signal.

	Make Signal.define an alias of signal.

	Fix signal support on standalone functions
(https://github.com/zyga/morris/issues/1)

	Add more documentation and tests

	Enable travis-ci.org integration

1.0 (2014-09-21)

	First release on PyPI.

2012-2014

	Released on PyPI as a part of plainbox as plainbox.impl.signal

 Copyright 2014, Zygmunt Krynicki.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	Morris 1.2 documentation

 Python Module Index

 m

 			

 		
 m	

 	
 	
 morris	

 Copyright 2014, Zygmunt Krynicki.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	Morris 1.2 documentation

Index

 _
 | A
 | B
 | C
 | D
 | F
 | I
 | L
 | M
 | N
 | P
 | S
 | T
 | W

_

 	

 	__call__() (morris.signal method)

 	__get__() (morris.signal method)

 	__init__() (morris.signal method)

 	

 	__repr__() (morris.signal method)

 	__weakref__ (morris.signal attribute)

A

 	

 	addCleanup() (morris.SignalTestCase method)

 	addTypeEqualityFunc() (morris.SignalTestCase method)

 	assertAlmostEqual() (morris.SignalTestCase method)

 	assertCountEqual() (morris.SignalTestCase method)

 	assertDictContainsSubset() (morris.SignalTestCase method)

 	assertEqual() (morris.SignalTestCase method)

 	assertFalse() (morris.SignalTestCase method)

 	assertGreater() (morris.SignalTestCase method)

 	assertGreaterEqual() (morris.SignalTestCase method)

 	assertIn() (morris.SignalTestCase method)

 	assertIs() (morris.SignalTestCase method)

 	assertIsInstance() (morris.SignalTestCase method)

 	assertIsNone() (morris.SignalTestCase method)

 	assertIsNot() (morris.SignalTestCase method)

 	assertIsNotNone() (morris.SignalTestCase method)

 	assertLess() (morris.SignalTestCase method)

 	assertLessEqual() (morris.SignalTestCase method)

 	assertListEqual() (morris.SignalTestCase method)

 	assertLogs() (morris.SignalTestCase method)

 	

 	assertMultiLineEqual() (morris.SignalTestCase method)

 	assertNotAlmostEqual() (morris.SignalTestCase method)

 	assertNotEqual() (morris.SignalTestCase method)

 	assertNotIn() (morris.SignalTestCase method)

 	assertNotIsInstance() (morris.SignalTestCase method)

 	assertNotRegex() (morris.SignalTestCase method)

 	assertRaises() (morris.SignalTestCase method)

 	assertRaisesRegex() (morris.SignalTestCase method)

 	assertRegex() (morris.SignalTestCase method)

 	assertSequenceEqual() (morris.SignalTestCase method)

 	assertSetEqual() (morris.SignalTestCase method)

 	assertSignalFired() (morris.SignalInterceptorMixIn method)

 	

 	(morris.SignalTestCase method)

 	assertSignalNotFired() (morris.SignalInterceptorMixIn method)

 	

 	(morris.SignalTestCase method)

 	assertSignalOrdering() (morris.SignalInterceptorMixIn method)

 	

 	(morris.SignalTestCase method)

 	assertTrue() (morris.SignalTestCase method)

 	assertTupleEqual() (morris.SignalTestCase method)

 	assertWarns() (morris.SignalTestCase method)

 	assertWarnsRegex() (morris.SignalTestCase method)

B

 	

 	boundmethod (class in morris)

C

 	

 	connect() (morris.signal method)

 	

 	count() (morris.listenerinfo method)

D

 	

 	debug() (morris.SignalTestCase method)

 	define (morris.signal attribute)

 	

 	disconnect() (morris.signal method)

 	doCleanups() (morris.SignalTestCase method)

F

 	

 	fail() (morris.SignalTestCase method)

 	failureException (morris.SignalTestCase attribute)

 	

 	fire() (morris.signal method)

 	first_responder (morris.signal attribute)

I

 	

 	index() (morris.listenerinfo method)

L

 	

 	listener (morris.listenerinfo attribute)

 	listenerinfo (class in morris)

 	

 	listeners (morris.signal attribute)

M

 	

 	morris (module)

N

 	

 	name (morris.signal attribute)

P

 	

 	pass_signal (morris.listenerinfo attribute)

 	

 	
 Python Enhancement Proposals

 	

 	PEP 3155, [1]

S

 	

 	setUp() (morris.SignalTestCase method)

 	setUpClass() (morris.SignalTestCase method)

 	shortDescription() (morris.SignalTestCase method)

 	signal (class in morris)

 	signal_name (morris.signal attribute)

 	

 	SignalInterceptorMixIn (class in morris)

 	SignalTestCase (class in morris)

 	skipTest() (morris.SignalTestCase method)

 	subTest() (morris.SignalTestCase method)

T

 	

 	tearDown() (morris.SignalTestCase method)

 	

 	tearDownClass() (morris.SignalTestCase method)

W

 	

 	watchSignal() (morris.SignalInterceptorMixIn method)

 	

 	(morris.SignalTestCase method)

 Copyright 2014, Zygmunt Krynicki.
 Created using Sphinx 1.2.2.

 _static/file.png

_static/minus.png

_static/comment-bright.png

_static/plus.png

_static/ajax-loader.gif

_static/comment.png

_static/up.png

_static/down.png

_static/down-pressed.png

search.html

 Navigation

 		
 index

 		
 modules |

 		Morris 1.2 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2014, Zygmunt Krynicki.
 Created using Sphinx 1.2.2.

_static/comment-close.png

_static/up-pressed.png

_modules/index.html

 Navigation

 		
 index

 		
 modules |

 		Morris 1.2 documentation »

 All modules for which code is available

		morris

 © Copyright 2014, Zygmunt Krynicki.
 Created using Sphinx 1.2.2.

_modules/morris.html

 Navigation

 		
 index

 		
 modules |

 		Morris 1.2 documentation »

 		Module code »

 Source code for morris

Copyright 2012-2015 Canonical Ltd.
Written by:
Zygmunt Krynicki <zygmunt.krynicki@canonical.com>
#
This file is part of Morris.
#
Morris is free software: you can redistribute it and/or modify
it under the terms of the GNU Lesser General Public License as published by
the Free Software Foundation, either version 3 of the License.
#
Morris is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU Lesser General Public License for more details.
#
You should have received a copy of the GNU Lesser General Public License
along with Morris. If not, see <http://www.gnu.org/licenses/>.
"""
:mod:`morris` -- announcement (signal/event) system for Python
===

The morris module defines two main classes :class:`signal` and
:class:`SignalTestCase`.

Defining Signals

.. note::
 Since version 1.1 ``Signal.define`` and ``signal`` are identical

You can import the ``signal`` class and use idiomatic code like::

 >>> from morris import signal

 >>> # NOTE: classic python 2.x classes are not supported
 >>> class Klass(object):
 ... @signal
 ... def on_foo(self):
 ... pass

 >>> @signal
 ... def on_bar():
 ... pass

Connecting signal listeners

Connecting signals is equally easy, just call :meth:`signal.connect()`

 >>> def handler():
 ... print("handling signal")

 >>> obj = Klass()
 >>> obj.on_foo.connect(handler)
 >>> on_bar.connect(handler)

Firing signals

To fire a signal simply *call* the signal object::

 >>> obj.on_foo()
 handling signal
 >>> on_bar()
 handling signal

Typically you will want to pass some additional arguments. Both positional
and keyword arguments are supported::

 >>> @signal
 ... def on_bar_with_args(arg1, arg2):
 ... print("fired!")

 >>> on_bar_with_args('foo', arg2='bar')
 fired!

If you are working in a tight loop it is slightly faster to construct the list
of positional arguments and the dictionary of keyword arguments and call the
:meth:`Signal.fire()` method directly::

 >>> args = ('foo',)
 >>> kwargs = {'arg2': 'bar'}
 >>> for i in range(3):
 ... on_bar_with_args.fire(args, kwargs)
 fired!
 fired!
 fired!

Passing additional meta-data to the signal listener

In some cases you may wish to use a generic signal handler that would benefit
from knowing which signal has triggered it. To do that first make sure that
your handler has a ``signal`` argument and then call ``sig.connect(handler,
pass_signal=True)``:

 >>> def generic_handler(*args, **kwargs):
 ... signal = kwargs.pop('signal')
 ... print("Handling signal {}: {} {}".format(signal, args, kwargs))

Let's define two signals now:

 >>> @signal
 ... def login(user, password):
 ... pass
 >>> @signal
 ... def logout(user):
 ... pass

And connect both to the same handler:

 >>> login.connect(generic_handler, pass_signal=True)
 >>> logout.connect(generic_handler, pass_signal=True)

Now we can fire either one and see our handler work:

 >>> login(str('user'), password=str('pass'))
 Handling signal <signal name:'login'>: ('user',) {'password': 'pass'}
 >>> logout(str('user'))
 Handling signal <signal name:'logout'>: ('user',) {}

.. note::
 The example uses ``str(...)`` to have identical output on Python
 2.7 and 3.x but ``str()`` it is otherwise useless.

This also works with classes:

 >>> class App(object):
 ... def __repr__(self):
 ... return "app"
 ... @signal
 ... def login(self, user, password):
 ... pass
 ... @signal
 ... def logout(self, user):
 ... pass
 >>> app = App()
 >>> app.login.connect(generic_handler, pass_signal=True)
 >>> app.logout.connect(generic_handler, pass_signal=True)

We can now fire the signals, just as before:

 >>> app.login(str('user'), password=str('pass'))
 ... # doctest: +ELLIPSIS, +NORMALIZE_WHITESPACE
 Handling signal <signal name:'...login' (specific to app)>:
 ('user',) {'password': 'pass'}
 >>> app.logout(str('user')) # doctest: +ELLIPSIS
 Handling signal <signal name:'...logout' (specific to app)>: ('user',) {}

Disconnecting signals

To disconnect a signal handler call :meth:`signal.disconnect()` with the same
listener object that was used in ``connect()``:

 >>> obj.on_foo.disconnect(handler)
 >>> on_bar.disconnect(handler)

Threading considerations

Morris doesn't do anything related to threads. Threading is diverse enough that
for now it was better to just let uses handle it. There are two things that
are worth mentioning though:

1) :meth:`signal.connect()` and :meth:`signal.disconnect()` should be safe to
 call concurrently with :meth:`signal.fire()` since fire() operates on
 a *copy* of the list of listeners

2) Event handlers are called from the thread calling :meth:`signal.fire()`,
 not from the thread that was used to connect to the signal handler. If you
 need special provisions for working with signals in a specific thread
 consider calling a thread-library-specific function that calls a callable
 in a specific thread context.

Support for writing unit tests

Morris ships with support for writing tests for signals. You can use
:class:`SignalTestCase`'s support methods such as
:meth:`~signalTestCase.watchSignal()`,
:meth:`~SignalTestCase.assertSignalFired()`,
:meth:`~SignalTestCase.assertSignalNotFired()` and
:meth:`~SignalTestCase.assertSignalOrdering()` to simplify your tests.

Here's a simple example using all of the above:

 >>> class App(object):
 ... @signal
 ... def on_login(self, user):
 ... pass
 ... @signal
 ... def on_logout(self, user):
 ... pass
 ... def login(self, user):
 ... self.on_login(user)
 ... def logout(self, user):
 ... self.on_logout(user)

 >>> class AppTests(SignalTestCase):
 ... def setUp(self):
 ... self.app = App()
 ... self.watchSignal(self.app.on_login)
 ... self.watchSignal(self.app.on_logout)
 ... def test_login(self):
 ... # Log the user in, then out
 ... self.app.login("user")
 ... self.app.logout("user")
 ... # Ensure that both login and logout signals were sent
 ... event1 = self.assertSignalFired(self.app.on_login, 'user')
 ... event2 = self.assertSignalFired(self.app.on_logout, 'user')
 ... # Ensure that signals were fired in the right order
 ... self.assertSignalOrdering(event1, event2)
 ... # Ensure that we didn't login as admin
 ... self.assertSignalNotFired(self.app.on_login, 'admin')

 >>> import sys
 >>> suite = unittest.TestLoader().loadTestsFromTestCase(AppTests)
 >>> runner = unittest.TextTestRunner(stream=sys.stdout, verbosity=2)
 >>> runner.run(suite) # doctest: +ELLIPSIS
 test_login (morris.AppTests) ... ok
 <BLANKLINE>
 --
 Ran 1 test in ...s
 <BLANKLINE>
 OK
 <unittest.runner.TextTestResult run=1 errors=0 failures=0>

Implementation notes

At some point in time one may need to peek under the cover and understand where
the list of signal listeners is being stored and how signals interact with
classes. First of all, the :class:`signal` class can be used as a Python
descriptor. Descriptors are objects that have methods such as ``__get__``,
``__set__`` or ``__delete__``.

You have most certainly used descriptors before, in fact the well-known
``@property`` decorator is nothing more than a class with methods such as
listed above.

When used as a descriptor, a signal object will **create new signal objects
each time it is being accessed on an instance of some class**. The instance of
some class will be injected with a ``__signals__`` dictionary that contains
signals that have been accessed.

Consider this example::

 >>> class Foo(object):
 ... @signal
 ... def ping(self):
 ... pass

Here ``Foo.ping`` is one instance of :class:`signal`. When that instance
is being accessed on a class it simply returns itself.

 >>> Foo.ping # doctest: +ELLIPSIS
 <signal name:'...ping'>

.. note::
 While this looks similar to decorating a function it is functioning in a
 totally different way. Signals decorating plain functions (outside of a
 class definition body) are not using their descriptor nature.

Now, let's instantiate ``Foo`` and see what's inside::

 >>> foo = Foo()
 >>> foo.__dict__
 {}

Nothing is inside, but there will be once we access ``foo.ping``. Morris will
create a new :class:`signal` object associated with both the ``foo`` instance
and the ``foo.ping`` method. It will look for ``foo.__signals__`` and not
having found any will create one from an empty dictionary. Lastly morris will
add the newly created signal object to the dictionary. This way each time we
access ``foo.ping`` (on the particular ``foo`` object) we'll get exactly the
same signal object in return.

 >>> foo.ping # doctest: +ELLIPSIS
 <signal name:'...ping' (specific to <...Foo object at ...>)>
 >>> foo.__dict__ # doctest: +ELLIPSIS, +NORMALIZE_WHITESPACE
 {'__signals__':
 {'...ping': <signal name:'...ping'
 (specific to <...Foo object at ...>)>}}

This all happens transparently the first time that code such as
``foo.ping.connect(...)`` is executed. When you connect a signal morris simply
needs a place to store the list of listeners and that is in a signal object
itself. We can now register a simple listener.

 >>> def handler():
 ... pass
 >>> foo.ping.connect(handler)

Handlers are stored in the :meth:`signal.listeners` attribute. They are stored
as a list of :class:`listenerinfo` tuples. Note that the first responder (the
decorated function itself) is also present, here it is wrapped in the special
(specific to morris) :class:`boundmethod` class.

 >>> foo.ping.listeners # doctest: +ELLIPSIS, +NORMALIZE_WHITESPACE
 [listenerinfo(listener=<...boundmethod object at ...>, pass_signal=False),
 listenerinfo(listener=<function handler at ...>, pass_signal=False)]

Now, let's compare this to using signals as a function decorator:

 >>> @signal
 ... def standalone():
 ... pass

The ``standalone()`` function is now *replaced* by the correspondingly-named
signal object:

 >>> standalone
 <signal name:'standalone'>

The original function is connected as the first responder though:

 >>> standalone.listeners # doctest: +ELLIPSIS
 [listenerinfo(listener=<function ...standalone at ...>, pass_signal=False)]

Since there are no extra objects, there is no ``__dict__`` and no
``__signals__`` either.

Using @signal on class with __slots__

Since (having read the previous section) you already know that signal
descriptors access the ``__signals__`` attribute on objects of classes they
belong to, to use signals on a class that uses ``__slots__`` you need to
reserve the ``__signals__`` slot up-front.

 >>> class Slotted(object):
 ... __slots__ = ('__signals__')
 ... @signal
 ... def ping(self):
 ... pass
 >>> Slotted.ping # doctest: +ELLIPSIS
 <signal name:'...ping'>
 >>> slotted = Slotted()
 >>> slotted.ping # doctest: +ELLIPSIS
 <signal name:'...ping' (specific to <...Slotted object at ...>)>
 >>> slotted.__signals__ # doctest: +ELLIPSIS, +NORMALIZE_WHITESPACE
 {'...ping': <signal name:'...ping'
 (specific to <...Slotted object at ...>)>}

Creating signals explicitly

In all of the examples above we've been using signal as a decorator for
existing methods or functions. This is fine for the vast majority of code but
in some cases it may be beneficial to create signal objects explicitly. This
may be of use in meta-programming, for example.

The :class:`signal` class may be instantiated in the two following ways:
 - with the signal name (and no listeners)
 - with the first responder function (which becomes the first listener)

The second mode also has a special special case where the first responder.
Let's examine than now. First, the plain signal object:

 >>> signal(str("my-signal"))
 <signal name:'my-signal'>

This is a normal signal object, we can call it to fire the signal, we can use
the :meth:`signal.connect()` method to add listeners, etc. If you want to
create standalone signals, this is the best way to do it.

Now let's examine the case where we pass a signal handler instead of the name:

 >>> def my_signal2_handler():
 ... pass
 >>> signal(my_signal2_handler)
 <signal name:'my_signal2_handler'>

Here the name of the signal is derived from the name of the handler function.
We can customize the name, if desired, by passing the signal_name argument
(preferably as a keyword argument to differentiate it from the ``pass_signal``
argument):

 >>> signal(my_signal2_handler, signal_name='my-signal-2')
 <signal name:'my-signal-2'>

Both examples that pass a handler are identical to what happens when decorating
a regular function. There is nothing special about this mode either.

The last, and somewhat special, mode is where the handler is an instance of
:class:`boundmethod` (which is implemented inside morris). In the Python 2.x
world, python had bound methods but they were removed. We still benefit from
them, a little, hence they are back.

 >>> class C(object):
 ... def handler(self):
 ... pass
 >>> signal(boundmethod(C(), C.handler)) # doctest: +ELLIPSIS
 <signal name:'...handler' (specific to <...C object at ...>)>

.. note::
 It is possible to remove boundmethod and rely ``func.__self__`` but this
 was not done, yet. Contributions are welcome!

To summarize this section, some simple rules:

- each signal object has a list of listeners
- signal objects act as descriptors and create per-instance signal objects
- signal object created this way are stored in per-instance ``__signals__``
 attribute
"""
from __future__ import print_function, absolute_import, unicode_literals

import collections
import inspect
import logging
import unittest

__author__ = 'Zygmunt Krynicki'
__email__ = 'zygmunt.krynicki@canonical.com'
__version__ = '1.2'
__all__ = ['signal', 'SignalTestCase']

_logger = logging.getLogger("morris")

listenerinfo = collections.namedtuple('listenerinfo', 'listener pass_signal')

[docs]class signal(object):
 """
 Basic signal that supports arbitrary listeners.

 While this class can be used directly it is best used with the helper
 decorator Signal.define on a function or method. See the documentation
 for the :mod:`morris` module for details.

 :attr _name:
 Name of the signal, typically accessed via :meth:`name`.
 :attr _listeners:
 List of signal listeners. Each item is a tuple ``(listener,
 pass_signal)`` that encodes how to call the listener.
 """
 try:
 _str_bases = (str, unicode)
 except NameError:
 _str_bases = (str,)

[docs] def __init__(self, name_or_first_responder, pass_signal=False,
 signal_name=None):
 """
 Construct a signal with the given name

 :param name_or_first_responder:
 Either the name of the signal to construct or a callable which
 will be the first responder. In the latter case the callable is
 used to obtain the name of the signal.
 :param pass_signal:
 An optional flag that instructs morris to pass the signal object
 itself to the first responder (as the ``signal`` argument). This is
 only used in the case where ``name_or_first_responder`` is a
 callable.
 :param signal_name:
 Optional name of the signal. This is meaningful only when the first
 argument ``name_or_first_responder`` is a callable. When that
 happens this argument is used and no guessing based on __qualname__
 or __name__ is being used.
 """
 if isinstance(name_or_first_responder, self._str_bases):
 first_responder = None
 name = name_or_first_responder
 else:
 first_responder = name_or_first_responder
 name = signal_name or _get_fn_name(first_responder)
 self._name = name
 self._first_responder = first_responder
 self._listeners = []
 if first_responder is not None:
 self._listeners.append(listenerinfo(first_responder, pass_signal))

[docs] def __repr__(self):
 """
 A representation of the signal.

 There are two possible representations:
 - a signal object created via a signal descriptor on an object
 - a signal object acting as a descriptor or function decorator
 """
 if (len(self._listeners) > 0
 and isinstance(self.listeners[0].listener, boundmethod)):
 return "<signal name:{!r} (specific to {!r})>".format(
 str(self._name), self._listeners[0].listener.instance)
 else:
 return "<signal name:{!r}>".format(str(self._name))

[docs] def __get__(self, instance, owner):
 """
 Descriptor __get__ method

 This method is called when a signal-decorated method is being accessed
 via an object or a class. It is never called for decorated functions.

 :param instance:
 Instance of the object the descriptor is being used on.
 This is None when the descriptor is accessed on a class.
 :param owner:
 The class that the descriptor is defined on.
 :returns:
 If ``instance`` is None we return ourselves, this is what
 descriptors typically do. If ``instance`` is not None we return a
 unique :class:`Signal` instance that is specific to that object and
 signal. This is implemented by storing the signal inside the
 object's __signals__ attribute.
 """
 if instance is None:
 return self
 # Ensure that the instance has __signals__ property
 if not hasattr(instance, "__signals__"):
 instance.__signals__ = {}
 # Ensure that the instance signal is defined
 if self._name not in instance.__signals__:
 # Or create it if needed
 signal = Signal(self._name)
 # Connect the first responder function via the trampoline so that
 # the instance's self object is also passed explicitly
 signal.connect(boundmethod(instance, self._first_responder))
 # Ensure we don't recreate signals
 instance.__signals__[self._name] = signal
 return instance.__signals__[self._name]

 def __set__(self, instance, value):
 raise AttributeError("You cannot overwrite signals")

 def __delete__(self, instance):
 raise AttributeError("You cannot delete signals")

 @property
[docs] def name(self):
 """
 Name of the signal

 For signals constructed manually (i.e. by calling :class:`Signal()`)
 the name is arbitrary. For signals constructed using either
 :meth:`Signal.define()` or :class:`signal` the name is obtained
 from the decorated function.

 On python 3.3+ the qualified name is used (see :pep:`3155`), on earlier
 versions the plain name is used (without the class name). The name is
 identical regardless of how the signal is being accessed:

 >>> class C(object):
 ... @signal
 ... def on_meth(self):
 ... pass

 As a descriptor on a class:

 >>> C.on_meth.name # doctest: +ELLIPSIS
 '...on_meth'

 As a descriptor on an object:

 >>> C().on_meth.name # doctest: +ELLIPSIS
 '...on_meth'

 As a decorated function:

 >>> @signal
 ... def on_func():
 ... pass
 >>> on_func.name
 'on_func'
 """
 return self._name

 # For backwards compatibility with Plainbox-based code

 signal_name = name

 @property
[docs] def listeners(self):
 """
 List of :class:`listenerinfo` objects associated with this signal

 The list of listeners is considered part of an implementation detail
 but is exposed for convenience. This is always the real list. Keep
 this in mind while connecting and disconnecting listeners. During
 the time :meth:`fire()` is called the list of listeners can be changed
 but won't take effect until after ``fire()`` returns.
 """
 return self._listeners

 @property
[docs] def first_responder(self):
 """
 The first responder function.

 This is the function that the ``signal`` may have been instantiated
 with. It is only relevant if the signal itself is used as a
 descriptor in a class (where it decorates a method).

 For example, contrast the access of the signal on the class and on a
 class instance:

 >>> class C(object):
 ... @signal
 ... def on_foo(self):
 ... pass

 Class access gives uses the descriptor protocol to expose the
 actual signal object.

 >>> C.on_foo # doctest: +ELLIPSIS
 <signal name:'...on_foo'>

 Here we can use the ``first_responder`` property to see the actual
 function.

 >>> C.on_foo.first_responder # doctest: +ELLIPSIS
 <function ...on_foo at ...>

 Object access is different as now the signal instance is specific to
 the object:

 >>> C().on_foo # doctest: +ELLIPSIS
 <signal name:'...on_foo' (specific to <morris.C object at ...)>

 And now the first responder is gone (it is now buried inside the
 :meth:`listeners` list):

 >>> C().on_foo.first_responder
 """
 return self._first_responder

[docs] def connect(self, listener, pass_signal=False):
 """
 Connect a new listener to this signal

 :param listener:
 The listener (callable) to add
 :param pass_signal:
 An optional argument that controls if the signal object is
 explicitly passed to this listener when it is being fired.
 If enabled, a ``signal=`` keyword argument is passed to the
 listener function.
 :returns:
 None

 The listener will be called whenever :meth:`fire()` or
 :meth:`__call__()` are called. The listener is appended to the list of
 listeners. Duplicates are not checked and if a listener is added twice
 it gets called twice.
 """
 info = listenerinfo(listener, pass_signal)
 self._listeners.append(info)
 _logger.debug("connect %r to %r", str(listener), self._name)
 # Track listeners in the instances only
 if inspect.ismethod(listener):
 listener_object = listener.__self__
 # Ensure that the instance has __listeners__ property
 if not hasattr(listener_object, "__listeners__"):
 listener_object.__listeners__ = collections.defaultdict(list)
 # Append the signals a listener is connected to
 listener_object.__listeners__[listener].append(self)

[docs] def disconnect(self, listener, pass_signal=False):
 """
 Disconnect an existing listener from this signal

 :param listener:
 The listener (callable) to remove
 :param pass_signal:
 An optional argument that controls if the signal object is
 explicitly passed to this listener when it is being fired.
 If enabled, a ``signal=`` keyword argument is passed to the
 listener function.

 Here, this argument simply aids in disconnecting the right
 listener. Make sure to pass the same value as was passed to
 :meth:`connect()`
 :raises ValueError:
 If the listener (with the same value of pass_signal) is not present
 :returns:
 None
 """
 info = listenerinfo(listener, pass_signal)
 self._listeners.remove(info)
 _logger.debug(
 "disconnect %r from %r", str(listener), self._name)
 if inspect.ismethod(listener):
 listener_object = listener.__self__
 if hasattr(listener_object, "__listeners__"):
 listener_object.__listeners__[listener].remove(self)
 # Remove the listener from the list if any signals connected
 if (len(listener_object.__listeners__[listener])) == 0:
 del listener_object.__listeners__[listener]

[docs] def fire(self, args, kwargs):
 """
 Fire this signal with the specified arguments and keyword arguments.

 Typically this is used by using :meth:`__call__()` on this object which
 is more natural as it does all the argument packing/unpacking
 transparently.
 """
 for info in self._listeners[:]:
 if info.pass_signal:
 info.listener(*args, signal=self, **kwargs)
 else:
 info.listener(*args, **kwargs)

[docs] def __call__(self, *args, **kwargs):
 """
 Call fire() with all arguments forwarded transparently

 This is provided for convenience so that a signal can be fired just
 by a simple method or function call and so that signals can be passed
 to other APIs that don't understand the :meth:`fire()` method.
 """
 self.fire(args, kwargs)

In the past this used to be a helper method for defining signals.
Now the same functionality is available through the signal class.

signal.define = signal

In the past this used to be the actual signal class that knows about
listeners. Now that is all merged into the one ``signal`` class.
Signal = signal

In the past this used to be the signal descriptor class that knows about
the first responder and knows how to create :class:`Signal` objects. Now
that is all merged into the one ``signal`` class.
signaldescriptor = signal

def _get_fn_name(fn):
 if hasattr(fn, '__qualname__'):
 return fn.__qualname__
 else:
 return fn.__name__

[docs]class boundmethod(object):
 """
 A helper class that allows us to emulate a bound method

 This class emulates a bond method by storing an object ``instance``,
 function ``func`` and calling ``instance``.``func``() whenever the
 boundmethod object itself is called.
 """

 def __init__(self, instance, func):
 self.instance = instance
 self.func = func
 if hasattr(func, '__qualname__'):
 self.__qualname__ = self.func.__qualname__
 self.__name__ = self.func.__name__

 def __call__(self, *args, **kwargs):
 return self.func(self.instance, *args, **kwargs)

[docs]class SignalInterceptorMixIn:
 """
 A mix-in class for TestCase-like classes that adds extra methods for
 working with and testing signals. This class may be of use if the base
 TestCase class is not the standard ``unittest.TestCase`` class but the user
 still wants to take advantage of the extra methods provided here.
 """

 def _extend_state(self):
 if not hasattr(self, '_events_seen'):
 self._events_seen = []

[docs] def watchSignal(self, signal):
 """
 Setup provisions to watch a specified signal

 :param signal:
 The :class:`Signal` to watch for.

 After calling this method you can use :meth:`assertSignalFired()`
 and :meth:`assertSignalNotFired()` with the same signal.
 """
 self._extend_state()

 def signal_handler(*args, **kwargs):
 self._events_seen.append((signal, args, kwargs))
 signal.connect(signal_handler)
 if hasattr(self, 'addCleanup'):
 self.addCleanup(signal.disconnect, signal_handler)

[docs] def assertSignalFired(self, signal, *args, **kwargs):
 """
 Assert that a signal was fired with appropriate arguments.

 :param signal:
 The :class:`Signal` that should have been fired.
 Typically this is ``SomeClass.on_some_signal`` reference
 :param args:
 List of positional arguments passed to the signal handler
 :param kwargs:
 List of keyword arguments passed to the signal handler
 :returns:
 A 3-tuple (signal, args, kwargs) that describes that event
 """
 event = (signal, args, kwargs)
 self.assertIn(
 event, self._events_seen,
 "\nSignal unexpectedly not fired: {}\n".format(event))
 return event

[docs] def assertSignalNotFired(self, signal, *args, **kwargs):
 """
 Assert that a signal was fired with appropriate arguments.

 :param signal:
 The :class:`Signal` that should not have been fired.
 Typically this is ``SomeClass.on_some_signal`` reference
 :param args:
 List of positional arguments passed to the signal handler
 :param kwargs:
 List of keyword arguments passed to the signal handler
 """
 event = (signal, args, kwargs)
 self.assertNotIn(
 event, self._events_seen,
 "\nSignal unexpectedly fired: {}\n".format(event))

[docs] def assertSignalOrdering(self, *expected_events):
 """
 Assert that a signals were fired in a specific sequence.

 :param expected_events:
 A (varadic) list of events describing the signals that were fired
 Each element is a 3-tuple (signal, args, kwargs) that describes
 the event.

 .. note::
 If you are using :meth:`assertSignalFired()` then the return value
 of that method is a single event that can be passed to this method
 """
 expected_order = [self._events_seen.index(event)
 for event in expected_events]
 actual_order = sorted(expected_order)
 self.assertEqual(
 expected_order, actual_order,
 "\nExpected order of fired signals:\n{}\n"
 "Actual order observed:\n{}".format(
 "\n".join(
 "\t{}: {}".format(i, event)
 for i, event in enumerate(expected_events, 1)),
 "\n".join(
 "\t{}: {}".format(i, event)
 for i, event in enumerate(
 (self._events_seen[idx] for idx in actual_order), 1))))

[docs]class SignalTestCase(unittest.TestCase, SignalInterceptorMixIn):
 """
 A :class:`unittest.TestCase` subclass that simplifies testing uses of
 the Morris signals. It provides three assertion methods and one utility
 helper method for observing signal events.
 """

def remove_signals_listeners(instance):
 """
 utility function that disconnects all listeners from all signals on an
 object
 """
 if hasattr(instance, "__listeners__"):
 for listener in list(instance.__listeners__):
 for signal in instance.__listeners__[listener]:
 signal.disconnect(listener)

 © Copyright 2014, Zygmunt Krynicki.
 Created using Sphinx 1.2.2.

