

Documentation

	Getting Started
	Morepath: Super Powered Python Web Framework

	Quickstart

	Community

	Examples

	Installation

	Superpowers

	Comparison with other Web Frameworks

	A Review of the Web

	User Guide
	Paths and Linking

	Views

	Templates

	Configuration

	JSON and validation

	Security

	Settings

	Logging

	App Reuse

	Tweens

	Static resources with Morepath

	Advanced Topics
	Organizing your Project

	Building Large Applications

	REST

	Writing automated tests

	Directive tricks

	Querying configuration

	Reference
	API

	morepath.directive – Extension API

	Contributor Guide
	Developing Morepath

	Design Notes

	Implementation Overview

	History
	History of Morepath

	CHANGES

	Upgrading to a new Morepath version

Indices and tables

	Index

	Module Index

	Search Page

Getting Started

If you are new to Morepath, you’ll find here a few resources that can
help you get up to speed right away.

	Morepath: Super Powered Python Web Framework
	Video intro

	Morepath Super Powers

	Morepath Knows About Your Models

	More documentation, please!

	I just want to try it!

	Quickstart
	Hello world

	Code Walkthrough

	Routing

	Request object

	Redirects

	HTTP Errors

	Community
	Github

	Chat

	Mailing list/forum

	Examples

	Installation
	Quick and Dirty Installation

	Creating a Morepath Project Using Cookiecutter

	Creating a Morepath Project Manually

	Depending on Morepath development versions

	Superpowers
	Link with Ease

	Generic UI

	Model-driven Permissions

	Composable Views

	Extensible Applications

	Extensible Framework

	Comparison with other Web Frameworks
	Overview

	Routing

	Linking

	Permissions

	View lookup

	WSGI

	Explicit request

	Testability and Global state

	No default database

	Pluggable template languages

	Code configuration

	Components and Generic functions

	A Review of the Web
	HTTP protocol

	Web browser

	Web server

	Web application

	Web service

	Custom HTTP client

	Framework

	Server web framework

	JavaScript

	Bower

	AJAX

	Client web framework

	WSGI

	HTTP request

	HTTP response

	Resource

	URL

	URL parameters

	Path

	Link generation

	Headers

	Cookies

	Content types

	View

	HTTP request method

	View predicate

	HTTP status codes

	JSON

	JSON-LD

	HTTP API

	REST web service

	HTML and CSS

	Web page

	Single-page web application

Morepath: Super Powered Python Web Framework

Morepath is a Python web microframework, with super powers.

Morepath is a Python WSGI microframework. It uses routing, but the
routing is to models. Morepath is model-driven and flexible, which
makes it expressive.

	Morepath does not get in your way.

	It lets you express what you want with ease. See Quickstart.

	It’s extensible, with a simple, coherent and universal extension and
override mechanism, supporting reusable code. See App Reuse.

	It understands about generating hyperlinks. The web is about
hyperlinks and Morepath actually knows about them. See
Paths and Linking.

	Views are simple functions. All views are generic. See Views.

	It has all the tools to develop REST web services in the box. See
REST.

	Documentation is important. Morepath has a lot of Documentation.

Sounds interesting?

Walk the Morepath with us!

Video intro

Here is a 25 minute introduction to Morepath, originally given at
EuroPython 2014:

 Quickstart

Quickstart

Morepath is a micro-framework, and this makes it small and easy to
learn. This quickstart guide should help you get started. We assume
you’ve already installed Morepath; if not, see the Installation
section.

Hello world

Let’s look at a minimal “Hello world!” application in Morepath:

import morepath

class App(morepath.App):
 pass

@App.path(path="")
class Root(object):
 pass

@App.view(model=Root)
def hello_world(self, request):
 return "Hello world!"

if __name__ == "__main__":
 morepath.run(App())

You can save this as hello.py and then run it with Python:

$ python hello.py
Running <__main__.App object at 0x10f8398d0>
Listening on http://127.0.0.1:5000
Press Ctrl-C to stop...

Making the server externally accessible

The default configuration of morepath.run() uses the
127.0.0.1 hostname. This means you can access the web server
from your own computer, but not from anywhere else. During
development this is often the best way to go about things.

But sometimes do want to make the development server accessible from
the outside world. This can be done by passing an explicit host
argument of 0.0.0.0 to the morepath.run() function.

morepath.run(App(), host='0.0.0.0')

Alternatively, you can specify 0.0.0.0 on the command line:

$ python hello.py --host 0.0.0.0

Note that the built-in web server is absolutely unsuitable for
actual deployment. For those cases don’t use morepath.run() at
all, but instead use an external WSGI server such as waitress [http://pylons.readthedocs.org/projects/waitress/en/latest/],
Apache mod_wsgi [https://modwsgi.readthedocs.org/en/latest/] or nginx mod_wsgi [http://wiki.nginx.org/NgxWSGIModule].

If you now go with a web browser to the URL given, you should see
“Hello world!” as expected. When you want to stop the server, just
press control-C.

Morepath uses port 5000 by default, and it might be the case that
another service is already listening on that port. If that happens
you can specify a different port on the command line:

$ python hello.py --port 6000

This application is a bit bigger than you might be used to in other
web micro-frameworks. That’s for a reason: Morepath is not geared to
create the most succinct “Hello world!” application but to be
effective for building slightly larger applications, all the way up to
huge ones.

Let’s go through the hello world app step by step to gain a better
understanding.

Code Walkthrough

	We import morepath.

	We create a subclass of morepath.App named App. This
class contains our application’s configuration: what models and
views are available. It can also be instantiated into a WSGI
application object.

	We then set up a Root class. Morepath is model-driven and in
order to create any views, we first need at least one model, in
this case the empty Root class.

We set up the model as the root of the website (the empty string
'' indicates the root, but '/' works too) using the
morepath.App.path() decorator.

	Now we can create the “Hello world” view. It’s just a function that
takes self and request as arguments (we don’t need to use
either in this case), and returns the string "Hello
world!". The self argument is the instance of the model
class that is being viewed.

We then need to hook up this view with the
morepath.App.view() decorator. We say it’s associated with
the Root model. Since we supply no explicit name to the
decorator, the function is the default view for the Root model
on /.

	The if __name__ == '__main__' section is a way in Python to
make the code only run if the hello.py module is started
directly with Python as discussed above. In a real-world
application you instead use a setuptools entry point so that a
startup script for your application is created automatically.

	We then instantiate the App class to create a WSGI app
using the default web server. Since you create a WSGI app you can
also plug it into any other WSGI server.

This example presents a compact way to organize your code in a single
module, but for a real project we recommend you read
Organizing your Project. This supports organizing your project
with multiple modules.

Routing

Morepath uses a special routing technique that is different from many
other routing frameworks you may be familiar with. Morepath does not
route to views, but routes to models instead.

Why route to models?

Why does Morepath route to models? It allows for some nice
features. The most concrete feature is automatic hyperlink
generation - we’ll go into more detail about this later.

A more abstract feature is that Morepath through model-driven design
allows for greater code reuse: this is the basis for Morepath’s
super-powers. We’ll show a few of these special things you can do
with Morepath later.

Finally Morepath’s model-oriented nature makes it a more natural fit
for REST [https://en.wikipedia.org/wiki/Representational_state_transfer] applications. This is useful when you need to create a web
service or the foundation to a rich client-side application.

Models

A model is any Python object that represents the content of your
application: say a document, or a user, an address, and so on. A model
may be a plain in-memory Python object or be backed by a database
using an ORM such as SQLAlchemy [http://www.sqlalchemy.org/], or some NoSQL database such as the
ZODB [http://www.zodb.org/en/latest/]. This is entirely up to you; Morepath does not put special
requirements on models.

Above we’ve exposed a Root model to the root route /, which is
rather boring. To make things more interesting, let’s imagine we have
an application to manage users. Here’s our User class:

class User(object):
 def __init__(self, username, fullname, email):
 self.username = username
 self.fullname = fullname
 self.email = email

We also create a simple users database:

users = {}
def add_user(user):
 users[user.username] = user

faassen = User('faassen', 'Martijn Faassen', 'faassen@startifact.com')
bob = User('bob', 'Bob Bobsled', 'bob@example.com')
add_user(faassen)
add_user(bob)

Publishing models

Custom variables function

The default behavior is for Morepath to retrieve the variables by
name using getattr from the model objects. This only works if
those variables exist on the model under that name. If not, you can
supply a custom variables function that given the model returns
a dictionary with all the variables in it. Here’s how:

@App.path(model=User, path='/users/{username}',
 variables=lambda model: dict(username=model.username))
def get_user(username):
 return users.get(username)

Of course this variables is not necessary as it has the same
behavior as the default, but you can do whatever you want in the
variables function in order to get the username.

Getting variables right is important for link generation.

We want our application to have URLs that look like this:

/users/faassen

/users/bob

Here’s the code to expose our users database to such a URL:

@App.path(model=User, path='/users/{username}')
def get_user(username):
 return users.get(username)

The get_user function gets a user model from the users database by
using the dictionary get method. If the user doesn’t exist, it
returns None. We could’ve fitted a SQLAlchemy query in here
instead.

Now let’s look at the decorator. The model argument has the class
of the model that we’re putting on the web. The path argument has
the URL path under which it should appear.

The path can have variables in it which are between curly braces
({ and }). These variables become arguments to the function
being decorated. Any arguments the function has that are not in the
path are interpreted as URL parameters.

What if the user doesn’t exist? We want the end-user to see a 404
error. Morepath does this automatically for you when you return
None for a model, which is what get_user does when the model
cannot be found.

Now we’ve published the model to the web but we can’t view it yet.

converters

A common use case is for path variables to be a database id. These
are often integers only. If a non-integer is seen in the path we
know it doesn’t match. You can specify a path variable contains an
integer using the integer converter. For instance:

@App.path(model=Post, path='posts/{post_id}', converters=dict(post_id=int))
def get_post(post_id):
 return query_post(post_id)

You can do this more succinctly too by using a default parameter for
post_id that is an int, for instance:

@App.path(model=Post, path='posts/{post_id}')
def get_post(post_id=0):
 return query_post(post_id)

For more on this, see Paths and Linking.

Views

In order to actually see a web page for a user model, we need to
create a view for it:

@App.view(model=User)
def user_info(self, request):
 return "User's full name is: %s" % self.fullname

The view is a function decorated by morepath.App.view() (or
related decorators such as morepath.App.json() and
morepath.App.html()) that gets two arguments: self,
which is the model that this view is working for, so in this case an
instance of User, and request which is the current
request. request is a morepath.request.Request object (a
subclass of webob.request.BaseRequest [https://docs.pylonsproject.org/projects/webob/en/latest/api/request.html#webob.request.BaseRequest]).

Now the URLs listed above such as /users/faassen will work.

What if we want to provide an alternative view for the user, such as
an edit view which allows us to edit it? We need to give it a
name:

@App.view(model=User, name='edit')
def edit_user(self, request):
 return "An editing UI goes here"

Now we have functionality on URLs like /users/faassen/edit and
/users/bob/edit.

For more on this, see Views.

Linking to models

Morepath is great at creating links to models: it can do it for you
automatically. Previously we’ve defined an instance of User called
bob. What now if we want to link to the default view of bob?
We simply do this:

>>> request.link(bob)
'http://example.com/users/bob'

What if we want to see Bob’s edit view? We do this:

>>> request.link(bob, 'edit')
'http://example.com/users/bob/edit'

Using morepath.Request.link() everywhere for link generation is
easy. You only need models and remember which view names are
available, that’s it. If you ever have to change the path of your
model, you won’t need to adjust any linking code.

For more on this, see Paths and Linking.

Link generation compared

If you’re familiar with routing frameworks where links are generated
to views (such as Flask or Django) link generation is more
involved. You need to give each route a name, and then refer back to
this route name when you want to generate a link. You also need to
supply the variables that go into the route. With Morepath, you
don’t need a route name, and if the default way of getting variables
from a model is not correct, you only need to explain once how to
create the variables for a route, with the variables argument to
@App.path.

In addition, Morepath links are completely generic: you can pass in
anything linkable. This means that writing a generic view that uses
links becomes easier – there is no dependency on particular named
URL paths anymore.

JSON and HTML views

@App.view is rather bare-bones. You usually know more about what
you want to return than that. If you want to return JSON, you can use
the shortcut @App.json instead to declare your view:

@App.json(model=User, name='info')
def user_json_info(self, request):
 return {'username': self.username,
 'fullname': self.fullname,
 'email': self.email}

This automatically serializes what is returned from the function JSON,
and sets the content-type header to application/json.

If we want to return HTML, we can use @App.html:

@App.html(model=User)
def user_info(self, request):
 return "<p>User's full name is: %s</p>" % self.fullname

This automatically sets the content type to text/html. It doesn’t
do any HTML escaping though, so the use of % above is unsafe! We
recommend the use of a HTML template language in that case.

Request object

The first argument for a view function is the request object. We’ll
give a quick overview of what’s possible here, but consult the
WebOb API documentation for more information.

	request.GET contains any URL parameters (?key=value). See
webob.request.BaseRequest.GET [https://docs.pylonsproject.org/projects/webob/en/latest/api/request.html#webob.request.BaseRequest.GET].

	request.POST contains any HTTP form data that was submitted. See
webob.request.BaseRequest.POST [https://docs.pylonsproject.org/projects/webob/en/latest/api/request.html#webob.request.BaseRequest.POST].

	request.method gets the HTTP method (GET, POST, etc). See
webob.request.BaseRequest.method [https://docs.pylonsproject.org/projects/webob/en/latest/api/request.html#webob.request.BaseRequest.method].

	request.cookies contains the cookies. See
webob.request.BaseRequest.cookies [https://docs.pylonsproject.org/projects/webob/en/latest/api/request.html#webob.request.BaseRequest.cookies]. response.set_cookie can be
used to set cookies. See webob.response.Response.set_cookie() [https://docs.pylonsproject.org/projects/webob/en/latest/api/response.html#webob.response.Response.set_cookie].

Redirects

To redirect to another URL, use morepath.redirect(). For example:

@App.view(model=User, name='extra')
def redirecting(self, request):
 return morepath.redirect(request.link(self, 'other'))

HTTP Errors

To trigger an HTTP error response you can raise various WebOb HTTP
exceptions (webob.exc [https://docs.pylonsproject.org/projects/webob/en/latest/api/exceptions.html#module-webob.exc]). For instance:

from webob.exc import HTTPNotAcceptable

@App.view(model=User, name='extra')
def erroring(self, request):
 raise HTTPNotAcceptable()

But note that Morepath already raises a lot of these errors for you
automatically just by having your structure your code the Morepath
way.

 Community

Community

Github

Morepath is maintained as a Github project:

https://github.com/morepath/morepath

Feel free to fork it and make pull requests!

We use the Github issue tracker for discussion about bugs and new
features:

https://github.com/morepath/morepath/issues

So please report issues there. Feel free to add new issues!

Chat

Want to chat with us? Join us [https://discord.gg/0xRQrJnOPiRsEANa]! This uses Discord [https://discordapp.com], with web-based,
desktop and mobile clients available.

Mailing list/forum

There’s a mailing list/web forum for discussing Morepath. Discussion
about use and development of Morepath are both welcome:

https://groups.google.com/forum/#!forum/morepath

Feel free to speak up. Questions are very welcome!

 Examples

Examples

Sometimes the best way to learn about how something works is to look
at an example. The Morepath Morepath organization on GitHub maintains
the following example projects:

morepath_batching [https://github.com/morepath/morepath_batching]

Example of a batching UI using server-side templates. Shows how
explicit models and link generation makes it easier to implement a
batching UI.

morepath_cerebral_todomvc [https://github.com/morepath/morepath_cerebral_todomvc]

A React & Cerebral rich frontend using Morepath as a REST backend.

morepath_reactredux [https://github.com/morepath/morepath_reactredux]

A React & Redux rich frontend using Morepath as REST backend.

morepath_rest_dump_load [https://github.com/morepath/morepath_rest_dump_load]

A demonstration on how to use the json_dump and json_load directives
to help implement a REST service.

morepath_sqlalchemy [https://github.com/morepath/morepath_sqlalchemy]

Use SQLAlchemy with Morepath. This uses more.transaction to help
integrate the two.

morepath_static [https://github.com/morepath/morepath_static]

Using more.static with Morepath to publish static resources such
as .js and .css files.

morepath_wiki [https://github.com/morepath/morepath_wiki]

A wiki demo for Morepath, based on the web micro-framework battle by
Richard Jones.

 Installation

Installation

Quick and Dirty Installation

To get started with Morepath right away, first create a Python 3.7
virtualenv [http://www.virtualenv.org/]:

$ virtualenv morepath_env
$ source morepath_env/bin/activate

Now install Morepath into it:

$ pip install morepath

You can now use the virtual env’s Python to run any code that uses
Morepath:

$ python quickstart.py

See Quickstart for information on how to get started with
Morepath itself, including an example of quickstart.py.

Creating a Morepath Project Using Cookiecutter

Morepath provides an official cookiecutter template. Cookiecutter is a tool
that creates projects through project templates. Morepath’s template comes
with a very simple application, either in RESTful or traditional HTML flavor.

Follow the instructions on Morepath’s cookiecutter template repository to
get started:

https://github.com/morepath/morepath-cookiecutter

This is a great way to get started with Morepath as a beginner or to start
a new project as a seasoned Morepath user.

Creating a Morepath Project Manually

When you develop a web application it’s a good idea to use standard
Python project organization practices. Organizing your Project
has some recommendations on how to do this with Morepath. Relevant in
particular is the contents of setup.py, which depends on Morepath
and also sets up an entry point to start the web server.

Once you have a project you can use tools like pip [http://www.pip-installer.org/].
We’ll briefly describe how to it.

pip

With pip and a virtualenv called morepath_env, you can do this in
your project’s root directory:

$ pip install --editable .

You can now run the application like this (if you called the console
script myproject-start):

$ myproject-start

Depending on Morepath development versions

If you like being on the cutting edge and want to depend on the latest
Morepath and Reg development versions always, you can install these using
pip (in a virtualenv). Here’s how:

$ pip install git+git://github.com/morepath/reg.git@master

$ pip install git+git://github.com/morepath/morepath.git@master

A more involved method how to install Morepath for development is described
in Developing Morepath.

 Superpowers

Superpowers

We said Morepath has super powers. Are they hard to use, then? No:
they’re both powerful and also easy to use, which makes them even
more super!

Link with Ease

Since Morepath knows about your models, it can generate links to them. If
you have a model instance (for example through a database query), you
can get a link to it by calling morepath.Request.link():

request.link(my_obj)

Want a link to its edit view (or whatever named view you want)? Just
do:

request.link(my_obj, 'edit')

If you create links this way everywhere (and why shouldn’t you?), you
know your application’s links will never break.

For much more, see Paths and Linking.

Generic UI

Morepath knows about model inheritance. It lets you define views for a
base class that automatically become available for all
subclasses. This is a powerful mechanism to let you write generic UIs.

For example, if we have this generic base class:

class ContainerBase(object):
 def entries(self):
 """All entries in the container returned as a list."""

We can easily define a generic default view that works for all
subclasses:

@App.view(model=ContainerBase)
def overview(self, request):
 return ', '.join([entry.title for entry in self.entries()])

But what if you want to do something different for a particular
subclass? What if MySpecialContainer needs it own custom default
view? Easy:

@App.view(model=MySpecialContainer)
def special_overview(self, request):
 return "A special overview!"

Morepath leverages the power of the flexible Reg [http://reg.readthedocs.org] generic function
library to accomplish this.

For much more, see Views.

Model-driven Permissions

Morepath features a very flexible but easy to use permission system.
Let’s say we have an Edit permission; it’s just a class:

class Edit(object):
 pass

And we have a view for some Document class that we only want to be
accessible if the user has an edit permission:

@App.view(model=Document, permission=Edit)
def edit_document(self, request):
 return "Editable"

How does Morepath know whether someone has Edit permission? We
need to tell it using the morepath.App.permission_rule()
directive. We can implement any rule we want, for instance this one:

@App.permission_rule(model=Document, permission=Edit)
def have_edit_permission(identity, model, permission):
 return model.has_permission(identity.userid)

Instead of a specific rule that only works for Document, we can
also give our app a broad rule (use model=object).

Composable Views

Let’s say you have a JSON view for a Document class:

@App.json(model=Document)
def document_json(self, request):
 return {'title': self.title}

And now we have a view for a container that contains documents. We want
to automatically render the JSON views of the documents in a list. We
can write this:

@App.json(model=DocumentContainer)
def document_container_json(self, request):
 return [document_json(doc, request) for doc in self.entries()]

Here we’ve used document_json ourselves. But what now if the
container does not only contain Document instances? What if one of
them is a SpecialDocument? Our document_container_json
function breaks. How to fix it? Easy, we can use
morepath.Request.view():

@App.json(model=DocumentContainer)
def document_container_json(self, request):
 return [request.view(doc) for doc in self.entries()]

Now document_container_json works for anything in the container
model that has a default view!

Extensible Applications

Somebody else has written an application with Morepath. It contains lots
of stuff that does exactly what you want, and one view that doesn’t
do what you want:

@App.view(model=Document)
def recalcitrant_view(self, request):
 return "The wrong thing!"

Ugh! We can’t just change the application as it needs to continue to
work in its original form. Besides, it’s being maintained by someone
else. What do we do now? Monkey-patch? Not at all: Morepath got you
covered. You simply create a new application subclass that extends the
original:

class MyApp(App):
 pass

We now have an application that does exactly what app does. Now
to override that one view to do what we want:

@MyApp.view(model=Document)
def whatwewant(self, request):
 return "The right thing!"

And we’re done!

It’s not just the view directive that works this way: all Morepath
directives work this way.

Morepath also lets you mount one application within another, allowing
composition-based reuse. See App Reuse for more
information. Using these techniques you can build large applications,
see Building Large Applications.

Extensible Framework

Morepath’s directives are implemented using Dectate [http://dectate.readthedocs.org], the
meta-framework for configuring Python frameworks. You can define new
directives and registries for Morepath with ease:

class Extended(morepath.App):
 pass

@Extended.directive('widget')
class WidgetAction(dectate.Action):
 config = {
 'widget_registry': dict # use dict as a registry
 }
 def __init__(self, name):
 self.name = name

 def identifier(self):
 return self.name

 def perform(self, obj, widget_registry):
 widget_registry[self.name] = obj

@Extended.widget('input')
def input_widget():
 ...

@Extended.widget('label')
def label_widget():
 ...

 Comparison with other Web Frameworks

Comparison with other Web Frameworks

We hear you ask:

There are a million Python web frameworks out there. How does
Morepath compare?

Pyramid Design Choices

This document is a bit like the Design Defense Document [http://docs.pylonsproject.org/projects/pyramid/en/latest/designdefense.html]
of the Pyramid web framework. The Pyramid document makes for a very
interesting read if you’re interested in web framework design. More
web frameworks should do that.

If you’re already familiar with another web framework, it’s useful to
learn how Morepath is the same and how it is different, as that helps
you understand it more quickly. So we try to do this a little here.

Our ability to compare Morepath to other web frameworks is limited by
our familiarity with them, and also by their aforementioned large
quantity. But we’ll try. Feel free to pitch in new comparisons, or
tell us where we get it wrong!

You may also want to read the Design Notes document.

Overview

Morepath aims to be foundational and flexible and is by itself
relatively low-level. All web applications are different. Some are
simple. Some, like CMSes, are like frameworks themselves. Morepath
makes it easy to build other frameworky things on top of Morepath.

Morepath isn’t there to be hidden away under another framework –
Morepath extensions still look like Morepath, which makes them
consistent and easier to approach. This orientation towards being
foundational makes Morepath more like Pyramid, or perhaps Flask, than
like Django.

Morepath aims to have a small core. It isn’t full stack; it’s a
microframework. It should be easy to pick up. This makes it similar to
other microframeworks like Flask or CherryPy, but different from
Django and Zope, which offer a lot of features.

Morepath is opinionated. There is only one way to do routing and one
way to do configuration. This makes it like a lot of web frameworks,
but unlike Pyramid, which takes more of a toolkit approach where a lot
of choices are made available.

Morepath is a routing framework, but it’s model-centric. Models, that
is, any Python objects, have URLs. This makes it like a URL traversal
framework like Zope or Grok, and also like Pyramid when traversal is
in use. Awareness of models allows Morepath automate linking, generate
correct HTTP status codes automatically and lets it have its powerful
permission-based security. It makes it unlike other routing frameworks
like Django or Flask, which have less awareness of models.

Paradoxically enough one thing Morepath is opinionated about is
flexibility, as that’s part of its mission to be a good foundation.
That’s what its configuration system (Dectate [http://dectate.readthedocs.org]) and generic function
system (Reg [http://reg.readthedocs.org]) are all about. Want to change behavior? You can override
everything. You can introduce new registries and new directives. Even
core behavior of Morepath can be changed by overriding its generic
functions. This makes Morepath like Zope, and especially like Pyramid,
but less like Django or Flask.

Routing

Collect 200 dollars

Do not directly go to the view. Go to the model first. Only then
go to the view. Do collect 200 dollars. Don’t go to jail [https://en.wikipedia.org/wiki/Monopoly_%28game%29].

Morepath is a routing web framework, like Django and Flask and a lot
of others. This is a common way to use Pyramid too (the other is
traversal). This is also called URL mapping or dispatching. Morepath
is to our knowledge, unique in that the routes don’t directly go to
views, but go through models first.

Morepath’s route syntax is very similar to Pyramid’s,
i.e. /hello/{name}. Flask is also similar. It’s unlike Django’s
regular expressions. Morepath works at a higher level than that
deliberately, as that makes it possible to disambiguate similar
routes.

This separation of model and view lookup helps in the following ways:

	Automated HTTP status codes in case things go wrong – no more easy
to forget custom error message generation code in all the views.

	Model-based security checks – you can define rules that say exactly
what kind of objects get which permissions, and then protect views
with those permissions.

	better code organization in application code, as it allows you to
separate the code that organizes the URL space from the code that
implements your actual views.

	Automated linking.

Linking

Because it routes to models, Morepath allows you to ask for the URL of
a model instance, like this:

request.link(mymodel)

That is an easier and less brittle way to make links than having to
name your routes explicitly. Morepath pushes link generation quite
far: it can construct links with paths and URL parameters
automatically.

Morepath shares the property of model-based links with traversal based
web frameworks like Zope and Grok, and also Pyramid in non-routing
traversal mode. Uniquely among them Morepath does route, not
traverse.

For more: Paths and Linking.

Permissions

Morepath has a permission framework built-in: it knows about
authentication and lets you plug in authenticators, you can protect
views with permissions and plug in code that tells Morepath what
permissions someone has for which models. It’s small but powerful in
what it lets you do.

This is unlike most other micro-frameworks like Flask, Bottle,
CherryPy or web.py. It’s like Zope, Grok and Pyramid, and has learned
from them, though Morepath’s system is more streamlined.

For more you can check out Security.

View lookup

Morepath uses a separate view lookup system. The name of the view is
determined from the last step of the path being routed to. With this URL
path for instance:

/document/edit

the /edit bit indicates the name of the view to look up for the
document model.

If no view step is supplied, the default view is looked up:

/document

This is like modern Zope works, and like how the Plone CMS works. It’s
also like Grok. It’s like Pyramid if it’s used with traversal instead
of routing. Overall there’s a strong Zope heritage going on, as all
these systems are derived from Zope in one way or another. Morepath is
unique in that it combines routing with view lookup.

This decoupling of views from models helps with expressivity, as it
lets you write reusable, generic views, and code organisation as
mentioned before.

For more: Views.

WSGI

Morepath is a WSGI [http://wsgi.readthedocs.org/en/latest/]-based framework, like Flask or Pyramid, and these
days Django as well.

A Morepath app is a standard WSGI app. You can plug it into a WSGI
compliant web server like Apache or Nginx or gunicorn.

Explicit request

Some frameworks, like Flask and Bottle, have a magic request
global that you can import. But request isn’t really a global, it’s a
variable, and in Morepath it’s a variable that’s passed into view
functions explicitly. This makes Morepath more similar to Pyramid or
Django.

Testability and Global state

Developers that care about writing testable code try to avoid global
state, in particular mutable global state, as it can make testing
harder. If the framework is required to be in a certain global state
before the code under test can be run, it becomes harder to test that
code, as you need to know first what global state to manipulate.

Globals can also be a problem when multiple threads try to write the
global at the same time. Web frameworks avoid this by using thread
locals. Confusingly enough these locals are globals, but they’re
isolated from other threads.

Morepath does not require any global state. Of course Morepath’s app
are module globals, but they’re not used that way once Morepath’s
configuration is loaded and Morepath starts to handle
requests. Morepath’s framework code passes the app along as a variable
(or attribute of a variable, such as the request) just like everything
else.

Morepath is built on the Reg generic function library. Previously Reg
had some optional implicit global state, but as of release 0.10 this
has been eliminated – state is entirely explicit here as well.

Flask is quite happy to use global state (with thread locals) to have
a request that you can import. Pyramid is generally careful to avoid
global state, but does allow using thread local state to get access to
the current registry in some cases.

No default database

Morepath has no default database integration. This is like Flask and
Bottle and Pyramid, but unlike Zope or Django, which have assumptions
about the database baked in (ZODB and Django ORM respectively).

You can plug in your own database, or even have no database at
all. You could use SQLAlchemy, or the ZODB. Morepath lets you treat
anything as models. We have examples and extensions that help you
integrate specific databases. Here’s morepath_sqlalchemy [https://github.com/morepath/morepath_sqlalchemy]

Pluggable template languages

Some micro-frameworks like Flask and Bottle and web.py have template
languages built-in, some, like CherryPy and the Werkzeug toolkit,
don’t. Pyramid doesn’t have built-in support either, but has standard
plugins for the Chameleon, Jijna2 and Mako template languages.

Morepath allows you to plug in server templates. You can plug in
Jinja2 [http://jinja.pocoo.org/] through more.jinja2 [https://pypi.python.org/pypi/more.jinja2], Chameleon [https://chameleon.readthedocs.org] through
more.chameleon [https://pypi.python.org/pypi/more.chameleon] and Mako [http://www.makotemplates.org] through more.mako [https://pypi.python.org/pypi/more.mako].

You don’t have to use a server template language though: Morepath aims
to be a good fit for modern, client-side web applications written in
JavaScript. We’ve made it easy to send anything to the client,
especially JSON. If templating is used for such applications, it’s
done on the client, in the web browser, not on the server.

Code configuration

Most Python web frameworks don’t have an explicit code configuration
system. With “code configuration” I mean expressing things like “this
function handles this route”, “this view works for this model”, and
“this is the authentication system for this app”. It also includes
extension and overrides, such as “here is an additional route”, “use
this function to handle this route instead of what the core said”.

If a web framework doesn’t deal with code configuration explicitly, an
implicit code configuration system tends to grow. There is one way to
set up routes, another way to declare models, another way to do
generic views, yet another way to configure the permission system, and
so on. Each system works differently and uses a different API. Config
files, metaclasses and import-time side effects may all be involved.

On top of this, if the framework wants to allow reuse, extension and
overrides the APIs tends to grow even more distinct with specialised
use cases, or yet more new APIs are grown.

Django is an example where configuration gained lots of knobs and
buttons; another example is Zope 2.

Microframeworks aim for simplicity so don’t suffer from this so much,
though probably at the cost of some flexibility. You can still observe
this kind of evolution in Flask’s pluggable views subsystem, though,
for instance.

To deal with this problem in an explicit way the Zope project
pioneered a component configuration mechanism. By having a universal
mechanism in which code is configured, the configuration API becomes
general and allows extension and override in a general manner as
well. Zope uses XML files for this.

The Grok project tried to put a friendlier face on the rather verbose
configuration system of Zope. Pyramid refined Grok’s approach further.
It offers a range of options for configuration: explicit calls in
Python code, decorators, and an extension that uses Zope-style XML.

In order to do its decorator based configuration, the Pyramid project
created the Venusian [http://pypi.python.org/pypi/venusian] python library. This is in turn a reimagined
version of the Martian [http://pypi.python.org/pypi/martian] python library created by the Grok
project. Venusian was used by the Morepath project originally, and
even though it is gone it still helped inspire Morepath’s
configuration system.

Morepath uses a new, general configuration system called Dectate [http://dectate.readthedocs.org] that
is based around decorators attached to application objects. These
application objects can extend other ones. Dectate supports a range
sophisticated extension and override use cases in a general way.

Components and Generic functions

The Zope project made the term “zope component architecture” (ZCA)
(in)famous in the Python world. Does it sound impressive, suggesting
flexibility and reusability? Or does it sound scary, overengineered,
RequestProcessorFactoryFactory-like? Are you intimidated by it? We
can’t blame you.

At its core the ZCA is really a system to add functionality to objects
from the outside, without having to change their classes. It helps
when you need to build extensible applications and reusable generic
functionality. Under the hood, it’s just a fancy registry that knows
about inheritance. Its a really powerful system to help build more
complicated applications and frameworks. It’s used by Zope, Grok and
Pyramid.

Morepath uses something else: a library called Reg [http://reg.readthedocs.org]. This is a new,
reimagined, streamlined implementation of the idea of the ZCA.

The underlying registration APIs of the ZCA is rather involved, with
quite a few special cases. Reg has a much simpler, more general
registration API that is flexible enough to fulfill a range of use
cases.

Finally what makes the Zope component architecture rather involved to
use is its reliance on interfaces. An interface is a special kind of
object introduced by the Zope component architecture that is used to
describe the API of objects. It’s like an abstract base class.

If you want to look up things in a ZCA component registry the ZCA
requires you to look up an interface. This requires you to write
interfaces for everything you want to be able to look up. The
interface-based way to do lookups also looks rather odd to the average
Python developer: it’s not considered to be very Pythonic. To mitigate
the last problem Pyramid creates simple function-based APIs on top of
the underlying interfaces.

Morepath by using Reg does away with interfaces altogether – instead
it uses generic functions. The simple function-based APIs are what
is pluggable; there is no need to deal with interfaces anymore, but
the system retains the power. Morepath is simple functions all the way
down.

A fancy term you could use for this approach is post object-oriented
design [https://moshez.wordpress.com/2016/09/15/post-object-oriented-design].

 A Review of the Web

A Review of the Web

Morepath is a web framework. Here is a quick review of how the web
works, how applications can be built with it, and how Morepath fits.

HTTP protocol

HTTP [https://en.wikipedia.org/wiki/Hypertext_Transfer_Protocol] is a protocol by which clients (such as web browsers) and
servers can communicate. The client sends a HTTP request, and the
server sends back a HTTP response. HTTP is extensible, and can be
extended with content types, new headers, and so on.

Version 1.1 of HTTP is most common on the web today. It is defined by
a bunch of specifications:

	RFC7230 - HTTP/1.1: Message Syntax and Routing [http://tools.ietf.org/html/rfc7230]

	RFC7231 - HTTP/1.1: Semantics and Content [http://tools.ietf.org/html/rfc7231]

	RFC7232 - HTTP/1.1: Conditional Requests [http://tools.ietf.org/html/rfc7232]

	RFC7233 - HTTP/1.1: Range Requests [http://tools.ietf.org/html/rfc7233]

	RFC7234 - HTTP/1.1: Caching [http://tools.ietf.org/html/rfc7234]

	RFC7235 - HTTP/1.1: Authentication [http://tools.ietf.org/html/rfc7235]

Luckily it’s not necessary to understand the full details of these
specifications to develop a web application. We’ll go into a basic
overview of relevant concepts in this document.

Morepath handles the HTTP protocol on the server side: creating a
response to incoming HTTP requests.

Web browser

A web browser such as Firefox, Chrome and Internet Explorer uses the
HTTP protocol to talk to web servers.

A web browser is a type of HTTP client.

Web server

A web server implements the HTTP protocol to respond to requests from
HTTP clients such as web browsers.

There are general web servers such as Apache [https://httpd.apache.org/] and Nginx [http://nginx.org/]. These
are programmable in various ways.

There are also more specific web servers that are geared at particular
tasks. Examples of these are Waitress [http://waitress.readthedocs.org] and Gunicorn [http://gunicorn.org] which are geared towards serving web
applications written in Python.

A web server is programmable in various ways. Morepath can plug into
web servers that implement the Python WSGI [https://en.wikipedia.org/wiki/Web_Server_Gateway_Interface] protocol.

Web application

A web application is software that presents a user interface by means
of a web browser. The web browser is usually a visible piece of
software, but may also be embedded in other software, such as in
FirefoxOS.

A web application is loaded from a web server. After it is loaded it
can still interact with the web server (or other web servers). The web
server can implement part of the application logic and maintains the
application data.

The dynamic behavior of a web application used to be implemented
almost entirely by the server, but it is now also possible to
implement a large part of their behavior within the web browser
instead, using the JavaScript language.

Morepath code runs entirely on the server, but supports web
applications that want to implement a large part of their dynamic
behavior within the web browser.

Web service

A web service does not present a user interface to the user. A web
service instead presents an application programming interface (API) to
custom HTTP client software. The API is to this software what the UI
is to the user.

You can layer a full web application on top of a web service. Such
layering can result in looser coupling in the implementation, which
tends to increase the quality of the implementation.

Morepath helps developers to implement web services.

Custom HTTP client

A web browser is one form of HTTP client, but other HTTP software can
be written in a variety of languages to talk to a web server
programmatically. This uses it as a web service.

JavaScript code in a web browser can also use the browser’s facilities
to talk to the web server programmatically (a technique called AJAX),
and can thus serve as a custom HTTP client as well.

Framework

A library is reusable code that your code calls, whereas a framework
is reusable code that calls your code. “Don’t call us, we’ll call
you”.

A framework aims to help you do particular tasks quickly; you only
need to fill in the details, and the framework handles the rest.

There is a gray area between library and framework. Morepath is mostly
a framework.

Server web framework

A framework that helps you program the behavior of a web
server. Morepath is a server web framework written in the Python
programming language.

JavaScript

JavaScript [https://en.wikipedia.org/wiki/JavaScript] is a programming language that is run in the browser. It
can use the web browser APIs (such as the DOM) to manipulate the web
page, get user input, or access the server programmatically (AJAX).

JavaScript can also be run on the server with Node.JS, but Morepath is
a Python web framework and does not make use of server-side
JavaScript.

Bower is a tool to help manage client-side JavaScript code.

Bower

A popular way to install client-side JavaScript (and CSS) code is to
use the Bower [http://bower.io] package management tool. By using a package manager
installing and updating a collection of JavaScript libraries becomes
more easy than doing it by hand.

Morepath offers Bower integration, see: Static resources with Morepath.

AJAX

AJAX [https://en.wikipedia.org/wiki/Ajax_%28programming%29] is a technique to access resources programmatically from a
browser application in JavaScript. These resources typically have a
JSON representation.

Client web framework

There are also client-side web frameworks that let you program the
behavior of a web browser, typically called “JavaScript MVC
framework”. Examples of such are React, Ember and Angular.

Morepath supports client-side code that uses a client web framework,
but does not implement a client web framework itself. You can pick
whichever you want.

WSGI

WSGI [https://en.wikipedia.org/wiki/Web_Server_Gateway_Interface] is a Python protocol by which Python code can be integrated with
a web server. WSGI can also be used to implement framework components
which are layered between application code and server.

A morepath.App instance implements the WSGI protocol and can
therefore be integrated with a WSGI-compliant web server and WSGI
framework component.

HTTP request

A HTTP request is a message a HTTP client sends to the server. The
server then returns a HTTP response.

The HTTP request contains a URL path, a request method, possibly a
request body, and various headers such as the content type.

A HTTP request in Morepath is made accessible programmatically as a
Python request object using the WebOb [http://webob.org/] library. It is a
morepath.Request, which is a subclass of
webob.request.BaseRequest [https://docs.pylonsproject.org/projects/webob/en/latest/api/request.html#webob.request.BaseRequest].

HTTP response

A HTTP response returns a representation of the resource indicated by
the path of the request as the response body. The response has a
content type which determines what representation is being sent. The
response also has a status code that indicates whether the request
could be handled, or the reason why a detailed response could not be
generated.

A lot of different representations exist. HTML is a very common one,
but for programmatic clients JSON is typically used.

Morepath lets you create a morepath.Response object directly,
which is a subclass of webob.response.Response [https://docs.pylonsproject.org/projects/webob/en/latest/api/response.html#webob.response.Response], and return it
from a view function.

More conveniently you use a specialized view type
(morepath.App.json() or morepath.App.html()) and return
the content that should go into the response body, such as a HTML
string or a JSON-serializable object. Morepath then automatically
creates the response with the right content type for you. Should you
wish to set additional information on the response object, you can use
morepath.Request.after().

Resource

A resource [https://en.wikipedia.org/wiki/Web_resource] is anything that can be addressed on the web by a URL [https://en.wikipedia.org/wiki/Uniform_resource_locator] (or
URI [https://en.wikipedia.org/wiki/Uniform_resource_identifier] or IRI [https://en.wikipedia.org/wiki/Internationalized_resource_identifier]). Can be a web page presenting a full UI (using HTML +
CSS), or can be a piece of information (typically in JSON), or can
also be an abstract entity that has no representation at all.

Morepath lets you implement resources of all kinds. Normally Morepath
resources have representations, but it is also possible to implement
abstract entities that have just a URL and have no
representation. Morepath can also help you create links to resources
on other web servers.

URL

Here is an example of a URL:

http://example.com/documents/3

A HTTP client such as a web browser uses URLs to determine:

	What protocol to use to talk to the server (in this case http).

	What host to talk to (in this case example.com). This
identifies the web server, though a complex host may be implemented
using a combination of web servers.

	What path to request from the server (in this case /documents/3).

The server determines how it responds to requests for particular paths.

URL parameters

A URL can have additional parameters:

http://example.com/documents/3?expand=1&highlight=foo

The list of parameters start with ?. Names are connected with
values using =, and name/value pairs are connected with &.

Path

A path is a way for a client to address a particular resource on a
server. It is part of the request. The path is also part of URLs, and
thus can be used for linking resources.

Morepath connects paths with Python objects using the path directive
(morepath.App.path()): it can resolve a path to a Python object,
and construct a path for a given Python object. This is described in
Paths and Linking.

Example:

@App.path(path='/documents/{id}', model=Document)
def get_document(id):
 return query_document(id)

If you declare arguments for get_document that do not get listed
as variables in the path these are interpreted as expected URL
parameters.

Link generation

Morepath makes it easy to generate a hyperlink to a Python
object. Morepath uses information on the object itself and its class
to determine what link to generate.

Given the path directive above, we can generate a link to an instance
of Document using morepath.Request.link():

some_document = get_some_document_from_somewhere()
request.link(some_document)

This makes it easy to create links within Morepath view functions.

Morepath’s link generation can generate links that include URL
parameters.

Headers

A HTTP request and a HTTP response have headers. Headers contain
information about the message that are not the body: they are about
the request or the response, or about the body. For example, the
content-type is header named Content-Type and has a value that is
a MIME type [https://en.wikipedia.org/wiki/Internet_media_type] such as text/html.

Headers are used for a wide variety of purposes, such as to declare
information about how a client may cache a response, or what kind of
responses a client accepts from a server, or to pass cookies along.
Here is an overview of common headers [https://en.wikipedia.org/wiki/List_of_HTTP_header_fields].

In Morepath, the headers are accessible on a request and response
object as the attribute webob.request.BaseRequest.headers [https://docs.pylonsproject.org/projects/webob/en/latest/api/request.html#webob.request.BaseRequest.headers] and
webob.response.Response.headers [https://docs.pylonsproject.org/projects/webob/en/latest/api/response.html#webob.response.Response.headers]. which behaves like a Python
dictionary. You could therefore access the request content-type using
request.headers['Content-Type']. But see below for a more
convenient way to access the content type.

To set the headers (or other information) on a response, you can
create a morepath.Response instance in a view function. You can
then pass in the headers, or set them afterward.

Often better is to use the morepath.Request.after() decorator to
declare a function that sets headers the response object once it has
been created for you by the framework.

WebOb [http://webob.org/] has APIs that help you deal with many headers at a higher level
of abstraction. For example,
webob.request.BaseRequest.content_type [https://docs.pylonsproject.org/projects/webob/en/latest/api/request.html#webob.request.BaseRequest.content_type] is a more convenient
way to access the content type information of a request than to access
the header directly, as additional charset information is not
there. Before you start to manipulate headers directly it pays off to
consult the WebOb documentation for webob.request.BaseRequest [https://docs.pylonsproject.org/projects/webob/en/latest/api/request.html#webob.request.BaseRequest]
and webob.response.Response [https://docs.pylonsproject.org/projects/webob/en/latest/api/response.html#webob.response.Response]: there may well be a better way.

Morepath also has special support for dealing with certain
headers. For instance, the Forwarded [http://tools.ietf.org/html/rfc7239] header can be set by a HTTP
proxy. To make Morepath use this header for URL generation, you can
use the more.forwarded [https://pypi.python.org/pypi/more.forwarded/] extension.

Cookies

One special set of headers deals with HTTP cookies [https://en.wikipedia.org/wiki/HTTP_cookie]. A server can set a
cookie on the client by passing back a special header in its
response. A cookie is much like a key/value pair in a Python
dictionary.

Once the cookie has been set, the client sends back the cookie to the
server during each subsequent request, again using a header, until the
cookie expires or cookie is explicitly deleted by the server using a
response header.

Normally in HTTP requests are independent from each other: assuming
the server database is the same, the same request should give the same
response, no matter what other requests have gone before it. This
makes it easier to reason about HTTP, and it makes it easier to scale
it up, for instance by caching responses.

Cookies change this: they can be used to make requests
order-dependent. This can be useful, but it can also make it harder to
reason about what is going on and scale, so be careful with them. In
particular, a REST web service should be able to function without
requiring the client to maintain cookies.

Cookies are commonly used to store login session information on the
client.

WebOb makes management of cookies more convenient: the
webob.request.BaseRequest.cookies [https://docs.pylonsproject.org/projects/webob/en/latest/api/request.html#webob.request.BaseRequest.cookies] attribute on the request
object contains the list of cookies sent by the client, and the
response object has an API incuding
webob.response.Response.set_cookie() [https://docs.pylonsproject.org/projects/webob/en/latest/api/response.html#webob.response.Response.set_cookie] and
webob.response.Response.delete_cookie() [https://docs.pylonsproject.org/projects/webob/en/latest/api/response.html#webob.response.Response.delete_cookie] to allow you to manage
cookies.

Content types

A resource may present itself in variety of representations. This is
indicated by the content type set in the HTTP response, using the
Content-Type header. There are a lot of content types, including
HTML and JSON. The value is a MIME type [https://en.wikipedia.org/wiki/Internet_media_type] such as text/html for
HTML and application/json for JSON. The value can also contain
additional parameters such as character encoding information.

WebOb makes content-type header information conveniently available
with the webob.request.BaseRequest.content_type [https://docs.pylonsproject.org/projects/webob/en/latest/api/request.html#webob.request.BaseRequest.content_type],
webob.response.Response.content_type [https://docs.pylonsproject.org/projects/webob/en/latest/api/response.html#webob.response.Response.content_type] and
webob.response.Response.content_type_params [https://docs.pylonsproject.org/projects/webob/en/latest/api/response.html#webob.response.Response.content_type_params] attributes.

A request may also have a content type: the request content type
determines what kind of content is sent to the server by the client in
the request body.

While you can create any kind of content type with Morepath, it has
special support for generating HTML and JSON responses (using
morepath.App.html() and morepath.App.json()), and for processing
a JSON request body (see load function for views in JSON and validation).

View

In Morepath, a view is a Python function that takes a Python object to
represent (self) and a morepath.Request object
(request) as arguments and returns something that can be turned
into a HTTP response, or a HTTP response object directly.

Here is an example of a Morepath view, using the most basic
morepath.App.view() directive:

@App.view(model=MyObject)
def my_object_default(self, request):
 return "some text content"

There are also specific morepath.App.json() and
morepath.App.html() directives to support those content types.

See Views for much more on how to construct Morepath views.

HTTP request method

A HTTP request has a method, also known as HTTP verb. The GET
method is used to retrieve information from the server. The POST
method is used to add new information to the server (for instance a
form submit), and the PUT method is used to update existing
information. The DELETE method is used to delete information from
the server.

It is up to the server implementation how to exactly handle the
request method. With Morepath, by default a view responds to the
GET method, but you can also write views to handle the other HTTP
methods, by indicating it with a view predicate. Here is a view that
handles the POST method (and returns a representation of what has
just been POSTed):

@App.view(model=MyCollection, request_method='POST')
def add_to_collection(self, request):
 item = MyItem(request.json)
 self.add(item)
 return request.view(item)

You can access the method on the request using
webob.request.BaseRequest.method [https://docs.pylonsproject.org/projects/webob/en/latest/api/request.html#webob.request.BaseRequest.method], but typically Morepath does
this for you when you use the request_method predicate.

View predicate

A view predicate in Morepath is used to match a view function with
details of self and request.

This view directive:

@App.view(model=MyCollection, request_method='POST')
def add_to_collection(self, request):
 ...

only matches when self is an instance of MyCollection
(model predicate) and when request.method is POST
(request_method predicate). Only in this case will
add_to_collection be called.

You can extend Morepath with additional view predicates. You can also
define a predicate fallback, which can be used to specify what HTTP
status code to set when the view cannot be matched.

See view predicates [http://morepath.readthedocs.org/en/latest/views.html#predicates]

HTTP status codes

HTTP status codes such as 200 Ok and 404 Not Found are part of
the HTTP response. Here is a list of HTTP status codes [https://en.wikipedia.org/wiki/List_of_HTTP_status_codes]. The
server can use them to indicate to the client whether it was
successfully able to create a response, or if not, what the problem
was.

Morepath can automatically generate the correct HTTP status codes
for you in many cases:

	200 Ok:

	When the path in the request is matched with a path directive, and
there is a view for the particular model and request method.

	404 Not Found:

	When the path does not match, or when the path matches but the path
function returns None.

Also when no view is available for the request in combination with
the object returned by the path function. More specifically, the
model view predicate or the name view predicate do not
match.

	400 Bad Request:

	When information in the path or request parameters could not be
converted to the required types.

	405 Method Not Allowed:

	When no view exists for the given HTTP request method. More
specifically, the request_method view predicate does not match.

	422 Unprocessable Entity:

	When the request body supplied with a POST or PUT request
can be parsed (as JSON, for instance), but is not the correct type.

	500 Internal Server Error:

	There is a bug in the server that causes an exception to be
raised. Morepath does not generate these itself, but a WSGI server
automatically catches any exceptions not handled by Morepath and
turns them into 500 errors.

Instead of having to write code that sends back the right status codes
manually, you declare paths and views with Morepath and Morepath can
usually do the right thing for you automatically. This saves you from
writing a lot of custom code when you want to implement HTTP properly.

Sometimes it is still useful to set the status code directly. WebOb
lets you raise special exceptions [http://docs.webob.org/en/latest/modules/exceptions.html] for HTTP errors. You can also set
the webob.response.Response.status [https://docs.pylonsproject.org/projects/webob/en/latest/api/response.html#webob.response.Response.status] attribute on the response.

JSON

A representation of a resource. JSON [https://en.wikipedia.org/wiki/JSON] is a language that represents
data, not user interface (like HTML combined with CSS) or logic (like
Python or JavaScript). JSON looks like this:

{
 "id": "foo_barson",
 "name": "Foo Barson",
 "occupation": "Carpenter",
 "level": 34
 "friends": ["http://example.com/people/qux_quxson",
 "http://example.com/people/one_twonson"]
}

JSON is the most common data representation language used in REST web
services. The main alternative is XML. While XML does offer more
extensive tooling support, it is a lot more verbose and more difficult
to process than JSON. JSON is already very close to the data
structures of many programming languages, including JavaScript and
Python.

In Python, JSON can be constructed by combining Python dictionaries
and lists with strings, numbers, booleans and None.

With Morepath you can use the morepath.App.json() directive to
generate JSON programmatically:

@App.json(model=MyObject)
def my_object_default(self, request):
 return {
 "id": self.id,
 "name": self.name,
 "occuptation": self.get_occupation(),
 "level": self.level,
 "friends": [request.link(friend) for friend in self.friends]
 }

This works like the view directive, but in addition converts the
return value of the function into a JSON response that is sent to the
client.

JSON-LD

JSON-LD [http://json-ld.org/] is an extension of JSON that helps support linked data in
JSON. Any JSON-LD structure is valid JSON, but not every JSON
structure is valid JSON-LD.

Using a @context, it lets a JSON object describe which parts of it
contain hyperlinks, and also allows JSON property names themselves to
be interpreted as unique hyperlinks. You can also express that
particular property values have a particular data type; this can range
from basic data types like datetime to custom data types like
“person”. All of this can help when you want to process JSON coming
from different data sources.

Perhaps more important in practice for REST web services is that it
also offers a standard way for a JSON object to have a unique id and a
type. Both are identified by a hyperlink, as the special @id and
@type properties. @type in particular makes it easier to use
JSON data as hypermedia: client behavior can be driven by the type of
data that is retrieved, instead of what URL it happened to be
retrieved from.

Morepath does not mandate the use of JSON-LD, or has any special
support for it, but its link generation facilities make it easier to
use it.

HTTP API

A HTTP API is a web service that is built on HTTP; it is based on the
notion of HTTP resources on URLs and has an understanding of HTTP
request methods.

This is to distinguish it from a web service implementation where HTTP
is merely a transport mechanism, such as SOAP.

Because the client needs to understand what URLs exist on the server
and how to interpret their response, the coupling between client and
server code is relatively tight.

This type of web service is commonly called a REST web service, but
the original definition of REST goes beyond this and adds hypermedia.
Many HTTP APIs only reach level 2 on the Richardson Maturity Model [http://martinfowler.com/articles/richardsonMaturityModel.html],
which isn’t full REST yet.

A HTTP API is sometimes simply called API, which is also confusing,
as the word API has a lot of other uses in development outside of
HTTP.

Morepath is designed to help you build HTTP APIs, but also to go you a
step further to full REST.

REST web service

Morepath helps you to create REST [https://en.wikipedia.org/wiki/Representational_state_transfer] web service, also known as a
hypermedia API.

This is level 3 on the Richardson Maturity Model [http://martinfowler.com/articles/richardsonMaturityModel.html].

This means that to interact with the content of the web service you
can follow hyperlinks. A client starts at one root URL and to get to
other information it follow links in the content.

Different JSON resources can be distinguished from each other by their
type; this can based on the content-type of the response, or be
based on information within the content itself, such as a type
property in JSON (@type in JSON-LD [http://json-ld.org/]).

In other words, the web service represents itself to software much
like a web site presents itself to a human: as content with links.

A REST web service allows for a looser coupling between server and
client than a plain HTTP API allows, as the client does not need to
know more than a single entry point URL into the server, and only
needs an understanding of the response types and how to navigate
links.

HTML and CSS

HTML is a markup language used to represent a resource. Augmented by
CSS, a style language, it determines what you see on a web page.

HTML can be loaded from a files on the server; this typically done
with a general web server such as Apache and Nginx. For dynamic
applications HTML can also be generated on the server, often using a
server-side templating language.

HTML may also be manipulated programmatically in the browser using
JavaScript through the DOM API.

In Morepath you can use the morepath.App.html() view directive
to generate HTML programmatically:

@App.view(model=MyObject)
def my_object_default(self, request):
 return '<html><head></head><body></body></html>'

Morepath at this point does not have support for server-side
templating.

See Static resources with Morepath for information on how you can load static
resources such as CSS and JavaScript automatically to augment a HTML page.

Web page

The browser displays a user interface to the user in the form of a
web page. A web page is usually constructed using HTML [https://en.wikipedia.org/wiki/HTML] and CSS [https://en.wikipedia.org/wiki/Cascading_Style_Sheets]. Other
content such as images, video, audio, SVG, canvas, WebGL may also
be embedded into it.

JavaScript [https://en.wikipedia.org/wiki/JavaScript] code is executed in the browser to make the user interface
more dynamic, and this dynamism can go very far.

A web page is loaded by putting a URL in the address bar of the
browser. The browser then fetches it (and related resources) from the
server. You can do this manually, or by clicking a link, or the URL of
the browser may be changed programmatically with JavaScript code.

In the past, all web applications were implemented as a multiple web
pages that were generated on the server in response to user actions.

It is also possible to change the URL in the address bar without
fetching a complete new web page from the server. This technique is
used to implement single-page web applications.

Single-page web application

A single-page web application (SPA) is web application that consists
of a single web page that is updated within the browser without the
need to load a complete need web page. So the web page is loaded from
the server only once, when the user first goes there.

When a user interacts with it, JavaScript code is executed that
updates the user interface and may also interact with a web server
using AJAX.

A single page web application may update the URL in the address bar of
the browser, and respond to URL changes, but it is the same web page
that implements the behavior for all these URLs. It may need a bit of
server-side support to do so.

Morepath supports the creation of single-page web applications. It
also lets you create multi-page applications, but at this point in
time has no special support for server-side templating.

 User Guide

User Guide

You’ll find in this section a tour of the features of Morepath, and
how to use them to develop your web application.

	Paths and Linking
	Introduction

	Paths

	URL query parameters

	Extra URL query parameters

	Linking

	Linking with path variables

	Linking with URL query parameters

	Prefixing links with a base URL

	Linking to external applications

	Type hints

	Conversion

	Default converters

	Type hints and converters

	List converters

	get_converters

	Required

	Absorbing

	Linking with the model class

	Proxy support

	Views
	Introduction

	Named views

	Default views

	Generic views

	Details

	Ambiguity between path and view

	render

	Templates

	Permissions

	Manipulating the response

	request_method

	Grouping views

	Predicates

	request.view

	Exception views

	Templates
	Introduction

	Example

	Overrides

	Details

	Integrating a new template engine

	Configuration
	Introduction

	How it works

	Scanning a package

	Scanning dependencies

	JSON and validation
	Introduction

	dump_json

	load function for views

	Security
	Introduction

	Identity

	Verify identity

	Session or token based identity verification

	Login and logout

	Permissions

	Permission rules

	Morepath Super Powers Go!

	Settings
	Introduction

	Defining a setting

	Accessing a setting

	Defining multiple settings

	Loading settings from a config file

	Logging
	Directive logging

	App Reuse
	Application Isolation

	Application Extension

	Application Overrides

	Nesting Applications

	Linking to other mounted apps

	Deferring links and views

	Further reading

	Tweens
	Introduction

	signature of a handler

	Under and over

	What can a tween do?

	Creating a tween factory

	Tweens and settings

	Tweens and apps

	more.transaction

	Static resources with Morepath
	Introduction

	Application layout

	Manual scan

	Bower

	Registering bower_components

	Saying which components to use

	Including stuff

	Local components

	A note about mounted applications

	Other static content

 Paths and Linking

Paths and Linking

Introduction

Morepath lets you publish model classes on paths using Python
functions. It also lets you create links to model instances. To be
able do so Morepath needs to be told what variables there are in the
path in order to find the model object, and how to find these
variables again in the model object in order to construct a link to
it.

Paths

Overlapping paths

Morepath lets you define multiple overlapping paths:

@App.path(model=Item, path='items/{id}')
def get_item(id):
 ...

@App.path(model=ItemDetail, path='items/{id}/details/{detail_id}')
def get_item_detail(id, detail_id):
 ...

If you have overlapping paths, you need to name the variable names
the same in the overlapping part of the paths, otherwise Morepath
reports a configuration conflict. So you can’t have this:

@App.path(model=Item, path='items/{id}')
def get_item(id):
 ...

@App.path(model=ItemDetail, path='items/{item_id}/details/{detail_id}')
def get_item_detail(item_id, detail_id):
 ...

Morepath reports an error in this case, as {id} and
{item_id} overlap but are different variable names.

Let’s assume we have a model class Overview:

class Overview(object):
 pass

Here’s how we could expose it to the web under the path overview:

@App.path(model=Overview, path='overview')
def get_overview():
 return Overview()

And let’s give it a default view so we can see it when we go to its
URL:

@App.view(model=Overview)
def overview_default(self, request):
 return "Overview"

No variables are involved yet: they aren’t in the path and the
get_overview function takes no arguments.

Let’s try a single variable now. We have a class Document:

class Document(object):
 def __init__(self, name):
 self.name = name

Let’s expose it to the web under documents/{name}:

@App.path(model=Document, path='documents/{name}')
def get_document(name):
 return query_document_by_name(name)

@App.view(model=Document)
def document_default(self, request):
 return "Document: " + self.name

Here we declare a variable in the path ({name}), and it gets
passed into the get_document function. The function does some kind
of query to look for a Document instance by name. We then have a
view that knows how to display a Document instance.

We can also have multiple variables in a path. We have a
VersionedDocument:

class VersionedDocument(object):
 def __init__(self, name, version):
 self.name = name
 self.version = version

We could expose this to the web like this:

@App.path(model=VersionedDocument,
 path='versioned_documents/{name}-{version}')
def get_versioned_document(name, version):
 return query_versioned_document(name, version)

@App.view(model=VersionedDocument)
def versioned_document_default(self, request):
 return "Versioned document: %s %s" % (self.name, self.version)

The rule is that all variables declared in the path can be used as
arguments in the model function.

URL query parameters

What if we want to use URL parameters to expose models? That is
possible too. Let’s look at the Document case first:

@App.path(model=Document, path='documents')
def get_document(name):
 return query_document_by_name(name)

get_document has an argument name, but it doesn’t appear in
the path. This argument is now taken to be a URL parameter. So, this
exposes URLs of the type documents?name=foo. That’s not as nice as
documents/foo, so we recommend against parameters in this case:
you should use paths to identify something.

URL parameters are more useful for queries. Let’s imagine we have a
collection of documents and we have an API on it that allows us to
search in it for some text:

class DocumentCollection(object):
 def __init__(self, text):
 self.text = text

 def search(self):
 if self.text is None:
 return []
 return fulltext_search(self.text)

We now publish this collection, making it searchable:

@App.path(model=DocumentCollection, path='search')
def document_search(text):
 return DocumentCollection(text)

To be able to see something, we add a view that returns a comma
separated string with the names of all matching documents:

@App.view(model=DocumentCollection)
def document_collection_default(self, request):
 return ', '.join([document.name for document in self.search()])

As you can see it uses the DocumentCollection.search method.

Unlike path variables, URL parameters can be omitted, i.e. we can have
a plain search path without a text parameter. In that case
text has the value None. The search method has code to
handle this special case: it returns the empty list.

Often it’s useful to have a default instead. Let’s imagine we have a
default search query, all that should be used if no text
parameter is supplied (instead of None). We make a default
available by supplying a default value in the document_search
function:

@App.path(model=DocumentCollection, path='search')
def document_search(text='all'):
 return DocumentCollection(text)

Note that defaults have no meaning for path variables, because
whenever a path is resolved, all variables in it have been found. They
can be used as type hints however; we’ll talk more about those soon.

Like with path variables, you can have as many URL parameters as you
want.

Extra URL query parameters

URL parameters are matched with function arguments, but it could be
you’re interested in an arbitrary amount of extra URL parameters. You
can specify that you’re interested in this by adding an
extra_parameters argument:

@App.path(model=DocumentCollection, path='search')
def document_search(text='all', extra_parameters):
 return DocumentCollection(text, extra_parameters)

Now any additional URL parameters are put into the
extra_parameters dictionary. So, search?text=blah&a=A&b=B would
match text with the text parameter, and there would be an
extra_parameters containing {'a': 'A', 'b': 'B'}.

extra_parameters can also be useful for the case where the name of
the parameter is not a valid Python name (such as @foo) – you can
still receive such parameters using extra_parameters.

Linking

To create a link to a model, we can call morepath.Request.link()
in our view code. At that point the model object is examined to
retrieve the variables so that the path can be constructed.

Here is a simple case involving Document again:

class Document(object):
 def __init__(self, name):
 self.name = name

@App.path(model=Document, path='documents/{name}')
def get_document(name):
 return query_document_by_name(name)

We add a named view called link that links to the document itself:

@App.view(model=Document, name='link')
def document_self_link(self, request):
 return request.link(self)

The view at /documents/foo/link produces the link
/documents/foo. That’s the right one!

So, it constructs a link to the document itself. This view is not very
useful, but the principle is the same everywhere in any view: as long
as we have a Document instance we can create a link to it using
request.link().

You can also give link a name to link to a named view. Here’s a
link2 view creates a link to the link view:

@App.view(model=Document, name='link2')
def document_self_link(self, request):
 return request.link(self, name='link')

So the view at /documents/foo/link2 produces the link
/documents/foo/link.

Linking with path variables

How does the request.link code know what the value of the
{name} variable should be so that the link can be constructed? In
this case this happened automatically: the value of the name
attribute of Document is assumed to be the one that goes into the
link.

This automatic rule won’t work everywhere, however. Perhaps an
attribute with a different name is used, or a more complicated method
is used to construct the name. For those cases we can take over and
supply a custom variables function that knows how to construct the
variables needed to construct the link from the model.

The variables function gets the model object as a single argument and
needs to return a dictionary. The keys should be the variable names
used in the path or URL parameters, and the values should be the
values as extracted from the model.

As an example, here is the variables function for the Document
case made explicit:

@App.path(model=Document, path='documents/{name}',
 variables=lambda obj: dict(name=obj.name))
def get_document(name):
 return query_document_by_name(name)

Or to spell it out without the use of lambda:

def document_variables(obj):
 return dict(name=obj.name)

@App.path(model=Document, path='documents/{name}',
 variables=document_variables)
def get_document(name):
 return query_document_by_name(name)

Let’s change Document so that the name is stored in the id
attribute:

class DifferentDocument(object):
 def __init__(self, name):
 self.id = name

Our automatic variables won’t cut it anymore, so we have to be explicit::
attribute, we can do this:

@App.path(model=DifferentDocument, path='documents/{name}',
 variables=lambda obj: dict(name=obj.id))
def get_document(name):
 return query_document_by_name(name)

All we’ve done is adjust the variables function to take
model.id.

Getting variables works for multiple variables too of course. Here’s
the explicit variables for the VersionedDocument case that
takes multiple variables:

@App.path(model=VersionedDocument,
 path='versioned_documents/{name}-{version}',
 variables=lambda obj: dict(name=obj.name,
 version=obj.version))
def get_versioned_document(name, version):
 return query_versioned_document(name, version)

If you have extra_parameters, the default variables expects that
extra_parameters to exist as an attribute on the object, but you
can write a custom variables that retrieves this dictionary from
the object in some other way:

@App.path(model=SearchResults,
 path='search',
 variables=lambda obj: dict(text=obj.search_text,
 extra_parameters=obj.get_extra()))
def get_search_results(text, extra_parameters):
 ...

Linking with URL query parameters

Linking works the same way for URL parameters as it works for path
variables.

Here’s a get_model that takes the document name as a URL
parameter, using an implicit variables:

@App.path(model=Document, path='documents')
def get_document(name):
 return query_document_by_name(name)

Now we add back the same self_link view as we had before:

@App.view(model=Document, name='link')
def document_self_link(self, request):
 return request.link(self)

Here’s get_document with an explicit variables:

@App.path(model=Document, path='documents',
 variables=lambda obj: dict(name=obj.name))
def get_document(name):
 return query_document_by_name(name)

i.e. exactly the same as for the path variable case.

Let’s look at a document exposed on this URL:

/documents?name=foo

Then the view documents/link?name=foo constructs the link:

/documents?name=foo

The documents/link?name=foo is interesting: the name=foo
parameters are added to the end, but they are used by the
get_document function, not by its views. Here’s link2 again
to further demonstrate this behavior:

@App.view(model=Document, name='link2')
def document_self_link(self, request):
 return request.link(self, name='link')

When we now go to documents/link2?name=foo we get the link
/documents/link?name=foo.

Prefixing links with a base URL

By default, morepath.Request.link() generates links as fully
qualified URLs using the HOST header and the given protocol
(http, https), for instance:

http://localhost/document

You can use the morepath.App.link_prefix() decorator to override
this behavior. For example, if you do not want to add the full
hostname (in fact the behavior of Morepath before version 0.9), you
can write:

@App.link_prefix()
def simple_link_prefix(request):
 return ''

The link_prefix function is only called once per request per app,
during the first call to morepath.Request.link() for an
app. After this it is cached for the rest of the duration of that
request.

Linking to external applications

As a more advanced use case for link_prefix, you can use it to
represent an application that is completely external, just for
the purposes of making it easier to create a link to it.

Let’s say we want to be able to link to documents on the external site
http://example.com, and that these documents live on URLs like
http://example.com/documents/{id}.

We can create a model for such an external document first:

class ExternalDocument(object):
 def __init__(self, id):
 self.id = id

And declare the path space of the external site:

@ExternalApp.path(model=ExternalDocument, path='/documents/{id}')
def get_external_document(id):
 return ExternalDocument(id)

We don’t need to declare any views for ExternalDocument;
ExternalApp only exists to let you generate a link to the
example.com external site more easily.

Now we want request.link(ExternalDocument('foo')) to result in the
link http://example.com/documents/foo. All we need to do is to
declare a special link_prefix for the external app where we
hardcode http://example.com:

@ExternalApp.link_prefix()
def simple_link_prefix(request):
 return 'http://example.com'

Type hints

So far we’ve only dealt with variables that have string values. But
what if we want to use other types for our variables, such as int
or datetime? What if we have a record that you obtain by an
int id, for instance? Given some Record class that
has an int id like this:

class Record(object):
 def __init__(self, id):
 self.id = id

We could do this to expose it:

@App.path(model=Record, path='records/{id}')
def get_record(id):
 try:
 id = int(id)
 except ValueError:
 return None
 return record_by_id(id)

But Morepath offers a better way. We can tell Morepath we expect an
int and only an int, and if something else is supplied, the path
should not match. Here’s how:

@App.path(model=Record, path='records/{id}')
def get_record(id=0):
 return record_by_id(id)

We’ve added a default parameter (id=0) here that Morepath uses as
an indication that only an int is expected. Morepath will now
automatically convert id to an int before it enters the
function. It also gives a 404 Not Found response for URLs that
don’t have an int. So it accepts /records/100 but gives a 404 for
/records/foo.

Let’s examine the same case for an id URL parameter:

@App.path(model=Record, path='records')
def get_record(id=0):
 return record_by_id(id)

This responds to an URL like /records?id=100, but rejects
/records/id=foo as foo cannot be converted to an int. It
rejects a request with the latter path with a 400 Bad Request
error.

By supplying a default for a URL parameter we’ve accomplished two in
one here, as it’s a good idea to supply defaults for URL parameters
anyway, as that makes them properly optional.

Conversion

Sometimes simple type hints are not enough. What if multiple possible
string representations for something exist in the same application?
Let’s examine the case of datetime.date.

We could represent it as a string in ISO 8601 format as returned by
the datetime.date.isoformat() method, i.e. 2014-01-15 for
the 15th of january 2014. We could also use ISO 8601 compact format,
namely 20140115 (and this what Morepath defaults to). But we could
also use another representation, say 15/01/2014.

Let’s first see how a string with an ISO compact date can be decoded
(deserialized, loaded) into a date object:

from datetime import date
from time import mktime, strptime

def date_decode(s):
 return date.fromtimestamp(mktime(strptime(s, '%Y%m%d')))

We can try it out:

>>> date_decode('20140115')
datetime.date(2014, 1, 15)

Note that this function raises a ValueError if we give it a string
that cannot be converted into a date:

>>> date_decode('blah') # doctest: -IGNORE_EXCEPTION_DETAIL -ELLIPSIS
Traceback (most recent call last):
 ...
ValueError: time data 'blah' does not match format '%Y%m%d'

This is a general principle of decode: a decode function can fail and
if it does it should raise a ValueError.

We also specify how to encode (serialize, dump) a date object back
into a string:

def date_encode(d):
 return d.strftime('%Y%m%d')

We can try it out too:

>>> date_encode(date(2014, 1, 15))
'20140115'

A encode function should never fail, if at least presented with input
of the right type, in this case a date instance.

Inverse

To help you write these functions, note that they’re the inverse each
other, so these equality are both True. For any string s that can
be decoded, this is true:

encode(decode(s)) == s

And for any object that can be encoded, this is true:

decode(encode(o)) == o

The output of decode should always be input for encode, and the
output of encode should always be input for decode.

Now that we have our date_decode and date_encode functions, we can
wrap them in an morepath.Converter object:

date_converter = morepath.Converter(decode=date_decode, encode=date_encode)

Let’s now see how we can use date_converter.

We have some kind of Records collection that can be parameterized
with start and end to select records in a date range:

class Records(object):
 def __init__(self, start, end):
 self.start = start
 self.end = end

 def query(self):
 return query_records_in_date_range(self.start, self.end)

We expose it to the web:

@App.path(model=Records, path='records',
 converters=dict(start=date_converter, end=date_converter))
def get_records(start, end):
 return Records(start, end)

We also add a simple view that gives us comma-separated list of
matching record ids:

@App.view(model=Records)
def records_view(self, request):
 return ', '.join([str(record.id) for record in self.query()])

We can now go to URLs like this:

/records?start=20110110&end=20110215

The start and end URL parameters now are decoded into date
objects, which get passed into get_records. And when you generate
a link to a Records object, the start and end dates are
encoded into strings.

What happens when a decode raises a ValueError, i.e. improper
dates were passed in? In that case, the URL parameters cannot be
decoded properly, and Morepath returns a 400 Bad Request response.

You can also use encode and decode for arguments used in a path:

@App.path(model=Day, path='days/{d}', converters=dict(d=date_converter))
def get_day(d):
 return Day(d)

This publishes the model on a URL like this:

/days/20110101

When you pass in a broken date, like /days/foo, a ValueError is
raised by the date decoder, and a 404 not Found response is given
by the server: the URL does not resolve to a model.

Default converters

Morepath has a number of default converters registered; we already saw
examples for int and strings. Morepath also has a default converter
for date (compact ISO 8601, i.e. 20131231) and datetime
(i.e. 20131231T23:59:59).

You can add new default converters for your own classes, or override
existing default behavior, by using the
morepath.App.converter() decorator. Let’s change the default
behavior for date in this example to use ISO 8601 extended format,
so that dashes are there to separate the year, month and day,
i.e. 2013-12-31:

def extended_date_decode(s):
 return date.fromtimestamp(mktime(strptime(s, '%Y-%m-%d')))

def extended_date_encode(d):
 return d.strftime('%Y-%m-%d')

@App.converter(type=date)
def date_converter():
 return Converter(extended_date_decode, extended_date_encode)

Now Morepath understand type hints for date differently:

@App.path(model=Day, path='days/{d}')
def get_day(d=date(2011, 1, 1)):
 return Day(d)

has models published on a URL like:

/days/2013-12-31

Type hints and converters

You may have a situation where you don’t want to add a default
argument to indicate the type hint, but you know you want to use a
default converter for a particular type. For those cases you
can pass the type into the converters dictionary as a shortcut:

@App.path(model=Day, path='days/{d}', converters=dict(d=date))
def get_day(d):
 return Day(d)

The variable d is now interpreted as a date. Morepath uses
whatever converter that was registered for that type.

List converters

What if you want to allow a list of parameters instead of just a single
one? You can do this by wrapping the converter or type in the converters
dictionary in a list:

@App.path(model=Days, path='days', converters=dict(d=[date]))
def get_days(d):
 return Days(d)

Now the d parameter will be interpreted as a list. This means URLs
like this are accepted:

/days?d=2014-01-01

/days?d=2014-01-01&d=2014-01-02

/days

For the first case, d is a list with one date item, in the second
case, d has 2 items, and in the third case the list d is
empty.

get_converters

Sometimes you only know what converters are available at run-time;
this particularly relevant if you want to supply converters for the
values in extra_parameters. You can supply the converters using
the special get_converters parameter to @app.path:

def my_get_converters():
 return { 'something': int }

@App.path(path='search', model=SearchResults,
 get_converters=my_get_converters)
...

Now if there is a parameter (or extra parameter) called something, it
is converted to an int.

You can combine converters and get_converters. If you use
both, get_converters will override any converters also defined in
the static converters. This can also be useful for dealing with
URL parameters that are not valid Python names, such as @foo or
foo[]; these can still be converted using get_converters.

Required

Sometimes you may want a URL parameter to be required: when the URL
parameter is missing, it’s an error and a 400 Bad Request should
be returned. You can do this by passing in a required argument
to the model decorator:

@App.path(model=Record, path='records', required=['id'])
def get_record(id):
 return query_record(id)

Normally when the id URL parameter is missing, the None value
is passed into get_record (if there is no default). But since we
made id required, 400 Bad Request will be issued if id is
missing now. required only has meaning for URL parameters; path
variables are always present if the path matches at all.

Absorbing

In some special cases you may want a path to match all sub-paths,
absorbing them. This can be useful if you are writing a server backend
to a client side application that does routing on the client using the
HTML 5 history API – the server needs to handle catch all subpaths in
that case and send them back to the client, where they can be handled
by the client-side router.

You can do this using the special absorb argument to the path
decorator, like this:

class Model(object):
 def __init__(self, absorb):
 self.absorb = absorb

@App.path(model=Model, path='start', absorb=True)
def get_foo(absorb):
 return Model(absorb)

As you can see, if you use absorb then a special absorb
argument is passed into the model factory function.

Now the start path matches all of its sub-paths. So for this
path:

/start/foo/bar/baz

model.absorb is foo/bar/baz.

It also matches if there is no sub-path:

/start

model.absorb is the empty string ''.

Note that you cannot use view names with a path that absorbs; only a
default view with the empty name. View names are absorbed along with
the rest of the path.

Note also that you cannot define an explicit path under an absorbed
path – this is ignored. This means that the following additional code
has no effect:

@App.path(model=Foo, path='start/extra')

You can still generate a link to a model that is under an
absorbed path – it uses the value of the absorb variable.

Linking with the model class

Instead of using morepath.Request.link() you can also construct
links using morepath.Request.class_link(). You can use this for
optimization purposes when creating an instance to link to would be
relatively expensive; if you do have the instance it’s generally
easier to just link to that instead using request.link.

To use request.class_link you give the model class instead of an
instance, and also provide a dictionary of variables to use to
construct the link:

@App.view(model=Document, name='class_link')
def document_self_link(self, request):
 return request.class_link(Document, variables={'name': 'Document name'})

The variables are used in the same way as for request.link, so
additional parameters listed in the path function are interpreted as
URL parameters.

Warning: request.class_link does NOT obey the defer_links
directive, as this relies on the instance of what is being linked to
in order to determine the application to which it defers.

Proxy support

If you have a Morepath application that sits behind a trusted proxy
that sets the Forwarded header [http://tools.ietf.org/html/rfc7239], then you want links generated by
Morepath take this header into account. To do this, you can make your
project depend on the more.forwarded [http://pypi.python.org/pypi/more.forwarded] extension. After you have it
installed, you can subclass your app from
more.forwarded.ForwardedApp to make your app proxy-aware. Note
that you only need to do this for the root app, not for any apps
mounted into it.

You should only use this extension if you know you are behind a
trusted proxy that indeed sets the Forwarded header. This because
otherwise you could expose your application to attacks that affect
link generation through the Forwarded header.

 Views

Views

Introduction

Morepath views are looked up through the URL path, but not through the
routing procedure. Routing stops at model objects. Then the last
segment of the path is taken to identify the view by name.

Named views

Let’s examine a path:

/documents/1/edit

If there’s a model like this:

@App.path(model=Document, path='/documents/{id}')
def get_document(id):
 return query_for_document(id)

then /edit identifies a view named edit on the Document model (or
on one of its base classes). Here’s how we define it:

@App.view(model=Document, name='edit')
def document_edit(self, request):
 return "edit view on model: %s" % self.id

Default views

Let’s examine this path:

/documents/1

If the model is published on the path /documents/{id}, then this is
a path to the default view of the model. Here’s how that view is
defined:

@App.view(model=Document)
def document_default(self, request):
 return "default view on model: %s" % self.id

The default view is the view that gets triggered if there is no
special path segment in the URL that indicates a specific view. The
default view has as its name the empty string "", so this
registration is the equivalent of the one above:

@App.view(model=Document, name="")
def document_default(self, request):
 return "default view on model: %s" % self.id

Generic views

Generic views in Morepath are nothing special: the thing that makes
them generic is that their model is a base class, and inheritance does
the rest. Let’s see how that works.

What if we want to have a view that works for any model that
implements a certain API? Let’s imagine we have a Collection model:

class Collection(object):
 def __init__(self, offset, limit):
 self.offset = offset
 self.limit = limit

 def query(self):
 raise NotImplementedError

A Collection represents a collection of objects, which can be
ordered somehow. We restrict the objects we actually get by offset and
limit. With offset 100 and limit 10, we get objects 100 through 109.

Collection is a base class, so we don’t actually implement how to
do a query. That’s up to the subclasses. We do specify that query is
supposed to return objects that have an id attribute.

We can create a view to this abstract collection that displays the
ids of the things in it in a comma separated list:

@App.view(model=Collection)
def collection_default(self, request):
 return ", ".join([str(item.id) for item in self.query()])

This view is generic: it works for any kind of collection.

We can now create a concrete collection that fulfills the requirements:

class Item(object):
 def __init__(self, id):
 self.id = id

class MyCollection(Collection):
 def query(self):
 return [Item(str(i)) for i in
 range(self.offset, self.offset + self.limit)

When we now publish the concrete MyCollection on some URL:

@App.path(model=MyCollection, path='my_collection')
def get_my_collection():
 return MyCollection()

it automatically gains a default view for it that represents the ids
in it as a comma separated list. So the view collection_default is
generic.

Details

The decorator morepath.App.view() (@App.view) takes two
arguments here, model, which is the class of the model the view is
representing, and name, which is the name of the view in the URL
path.

The @App.view decorator decorates a function that takes two arguments:
a self and a request.

The self object is the model that’s being viewed, i.e. the one
found by the get_document function. It is going to be an instance
of the class given by the model parameter.

The request object is an instance of morepath.Request,
which in turn is a special kind of
webob.request.BaseRequest [https://docs.pylonsproject.org/projects/webob/en/latest/api/request.html#webob.request.BaseRequest]. You can get request information
from it like arguments or form data, and it also exposes a few special
methods, such as morepath.Request.link().

The @App.path and @App.view decorators are associated by
indirectly their model parameters: the view works for a given
model path if the model parameter is the same, or if the view is
associated with a base class of the model exposed by the
@App.path decorator.

Ambiguity between path and view

Let’s examine these simple paths in an application:

/folder
/folder/{name}

/folder shows an overview of the items in it. /folder/{name}
is a way to get to an individual item.

This means:

/folder/some_item

is a path if there is an item in the folder with the name
some_item.

Now what if we also want to have a path that allows you to edit the
folder? It’d be natural to spell it like this:

/folder/edit

i.e. there is a path /folder with a view edit.

But now we have a problem: how does Morepath know that edit is a
view and not a named item in the folder? The answer is that it
doesn’t. You cannot reach the view this way.

Instead we have to make it explicit in the path that we want a view with
a + character:

/folder/+edit

Now Morepath won’t try to interpret +edit as a named item in the
folder, but instead looks up the view.

Any view can be addressed not just by name but also by its name with a
+ prefix. To generate a link to a name with a + prefix you can
use the prefix as well, so you can write:

request.link(my_folder, '+edit')

render

By default @App.view returns either a morepath.Response
object or a string that gets turned into a response. The
content-type of the response is set to text/plain. For a HTML response you
want a view that sets the content-type to text/html. You can
do this by passing a render parameter to the @App.view decorator:

@App.view(model=Document, render=morepath.render_html)
def document_default(self, request):
 return "<p>Some html</p>"

morepath.render_html() is a very simple function:

def render_html(content, request):
 response = morepath.Response(content)
 response.content_type = 'text/html'
 return response

You can define your own render functions; they just need to take
some content (any object, in this case its a string), and return a
Response object.

Another render function is morepath.render_json(). Here it is:

import json

def render_json(content, request):
 response = morepath.Response(json.dumps(content))
 response.content_type = 'application/json'
 return response

We’d use it like this:

@App.view(model=Document, render=morepath.render_json)
def document_default(self, request):
 return {'my': 'json'}

HTML views and JSON views are so common we have special shortcut decorators:

	@App.html (morepath.App.html())

	@App.json (morepath.App.json())

Here’s how you use them:

@App.html(model=Document)
def document_default(self, request):
 return "<p>Some html</p>"

@App.json(model=Document)
def document_default(self, request):
 return {'my': 'json'}

Templates

You can use a server template with a view by using the template
argument:

@App.html(model=Document, template='document.pt')
def document_default(self, request):
 return { 'title': self.title, 'content': self.content }

See Templates for more information.

Permissions

We can protect a view using a permission. A permission is any
Python class:

class Edit(object):
 pass

The class doesn’t do anything; it’s just a marker for permission.

You can use such a class with a view:

@App.view(model=Document, name='edit', permission=Edit)
def document_edit(self, request):
 return 'edit document'

You can define which users have what permission on which models by using
the morepath.App.permission_rule() decorator. To learn more,
read Security.

Manipulating the response

Sometimes you want to do things to the response specific to the view,
so that you cannot do it in a render function. Let’s say you want
to add a cookie using webob.Response.set_cookie(). You don’t
have access to the response object in the view, as it has not been
created yet. It is only created after the view has returned. We can
register a callback function to be called after the view is done and
the response is ready using the morepath.Request.after()
decorator. Here’s how:

@App.view(model=Document)
def document_default(self, request):
 @request.after
 def manipulate_response(response):
 response.set_cookie('my_cookie', 'cookie_data')
 return "document default"

after only applies if the view was successfully resolved into a
response. If your view raises an exception for any reason, or if
Morepath itself does, any after set in the view does not apply to
the response for this exception. If the view returns a response
object directly itself, then after is also not run - you have the
response object to manipulate directly. Note that this the case when
you use morepath.redirect(): this returns a redirect response
object.

request_method

By default, a view only answers to a GET request: it doesn’t
handle other request methods like POST or PUT or DELETE. To
write a view that handles another request method you need to be explicit and
pass in the request_method parameter:

@App.view(model=Document, name='edit', request_method='POST')
def document_edit(self, request):
 return "edit view on model: %s" % self.id

Now we have a view that handles POST. Normally you cannot have
multiple views for the same document with the same name: the Morepath
configuration engine rejects that. But you can if you make sure they
each have a different request method:

@App.view(model=Document, name='edit', request_method='GET')
def document_edit_get(self, request):
 return "get edit view on model: %s" % self.id

@App.view(model=Document, name='edit', request_method='POST')
def document_edit_post(self, request):
 return "post edit view on model: %s" % self.id

Grouping views

At some point you may have a lot of view decorators that share a lot
of information; multiple views for the same model are the most common
example.

Instead of writing this:

@App.view(model=Document)
def document_default(self, request):
 return "default"

@App.view(model=Document, name='edit')
def document_edit(self, request):
 return "edit"

You can use the with statement to write this instead:

with App.view(model=Document) as view:
 @view()
 def document_default(self, request):
 return "default"

 @view(name="edit")
 def document_edit(self, request):
 return "edit"

This is equivalent to the above, you just don’t have to repeat
model=Document. You can use this for any parameter for
@App.view.

This use of the with statement is in fact general; it can be used
like this with any Morepath directive, and with any parameter for such
a directive. The with statement may even be nested, though we
recommend being careful with that, as it introduces a lot of
indentation.

Predicates

The model, name, and request_method arguments
on the @App.view decorator are examples of view
predicates. You can add new ones by using the
morepath.App.predicate() decorator.

Let’s say we have a view that we only want to kick in when a certain
request header is set to something:

import reg

@App.predicate(generic.view, name='something', default=None,
 index=reg.KeyIndex,
 after=morepath.LAST_VIEW_PREDICATE)
def something_predicate(request):
 return request.headers.get('Something')

We can use any information in the request and model to construct the
predicate. Now you can use it to make a view that only kicks in when
the Something header is special:

@App.view(model=Document, something='special')
def document_default(self, request):
 return "Only if request header Something is set to special."

If you have a predicate and you don’t use it in a @App.view, or
set it to None, the view works for the default value for that
predicate. The default parameter is also used when rendering a
view using morepath.Request.view() and you don’t pass in a
particular value for that predicate.

Let’s look into the predicate directive in a bit more detail.

You can use either self or request as the argument for the
predicate function. Morepath sees this argument and sends in either
the object instance or the request.

We use reg.KeyIndex as the index for this predicate. You can also
have predicate functions that return a Python class. In that case you
should use reg.ClassIndex.

morepath.LAST_VIEW_PREDICATE is the last predicate defined by Morepath
itself. Here we want to insert the something_predicate after this
predicate in the predicate evaluation order.

The after parameter for the predicate determines which predicates
match more strongly than another; a predicate after another one
matches more weakly. If there are two view candidates that both match
the predicates, the strongest match is picked.

request.view

It is often useful to be able to compose a view from other
views. Let’s look at our earlier Collection example again. What if
we wanted a generic view for our collection that included the views
for its content? This is easiest demonstrated using a JSON view:

@App.json(model=Collection)
def collection_default(self, request):
 return [request.view(item) for item in self.query()]

Here we have a view that for all items returned by query includes its
view in the resulting list. Since this view is generic, we cannot
refer to a specific view function here; we just want to use the
view function appropriate to whatever item may be. For this
we can use morepath.Request.view().

We could for instance have a particular item with a view like this:

@App.json(model=ParticularItem)
def particular_item_default(self, request):
 return {'id': self.id}

And then the result of collection_default is something like:

[{'id': 1}, {'id': 2}]

but if we have a some other item with a view like this:

@App.json(model=SomeOtherItem)
def some_other_item_default(self, request):
 return self.name

where the name is some string like alpha or beta, then the
output of collection_default is something like:

['alpha', 'beta']

So request.view can make it much easier to construct composed JSON
results where JSON representations are only loosely coupled.

You can also use predicates in request.view. Here we get the
view with the name "edit" and the request_method "POST":

request.view(item, name="edit", request_method="POST")

You can also create views that are for internal use only. You can use
them with request.view() but they won’t show up to the web; going
to such a view is a 404 error. You can do this by passing the internal
flag to the directive:

@App.json(model=SomeOtherItem, name='extra', internal=True)
def some_other_item_extra(self, request):
 return self.name

The extra view can be used with request.view(item,
name='extra'), but it is not available on the web – there is no
/extra view.

Exception views

WebOb HTTP exceptions

A list of standard WebOb HTTP exceptions [http://docs.webob.org/en/stable/api/exceptions.html]

WebOb exceptions are also response objects, so you could return them
directly from your view instead of raising them. But not that if you
do this exception views won’t be used, however – the default WebOb
exception response view is used always.

Sometimes your application raises an exception. This can either be a
HTTP exception, for instance when the user goes to a URL that does not
exist, or an arbitrary exception raised by the application.

HTTP exceptions are by default rendered in the standard WebOb way,
which includes some text to describe Not Found, etc. Other exceptions
are normally caught by the web server and result in a HTTP 500 error
(internal server error).

You may instead want to customize what these exceptions look like. You
can do so by declaring a view using the exception class as the
model. Here’s how you make a custom 404 Not Found:

from webob.exc import HTTPNotFound

@App.view(model=HTTPNotFound)
def notfound_custom(self, request):
 def set_status_code(response):
 response.status_code = self.code # pass along 404
 request.after(set_status_code)
 return "My custom not found!"

We have to add the set_status_code to make sure the response is
still a 404; otherwise we change the 404 to a 200 Ok! This shows that
self is indeed an instance of HTTPNotFound and we can access
its code attribute.

Your application may also define its own custom exceptions that have
a meaning particular to the application. You can create custom views for
those as well:

class MyException(Exception):
 pass

@App.view(model=MyException)
def myexception_default(self, request):
 return "My exception"

Without an exception view for MyException any view code that raises
MyException would bubble all the way up to the WSGI server and
a 500 Internal Server Error is generated.

But with the view for MyException in place, whenever
MyException is raised you get the special view instead.

 Templates

Templates

Introduction

When you generate HTML from the server (using HTML views) it can be
very handy to have a template language available. A template language
provides some high-level constructs for generating HTML, which are
handy. It can also help you avoid HTML injection security bugs because
it takes care of escaping HTML. It may also be useful to separate HTML
presentation from code.

This document discusses template rendering on the server. In some
modern web applications template rendering is done in the browser
instead of on the server. To do client-side template rendering you
need to use a Client web framework with Morepath. See
also Static resources with Morepath.

Morepath does not have a template language built in. The example in
this document uses more.chameleon [http://pypi.python.org/pypi/more.chameleon]. more.chameleon [http://pypi.python.org/pypi/more.chameleon] integrates the
Chameleon template engine, which implements the ZPT template
language. If you prefer Jinja2 [http://jinja.pocoo.org], you can use the more.jinja2 [http://pypi.python.org/pypi/more.jinja2]
extension instead. You can also integrate other template languages.

To use a template you need to use the template argument with the
morepath.App.html() view directive.

Example

This example presupposes that more.chameleon [http://pypi.python.org/pypi/more.chameleon] and its dependencies
have been installed. Here is how we use it:

from more.chameleon import ChameleonApp

class App(ChameleonApp):
 pass

@App.template_directory()
def get_template_directory():
 return 'templates'

@App.html(model=Person, template='person.pt')
def person_default(self, request):
 return { 'name': self.name }

Let’s examine this code. First we import ChameleonApp and subclass
from it in our own app. This enables Chameleon templating for the
.pt file extension.

We then need to specify the directory that contains our templates
using the morepath.App.template_directory() directive. The
directive should return either an absolute or a relative path to this
template directory. If a relative path is returned, it is
automatically made relative to the directory the Python module is in.

Next we use template='person.pt' in the HTML view
directive. person.pt is a file sitting in the templates
directory, with this content:

<html>
<body>
 <p>Hello ${name}!</p>
</body>
</html>

Once we have this set up, given a person with a name attribute of
"world", the output of the view is the following HTML:

<html>
<body>
 <p>Hello world!</p>
</body>
</html>

The template is applied on the return value of the view function and
the request. This results in a rendered template that is returned as
the response.

Overrides

When you subclass an app you may want to override some of the
templates it uses, or add new templates. You can do this by using the
template_directory directive in your subclassed app:

class SubApp(App):
 pass

@SubApp.template_directory()
def get_override_template_directory():
 return 'templates_override'

Morepath’s template integration searches for templates in the template
directories in application order, so for SubApp here, first
templates_override, and then templates as defined by the base
App. So for SubApp, you can override a template defined in the
directory templates by placing a file with the same name in the
directory templates_override. This only affects SubApp, not
App itself.

You can also use the before argument with the
morepath.App.template_directory() directive to specify more
exactly how you want template directories to be searched. This can be
useful if you want to organize your templates in multiple directories
in the same application. If get_override_template_directory should
come before get_template_directory in the directory search path,
you should use before=get_template_directory:

@SubApp.template_directory(before=get_template_directory)
def get_override_template_directory():
 return 'templates_override'

but it is usually simpler not to be this explicit and to rely on
application inheritance instead.

Details

Templates are loaded during configuration time at startup. The file
extension of the extension (such as .pt) indicates the template
engine to use.

Morepath itself does not support any template language out of the box,
but lets you register a template language engine for a file
extension. You can reuse a template language integration in the same
way you reuse any Morepath code: by subclassing the app class that
implements it in your app.

The template language integration works like this:

	During startup time, person.pt is loaded from the configured
template directories as a template object.

	When the person_default view is rendered, its return value is
passed into the template, along with the request. The template
language integration code then makes this information available for
use by the template – the details are up to the integration (and
should be documented there).

The template argument works not just with html but also with
view, json, and any other view functions you may have. It’s
most useful for html views however.

Integrating a new template engine

A template in Morepath is actually just a convenient way to generate a
render function for a view. That render function is then used
just like when you write it manually: it’s given the return value of
the view function along with a request object, and should return a
WebOb response.

Here is an example of how you can integrate the Chameleon template engine
for .pt files (taken from more.chameleon [http://pypi.python.org/pypi/more.chameleon]):

import chameleon

@App.template_loader(extension='.pt')
def get_template_loader(template_directories, settings):
 settings = settings.chameleon.__dict__.copy()
 # we control the search_path entirely by what we pass here as
 # template_directories, so we never want the template itself
 # to prepend its own path
 settings['prepend_relative_search_path'] = False
 return chameleon.PageTemplateLoader(
 template_directories,
 default_extension='.pt',
 **settings)

@App.template_render(extension='.pt')
def get_chameleon_render(loader, name, original_render):
 template = loader.load(name)

 def render(content, request):
 variables = {'request': request}
 variables.update(content)
 return original_render(template.render(**variables), request)
 return render

@App.setting_section(section='chameleon')
def get_setting_section():
 return {'auto_reload': False}

Some details:

	extension is the file extension. When you refer to a template
with a particular extension, this template engine is used.

	The function decorated by morepath.App.template_loader() gets
two arguments: directories to look in for templates (earliest in the
list first), and Morepath settings from which template engine
settings can be extracted.

	The function decorated by morepath.App.template_render()
gets three arguments:

	loader: the loader constructed by the template_loader
directive.

	name: the name of the template to create a render function for.

	The original_render function as passed into the view
decorator, so render_html for instance. It takes the content
to render and the request and returns a webob response object.
then passed along to Chameleon.

The decorated function needs to return a render function which
takes the content to render (output from view function) and the
request as arguments.

The implementation of this can use the original render function
which is passed in as an argument as original_render
function. It can also create a morepath.Response object
directly.

 Configuration

Configuration

Introduction

When you use a Morepath directive, for example to define a view, a path, a setting or a tween, this is called Morepath
configuration. Morepath configuration can also be part of
third-party code you want to use.

How it works

Avoid top-level

You should not do a commit at the top-level of a module, unless it’s
guarded by if __name__ == '__main__'. Better yet is to use a
entry point as described in Organizing your Project. Doing a
commit at module top-level can cause the commit to happen before you
are done importing all required modules that contain Morepath
directives, which would leave configuration in a half-baked state.

The same rule applies to starting the WSGI server.

Morepath needs to run the necessary configuration steps before it can
serve WSGI requests. You can do this explicitly by running
morepath.App.commit():

if __name__ == '__main__':
 App.commit()

 application = App()
 morepath.run(application)

When you import modules, Morepath registers any directive you used in
modules that you have imported, directly or indirectly, with the
App subclass you used it on.

Calling commit on the App class then commits that app class and
any app classes it mounts. After this, the application can be run. The
commit procedure makes sure there are no conflicting pieces of
configuration and resolves any configuration overrides.

You can actually omit App.commit() if you want to. In this case
the first request served by Morepath also does the commit. This also
means any configuration errors are reported during the first request.
If you prefer seeing configuration errors immediately during startup,
leave the explicit commit in place.

Scanning a package

When you depend on a package that contains Morepath code it is
convenient to be able to recursively import all of it at once. That
way you can’t accidentally forget to import a module and thus have its
directives not be active. You can scan a whole package with
morepath.scan():

import my_package

if __name__ == '__main__':
 morepath.scan(my_package)

 App.commit()

 application = App()
 morepath.run(application)

All scanning does is recursively import all modules in a package
(except for tests directories), nothing more.

Since scanning the current package is common, we have a convenience
shortcut that scan the package the code is in automatically. You use
it by calling morepath.scan() without arguments:

if __name__ == '__main__':
 morepath.scan()

 App.commit()

 application = App()
 morepath.run(application)

You can also use scan() with packages that contain third-party
Morepath code, but there is an easier way to do that.

Scanning dependencies

Morepath is a micro-framework at its core, but you can expand it with
other packages that add extra functionality. For instance, you can use
more.chameleon [https://github.com/morepath/more.chameleon] for
templating or more.transaction [https://github.com/morepath/more.transaction] for SQLAlchemy
integration.

These packages contain their own Morepath configuration, so when we
use these packages we need to make sure to scan them too.

Manual scan

The most explicit way of scanning your dependencies is a manual scan.

Say you depend on more.jinja2 [https://github.com/morepath/more.jinja2]
and you want to extend the the first example.

This is what you do:

import more.jinja2

if __name__ == '__main__':
 morepath.scan(more.jinja2) # scan Jinja2 package
 morepath.scan() # scan this package

 App.commit()

 application = App()
 morepath.run(application)

As you can see, you need to import your dependency and scan it using
scan(). If you have more dependencies, just add them in this
fashion.

Automatic scan

Scanning versus activation

Automatically configuring all packages that have Morepath
configuration in them may seem too aggressive: what if you don’t
want to use this configuration? This is not a problem as Morepath
makes a distinction between scanned configuration and activated
configuration.

Configuration is only activated if it’s on the morepath.App
subclass you actually run as a WSGI app, or on any app class that
your application class inherits from. App classes that you don’t use
are not active. It is therefore safe for Morepath to just scan
everything that is available.

Manual scanning can get tedious and error-prone as you need to add
each and every new dependency that you rely on.

You can use autoscan() instead, which scans all
packages that have a dependency on Morepath declared. Let’s look at a
modified example that uses autoscan:

if __name__ == '__main__':
 morepath.autoscan()
 morepath.scan()

 App.commit()

 application = App()
 morepath.run(application)

As you can see, we also don’t need to import or scan dependencies
anymore. We still need to run scan() without parameters
however, so our own package or module gets scanned.

If you move your code into a proper Python project that depends on
Morepath you can also get rid of the morepath.scan() line by
itself. The setup.py of your project then looks like this:

setup(name='myapp',
 packages=find_packages(),
 install_requires=[
 'more.jinja2',
 'morepath'
])

with the code in a Python package called myapp (a directory
with an __init__.py file in it).

See Organizing your Project for a lot more information on how
to do this, including tips on how to best organize your Python code.

Once you put your code in a Python project with a setup.py, you can
simplify the setup code to this:

if __name__ == '__main__':
 morepath.autoscan()
 App.commit()
 morepath.run(App())

morepath.autoscan() makes sure to scan all packages that
depend on Morepath directly or indirectly.

Writing scannable packages

A Morepath scannable Python package has to fulfill a few requirements.

	The package must be made available using a setup.py file.

See Organizing your Project and the Setuptool’s
documentation [https://pythonhosted.org/setuptools/] for more
information.

	The package itself or a dependency of the package must include
morepath in the install_requires list of the setup.py
file.

Morepath only scans package that depend directly or indirectly on
Morepath. It filters out packages which in no way depend on
Morepath. So if your package has any Morepath configuration, you
need to add morepath to install_requires:

setup(name='myapp'
 ...
 install_requires=[
 'morepath'
])

If you set up your dependencies up correctly using
install_requires this should be there anyway, or be a
dependency of another dependency that’s in
install_requires. Morepath just uses this information to do its
scan.

	The Python project name in setup.py should have the same name as
the Python package name, or you use entry points to declare what should
be scanned.

Scan using naming convention:

The project name defined by setup.py can be imported in
Python as well: they have the same name. For example: if the
project name is myapp, the package that contains your code
must be named myapp as well. (not my-app or MyApp or
Elephant):

So if you have a setup.py like this:

setup(
 name='myapp',
 packages=find_packages(),
 ...

you should have a project directory structure like this:

setup.py
myapp
 __init__.py
 another_module.py

In other words, the project name myapp can be imported:

import myapp

If you use a namespace package, you include the full name in the
setup.py:

setup(
 name='my.app'
 packages=find_packages()
 namespace_packages=['my']
 ...

This works with a project structure like this:

setup.py
my
 __init__.py
 app
 __init__.py
 another_module.py

We recommend you use this naming convention as your Python
projects get a consistent layout. But you don’t have to – you
can use entry points too.

Scan entry points:

If for some reason you want a project name that is different from
the package name you can still get it scanned automatically by
Morepath. In this case you need to explicitly tell Morepath what
to scan with an entry point in setup.py:

setup(name='elephant'
 ...
 entry_points={
 'morepath': [
 'scan = my.package'
]
 }

Note that you still need to have morepath in the
install_requires list for this to work.

 JSON and validation

JSON and validation

Introduction

Morepath lets you define a JSON representations for arbitrary Python
objects. When you return such an object from a json view, the object
is automatically converted to JSON.

When JSON comes in as the POST or PUT body of the request, you can
define how it is to be converted to a Python object and how it is to
be validated.

This feature lets you plug in external (de)serialization libraries, such
as Marshmallow [https://marshmallow.readthedocs.io/]. We’ve provided Marshmallow integration for Morepath in
more.marshmallow [https://pypi.python.org/pypi/more.marshmallow]

dump_json

The morepath.App.dump_json() directive lets you define a function
that turns a model of a particular class into JSON. Here we define it
for an Item class:

class Item(object):
 def __init__(self, value):
 self.value = value

@App.dump_json(model=Item)
def dump_item_json(self, request):
 return { 'type': 'Item', 'x': self.value }

So for instance, Item('foo') is represented in JSON as:

{
 'type': 'Item',
 'x': 'foo'
}

If we omit the model argument from the directive, we define a
general dump_json function that applies to all objects.

Now we can write a JSON view that just returns an Item instance:

@App.json(model=Item)
def item_default(self, request):
 return self

The self we return in this view is an istance of Item. This is
now automatically converted to a JSON object.

load function for views

When you specify the load function in a view directive you can
specify how to turn the request body for a POST or PUT method into
a Python object for that view. This Python object comes in as the
third argument to your view function:

def my_load(request):
 return request.json

@App.json(model=Item, request_method='POST', load=my_load)
def item_post(self, request, obj):
 # the third obj argument contains the result of my_load(request)

The load function takes the request and must return some Python object (such
as a simple dict). If the data supplied in the request body is incorrect and
cannot be converted into a Python object then you should raise an exception.
This can be a webob exception (we suggest
webob.exc.HTTPUnprocessableEntity [https://docs.pylonsproject.org/projects/webob/en/latest/api/exceptions.html#webob.exc.HTTPUnprocessableEntity]), but you could also define your own
custom exception and provide a view for it that sets the status to 422. This way
conversion and validation errors are reported to the end user.

 Security

Security

Introduction

The security infrastructure in Morepath helps you make sure that web
resources published by your application are only accessible by those
persons that are allowed to do so. If a person is not allowed access,
they will get an appropriate HTTP error: HTTP Forbidden 403.

Identity

Using settings in the identity policy

The function decorated by the @App.identity_policy decorator takes
an optional settings argument, which provides access to the App settings.
So if you define some settings for the identity policy you can pass them
in like this:

@App.setting_section(section="policy")
def get_policy_settings():
 return {'encryption_key': 'secret'}

@App.identity_policy()
def get_identity_policy(settings):
 policy_settings = settings.policy.__dict__.copy()
 return CustomIdentityPolicy(**policy_settings)

Before we can determine who is allowed to do what, we need to be able
to identify who people are in the first place.

The identity policy in Morepath takes a HTTP request and establishes a
claimed identity for it. These are some extensions that provide
an identity policy:

	more.jwtauth [https://github.com/morepath/more.jwtauth]

	Token based authentication system using JSON Web Token (JWT).

	more.itsdangerous [https://github.com/morepath/more.itsdangerous]

	Cookie based identity policy using itsdangerous.

	more.basicauth [https://github.com/morepath/more.basicauth]

	Identity policy based on the HTTP Basic Authentication.

Install your preferred option, and follow the instructions
in the README. Alternatively, You can create your own identity policy.

For basic authentication for instance it will
extract the username and password. The claimed identity can be
accessed by looking at the morepath.Request.identity attribute
on the request object.

You use the morepath.App.identity_policy() directive to install
an identity policy into a Morepath app:

from more.basicauth import BasicAuthIdentityPolicy

@App.identity_policy()
def get_identity_policy():
 return BasicAuthIdentityPolicy()

If you want to create your own identity policy, see the
morepath.IdentityPolicy API documentation to see
what methods you need to implement.

Verify identity

The identity policy only establishes who someone is claimed to
be. It doesn’t verify whether that person is actually who they say
they are. For identity policies where the browser repeatedly sends the
username/password combination to the server, such as with basic
authentication, implemented by more.basicauth [https://github.com/morepath/more.basicauth] and cookie-based
authentication like more.itsdangerous [https://github.com/morepath/more.itsdangerous], we need to check each
time whether the claimed identity is actually a real identity.

By default, Morepath will reject any claimed identities. To let your
application verify identities, you need to use
morepath.App.verify_identity():

@App.verify_identity()
def verify_identity(identity):
 return user_has_password(identity.username, identity.password)

The identity object received here is as established by the
identity policy. What the attributes of the identity object are
(besides username) is also determined by the specific identity
policy you install.

Note that user_has_password stands in for whatever method you use
to check a user’s password; it’s not part of Morepath.

Session or token based identity verification

If you use an identity policy based on the session (which you’ve made
secure otherwise), or on a cryptographic token based authentication
system such as the one implemented by more.jwtauth [https://github.com/morepath/more.jwtauth], the claimed
identity is actually enough.

We know that the claimed identity is actually the one given to the
user earlier when they logged in. No database-based identity check is
required to establish that this is a legitimate identity. You can
therefore implement verify_identity like this:

@App.verify_identity()
def verify_identity(identity):
 # trust the identity established by the identity policy
 return True

Login and logout

So now we know how identity gets established, and how it can be
verified. We haven’t discussed yet how a user actually logs in to
establish an identity in the first place.

For this, we need two things:

	Some kind of login form. Could be taken care of by client-side code
or by a server-side view. We leave this as an exercise for the
reader.

	The view that the login data is submitted to when the user tries to
log in.

How this works in detail is up to your application. What’s common to
login systems is the action we take when the user logs in, and the
action we take when the user logs out. When the user logs in we need to
remember their identity on the response, and when the user logs out
we need to forget their identity again.

Here is a sketch of how logging in works. Imagine we’re in a Morepath
view where we’ve already retrieved username and password from
the request (coming from a login form):

check whether user has password, using password hash and database
if not user_has_password(username, password):
 return "Sorry, login failed" # or something more fancy

now that we've established the user, remember it on the response
@request.after
def remember(response):
 identity = morepath.Identity(username)
 request.app.remember_identity(response, request, identity)

This is enough for session-based or cryptographic token-based
authentication.

For cookie-based authentication where the password is sent as a cookie
to the server for each request, we need to make sure to include the
password the user used to log in, so that remember can then place
it in the cookie so that it can be sent back to the server:

@request.after
def remember(response):
 identity = morepath.Identity(username, password=password)
 request.app.remember_identity(response, request, identity)

When you construct the identity using
morepath.Identity, you can include any data you want
in the identity object by using keyword parameters.

Logging out

Logging out is easy to implement and will work for any kind of
authentication except for basic auth. You simply call
morepath.App.forget_identity() somewhere in the logout view:

@request.after
def forget(response):
 request.app.forget_identity(response, request)

This will cause the login information (in cookie-form) to be removed
from the response.

Permissions

Now that we have a way to establish identity and a way for the user to
log in, we can move on to permissions. Permissions are per view. You
can define rules for your application that determine when a user has a
permission.

Let’s say we want two permissions in our application, view and
edit. We define those as plain Python classes:

class ViewPermission(object):
 pass

class EditPermission(object):
 pass

Permission Hierarchy

Since permissions are classes they could inherit from each other and
form some kind of permission hierarchy, but we’ll keep things simple
here. Often a flat permission hierarchy is just fine.

Now we can protect views with those permissions. Let’s say we have a
Document model that we can view and edit:

@App.html(model=Document, permission=ViewPermission)
def document_view(request, model):
 return "<p>The title is: %s</p>" % model.title

@App.html(model=Document, name='edit', permission=EditPermission)
def document_edit(request, model):
 return "some kind of edit form"

This says:

	Only allow access to document_view if the identity has
ViewPermission on the Document model.

	Only allow allow access to document_edit if the identity has
EditPermission on the Document model.

Permission rules

Now that we give people a claimed identity and we have guarded our
views with permissions, we need to establish who has what permissions
where using some rules. We can use the
morepath.App.permission_rule() directive to do that.

This is very flexible. Let’s look at some examples.

Let’s give absolutely everybody view permission on Document:

@App.permission_rule(model=Document, permission=ViewPermission)
def document_view_permission(identity, model, permission)
 return True

Let’s give only those users that are in a list allowed_users on
the Document the edit permission:

@App.permission_rule(model=Document, permission=EditPermission)
def document_edit_permission(identity, model, permission):
 return identity.userid in model.allowed_users

This is just is one hypothetical rule. allowed_users on
Document objects is totally made up and not part of Morepath. Your
application can have any rule at all, using any data, to determine
whether someone has a permission.

Morepath Super Powers Go!

What if we don’t want to have to define permissions on a per-model
basis? In our application, we may have a generic way to check for
the edit permission on any kind of model. We can easily do that too,
as Morepath knows about inheritance:

@App.permission_rule(model=object, permission=EditPermission)
def has_edit_permission(identity, model, permission):
 ... some generic rule ...

This permission function is registered for model object, so will
be valid for all models in our application.

What if we want that policy for all models, except Document where
we want to do something else? We can do that too:

@App.permission_rule(model=Document, permission=EditPermission)
def document_edit_permission(identity, model, permission):
 ... some special rule ...

You can also register special rules that depend on identity. If you
pass identity=None, you can can register a permission policy for
when the user has not logged in yet and has no claimed identity:

@App.permission_rule(model=object, permission=EditPermission, identity=None)
def has_edit_permission_not_logged_in(identity, model, permission):
 return False

This permission check works in addition to the ones we specified
above.

If you want to defer to a completely generic permission engine, you
could define a permission check that works for any permission:

@App.permission_rule(model=object, permission=object)
def generic_permission_check(identity, model, permission):
 ... generic rule ...

 Settings

Settings

Introduction

A typical application has some settings: if an application logs, a
setting is the path to the log file. If an application sends email,
there are settings to control how email is sent, such as the email
address of the sender.

Applications that serve as frameworks for other applications may have
settings as well: the transaction_app defined by
more.transaction [https://github.com/morepath/more.transaction] for instance has settings controlling
transactional behavior.

Morepath has a powerful settings system that lets you define what
settings are available in your application and framework. It allows an
app that extends another app to override settings. This lets an app
that defines a framework can also define default settings that can be
overridden by the extending application if needed.

Defining a setting

You can define a setting using the App.setting() directive:

@App.setting(section="logging", name="logfile")
def get_logfile():
 return "/path/to/logfile.log"

You can also use this directive to override a setting in another app:

class Sub(App):
 pass

@Sub.setting(section="logging", name="logfile")
def get_logfile_too():
 return "/a/different/logfile.log"

Settings are grouped logically: a setting is in a section and has a
name. This way you can organize all settings that deal with logging
under the logging section.

Accessing a setting

During runtime, you can access the settings of the current application
using the morepath.App.settings property:

app.settings.logging.logfile

Remember that the current application is also accessible from the
request object:

request.app.settings.logging.logfile

Defining multiple settings

It can be convenient to define multiple settings in a section at once.
You can do this using the App.setting_section() directive:

@App.setting_section(section="logging")
def get_setting_section():
 return {
 'logfile': "/path/to/logfile.log",
 'loglevel': logging.WARNING
 }

You can mix setting and setting_section freely, but you cannot
define a setting multiple times in the same app, as this will result
in a configuration conflict.

Loading settings from a config file

For loading settings from a config file just load the file into a python
dictionary and pre-fill the settings with morepath.App.init_settings()
before committing the app.

A example config file with YAML syntax could look like:

Config file for Morepath in YAML format

chameleon:
 debug: true

jinja2:
 auto_reload: false
 autoescape: true
 extensions:
 - jinja2.ext.autoescape
 - jinja2.ext.i18n

jwtauth:
 algorithm: ES256
 leeway: 20
 public_key:
 "MIGbMBAGByqGSM49AgEGBSuBBAAjA4GGAAQBWcJwPEAnS/k4kFgUhxNF7J0SQQhZG+nNgy\
 +/mXwhQ5PZIUmId1a1TjkNXiKzv6DpttBqduHbz/V0EtH+QfWy0B4BhZ5MnTyDGjcz1DQqK\
 dexebhzobbhSIZjpYd5aU48o9rXp/OnAnrajddpGsJ0bNf4rtMLBqFYJN6LOslAB7xTBRg="

sqlalchemy:
 url: 'sqlite:///morepath.db'

transaction:
 attempts: 2

You can load it with:

import yaml

with open('settings.yml') as config:
 settings_dict = yaml.safe_load(config)

Remember to install pyyaml before importing yaml.
For example with:

$ pip install pyyaml

The same config file with JSON syntax would look like:

{
 "chameleon": {
 "debug": true
 },
 "jinja2": {
 "auto_reload": false,
 "autoescape": true,
 "extensions": [
 "jinja2.ext.autoescape",
 "jinja2.ext.i18n"
]
 },
 "jwtauth": {
 "algorithm": "ES256",
 "leeway": 20,
 "public_key": "MIGbMBAGByqGSM49AgEGBSuBBAAjA4GGAAQBWcJwPEAnS/k4kFgUhxNF7J0SQQhZG+nNgy+/mXwhQ5PZIUmId1a1TjkNXiKzv6DpttBqduHbz/V0EtH+QfWy0B4BhZ5MnTyDGjcz1DQqKdexebhzobbhSIZjpYd5aU48o9rXp/OnAnrajddpGsJ0bNf4rtMLBqFYJN6LOslAB7xTBRg="
 },
 "sqlalchemy": {
 "url": "sqlite:///morepath.db"
 },
 "transaction": {
 "attempts": 2
 }
}

To load it use:

import json

with open('settings.json') as config:
 settings_dict = json.load(config)

Now register the settings dictionary in the App settings
before starting the App:

App.init_settings(settings_dict)
morepath.commit(App)

app = App()

You can access the settings as before:

>>> app.settings.jinja2.extensions
['jinja2.ext.autoescape', 'jinja2.ext.i18n']

>>> app.settings.jwtauth.algorithm
'ES256'

>>> app.settings.sqlalchemy.url
'sqlite:///morepath.db'

You can also override and extend the settings by loading a config file in an
extending app as usual.

 Logging

Logging

Directive logging

Morepath has support for logging directive execution. This can be
helpful when debugging why your Morepath application does not do what
was expected. Morepath’s directive logging makes use of Python’s
logging [https://docs.python.org/3/library/logging.html] module, which is very flexible.

To get the complete log of directive executions, you can set up the
following code in your project:

directive_logger = logging.getLogger('morepath.directive')
directive_logger.addHandler(logging.StreamHandler())
directive_logger.setLevel(logging.DEBUG)

The StreamHandler logs messages to stderr. You can reconfigure
this or use another handler altogether. You need to change the log
level so that logging.DEBUG level messages are also shown, as
Morepath’s directive logging uses this log level.

You can also configure it to just see the output for one particular directive.
To see all path directive executed in your project you’d
change the getLogger statement to this:

directive_logger = logging.getLogger('morepath.directive.path')

The Python logging module has many more options, but this should get
you started.

 App Reuse

App Reuse

Morepath is a microframework with a difference: it’s small and easy to
learn like the others, but has special super powers under the hood.

One of those super powers is Reg [http://blog.startifact.com/posts/reg-now-with-more-generic.html], which along with Morepath’s
model/view separation makes it easy to write reusable views. But here
we’ll talk about another super power: Morepath’s application reuse
facilities.

We’ll talk about how Morepath lets you isolate applications, extend
and override applications, and compose applications together. Morepath
makes this not only possible, but also simple.

Other web frameworks have mechanisms for overriding behavior and
reusing code. But these were typically added in an ad-hoc fashion as
new needs arose.

Morepath instead has general mechanisms for app extension and
reuse. Any normal Morepath app is reusable without extra
effort. Anything registered in a Morepath app can be overridden.

Application Isolation

Morepath lets you create app classes like this:

class App(morepath.App):
 pass

When you instantiate the app class, you get a WSGI application. The
app class itself serves as a registry for application construction
information. You specify this configuration with decorators. Apps
consist of paths and views for models:

@App.path(model=User, path='users/{username}')
def get_user(username):
 return query_for_user(username)

@App.view(model=User)
def render_user(self, request):
 return "User: %s" % self.username

Here we’ve exposed the User model class under the path
/users/{username}. When you go to such a URL, Morepath looks up
the default (unnamed) view. We’ve implemented that too: it renders
“User: {username}”.

What now if we have another app where we want to publish User in a
different way? No problem, we can create one:

class OtherApp(morepath.App):
 pass

@OtherApp.path(model=User, path='different_path/{username}')
def get_user(username):
 return different_query_for_user(username)

@OtherApp.view(model=User)
def render_user(self, request):
 return "Differently Displayed User: %s" % self.username

Here we expose User to the web again, but use a different path and
a different view. If you use OtherApp (even in the same runtime), it
functions independently from App.

App isolation is nothing special in Morepath; it’s obvious that this
is possible. But that’s what we wanted. Let’s look at some other
features next.

Application Extension

Let’s look at our first application App again. It exposes a single
view for users (the default view). What now if we want to add a new
functionality to this application so that we can edit users as well?

This is simple; we can add a new edit view to App:

@App.view(model=User, name='edit')
def edit_user(self, request):
 return 'Edit user: %s' % self.username

The string we return here is of course useless for a real edit view,
but you get the idea.

But what if we have a scenario where there is a core application and
we want to extend it without modifying it?

Why would this ever happen, you may ask? In complex applications and
reuse scenarios it does. Imagine you have a common application core
and you want to be able to plug into it. Meanwhile, you want that core
application to still function as before when used (or tested!) by
itself. Perhaps there’s somebody else who has created another
extension of it.

In software engineering we call this architectural principle the
Open/Closed Principle [https://en.wikipedia.org/wiki/Open/closed_principle], and Morepath makes it easy to follow
it. What you do is create another app that subclasses the original:

class ExtendedApp(App):
 pass

And then we can add the view to the extended app:

@ExtendedApp.view(model=User, name='edit')
def edit_user(self, request):
 return 'Edit user: %s' % self.username

Now when we publish ExtendedApp using WSGI, the new edit view
is there, but when we publish App it won’t be.

Subclassing. Obvious, perhaps. Good! Let’s move on.

Application Overrides

Now we get to a more exciting example: overriding applications. What
if instead of adding an extension to a core application you want to
override part of it? For instance, what if we want to change the
default view for User?

Here’s how we can do that:

@ExtendedApp.view(model=User)
def render_user_differently(self, request):
 return 'Different view for user: %s' % self.username

We’ve now overridden the default view for User to a new view that
renders it differently.

We can also do this for model paths. Here we return a different user
object altogether in our overriding app:

@ExtendedApp.path(model=OtherUser, path='users/{username}')
def get_user_differently(username):
 return OtherUser(username)

To publish OtherUser under /users/{username} it either needs
to be a subclass of User. We’ve already registered a default view
for that class. We can also register a new default view for
OtherUser.

Overriding apps actually doesn’t look much different from how you
build apps in the first place. Again, it’s just subclassing. Hopefully
this isn’t getting boring, so let’s talk about something new.

Nesting Applications

Let’s talk about application composition: nesting one app in another.

Imagine our user app allows users to have a wiki associated with them.
It has paths like /users/faassen/wiki/my_wiki_page and
/users/bob/wiki/page_on_things.

We could implement this directly in the user app along these lines:

def wiki_for_user(username):
 wiki_id = get_wiki_id_for_username(username)
 return get_wiki(wiki_id)

@App.path(model=WikiPage, path='users/{username}/wiki/{page_id}')
def get_wiki_page(username, page_id):
 return wiki_for_user(username).get_page(page_id)

@App.view(model=WikiPage)
def wiki_page_default(self, request):
 return "Wiki Page"

To understand this app, we need to describe a hypothetical Wiki
class first. We can get an instance of it from some database by using
get_wiki with a wiki id. It has a get_page method for getting
access to wiki page objects (class WikiPage). We also have a way
to determine the wiki id for a given username,
get_wiki_id_for_username.

This application makes available wiki pages on a sub-URL for users,
and then supplies a default view for them so we see something when we
go to the page.

There are some issues with this implementation, though:

	Why would we implement a wiki as part of our user app? Our wiki
application should really be an app by itself, that we can use by
itself and also test by itself.

	The username appears in the path for the WikiPage model. The
same would apply to any other wiki related models (like the wiki
root). Why should we have to care about the username of a user when
we expose a wiki page?

	Related to this, what if we wanted to associate a wiki app with some
other object such as a project, instead of a user? It would be
nice if we can use the wiki app in such other contexts as well, not
just for users.

To deal with those issues, we can create a separate app for wikis that
is only about wikis. So let’s do it. Here’s the wiki app by itself:

class WikiApp(morepath.App):
 def __init__(self, wiki_id):
 self.wiki_id = wiki_id

@WikiApp.path(path='{page_id}', model=WikiPage)
def get_wiki(page_id, app):
 return get_wiki(app.wiki_id).get_page(page_id)

@WikiApp.view(model=WikiPage)
def wiki_page_default(self, request):
 return "Wiki Page"

Here we have a stand-alone wiki app. It needs a wiki_id to be
instantiated:

app = WikiApp(3)

We could now use app as a WSGI application, but that only works
for one wiki id at the time. What if we want to associate the wiki
with a user like we had before? We can accomplish this by mounting
the wiki app into the user app, like this:

def variables(app):
 return dict(username=get_username_for_wiki_id(app.wiki_id))

@App.mount(app=WikiApp, path='users/{username}/wiki',
 variables=variables)
def mount_wiki(username):
 return WikiApp(get_wiki_id_for_username(username))

Note that in order to be able to link to WikiApp we need to supply
a special variables function that takes the wiki app and returns
the username for it. For more details, see the documentation for the
morepath.App.mount() directive.

Linking to other mounted apps

Reusing views from other applications

Just like morepath.Request.link(),
morepath.Request.view() also takes an app parameter. This
allows you to reuse a view from another application.

Now that we have applications mounted into each other, we want a way
to make links between them.

It is easy to make a link to an object in the same application. We use
morepath.Request.link():

wiki_page = get_wiki(3).get_page('my_page')

request.link(wiki_page)

This works to create links to wiki pages from within the wiki app. But
what if we want to link to a wiki page from outside the wiki app,
for instance from the user app?

To do this, we need not only the wiki page, but also a reference to
the specific mounted application the wiki page is in. We can get this
by navigating to it from the user app.

If we are in the user application, we can navigate to the mounted wiki
app using the morepath.App.child() method:

wiki_app = request.app.child(WikiApp(3))

What if we want to navigate with the username under which it was
mounted instead? We can do this too. We give child the WikiApp
class and then the username as a keyword argument:

wiki_app = request.app.child(WikiApp, username='faassen')

There is one more alternative. We can also refer to WikiApp with
the name under which it was mounted (the path by default):

wiki_app = request.app.child('users/{username}/wiki', username='faassen')

We can now use wiki_app to make the link from the username app to
a wiki page in the wiki app:

request.link(wiki_page, app=wiki_app)

What if we wanted to create a link from the wiki app into the user app
in which it was mounted? We get to the user app from the wiki app with
morepath.App.parent:

request.link(User('faassen'), app=request.app.parent)

For a quick navigation to a sibling app, there is also
morepath.App.sibling(). To quickly get to the root app, use
morepath.App.root. You can also combine parent and
child together to navigate the application tree.

Deferring links and views

If we have a lot of code that links to objects in another app, it can
get cumbersome to have to add the app parameter whenever we want
to create a view. Instead, we can declare this centrally with the
morepath.App.defer_links() directive.

We can for instance declare for the WikiApp that to link to a
User object we always use the parent app we were mounted in:

@WikiApp.defer_links(model=User)
def defer_user(app, obj):
 return app.parent

You can also use it to defer to a child app. If the WikiPage model
provides a way to obtain the wiki_id for it, we can use that
information to determine what mounted WikiApp we need to link to:

@App.defer_links(model=WikiPage)
def defer_wiki_page(app, obj):
 return app.child(WikiApp(obj.wiki_id))

You can defer links across multiple applications – a wiki app may
defer objects it does not know how to link to to the app it is mounted
to, and then this app could defer to another sub-app. When creating a
link Morepath follows the defers to the application that knows how to
do it.

The morepath.App.defer_links() directive also affects the
behavior of morepath.Request.view() in the same way. It does
however not affect morepath.Request.class_link(), as without
the instance, insufficient information is available to defer the link.

Further reading

To see an extended example of how you can structure larger
applications to support reuse, see Building Large Applications.

 Tweens

Tweens

Introduction

Tweens are a light-weight framework component that sits between the
web server and the app. It’s very similar to a WSGI middleware, except
that a tween has access to the Morepath API and is therefore less
low-level.

Tweens can be used to implement transaction handling, logging, error
handling and the like.

signature of a handler

Morepath has an internal publish function that takes a single
morepath.Request argument, and returns a
morepath.Response as a result:

def publish(request):
 ...
 return response

Tweens have the same signature.

We call such functions handlers.

Under and over

Given a handler, we can create a factory that creates a tween that
wraps around it:

def make_tween(app, handler):
 def my_tween(request):
 print "Enter"
 response = handler(request)
 print "Exit"
 return response
 return my_tween

We say that my_tween is over the handler argument, and
conversely that handler is under my_tween.

The application constructs a chain of tween over tween, ultimately
reaching the request handler. Requests arrive in the outermost tween
and descend down the chain into the underlying tweens, and finally
into the Morepath publish handler itself.

What can a tween do?

A tween can:

	amend or replace the request before it goes in to the handler under it.

	amend or replace the response before it goes back out to the handler
over it.

	inspect the request and completely take over response generation for
some requests.

	catch and handle exceptions raised by the handler under it.

	do things before and after the request is handled: this can be
logging, or commit or abort a database transaction.

Creating a tween factory

To have a tween, we need to add a tween factory to the app. The tween
factory is a function that given a handler constructs a tween. You can
register a tween factory using the App.tween_factory()
directive:

@App.tween_factory()
def make_tween(app, handler):
 def my_tween(request):
 print "Enter"
 response = handler(request)
 print "Exit"
 return response
 return my_tween

The tween chain is now:

my_tween -> publish

It can be useful to control the order of the tween chain. You can do this
by passing under or over to tween_factory:

@App.tween_factory(over=make_tween)
def make_another_tween(app, handler):
 def another_tween(request):
 print "Another"
 return handler(request)
 return another_tween

The tween chain is now:

another_tween -> my_tween -> publish

If instead you used under:

@App.tween_factory(under=make_tween)
def make_another_tween(app, handler):
 def another_tween(request):
 print "Another"
 return handler(request)
 return another_tween

Then the tween chain is:

my_tween -> another_tween -> publish

Tweens and settings

A tween factory may need access to some application settings in order
to construct its tweens. A logging tween for instance needs access to
a setting that indicates the path of the logfile.

The tween factory gets two arguments: the app and the handler. You can
then access the app’s settings using app.registry.settings. See
also the Settings section.

Tweens and apps

You can register different tween factories in different Morepath
apps. A tween factory only has an effect when the app under which it
is registered is being run directly as a WSGI app. A tween factory has
no effect if its app is mounted under another app. Only the tweens of
the outer app are in effect at that point, and they are also in
effect for any apps mounted into it.

This means that if you install a logging tween in an app, and you run
this app with a WSGI server, the logging takes place for that app and
any other app that may be mounted into it, directly or indirectly.

more.transaction

If you need to integrate SQLAlchemy or the ZODB into Morepath,
Morepath offers a special app you can extend that includes a
transaction tween that interfaces with the transaction [https://pypi.python.org/pypi/transaction] package. The
morepath_sqlalchemy [https://github.com/morepath/morepath_sqlalchemy] demo project gives an example of what that
looks like with SQLAlchemy.

 Static resources with Morepath

Static resources with Morepath

Introduction

A modern client-side web application is built around JavaScript and
CSS. A web server is responsible for serving these and other types
of static content such as images to the client.

Morepath does not include in itself a way to serve these static
resources. Instead it leaves the task to other WSGI components you can
integrate with the Morepath WSGI component. Examples of such systems
that can be integrated through WSGI are BowerStatic [http://bowerstatic.readthedocs.org], Fanstatic [http://fanstatic.org],
Webassets [http://webassets.readthedocs.org/], and webob.static [http://webob.readthedocs.org/en/latest/modules/static.html].

Examples will focus on BowerStatic integration to demonstrate a method
for serving JavaScript and CSS. To demonstrate a method for serving
other static resources such as an image we will use webob.static.

We recommend you read the BowerStatic documentation, but we provide a
small example of how to integrate it here that should help you get
started. You can find all the example code in the github repo [https://github.com/morepath/morepath_static].

Application layout

To integrate BowerStatic with Morepath we can use the more.static [https://pypi.python.org/pypi/more.static]
extension.

First we need to include more.static as a dependency of our code
in setup.py. Once it is installed, we can create a Morepath
application that subclasses from more.static.StaticApp to get its
functionality:

from more.static import StaticApp

class App(StaticApp):
 pass

We give it a simple HTML page on the root HTML that contains a
<head> section in its HTML:

@App.path(path='/')
class Root(object):
 pass

@App.html(model=Root)
def root_default(self, request):
 return ("<!DOCTYPE html><html><head></head><body>"
 "jquery is inserted in the HTML source</body></html>")

It’s important to use @App.html as opposed to @App.view, as
that sets the content-header to text/html, something that
BowerStatic checks before it inserts any <link> or <script>
tags. It’s also important to include a <head> section, as that’s
where BowerStatic includes the static resources by default.

The app configuration code we store in the app.py module of the Python
package.

In the run.py module of the Python package we set up a run() function
that when run serves the WSGI application to the web:

from .app import App

def run():
 morepath.autoscan()
 App.commit()
 wsgi = App()
 morepath.run(wsgi)

Manual scan

We recommend you use morepath.autoscan to make sure that all code
that uses Morepath is automatically scanned. If you do not use
autoscan but use manual morepath.scan() instead, you need to
scan more.static explicitly, like this:

import more.static

def run():
 morepath.scan(more.static)
 App.commit()
 wsgi = App()
 morepath.run(wsgi)

Bower

BowerStatic [http://bowerstatic.readthedocs.org] integrates the Bower [http://bower.io] JavaScript package manager with a
Python WSGI application such as Morepath.

Once you have bower installed, go to your Python package directory
(where the app.py lives), and install a Bower component. Let’s
take jquery:

bower install jquery

You should now see a bower_components subdirectory in your Python
package. We placed it here so that when we distribute the Python
package that contains our application, the needed bower components are
automatically included in the package archive. You could place
bower_components elsewhere however and manage its contents
separately.

Registering bower_components

BowerStatic needs a single global bower object that you can
register multiple bower_components directories against. Let’s
create it first:

bower = bowerstatic.Bower()

We now tell that bower object about our bower_component
directory:

components = bower.components(
 'app', os.path.join(os.path.dirname(__file__), 'bower_components'))

The first argument to bower.components is the name under which we
want to publish them. We just pick app. The second argument
specifies the path to the bower.components directory. The
os.path business here is a way to make sure that we get the
bower_components next to this module (app.py) in this Python
package.

BowerStatic now lets you refer to files in the packages in
bower_components to include them on the web, and also makes sure
they are available.

Saying which components to use

We now need to tell our application to use the components
object. This causes it to look for static resources only in the
components installed there. We do this using the @App.static_components
directive, like this:

@App.static_components()
def get_static_components():
 return components

You could have another application that use another components
object, or share this components with the other application. Each
app can only have a single components registered to it, though.

The static_components directive is not part of standard Morepath.
Instead it is part of the more.static extension, which we enabled
before by subclassing from StaticApp.

Including stuff

Now we are ready to include static resources from bower_components
into our application. We can do this using the include() method on
request. We modify our view to add an include() call:

@App.html(model=Root)
def root_default(self, request):
 request.include('jquery')
 return ("<!DOCTYPE html><html><head></head><body>"
 "jquery is inserted in the HTML source</body></html>")

When we now open the view in our web browser and check its source, we
can see it includes the jquery we installed in bower_components.

Note that just like the static_components directive, the
include() method is not part of standard Morepath, but has been
installed by the more.static.StaticApp base class as well.

Local components

In many projects we want to develop our own client-side JS or CSS
code, not just rely on other people’s code. We can do this by using
local components. First we need to wrap the existing components in
an object that allows us to add local ones:

local = bower.local_components('local', components)

We can now add our own local components. A local component is a directory
that needs a bower.json in it. You can create a bower.json file
most easily by going into the directory and using bower init command:

$ mkdir my_component
$ cd my_component
$ bower init

You can edit the generated bower.json further, for instance to
specify dependencies. You now have a bower component. You can add any
static files you are developing into this directory.

Now you need to tell the local components object about it:

local.component('/path/to/my_component', version=None)

See the BowerStatic local component documentation [http://bowerstatic.readthedocs.org/en/latest/local.html] for more
of what you can do with version – it’s clever about automatically
busting the cache when you change things.

You need to tell your application that instead of plain components
you want to use local instead, so we modify our
static_components directive:

@App.static_components()
def get_static_components():
 return local

When you now use request.include(), you can include local
components by their name (as in bower.json) as well:

request.include('my_component')

It automatically pulls in any dependencies declared in bower.json
too.

As mentioned before, check the morepath_static github repo [https://github.com/morepath/morepath_static] for
the complete example.

A note about mounted applications

more.static uses a tween to inject scripts into the response (see
Tweens). If you use more.static in a view in a mounted
application, you need to make sure that the root application also
derives from more.static.StaticApp, otherwise the resources aren’t
inserted correctly:

from more.static import StaticApp

class App(StaticApp): # this needs to subclass StaticApp too
 pass

class Mounted(StaticApp):
 pass

 @App.mount(app=Mounted, path='mounted')
 def mount():
 return Mounted()

Other static content

In essence, Morepath doesn’t enforce any particular method for serving
static content to the client as long as the content eventually ends up
in the response object returned. Therefore, there are different
approaches to serving static content.

Since a Morepath view returns a WebOb response object, that object
can be loaded with any type of binary content in the body along
with the necessary HTTP headers to describe the content type and size.

In this example, we use a WebOb helper class webob.static.FileApp [http://webob.readthedocs.org/en/latest/modules/static.html#webob.static.FileApp]
to serve a PNG image:

from webob import static

@App.path(path='')
class Image(object):
 path = 'image.png'

@App.view(model=Image)
def view_image(self, request):
 return request.get_response(static.FileApp(self.path))

In the above example FileApp does the heavy lifting by opening
the file, guessing the MIME type, updating the headers, and returning
the response object which is in-turn returned by the Morepath view.
Note that the same helper class can be used to to serve most types
of MIME content.

This example is one way to serve an image, but it is not the only way.
In cases that require a more elaborate method for serving the content
this WebOb File-Serving Example [http://webob.readthedocs.org/en/latest/file-example.html] may be helpful.

 Advanced Topics

Advanced Topics

A selection of special topics to get the best out of your Morepath
project.

	Organizing your Project
	Introduction

	Sounds Like a Lot of Work

	Python project

	Project layout

	Project setup

	Project naming

	Namespace packages

	App Module

	Run Module

	Upgrading your project to a newer version of Morepath

	Debugging scanning problems

	Model module

	Path module

	View module

	Directive debugging

	Building Large Applications
	Introduction

	A Code Hosting Site

	Simplest approach

	Problems

	Multiple sub-apps

	Mounting apps

	No more path repetition

	Testing in isolation

	Reusing an app

	Different teams

	Swapping in a new sub-app

	Customizing an app

	Swapping in, for one customer

	Framework apps

	REST
	Introduction

	Elements of REST

	HTTP as a transport system

	Modeling as resources

	HTTP response status codes

	load

	Linking: HATEOAS

	Compose from reusable apps

	Writing automated tests
	Testing “Hello world!”

	Directive tricks

	Querying configuration
	Creating a tool

	Usage

 Organizing your Project

Organizing your Project

Introduction

Morepath does not put any requirements on how your Python code is
organized. You can organize your Python project as you see fit and put
app classes, paths, views, etc, anywhere you like. A single Python
package (or even module) may define a single Morepath app, but could
also define multiple apps. In this Morepath is like Python itself; the
Python language does not restrict you in how you organize functions
and classes.

While this leaves you free to organize your code as you see fit, that
doesn’t mean that your code shouldn’t be organized. Here are some
guidelines on how you may want to organize things in your own
project. But remember: these are guidelines to break when you see the
need.

Sounds Like a Lot of Work

You’re in luck. If you want to skip this chapter and just get started, you can
use the Morepath cookiecutter template, which follows the guidelines layed out
in this chapter:

https://github.com/morepath/morepath-cookiecutter

If you want to find out more about the why and the how, you can always keep
on reading of course.

Python project

It is recommended you organize your code in a Python project with a
setup.py where you declare the dependency on Morepath. If you’re
unfamiliar with how this works, you can check out this tutorial [http://pythonhosted.org/an_example_pypi_project/setuptools.html].

Doing this is good Python practice and makes it easy for you to
install and distribute your project using common tools like pip,
buildout and PyPI. In addition Morepath itself can also load its code
more easily.

Project layout

Here’s a quick overview of the files and directories of Morepath
project that follows the guidelines in this document:

myproject
 setup.py
 myproject
 __init__.py
 app.py
 model.py
 [collection.py]
 path.py
 run.py
 view.py

Project setup

Here is an example of your project’s setup.py with only those
things relevant to Morepath shown and everything else cut out:

from setuptools import setup, find_packages

setup(name='myproject',
 packages=find_packages(),
 install_requires=[
 'morepath'
],
 entry_points={
 'console_scripts': [
 'myproject-start = myproject.run:run'
]
 })

This setup.py assumes you also have a myproject subdirectory
in your project directory that is a Python package, i.e. it contains
an __init__.py. This is the directory where you put your code. The
find_packages() call finds it for you.

The install_requires section declares the dependency on
Morepath. Doing this makes everybody who installs your project
automatically also pull in a release of Morepath and its own
dependencies. In addition, it lets this package be found and
configured when you use morepath.autoscan().

Finally there is an entry_points section that declares a console
script (something you can run on the command-prompt of your operating
system). When you install this project, a myproject-start script
is automatically generated that you can use to start up the web
server. It calls the run() function in the myproject.run
module. Let’s create this next.

You now need to install this project. If you want to install this
project for development purposes you can use python setup.py
develop, or pip install -e . from within a virtualenv.

See also the setuptools documentation [https://pythonhosted.org/setuptools/].

Project naming

Its possible to name your project differently than you name your
Python package; you could for instance have the name ThisProject
in setup.py, and then have your Python package be still called
myproject. We recommend naming the project the same as the Python
package to avoid confusion.

Namespace packages

Sometimes you have projects that are grouped in some way: they are all
created by the same organization or they are part of the same larger
project. In that case you can use Python namespace packages to make
this relationship clear. Let’s say you have a larger project called
myproject. The namespace package itself may not contain any code,
so unlike the example everywhere else in this document the
myproject directory is always empty but for a __init__.py.

Different sub-projects could then be called myproject.core,
myproject.wiki, etc. Let’s examine the files and directories of
myproject.core:

myproject.core
 setup.py
 myproject
 __init__.py
 core
 __init__.py
 app.py
 model.py
 [collection.py]
 path.py
 run.py
 view.py

The change is the namespace package directory myproject that contains
a single file, __init__.py, that contains the following code to declare
it is a namespace package:

__import__('pkg_resources').declare_namespace(__name__)

Inside is the normal package called core.

setup.py is modified too to include a declaration in
namespace_packages, and we’ve changed the entry point:

setup(name='myproject.core',
 packages=find_packages(),
 namespace_packages=['myproject'],
 install_requires=[
 'morepath'
],
 entry_points={
 'console_scripts': [
 'myproject.core-start = myproject.core.run:run'
]
 })

See also the namespace packages documentation [https://setuptools.readthedocs.io/en/latest/setuptools.html#namespace-packages].

App Module

The app.py module is where we define our Morepath app. Here’s a sketch of
app.py:

import morepath

class App(morepath.App):
 pass

Run Module

Why we keep app.py and run.py separate

Morepath attaches a configuration registry to each application class. This
can happen twice if we run the run function directly from python (through
use of __main__). By keeping the application from the run code we can
be sure that this never happens.

In the run.py module we define how our application should be served. We
take the App class defined in app.py, then have a run() function
that is going to be called by the myproject-start entry point we defined
in setup.py:

from .app import App

def run():
 morepath.autoscan()
 App.commit()
 morepath.run(App())

This run function does the following:

	Use morepath.autoscan() to recursively import your own
package plus any dependencies that are installed.

	Commit the App class so that its configuration is ready. You can
omit this step and in this case the configuration is committed when
Morepath processes the first request. But if you want to see configuration errors
at startup, use an explicit commit.

	start a WSGI server for the App instance on port localhost,
port 5000. This uses the standard library wsgiref WSGI server. Note
that this should only used for testing purposes, not production! For
production, use an external WSGI server.

The run module is also a good place to do other general configuration
for the application, such as setting up a database connection.

Upgrading your project to a newer version of Morepath

See Upgrading to a new Morepath version.

Debugging scanning problems

If you for some reason get 404 Not Found errors where you expect
some content, something may have gone wrong with scanning the
configuration of your project. Here’s a checklist:

	Check whether your project has a setup.py with an
install_requires that depends on morepath (possibly
indirectly through another dependency). You need to declare your
code as a project so that autoscan can find it.

	Check whether your project is installed in a virtualenv using pip
install -e . or in a buildout. Morepath needs to be able to find
your project in order to scan it.

	Be sure that you have your modules in an actual sub-directory to the
project with its own __init__.py. Modules in the top-level of a
project won’t be scanned as a package

	Try manually scanning a package and see whether it works then:

import mysterious_package

morepath.scan(mysterious_package)

If this fixes things, the package is somehow not being picked up for
automatic scanning. Check the package’s setup.py.

	Try manually importing the modules before doing a
morepath.autoscan() and see whether it works then:

import mysterious_module

morepath.autoscan()

If this fixes things, then your own package is not being picked up
as a Morepath package for some reason.

	Try moving Morepath directives into the module that also runs
the application. If this works, your own package is not recognized
as a proper Morepath package.

Variation: automatic restart

During development it can be very helpful to have the WSGI server
restart the Morepath app whenever a file is changed.

Morepath’s built in development server does not offer this feature,
but you can accomplish it with Werkzeug’s server [http://werkzeug.pocoo.org/docs/latest/serving/].

First install the Werkzeug package [https://pypi.python.org/pypi/Werkzeug] into your project. Then modify
your run module to look like this:

import morepath
from werkzeug.serving import run_simple
from .app import App

def run():
 morepath.autoscan()
 App.commit()
 run_simple('localhost', 8080, App(), use_reloader=True)

Using this runner changes to Python code in your package trigger a
restart of the WSGI server.

Variation: no or multiple entry points

Not all packages have an entry point to start it up: a framework app
that isn’t intended to be run directly may not define one. Some
packages may define multiple apps and multiple entry points.

Variation: waitress

Instead of using Morepath’s simple built-in WSGI server you can use
another WSGI server. The built-in WSGI server is only meant for
testing, so we strongly recommend doing so in production. Here’s how
you’d use Waitress [http://docs.pylonsproject.org/projects/waitress/en/latest/]. First we adjust setup.py so we also require
waitress:

...
 install_requires=[
 'morepath',
 'waitress'
],
...

Then we modify run.py to use waitress:

import waitress

...

def run():
 ...
 waitress.serve(App())

Variation: command-line WSGI servers

You could also do away with the entry point and instead use
waitress-serve on the command line directly. For this we need to
first create a factory function that returns the fully configured WSGI
app:

def wsgi_factory():
 morepath.autoscan()
 App.commit()
 return App()

$ waitress-serve --call myproject.run:wsgi_factory

This uses waitress’s --call functionality to invoke a WSGI factory
instead of a WSGI function. If you want to use a WSGI function
directly we have to create one using the wsgi_factory function we
just defined. To avoid circular dependencies you should do it in a
separate module that is only used for this purpose, say wsgi.py:

prepared_app = wsgi_factory()

You can then do:

$ waitress-serve myproject.wsgi:prepared_app

You can also use gunicorn [http://gunicorn.org] this way:

$ gunicorn -w 4 myproject.wsgi:prepared_app

Model module

The model.py module is where we define the models relevant to the
web application. They may integrate with some kind of database system,
for instance the SQLAlchemy [http://sqlalchemy.org] ORM. Note that your model code is
completely independent from Morepath and there is no reason to import
anything Morepath related into this module. Here is an example
model.py that just uses plain Python classes:

class Document(object):
 def __init__(self, id, title, content):
 self.id = id
 self.title = title
 self.content = content

Variation: models elsewhere

Sometimes you don’t want to include model definitions in the same
codebase that also implements a web application, as you would like to
reuse them outside of the web context without any dependencies on
Morepath. Your model classes are independent from Morepath, so this is
easy to do: just put them in a separate project and depend on it from
your web project.

You can also have a project that reuses models defined by another
Morepath project. Each Morepath app is isolated from the others by
default, so you could remix its models into a whole new web
application.

Variation: collection module

An application tends to contain two kinds of models:

	content object models, i.e. a Document. If you use an ORM like
SQLAlchemy these would typically be backed by a table.

	collection models, i.e. a collection of documents. This typically
let you browse content models, search/filter for them, and let you
add or remove them.

Since collection models tend to not be backed by a database directly
but are often application-specific classes, it can make sense to
maintain them in a separate collection.py module. This module,
like model.py also does not have any dependencies on Morepath.

Path module

Now that we have models, we need to publish them on the web. First we need
to define their paths. We do this in a path.py module:

from .app import App
from . import model

@App.path(model=model.Document, path='documents/{id}')
def get_document(id):
 if id != 'foo':
 return None # not found
 return Document('foo', 'Foo document', 'FOO!')

In the functions decorated by App.path() we do whatever
query is necessary to retrieve the model instance from a database, or
return None if the model cannot be found.

Morepath allows you to scatter @App.path decorators throughout
your codebase, but by putting them all together in a single module it
becomes really easy to inspect and adjust the URL structure of your
application, and to see exactly what is done to query or construct the
model instances. Once it becomes really big you can always split a
single path module into multiple ones, though at that point you may
want to consider splitting off a separate project with its own
application instead.

View module

We have models and they’re published on a path. Now we need to represent
them as actual web resources. We do this in the view.py module:

from .app import App
from . import model

@App.json(model=model.Document)
def document_default(self, request):
 return {'id': self.id, 'title': self.title, 'content': self.content }

Here we use App.view(), App.json() and
App.html() directives to declare views.

By putting them all in a view module it becomes easy to inspect and
adjust how models are represented, but of course if this becomes large
it’s easy to split it into multiple modules.

Directive debugging

Morepath’s directive issue log messages that can help you debug your
application: see Logging for more information.

 Building Large Applications

Building Large Applications

Introduction

A small web application is relatively easy to understand. It does
less stuff. That makes the application easier to understand: the UI
(or REST web service) is smaller, and the codebase too.

But sometimes we need larger web applications. Morepath offers a
number of facilities to help you manage the complexity of larger web
applications:

	Morepath lets you build larger applications from multiple smaller
ones. A CMS may for instance be composed of a document management
application and a user management application. This is much like how
you manage complexity in a codebase by decomposing it into smaller
functions and classes.

	Morepath lets you factor out common, reusable functionality. In
other words, Morepath helps you build frameworks, not just
end-user applications. For instance, you may have multiple places in
an application where you need to represent a large result-set in
smaller batches (with previous/next), and they should share common
code.

There is also the case of reusable applications. Larger applications
are often deployed multiple times. An open source CMS is a good
example: different organizations each have their own installation. Or
imagine a company with an application that it sells to its customers:
each customer can have its own special deployment.

Different deployments of an application have real differences as every
organization has different requirements. This means that you need to
be able to customize and extend the application to fit the purposes of
each particular deployment. As a result the application has to
take on framework-like properties. Morepath recognizes that there is a
large gray area between application and framework, and offers support
to build framework-like applications and application-like frameworks.

The document App Reuse describes the basic facilities Morepath
offers for application reuse. The document
Organizing your Project describes how a single application
project can be organized, and we will follow its guidelines in this
document.

This document sketches out an example of a larger application that
consists of multiple sub-projects and sub-apps, and that needs
customization.

A Code Hosting Site

Our example large application is a code hosting site along the lines
of Github or Bitbucket. This example is a sketch, not a complete
working application. We focus on the structure of the application as
opposed to the details of the UI.

Let’s examine the URL structure of a code hosting site. Our hypothetical
code hosting site lives on example.com:

example.com

A user (or organization) has a URL directly under the root with the
user name or organization name included:

example.com/faassen

Under this URL we can find repositories, using the project name
in the URL:

example.com/faassen/myproject

We can interact with repository settings on this URL:

example.com/faassen/myproject/settings

We also have a per-repository issue tracker:

example.com/faassen/myproject/issues

And a per-repository wiki:

example.com/faassen/myproject/wiki

Simplest approach

The simplest approach to make this URL structure work is to implement all
paths in a single application, like this:

from .model import Root, User, Repository, Settings, Issues, Wiki

class App(morepath.App):
 pass

@App.path(path='', model=Root)
def get_root():
 ...

@App.path(path='{user_name}', model=User)
def get_user(user_name):
 ...

@App.path(path='{user_name}/{repository_name}', model=Repository)
def get_repository(user_name, repository_name):
 ...

We could try to implement settings, issues and wiki as views on
repository, but these are complicated pieces of functionality that
benefit from having sub-URLs (i.e. issues/12 or
...wiki/mypage), so we model them using paths as well:

@App.path(path='{user_name}/{repository_name}/settings', model=Settings)
def get_settings(user_name, repository_name):
 ...

@App.path(path='{user_name}/{repository_name}/issues', model=Issues)
def get_issues(user_name, repository_name):
 ...

@App.path(path='{user_name}/{repository_name}/wiki', model=Wiki)
def get_wiki(user_name, repository_name):
 ...

Let’s also make a path to an individual issue,
i.e. example.com/faassen/myproject/issues/12:

from .model import Issue

@App.path(path='{user_name}/{repository_name}/issues/{issue_id}', model=Issue)
def get_issue(user, repository, issue_id):
 ...

Problems

This approach works perfectly well, and it’s often the right way to
start, but there are some problems with it:

	The URL patterns in the path are repetitive; for each sub-model
under the repository we keep having to repeat
{user_name}/{repository_name}.

	We may want to be able to test the wiki or issue tracker during
development without having to worry about setting up the whole outer
application.

	We may want to reuse the wiki application elsewhere, or in multiple
places in the same larger application. But user_name and
repository_name are now hardcoded in the way to get any sub-path
into the wiki.

	We could have different teams developing the core app and the wiki
(and issue tracker, etc). It would be nice to partition the code so
that the wiki developers don’t need to look at the core app code and
vice versa.

	You may want the abilitity to swap in new implementations of a issue
tracker or a wiki under the same paths, without having to change a
lot of code.

We’re going to show how Morepath can solve these problems by
partitioning a larger app into smaller ones, and mounting them.

The code to accomplish this is more involved than simply declaring all
paths under a single core app as we did before. If you feel more
comfortable doing that, by all means do so; you don’t have these
problems. But if your application is successful and grows larger you
may encounter these problems, and these features are then there to
help.

Multiple sub-apps

Let’s split up the larger app into multiple sub apps. How many
sub-apps do we need? We could go and partition things up into many
sub-applications, but that risks getting lost in another kind of
complexity. So let’s start with three application:

	core app, everything up to repository, and including settings.

	issue tracker app.

	wiki sub app.

In code:

class CoreApp(morepath.App):
 pass

class IssuesApp(morepath.App):
 def __init__(self, issues_id):
 self.issues_id = issues_id

class WikiApp(morepath.App):
 def __init__(self, wiki_id):
 self.wiki_id = wiki_id

Note that IssuesApp and WikiApp expect arguments to be
initialized; we’ll learn more about this later.

We now can group our paths into three. First we have the core app,
which includes the repository and its settings:

@CoreApp.path(path='', model=Root)
def get_root():
 ...

@CoreApp.path(path='{user_name}', model=User)
def get_user(user_name):
 ...

@CoreApp.path(path='{user_name}/{repository_name}', model=Repository)
def get_repository(user_name, repository_name):
 ...

@CoreApp.path(path='{user_name}/{repository_name}/settings', model=Settings)
def get_settings(user_name, repository_name):
 ...

Then we have the paths for our issue tracker:

@IssuesApp.path(path='', model=Issues)
def get_issues():
 ...

@IssuesApp.path(path='{issue_id}', model=Issue)
def get_issue(issue_id):
 ...

And the paths for our wiki:

@WikiApp.path(path='', model=Wiki)
def get_wiki():
 ...

We have drastically simplified the paths in IssuesApp and
WikiApp; we don’t deal with user_name and repository_name
anymore.

Mounting apps

Now that we have an independent IssuesApp and WikiApp, we
want to be able to mount these under the right URLs under
CoreApp. We do this using the mount directive:

def variables(app):
 repository = get_repository_for_issues_id(app.issues_id)
 return dict(
 repository_name=repository.name,
 user_name=repository.user.name)

@CoreApp.mount(path='{user_name}/{repository_name}/issues',
 app=IssuesApp, variables=variables)
def mount_issues(user_name, repository_name):
 return IssuesApp(issues_id=get_issues_id(user_name, repository_name))

Let’s look at what this does:

	@CoreApp.mount: We mount something onto CoreApp.

	path='{user_name}/{repository_name}/issues': We are mounting it
on that path. All sub-paths in the issue tracker app will fall under
it.

	app=IssuesApp: We are mounting IssuesApp.

	The mount_issues function takes the path variables user_name
and repository_name as arguments. It then returns an instance of
the IssuesApp. To create one we need to convert the
user_name and repository_name into an issues id. We do this
by looking it up in some kind of database.

	The variables function needs to do the inverse: given a
IssuesApp instance it needs to translate this back into a
repository_name and user_name. This allows Morepath to link
to a mounted IssuesApp.

Mounting the wiki is very similar:

def variables(app):
 return dict(user_name=get_username_for_wiki_id(app.id))

@CoreApp.mount(path='{user_name}/{repository_name}/wiki',
 app=WikiApp, variables=variables)
def mount_wiki(user_name, repository_name):
 return WikiApp(get_wiki_id(user_name, repository_name))

No more path repetition

We have solved the repetition of paths issue now; the issue tracker
and wiki handle many paths, but there is no more need to repeat
‘{user_name}/{repository_name}’ everywhere.

Testing in isolation

To test the issue tracker by itself, we can run it as a separate WSGI
app:

def run_issue_tracker():
 mounted = IssuesApp(4)
 morepath.run(mounted)

Here we mount and run the issues_app with issue tracker id
4.

You can hook the run_issue_tracker function up to a script by
using an entry point in setup.py as we’ve seen in
Organizing your Project.

You can also mount applications this way in automated tests and then
use WebTest [http://webtest.readthedocs.org/] or some other WSGI testing library, as explained in
Writing automated tests.

Reusing an app

We can now reuse the issue tracker app in the sense that we can mount
it in different apps; all we need is a way to get issues_id. What
then if we have another Python project and we wanted to reuse the
issue tracker in it as well? In that case it may start sense to start
maintaining the issue tracker it in a separate Python project of its
own.

We could for instance split our code into three separate Python
projects, for instance:

	myproject.core

	myproject.issues

	myproject.wiki

Each would be organized as described in
Organizing your Project.

myproject.core could have an install_requires in its
setup.py that depends on myproject.issues and
myproject.wiki. To get IssuesApp and WikiApp in order to
mount them in the core, we would simply import them (for instance in
myproject.core.app):

from myproject.issues.app import IssuesApp
from myproject.wiki.app import WikiApp

In some scenarios you may want to turn this around: the IssuesApp
and WikiApp know they should be mounted in CoreApp, but the
CoreApp wants to remain innocent of this. In that case, you would
have myproject.issues and myproject.wiki both depend on
myproject.core, whereas myproject.core depends on nothing. The
wiki and issues projects then mount themselves into the core app.

Different teams

Now that we have separate projects for the core, issue tracker and
wiki, it becomes possible for a team to focus on the wiki without
having to worry about core or the issue tracker and vice versa.

This may in fact be of benefit even when you alone are working on all
three projects! When developing software it is important to free up
your brain so you only have to worry about one detail at the time:
this an important reason why we decomposition logic into functions and
classes. By decomposing the project into three independent ones, you
can temporarily forget about the core when you’re working on the issue
tracker, allowing you to focus on the problems at hand.

Swapping in a new sub-app

Perhaps a different, better wiki implementation is developed. Let’s
call it ShinyNewWikiApp. Swapping in the new sub application is
easy: it’s just a matter of changing the mount directive:

@CoreApp.mount(path='{user_name}/{repository_name}/wiki',
 app=ShinyNewWikiApp, variables=variables)
def mount_wiki(user_name, repository_name):
 return ShinyNewWikiApp(get_wiki_id(user_name, repository_name))

Customizing an app

Let’s change gears and talk about customization now.

Imagine a scenario where a particular customer wants exactly core
app. Really, it’s perfect, exactly what they need, no change needed,
but then … wait for it … they actually do need a minor tweak.

Let’s say they want an extra view on Repository that shows some
important customer-specific metadata. This metadata is retrieved from
a customer-specific extra database, so we cannot just add it to core
app. Besides, this new view isn’t useful to other customers.

What we need to do is create a new customer specific core app in a
separate project that is exactly like the original core app by
extending it, but with the one extra view added. Let’s call the
project important_customer.core. important_customer.core has
an install_requires in its setup.py that depends on
myproject.core and also the customer database (which we call
customerdatabase in this example).

Now we can import CoreApp in important_customer.core’s
app.py module, and extend it:

from myproject.core.app import CoreApp

class CustomerApp(CoreApp):
 pass

At this point CustomerApp and CoreApp have identical
behavior. We can now make our customization and add a new JSON view to
Repository:

from myproject.core.model import Repository
customer specific database
from customerdatabase import query_metadata

@CustomerApp.json(model=Repository, name='customer_metadata')
def repository_customer_metadata(self, request):
 metadata = query_metadata(self.id) # use repository id to find it
 return {
 'special_marketing_info': medata.marketing_info,
 'internal_description': metadata.description
 }

You can now run CustomerApp and get the core app with exactly the one
tweak the customer wanted: a view with the extra metadata. The
important_customer.core project depends on customerdatabase,
but myproject.core remains unchanged.

We’ve made exactly the tweak necessary without having to modify our
original project. The original project continues to work the same way
it always did.

Swapping in, for one customer

Morepath lets you extend any directive, not just the view
directive. It also lets you override things in the applications you
extend. Let’s say the important customer wants exactly the original
wiki, with just one tiny teeny little tweak. Other customers should
still continue to use the original wiki.

We’d tweak the wiki just as we would tweak the core app. We end up
with a TweakedWikiApp:

from myproject.wiki.app import WikiApp

class TweakedWikiApp(WikiApp):
 pass

some kind of tweak
@TweakedWikiApp.json(model=WikiPage, name='extra_info')
def page_extra_info(self, request):
 ...

We want a new version of CoreApp just for this customer that
mounts TweakedWikiApp instead of WikiApp:

class ImportantCustomerApp(CoreApp):
 pass

@ImportantCustomerApp.mount(path='{user_name}/{repository_name}/wiki',
 app=TweakedWikiApp, variables=variables)
def mount_wiki(user_name, repository_name):
 return TweakedWikiApp(get_wiki_id(user_name, repository_name))

The mount directive above overrides the one in the CoreApp
that we’re extending, because it uses the same path but mounts
TweakedWikiApp instead.

Framework apps

A morepath.App subclass does not need to be a full working web
application. Instead it can be a framework with only those paths and
views that we intend to be reusable.

We could for instance have a base class Metadata and define some
views for it in the framework app. If we then have an application that
inherits from the framework app, any Metadata model we expose to
the web using the path directive automatically gets its views
supplied by the framework.

For instance:

class Framework(morepath.App):
 pass

class Metadata(object):
 def __init__(self, d):
 self.d = d # metadata dictionary

 def get_metadata(self):
 return self.d

@Framework.json(model=Metadata, name='metadata')
def metadata_view(self, request):
 return self.get_metadata()

We want to use this framework in our own application:

class App(Framework):
 pass

Let’s have a model that subclasses from Metadata:

class Document(Metadata):
 ...

Let’s put the model on a path:

@App.path(path='documents/{id}', model=Document)
def get_document(id):
 ...

Since App extends Framework, all documents published this way
have a metadata view automatically. Apps that don’t extend
Framework won’t have this behavior, of course.

As we mentioned before, there is a gray area between application and
framework; applications tend to gain attributes of a framework, and
larger frameworks start to look more like applications. Don’t worry
too much about which is which, but enjoy the creative possibilities!

Note that Morepath itself is designed as an application
(morepath.App) that your apps extend. This means you can
override parts of it just like you would override a framework app! We
did our best to make Morepath do the right thing already, but if not,
you can customize it.

 REST

REST

Introduction

How to think RESTful thoughts

So what does it mean for a web service to be RESTful? It might help to
remember this when thinking about REST:

client :: RESTful web service

is like:

human with browser :: well-designed multi-page web application

So if you have experience with developing good multi-page web
applications, then you can apply this experience to REST web service
design and you’re off to a good start.

In this section we’ll look at how you could go about implementing a
RESTful [https://en.wikipedia.org/wiki/Representational_state_transfer] web service with Morepath.

REST stands for Representational State Transfer, and is a particular
way to design web services. We won’t try to explain here why this
can be a good thing for you to do, just explain what is involved.

REST is not only useful for pure web services, but is also highly
relevant for web application development, especially when you are
building a single-page rich client application in JavaScript in the
web browser. It can be beneficial to organize the server-side
application as a RESTful web service.

Elements of REST

That’s all rather abstract. Let’s get more concrete. It’s useful to
refer to the Richardson Maturity Model for REST [http://martinfowler.com/articles/richardsonMaturityModel.html] in this context. In
REST we do the following:

	We uses HTTP as a transport system. What you use to communicate is
typically JSON or XML, but it could be anything.

	We don’t just use HTTP to tunnel method calls to a single
URL. Instead, we model our web service as resources, each with their
own URL, that we can interact with.

	We use HTTP methods meaningfully. Most importantly we use GET to
retrieve information, and POST when we want to change
information. Along with this we also use HTTP response status codes
meaningfully.

	We have links between the resources. So, one resource points to
another. A container resource could point to a link that you can
POST to create a new sub resource in it, for instance, and may
have a list of links to the resources in the container. See also
HATEOAS [https://en.wikipedia.org/wiki/HATEOAS].

Morepath has features that help you create RESTful applications.

HTTP as a transport system

We don’t really need to say much here, as Morepath is of course all
about HTTP in the end. Morepath lets you write a bare-bones view using
morepath.App.view(). This also lets you pass in a render
function that lets you specify how to render the return value of the
view function as a morepath.Response. If you use JSON, for
convenience you can use morepath.App.json() has a JSON
render function baked in.

We could for instance have a Document model in our application:

class Document(object):
 def __init__(self, title, author, content):
 self.title = title
 self.author = author
 self.content = content

We can expose it on a URL:

@App.path(model=Document, path='documents/{id}')
def get_document(id=0):
 return document_by_id(id)

We assume here that a document_by_id() function exists that
returns a Document instance by integer id from some database, or
None if the document cannot be found. Any way to get your model
instance is fine. We use id=0 to tell Morepath that ids should be
converted to integers, and to with a BadRequest if that is not
possible.

Now we need a view that exposes the resource to JSON:

@App.json(model=Document)
def document_default(self, request):
 return {
 'type': 'document',
 'id': self.id,
 'title': self.title,
 'author': self.author,
 'content': self.content
 }

Modeling as resources

Modeling a web service as multiple resources comes pretty naturally to
Morepath. You think carefully about how to place models in the URL
space and then expose them using morepath.App.path(). Each model
class can only be exposed on a single URL (per app), which gives them
a canonical URL automatically.

A collection resource could be modelled like this:

class DocumentCollection(object):
 def __init__(self):
 self.documents = []
 self.id_counter = 0

 def add(self, doc):
 doc.id = self.id_counter
 self.id_counter += 1
 self.documents.append(doc)
 return doc

We now want to expose this collection to a URL path /documents. We
want:

	when you GET /documents we want to get the ids documents in the
collection.

	when you POST to /documents with a JSON body we want to add
it to the collection.

Here is how we can make documents available on a URL:

documents = DocumentCollection()

@App.path(model=DocumentCollection, path='documents')
def get_document_collection():
 return documents

When someone accesses /documents they should get a JSON structure
which includes ids of all documents in the collection. Here’s how to
do that (for GET, the default):

@App.json(model=DocumentCollection)
def document_collection_default(self, request):
 return {
 'type': 'document_collection',
 'ids': [doc.id for doc in self.documents]
 }

We also want to allow people to POST new documents (as a JSON POST
body):

@App.json(model=DocumentCollection, request_method='POST')
def document_collection_post(self, request):
 json = request.json
 result = self.add(Document(title=json['title'],
 author=json['author'],
 content=json['content']))
 return request.view(result)

We use Request.view() to return the JSON structure for the added
document again. This is handy as it includes the id field.

HTTP response status codes

When a view function returns normally, Morepath automatically sets the
response HTTP status code to 200 Ok.

When you try to access a URL that cannot be routed to a model because
no path exists, or because the function involved returns None, or
because the view cannot be found, a 404 Not Found error is raised.

If you access a URL that does exist but with a request method that is
not supported, a 405 Method Not Allowed error is raised.

What if the user sends the wrong information to a view? Let’s consider
the POST view again:

@App.json(model=DocumentCollection, request_method='POST')
def document_collection_post(self, request):
 json = request.json
 result = self.add(Document(title=json['title'],
 author=json['author'],
 content=json['content']))
 return request.view(result)

What if the structure of the JSON submitted is not a valid document
but contains some other information, or misses essential information?
We should reject it if so. We can do this by raising a HTTP error
ourselves. WebOb, the request/response library upon which Morepath is
built, defines a set of HTTP exception classes webob.exc [https://docs.pylonsproject.org/projects/webob/en/latest/api/exceptions.html#module-webob.exc] that
we can use:

@App.json(model=DocumentCollection, request_method='POST')
def document_collection_post(self, request):
 json = request.json
 if not is_valid_document_json(json):
 raise webob.exc.HTTPUnprocessableEntity()
 result = self.add(Document(title=json['title'],
 author=json['author'],
 content=json['content']))
 return request.view(result)

What status code is right?

There is some debate over what status code to pick for content that
is submitted that can be parsed but is incorrect. Some REST
implementations use 400 Bad Request, others use 422
Unprocessable Entity. Morepath uses the latter by default, as
we’ll see in a bit.

Now we raise 422 Unprocessable Entity when the submitted JSON body
is invalid, using a function is_valid_document_json that does the
checking. is_valid_document could look this:

def is_valid_document_json(json):
 if json['type'] != 'document':
 return False
 for name in ['title', 'author', 'content']:
 if name not in json:
 return False
 return True

load

The code that checks the validity of the POST or PUT body in the view
can be moved out into a load function that you can use in multiple
views:

def load(request):
 if not is_valid_document_json(json):
 raise webob.exc.HTTPUnprocessableEntity()
 return request.json

@App.json(model=DocumentCollection, request_method='POST', load=load)
def document_collection_post(self, request, json):
 result = self.add(Document(title=json['title'],
 author=json['author'],
 content=json['content']))
 return request.view(result)

The return value of the load function is passed in as a third argument into
the view function. This means that you can also do conversion of input in the
load function and reuse it between views. And if the load fails to work you
get a 422 status code.

Linking: HATEOAS

We’ve now reached the point where many would say that this is a
RESTful web service. But in fact a vital ingredient is still missing:
hyperlinks. That ugly acronym HATEOAS [https://en.wikipedia.org/wiki/HATEOAS] thing.

Hyperlinks!

Since hyperlinks are so commonly missing from web services that claim
to be RESTful, we’ll break our promise here not to motivate why REST
is good, and have a brief discussion on why hyperlinking is a good
idea.

Without hyperlinks, a client is coupled to the server in two ways:

	URLs: it needs to know what URLs the server exposes.

	Data: it needs to know how to interpret the data coming from the
server, and what data to send to the server.

Now add HATEOAS and get true REST. Now the client is coupled to the
server in only one way: data. It gets the URLs it needs from the
data. We gain looser coupling between server and client: the server
can change all its URLs and the client will continue to work.

You may quibble and say the client still needs to know the original
URL of the server to get started, and dig up all the other URLs from
the data afterward. That’s true – but that’s all that’s
needed. It’s normal. Think again like how a human interacts with the
web through the browser: you may use a search engine or bookmarks to
get the initial URL of a site, and then you go to pages in that site
by clicking links.

Morepath makes it easy to create hyperlinks, so we won’t have to do
much. Before we had this for the collection view:

@App.json(model=DocumentCollection)
def document_collection_default(self, request):
 return {
 'type': 'document_collection',
 'ids': [doc.id for doc in self.documents]
 }

We can change this so instead of ids, we return a list of document
URLs instead:

@App.json(model=DocumentCollection)
def document_collection_default(self, request):
 return {
 'type': 'document_collection',
 'documents': [request.link(doc) for doc in self.documents],
 }

Now we’ve got HATEOAS: the collection links to the documents it
contains. The developers looking at the responses your web service
sends get a few clues about where to go next. Coupling is looser.

We have HATEOAS, so at last we got true REST. Why is hyperlinking so
often ignored? Why don’t more systems implement HATEOAS? Perhaps
because they make linking to things too hard or too brittle. Morepath
instead makes it easy. Link away!

Compose from reusable apps

If you’re going to create a larger RESTful web service, you should
start thinking about composing them from smaller applications. See
App Reuse for more information.

 Writing automated tests

Writing automated tests

This an introductory guide to writing automated tests for your
Morepath project. We assume you’ve already installed Morepath; if not,
see the Installation section.

In order to carry out the test we’ll use WebTest [https://webtest.readthedocs.org], which you’ll need
to have installed. You also need a test automation tool; we recommend
pytest [https://pytest.org]. The cookiecutter template installs
both for you, alternatively you can install them with pip:

$ pip install webtest pytest

Testing “Hello world!”

Let’s look at a minimal test of the “Hello world!” application from
the Quickstart:

from hello import App
from webtest import TestApp as Client

def test_hello():
 c = Client(App())

 response = c.get('/')

 assert response.body == b'Hello world!'

You can save this function into a file, say test_hello.py and use
a test automation tool like pytest [https://pytest.org] to run it:

$ py.test -q test_hello.py
.
1 passed in 0.13 seconds

If you invoke it as a regular Python function, a silent completion
signifies success:

>>> test_hello()

Let’s now go through the test, line by line.

	We import the application that we want to test. In this case we
assume that you have saved the “Hello world!” application from the
Quickstart in hello.py:

>>> from hello import App

You can additionally use morepath.scan() if you are not sure
whether importing the app imports all the modules that are
required. In this particular instance, we know that importing
hello is sufficient and morepath.scan() is not needed.

	WebTest [https://webtest.readthedocs.org] provides a class called webtest.app.TestApp [https://webtest.readthedocs.io/en/latest/api.html#webtest.app.TestApp] that
emulates a client for WSGI apps. We don’t want to confuse it with
the app under test, so we as a convention we import it as
Client. This also stops pytest [https://pytest.org] from scanning it for tests as
it has the Test prefix:

>>> from webtest import TestApp as Client

	We instantiate the app under test and the client:

>>> c = Client(App())

	At this point we can use the client to query the app:

>>> response = c.get('/')

The returned response is an instance of
webtest.response.TestResponse [https://webtest.readthedocs.io/en/latest/api.html#webtest.response.TestResponse]:

>>> response
<200 OK text/plain body=b'Hello world!'>

	We can now verify that the response satisfies our expectations. In
this case we test the response body in its entirety:

>>> assert response.body == b'The view for model: foo'

 Directive tricks

Directive tricks

Why not inside the class?

This in fact works:

class A(object):
 @classmethod
 @App.json(model=Foo)
 def foo_default(self, request):
 ...

But it is equivalent to using @staticmethod, so there is no
point to do this.

This is broken code:

class A(object):
 @classmethod
 @App.json(model=Foo)
 def foo_default(cls, self, request):
 ...

This is broken because at the point foo_default is registered
with App.json it isn’t a classmethod yet, but a plain
function, and it has the wrong signature to work with Morepath.

This is also broken code:

class A(object):
 @App.json(model=Foo)
 @classmethod
 def foo_default(cls, self, request):
 ...

This is broken because what gets registered with Morepath is an
unbound class method, which is not callable.

But if you do:

class A(object):
 @classmethod
 def foo_default(cls, self, request):
 ...

App.json(model=Foo)(A.foo_default)

it works as A.foo_default binds the cls argument first.

You usually use Morepath directives like decorators on functions:

@App.json(model=Foo)
def foo_default(self, request):
 ...

You can also use directives with @staticmethod:

class A(object):
 @staticmethod
 @App.json(model=Foo)
 def foo_default(self, request):
 ...

It is important to apply @staticmethod directive after the
Morepath directive is applied; it won’t work the other away around.

With @classmethod the situation is slightly more involved. This is the
correct way to do it:

class A(object):
 @classmethod
 def foo_default(cls, self, request):
 ...

App.json(model=Foo)(A.foo_default)

So, you apply the directive as a function to A.foo_default outside
of the class.

This points to a general principle: we can use any Morepath directive
as a plain function, not just as a decorator. This means you can
combine a directive with a lambda, which sometimes leads to shorter
code:

App.template_directory()(lambda: 'templates')

This means you can also register functions programmatically:

for i, func in enumerate(functions):
 App.json(model=Foo, name='view_%s' % i)(func)

We recommend caution here though – stick with the normal decorator
based approach as much as you can as it is more declarative. This
tends to lead to more maintainable code.

 Querying configuration

Querying configuration

Creating a tool

A Morepath-based application may over time grow big, have multiple
authors and spread over many modules. In this case it is helpful to
have a tool that helps you explore Morepath configuration and quickly
find what directives are defined where. The Dectate [http://dectate.readthedocs.org] library
details how to create such a tool [https://dectate.readthedocs.io/en/latest/usage.html#query-tool], but we
repeat it here for Morepath:

import dectate
from mybigapp import App

def query_tool():
 dectate.query_tool(App.commit())

You save it in a module called query.py in the mybigapp
package. Then you hook it up in setup.py so that a query script
gets generated:

entry_points={
 'console_scripts': [
 'morepathq = mybigapp.query:query_tool',
]
},

Now when you re-install your project, you get a command-line query
tool called morepathq that lets you issue queries.

What just happened?

	In order to be able to query an app’s configuration you need to
commit it first. App.commit() also commits any other application
you may have mounted into it. You get an iterable of apps that got
committed.

	You pass this iterable into the query_tool function. This lets
the query tool search through the configuration of the apps you
committed only.

	
	You hook it up so that a command-line script gets generated using

	setuptool’s console_scripts mechanism.

Usage

So now that you have a morepathq query tool, let’s use it:

$ morepathq view
App: <class 'mybigapp.App'>
 File ".../somemodule.py", line 4
 @App.html(model=Foo)

 File ".../anothermodule.py", line 8
 @App.json(model=Bar)

Here we query for the view directive; since the view directive
is grouped with json and html we get those back too. We get
the module and line number where the directive was used.

You can also filter:

$ morepathq view model=mybigapp.model.Foo
App: <class 'mybigapp.App'>
 File ".../somemodule.py", line 4
 @App.html(model=Foo)

Here we query all views that have the model value set to Foo
or one of its subclasses. Note that in able to refer to Foo in the
query we use the dotted name to that class in the module it was
defined.

You can query any Morepath directive this way:

$ morepathq path model=mybigapp.model.Foo
App: <class 'mybigapp.App'>
 File ".../path.py", line 8
 @App.path(model=Foo, path="/foo")

 Reference

Reference

In this section you can look up a specific function, class, or method.

	API
	morepath

	morepath.error – exception classes

	morepath.pdbsupport – debugging support

	morepath.directive – Extension API
	Registry classes

	Action classes

 API

API

morepath

This is the main public API of Morepath.

Additional public APIs can be imported from the morepath.error
and morepath.pdbsupport modules. For custom directive
implementations that interact with core directives for grouping or
subclassing purposes, or that need to use one of the Morepath
registries, you may need to import from morepath.directive.

The other submodules are considered private. If you find yourself
needing to import from them in application or extension code, please
report an issue about it on the Morepath issue tracker.

	
class morepath.App

	A Morepath-based application object.

You subclass App to create a morepath application class. You can
then configure this class using Morepath decorator directives.

An application can extend one or more other applications, if
desired, by subclassing them. By subclassing App itself, you get
the base configuration of the Morepath framework itself.

Conflicting configuration within an app is automatically
rejected. An subclass app cannot conflict with the apps it is
subclassing however; instead configuration is overridden.

You can turn your app class into a WSGI [https://www.python.org/dev/peps/pep-3333/] application by instantiating
it. You can then call it with the environ and start_response
arguments.

Subclasses from dectate.App [https://dectate.readthedocs.io/en/latest/api.html#dectate.App], which provides the
dectate.App.directive() decorator that lets you register
new directives.

	
request_class

	alias of morepath.request.Request

	
classmethod _path(path, model=None, variables=None, converters=None, required=None, get_converters=None, absorb=False)

	Initialize self. See help(type(self)) for accurate signature.

	
classmethod converter(type)

	Register custom converter for type.

	Parameters

	type – the Python type for which to register the
converter. Morepath uses converters when converting path
variables and URL parameters when decoding or encoding
URLs. Morepath looks up the converter using the
type. The type is either given explicitly as the value in
the converters dictionary in the
morepath.App.path() directive, or is deduced from
the value of the default argument of the decorated model
function or class using type().

	
classmethod defer_class_links(model, variables)

	Defer class link generation for model class to mounted app.

With defer_class_links you can specify that link
generation for model classes is to be handled by a returned
mounted app if it cannot be handled by the given app
itself. Request.class_link(), Request.link() and
Request.view() are affected by this directive.

The decorated function gets an instance of the application,
the model class and a variables dict. It should return another
application that it knows can create links for this class. The
function uses navigation methods on App to do so like
App.parent() and App.child().

You also have to supply a variables argument to describe
how to get the variables from an instance – this should be
return the same variables as needed by the path directive
in the app you are deferring to. This allows
defer_class_links to function as defer_links for model
objects as well.

	Parameters

	
	model – the class for which we want to defer linking.

	variables – a function that given a model object can
construct the variables used in the path (including any URL
parameters).

	
classmethod defer_links(model)

	Defer link generation for model to mounted app.

With defer_links you can specify that link generation for
instances of model is to be handled by a returned mounted
app if it cannot be handled by the given app
itself. Request.link() and Request.view() are
affected by this directive. Note that
Request.class_link() is not affected by this
directive, but you can use
morepath.App.defer_class_links() instead.

The decorated function gets an instance of the application and
object to link to. It should return another application that
it knows can create links for this object. The function uses
navigation methods on App to do so like
App.parent() and App.child().

	Parameters

	model – the class for which we want to defer linking.

	
classmethod dump_json(model=<class 'object'>)

	Register a function that converts model to JSON.

The decorated function gets app (app instance), obj
(model instance) and request (morepath.Request)
arguments. The app argument is optional. The function
should return an JSON object. That is, a Python object that
can be dumped to a JSON string using json.dump.

	Parameters

	model – the class of the model for which this function is
registered. The self passed into the function is an instance
of the model (or of a subclass). By default the model is object,
meaning we register a function for all model classes.

	
classmethod html(model, render=None, template=None, load=None, permission=None, internal=False, **predicates)

	Register HTML view.

This is like morepath.App.view(), but with
morepath.render_html() as default for the render
function.

Sets the content type to text/html.

	Parameters

	
	model – the class of the model for which this view is registered.

	name – the name of the view as it appears in the URL. If omitted,
it is the empty string, meaning the default view for the model.

	render – an optional function that can render the output
of the view function to a response, and possibly set headers
such as Content-Type, etc. Renders as HTML by
default. This function takes self and
request parameters as input.

	template – a path to a template file. The path is relative
to the directory this module is in. The template is applied to
the content returned from the decorated view function.

Use the morepath.App.template_engine() directive to
define support for new template engines.

	load – a load function that turns the request into an object.
If load is in use, this object will be the third argument to the
view function

	permission – a permission class. The model should have this
permission, otherwise access to this view is forbidden. If omitted,
the view function is public.

	internal – Whether this view is internal only. If
True, the view is only useful programmatically using
morepath.Request.view(), but will not be published on
the web. It will be as if the view is not there.
By default a view is False, so not internal.

	name – the name of the view as it appears in the URL. If omitted,
it is the empty string, meaning the default view for the model.
This is a predicate.

	request_method – the request method to which this view should
answer, i.e. GET, POST, etc. If omitted, this view will respond to
GET requests only. This is a predicate.

	predicates – predicates to match this view on. See the
documentation of App.view() for more information.

	
classmethod identity_policy()

	Register identity policy.

The decorated function should return an instance of
morepath.IdentityPolicy. Either use an identity
policy provided by a library or implement your own.

It gets one optional argument: the settings of the app for which this
identity policy is in use. So you can pass some settings directly to
the IdentityPolicy class.

	
classmethod json(model, render=None, template=None, load=None, permission=None, internal=False, **predicates)

	Register JSON view.

This is like morepath.App.view(), but with
morepath.render_json() as default for the render
function.

Transforms the view output to JSON and sets the content type to
application/json.

	Parameters

	
	model – the class of the model for which this view is registered.

	name – the name of the view as it appears in the URL. If omitted,
it is the empty string, meaning the default view for the model.

	render – an optional function that can render the output
of the view function to a response, and possibly set headers
such as Content-Type, etc. Renders as JSON by
default. This function takes self and
request parameters as input.

	template – a path to a template file. The path is relative
to the directory this module is in. The template is applied to
the content returned from the decorated view function.

Use the morepath.App.template_engine() directive to
define support for new template engines.

	load – a load function that turns the request into an object.
If load is in use, this object will be the third argument to the
view function.

	permission – a permission class. The model should have this
permission, otherwise access to this view is forbidden. If omitted,
the view function is public.

	internal – Whether this view is internal only. If
True, the view is only useful programmatically using
morepath.Request.view(), but will not be published on
the web. It will be as if the view is not there.
By default a view is False, so not internal.

	name – the name of the view as it appears in the URL. If omitted,
it is the empty string, meaning the default view for the model.
This is a predicate.

	request_method – the request method to which this view should
answer, i.e. GET, POST, etc. If omitted, this view will respond to
GET requests only. This is a predicate.

	predicates – predicates to match this view on. See the
documentation of App.view() for more information.

	
classmethod link_prefix()

	Register a function that returns the prefix added to every link
generated by the request.

By default the link generated is based on
webob.Request.application_url().

The decorated function gets app and request
(morepath.Request) arguments. The app argument is
optional. The function should return a string.

	
classmethod method(dispatch_method, **kw)

	Register function as implementation of dispatch method.

This way you can create new hookable functions of your own, or
override parts of the Morepath framework itself.

The dispatch_method argument is a dispatch method, so a
method on a morepath.App class marked with
reg.dispatch_method() [https://reg.readthedocs.io/en/latest/api.html#reg.dispatch_method], so for instance App.foo. The
registered function gets the instance of this app class as its
first argument. The registered function must have the same arguments
as the arguments of the dispatch function.

The reason to use this form of registration instead of
reg.Dispatch.register() [https://reg.readthedocs.io/en/latest/api.html#reg.Dispatch.register] directly is so that they are
overridable just like any other Morepath directive.

	Parameters

	
	dispatch_method – the dispatch method to register an
implementation for.

	kw – keyword parameters with the predicate keys to
register for. Argument names are predicate names, values
are the predicate values to match on. These are like
the predicate arguments for reg.Dispatch.register() [https://reg.readthedocs.io/en/latest/api.html#reg.Dispatch.register].

	
classmethod mount(path, app, variables=None, converters=None, required=None, get_converters=None, name=None)

	Mount sub application on path.

The decorated function gets the variables specified in path as
parameters. It should return a new instance of an application
class.

	Parameters

	
	path – the path to mount the application on.

	app – the morepath.App subclass to mount.

	variables – a function that given an app instance can construct
the variables used in the path (including any URL parameters).
If omitted, variables are retrieved from the app by using
the arguments of the decorated function.

	converters – converters as for the
morepath.App.path() directive.

	required – list or set of names of those URL parameters which
should be required, i.e. if missing a 400 Bad Request response is
given. Any default value is ignored. Has no effect on path
variables. Optional.

	get_converters – a function that returns a converter dictionary.
This function is called once during configuration time. It can
be used to programmatically supply converters. It is merged
with the converters dictionary, if supplied. Optional.

	name – name of the mount. This name can be used with
Request.child() to allow loose coupling between mounting
application and mounted application. Optional, and if not supplied
the path argument is taken as the name.

	
classmethod path(path, model=None, variables=None, converters=None, required=None, get_converters=None, absorb=False)

	Register a model for a path.

Decorate a function or a class (constructor). The function
should return an instance of the model class, for instance by
querying it from the database, or None if the model does
not exist.

The decorated function gets as arguments any variables
specified in the path as well as URL parameters.

If you declare a request parameter the function is
able to use that information too.

	Parameters

	
	path – the route for which the model is registered.

	model – the class of the model that the decorated function
should return. If the directive is used on a class instead of a
function, the model should not be provided.

	variables – a function takes app and model
object arguments. The app argument is optional. It
can construct the variables used in the path (including any
URL parameters). If variables is omitted, variables are
retrieved from the model by using the arguments of the
decorated function.

	converters – a dictionary containing converters for variables.
The key is the variable name, the value is a
morepath.Converter instance.

	required – list or set of names of those URL parameters which
should be required, i.e. if missing a 400 Bad Request response is
given. Any default value is ignored. Has no effect on path
variables. Optional.

	get_converters – a function that returns a converter dictionary.
This function is called once during configuration time. It can
be used to programmatically supply converters. It is merged
with the converters dictionary, if supplied. Optional.

	absorb – If set to True, matches any subpath that
matches this path as well. This is passed into the decorated
function as the absorb argument.

	
classmethod permission_rule(model, permission, identity=<class 'morepath.authentication.Identity'>)

	Declare whether a model has a permission.

The decorated function receives app, model,
permission (instance of any permission object) and
identity (morepath.Identity) parameters. The
app argument is optional. The decorated function should
return True only if the given identity exists and has that
permission on the model.

	Parameters

	
	model – the model class

	permission – permission class

	identity – identity class to check permission for. If None,
the identity to check for is the special
morepath.NO_IDENTITY.

	
classmethod predicate(dispatch, name, default, index, before=None, after=None)

	Register a custom predicate for a dispatch method.

The function to be registered should have the same arguments
as the dispatch method and return a value that is used when
registering an implementation for the dispatch method.

The predicates are ordered by their before and after
arguments.

	Parameters

	
	dispatch – the dispatch method this predicate is for.
You can use the App.method() directive to add a
dispatch method to an app.

	name – the name used to identify the predicate when
registering the implementation of the dispatch method.

	default – the expected value of the predicate, to be used
when registering an implementation if the expected value for
the predicate is not given explicitly.

	index – the index to use. Typically
reg.KeyIndex [https://reg.readthedocs.io/en/latest/api.html#reg.KeyIndex] or reg.ClassIndex [https://reg.readthedocs.io/en/latest/api.html#reg.ClassIndex].

	before – predicate function this function wants to have
priority over.

	after – predicate function we want to have priority over
this one.

	
classmethod predicate_fallback(dispatch, func)

	For a given dispatch and function dispatched to, register fallback.

The fallback is called with the same arguments as the dispatch
function. It should return a response (or raise an exception
that can be turned into a response).

	Parameters

	
	dispatch – the dispatch function

	func – the registered function we are the fallback for

	
classmethod setting(section, name)

	Register application setting.

An application setting is registered under the
.config.settings_registry class attribute of
morepath.App subclasses. It will be executed early
in configuration so other configuration directives can depend
on the settings being there.

The decorated function returns the setting value when executed.

	Parameters

	
	section – the name of the section the setting should go
under.

	name – the name of the setting in its section.

	
classmethod setting_section(section)

	Register application setting in a section.

An application settings are registered under the settings
attribute of morepath.app.Registry. It will
be executed early in configuration so other configuration
directives can depend on the settings being there.

The decorated function returns a dictionary with as keys the
setting names and as values the settings.

	Parameters

	section – the name of the section the setting should go
under.

	
classmethod template_directory(after=None, before=None, name=None)

	Register template directory.

The decorated function gets no argument and should return a
relative or absolute path to a directory containing templates
that can be loaded by this app. If a relative path, it is made
absolute from the directory this module is in.

Template directories can be ordered: templates in a directory
before another one are found before templates in a
directory after it. But you can leave both before and
after out: template directories defined in
sub-applications automatically have a higher priority than
those defined in base applications.

	Parameters

	
	after – Template directory function this template directory
function to be under. The other template directory has a higher
priority. You usually want to use over. Optional.

	before – Template directory function function this function
should have priority over. Optional.

	name – The name under which to register this template
directory, so that it can be overridden by applications that
extend this one. If no name is supplied a default name is
generated.

	
classmethod template_loader(extension)

	Create a template loader.

The decorated function gets a template_directories argument,
which is a list of absolute paths to directories that contain
templates. It also gets a settings argument, which is
application settings that can be used to configure the loader.

It should return an object that can load the template
given the list of template directories.

	
classmethod template_render(extension)

	Register a template engine.

	Parameters

	extension – the template file extension (.pt, etc)
we want this template engine to handle.

The decorated function gets loader, name and
original_render arguments. It should return a callable
that is a view render function: take a content and
request object and return a morepath.Response
instance. This render callable should render the return value
of the view with the template supplied through its
template argument.

	
classmethod tween_factory(under=None, over=None, name=None)

	Register tween factory.

The tween system allows the creation of lightweight middleware
for Morepath that is aware of the request and the application.

The decorated function is a tween factory. It should return a tween.
It gets two arguments: the app for which this tween is in use,
and another tween that this tween can wrap.

A tween is a function that takes a request and a mounted
application as arguments.

Tween factories can be set to be over or under each other to
control the order in which the produced tweens are wrapped.

	Parameters

	
	under – This tween factory produces a tween that wants to
be wrapped by the tween produced by the under tween factory.
Optional.

	over – This tween factory produces a tween that wants to
wrap the tween produced by the over tween factory. Optional.

	name – The name under which to register this tween factory,
so that it can be overridden by applications that extend this one.
If no name is supplied a default name is generated.

	
classmethod verify_identity(identity=<class 'object'>)

	Verify claimed identity.

The decorated function takes an app argument and an
identity argument which contains the claimed identity. The
app argument is optional. It should return True only
if the identity can be verified with the system.

This is particularly useful with identity policies such as
basic authentication and cookie-based authentication where the
identity information (username/password) is repeatedly sent to
the the server and needs to be verified.

For some identity policies (auth tkt, session) this can always
return True as the act of establishing the identity means
the identity is verified.

The default behavior is to always return False.

	Parameters

	identity – identity class to verify. Optional.

	
classmethod view(model, render=None, template=None, load=None, permission=None, internal=False, **predicates)

	Register a view for a model.

The decorated function gets self (model instance) and
request (morepath.Request) parameters. The
function should return either a (unicode) string that is
the response body, or a morepath.Response object.

If a specific render function is given the output of the
function is passed to this first, and the function could
return whatever the render parameter expects as input.
This function should take the object to render and the
request. func:morepath.render_json for instance expects as
its first argument a Python object such as a dict that can be
serialized to JSON.

See also morepath.App.json() and
morepath.App.html().

	Parameters

	
	model – the class of the model for which this view is registered.
The self passed into the view function is an instance
of the model (or of a subclass).

	render – an optional function that can render the output of the
view function to a response, and possibly set headers such as
Content-Type, etc. This function takes self and
request parameters as input.

	template – a path to a template file. The path is relative
to the directory this module is in. The template is applied to
the content returned from the decorated view function.

Use the morepath.App.template_loader() and
morepath.App.template_render() directives to define
support for new template engines.

	load – a load function that turns the request into an object.
If load is in use, this object will be the third argument to the
view function.

	permission – a permission class. The model should have this
permission, otherwise access to this view is forbidden. If omitted,
the view function is public.

	internal – Whether this view is internal only. If
True, the view is only useful programmatically using
morepath.Request.view(), but will not be published on
the web. It will be as if the view is not there.
By default a view is False, so not internal.

	name – the name of the view as it appears in the URL. If omitted,
it is the empty string, meaning the default view for the model.
This is a predicate.

	request_method – the request method to which this view should
answer, i.e. GET, POST, etc. If omitted, this view responds to
GET requests only. This is a predicate.

	predicates – additional predicates to match this view
on. You can install your own using the
morepath.App.predicate() directive.

	
__call__(environ, start_response)

	This app as a WSGI application.

See the WSGI [https://www.python.org/dev/peps/pep-3333/] spec for more information.

Uses App.request() to generate a
morepath.Request instance, then uses
meth:App.publish get the morepath.Response
instance.

	Parameters

	
	environ – WSGI environment

	start_response – WSGI start_response

	Returns

	WSGI iterable.

	
__init__()

	Initialize self. See help(type(self)) for accurate signature.

	
ancestors()

	Return iterable of all ancestors of this app.

Includes this app itself as the first ancestor, all the way
up to the root app in the mount chain.

	
child(app, **variables)

	Get app mounted in this app.

Either give it an instance of the app class as the first
parameter, or the app class itself (or name under which it was
mounted) as the first parameter and as variables the
parameters that go to its mount function.

Returns the mounted application object, with its parent
attribute set to this app object, or None if this
application cannot be mounted in this one.

	
classmethod clean()

	A method that sets or restores the state of the class.

Normally Dectate only sets up configuration into the config
attribute, but in some cases you may touch other aspects of the
class during configuration time. You can override this classmethod
to set up the state of the class in its pristine condition.

	
classmethod commit()

	Commit the app, and recursively, the apps mounted under it.

Mounted apps are discovered in breadth-first order.

	Returns

	the set of discovered app clasess.

	
forget_identity(response, request)

	Modify response so that identity is forgotten by client.

	Parameters

	
	response – morepath.Response to forget identity on.

	request – morepath.Request

	
get_view(obj, request)

	Get the view that represents the obj in the context of a request.

This view is a representation of the obj that can be rendered to a
response. It may also return a morepath.Response
directly.

Predicates are installed in morepath.core that inspect both
obj and request to see whether a matching view can be found.

You can also install additional predicates using the
morepath.App.predicate() and
morepath.App.precicate_fallback() directives.

	Parameters

	
	obj – model object to represent with view.

	request – morepath.Request instance.

	Returns

	morepath.Response object, or
webob.exc.HTTPNotFound [https://docs.pylonsproject.org/projects/webob/en/latest/api/exceptions.html#webob.exc.HTTPNotFound] if view cannot be found.

	
classmethod init_settings(settings)

	Pre-fill the settings before the app is started.

Add settings to App, which can act as normal, can be overridden, etc.

	Parameters

	settings – a dictionary of setting sections which contain
dictionaries of settings.

	
classmethod mounted_app_classes(callback=None)

	Returns a set of this app class and any mounted under it.

This assumes all app classes involved have already been
committed previously, for instance by
morepath.App.commit().

Mounted apps are discovered in breadth-first order.

The optional callback argument is used to implement
morepath.App.commit().

	Parameters

	callback – a function that is called with app classes as
its arguments. This can be used to do something with the app
classes when they are first discovered, like commit
them. Optional.

	Returns

	the set of app classes.

	
remember_identity(response, request, identity)

	Modify response so that identity is remembered by client.

	Parameters

	
	response – morepath.Response to remember identity on.

	request – morepath.Request

	identity – morepath.Identity

	
request(environ)

	Create a Request given WSGI environment for this app.

	Parameters

	environ – WSGI environment

	Returns

	morepath.Request instance

	
sibling(app, **variables)

	Get app mounted next to this app.

Either give it an instance of the app class as the first
parameter, or the app class itself (or name under which it was
mounted) as the first parameter and as variables the
parameters that go to its mount function.

Returns the mounted application object, with its parent
attribute set to the same parent as this one, or None if such
a sibling application does not exist.

	
logger_name = 'morepath.directive'

	Prefix used by dectate to log configuration actions.

	
parent = None

	The parent in which this app was mounted.

	
publish

	Publish functionality wrapped in tweens.

You can use middleware (Tweens) that can hooks in
before a request is passed into the application and just after
the response comes out of the application. Here we use
morepath.tween.TweenRegistry.wrap() to wrap the
morepath.publish.publish() function into the configured
tweens.

This property uses morepath.reify.reify() so that the
tween wrapping only happens once when the first request is
handled and is cached afterwards.

	Returns

	a function that a morepath.Request instance
and returns a morepath.Response instance.

	
root

	The root application.

	
settings

	Returns the settings bound to this app.

	
morepath.scan(package=None, ignore=None, handle_error=None)

	Scan package for configuration actions (decorators).

It scans by recursively importing the package and any modules
in it, including any sub-packages.

Register any found directives with their app classes.

	Parameters

	
	package – The Python module or package to scan. Optional; if left
empty case the calling package is scanned.

	ignore – A list of packages to ignore. Optional. Defaults to
['.test', '.tests']. See importscan.scan() [https://importscan.readthedocs.io/en/latest/index.html#importscan.scan] for details.

	handle_error – Optional error handling function. See
importscan.scan() [https://importscan.readthedocs.io/en/latest/index.html#importscan.scan] for details.

	
morepath.autoscan(ignore=None)

	Automatically load Morepath configuration from packages.

Morepath configuration consists of decorator calls on App
instances, i.e. @App.view() and @App.path().

This function tries to load needed Morepath configuration from all
packages automatically. This only works if:

	The package is made available using a setup.py file.

	The package or a dependency of the package includes
morepath in the install_requires list of the
setup.py file.

	The setup.py name is the same as the name of the
distributed package or module. For example: if the module
inside the package is named myapp the package must be named
myapp as well (not my-app or MyApp).

If the setup.py name differs from the package name, it’s
possible to specify the module morepath should scan using entry
points:

setup(name='some-package',
 ...
 install_requires=[
 'setuptools',
 'morepath'
],
 entry_points={
 'morepath': [
 'scan = somepackage',
]
 })

This function simply recursively imports everything in those packages,
except for test directories.

In addition to calling this function you can also import modules
that use Morepath directives manually, and you can use
scan() to automatically import everything in a
single package.

Typically called immediately after startup just before the
application starts serving using WSGI.

autoscan always ignores .test and .tests
sub-packages – these are assumed never to contain useful Morepath
configuration and are not scanned.

autoscan can fail with an ImportError when it tries to
scan code that imports an optional dependency that is not
installed. This happens most commonly in test code, which often
rely on test-only dependencies such as pytest or nose. If
those tests are in a .test or .tests sub-package they
are automatically ignored, however.

If you have a special package with such expected import errors,
you can exclude them from autoscan using the ignore
argument, for instance using ['special_package']. You then can
use scan() for that package, with a custom
ignore argument that excludes the modules that generate import
errors.

See also scan().

	Parameters

	ignore – ignore to ignore some modules
during scanning. Optional. If ommitted, ignore .test and
.tests packages by default. See importscan.scan() [https://importscan.readthedocs.io/en/latest/index.html#importscan.scan] for
more details.

	
morepath.commit(*apps)

	Commit one or more app classes

A commit causes the configuration actions to be performed. The
resulting configuration information is stored under the
.config class attribute of each App subclass
supplied.

This function may safely be invoked multiple times – each time
the known configuration is recommitted.

	Parameters

	*apps – one or more App subclasses to perform
configuration actions on.

	
morepath.run(wsgi, host='127.0.0.1', port=5000, prog=None, ignore_cli=False, callback=None)

	Uses wsgiref.simple_server to run an application for debugging purposes.

By default, this function looks at the command line for arguments
specified with the --host or --port options. These
override the actual arguments passed to this function. Use
ignore_cli=True to disable this behavior.

Under non-exceptional circumstances this function never returns.

Don’t use this in production; use an external WSGI server instead,
for instance Apache mod_wsgi, Nginx wsgi, Waitress, Gunicorn.

	Parameters

	
	wsgi (callable) – WSGI app.

	host (str) – hostname or IP address on which to listen.

	port (int) – TCP port on which to listen.

	prog (str or None) – the name of the program displayed by diagnostics and help.

	ignore_cli (bool) – whether to ignore sys.argv.

	callback (function(server) or None) – function invoked after the creation of the server.

	Returns

	never.

Note

Unless ignore_cli is true, this function provides a
full-featured command-line parser. Its help message describes
how to use it:

usage: <script name> [-h] [-p PORT] [-H HOST]

optional arguments:
 -h, --help show this help message and exit
 -p PORT, --port PORT TCP port on which to listen (default: 5000)
 -H HOST, --host HOST hostname or IP address on which to listen (default:
 127.0.0.1)

The default values for the --port and --host options are
takend from the value of the arguments passed to
morepath.run().

	
class morepath.Request(environ, app, **kw)

	Request.

Extends webob.request.BaseRequest [https://docs.pylonsproject.org/projects/webob/en/latest/api/request.html#webob.request.BaseRequest]

	
after(func)

	Call a function with the response after a successful request.

A request is considered successful if the HTTP status is a 2XX or a
3XX code (e.g. 200 OK, 204 No Content, 302 Found).
In this case after is called.

A request is considered unsuccessful if the HTTP status lies outside
the 2XX-3XX range (e.g. 403 Forbidden, 404 Not Found,
500 Internal Server Error). Usually this happens if an exception
occurs. In this case after is not called.

Some exceptions indicate a successful request however and their
occurrence still leads to a call to after. These exceptions
inherit from either webob.exc.HTTPOk [https://docs.pylonsproject.org/projects/webob/en/latest/api/exceptions.html#webob.exc.HTTPOk] or
webob.exc.HTTPRedirection [https://docs.pylonsproject.org/projects/webob/en/latest/api/exceptions.html#webob.exc.HTTPRedirection].

You use request.after inside a view function definition.

It can be used explicitly:

@App.view(model=SomeModel)
def some_model_default(self, request):
 def myfunc(response):
 response.headers.add('blah', 'something')
 request.after(my_func)

or as a decorator:

@App.view(model=SomeModel)
def some_model_default(self, request):
 @request.after
 def myfunc(response):
 response.headers.add('blah', 'something')

	Parameters

	func – callable that is called with response

	Returns

	func argument, not wrapped

	
class_link(model, variables=None, name='', app=<SAME_APP>)

	Create a link (URL) to a view on a class.

Given a model class and a variables dictionary, create a link
based on the path registered for the class and interpolate the
variables.

If you have an instance of the model available you’d link to the
model instead, but in some cases it is expensive to instantiate
the model just to create a link. In this case class_link can be
used as an optimization.

The morepath.App.defer_class_links() directive can be
used to defer link generation for a particular class (if this
app doesn’t handle them) to another app.

Note that the morepath.App.defer_links() directive has
no effect on class_link, as it needs an instance of the
model to work, which is not available.

If no link can be constructed for the model class, a
morepath.error.LinkError is raised. This error is
also raised if you don’t supply enough variables. Additional
variables not used in the path are interpreted as URL
parameters.

	Parameters

	
	model – the model class to link to.

	variables – a dictionary with as keys the variable names,
and as values the variable values. These are used to construct
the link URL. If omitted, the dictionary is treated as containing
no variables.

	name – the name of the view to link to. If omitted, the
the default view is looked up.

	app – If set, change the application to which the
link is made. By default the link is made to an object
in the current application.

	
link(obj, name='', default=None, app=<SAME_APP>)

	Create a link (URL) to a view on a model instance.

The resulting link is prefixed by the link prefix. By default
this is the full URL based on the Host header.

You can configure the link prefix for an application using the
morepath.App.link_prefix() directive.

If no link can be constructed for the model instance, a
morepath.error.LinkError is raised. None is treated
specially: if None is passed in the default value is
returned.

The morepath.App.defer_links() or
morepath.App.defer_class_links() directives can be used
to defer link generation for all instances of a particular
class (if this app doesn’t handle them) to another app.

	Parameters

	
	obj – the model instance to link to, or None.

	name – the name of the view to link to. If omitted, the
the default view is looked up.

	default – if None is passed in, the default value is
returned. By default this is None.

	app – If set, change the application to which the
link is made. By default the link is made to an object
in the current application.

	
link_prefix(app=None)

	Prefix to all links created by this request.

	Parameters

	app – Optionally use the given app to create the link.
This leads to use of the link prefix configured for the given app.
This parameter is mainly used internally for link creation.

	
reset()

	Reset request.

This resets the request back to the state it had when request
processing started. This is used by more.transaction when it
retries a transaction.

	
resolve_path(path, app=<SAME_APP>)

	Resolve a path to a model instance.

The resulting object is a model instance, or None if the
path could not be resolved.

	Parameters

	
	path – URL path to resolve.

	app – If set, change the application in which the
path is resolved. By default the path is resolved in the
current application.

	Returns

	instance or None if no path could be resolved.

	
view(obj, default=None, app=<SAME_APP>, **predicates)

	Call view for model instance.

This does not render the view, but calls the appropriate
view function and returns its result.

	Parameters

	
	obj – the model instance to call the view on.

	default – default value if view is not found.

	app – If set, change the application in which to look up
the view. By default the view is looked up for the current
application. The defer_links directive can be used to change
the default app for all instances of a particular class.

	predicates – extra predicates to modify view
lookup, such as name and request_method. The default
name is empty, so the default view is looked up,
and the default request_method is GET. If you introduce
your own predicates you can specify your own default.

	
app = None

	morepath.App instance currently handling request.

	
identity

	Self-proclaimed identity of the user.

The identity is established using the identity policy. Normally
this would be an instance of morepath.Identity.

If no identity is claimed or established, or if the identity
is not verified by the application, the identity is the the
special value morepath.NO_IDENTITY.

The identity can be used for authentication/authorization of
the user, using Morepath permission directives.

	
unconsumed = None

	Stack of path segments that have not yet been consumed.

See morepath.publish.

	
class morepath.Response(body=None, status=None, headerlist=None, app_iter=None, content_type=None, conditional_response=None, charset=<object object>, **kw)

	Response.

Extends webob.response.Response [https://docs.pylonsproject.org/projects/webob/en/latest/api/response.html#webob.response.Response].

	
morepath.render_html(content, request)

	Take string and return text/html response.

	Parameters

	
	content – contnet as returned from view function.

	request – a morepath.Request instance.

	Returns

	a morepath.Response instance with content
as the body.

	
morepath.render_json(content, request)

	Take dict/list/string/number content and return json response.

This respects the morepath.App.dump_json() directive that
can be used to serialize any object to JSON. By default this
serializes Python objects like dicts, strings to JSON.

	Parameters

	
	content – content as returned from view function.

	request – a morepath.Request instance.

	Returns

	a morepath.Response instance with a serialized
JSON body.

	
morepath.redirect(location)

	Return a response object that redirects to location.

	Parameters

	location – a URL to redirect to.

	Returns

	a webob.exc.HTTPFound [https://docs.pylonsproject.org/projects/webob/en/latest/api/exceptions.html#webob.exc.HTTPFound] response object. You can
return this from a view to redirect.

	
class morepath.Identity(userid, **kw)

	Claimed identity of a user.

Note that this identity is just a claim; to authenticate the user
and authorize them you need to implement Morepath permission directives.

	Parameters

	
	userid – The userid of this identity

	kw – Extra information to store in identity.

	
as_dict()

	Export identity as dictionary.

This includes the userid and the extra keyword parameters used
when the identity was created.

	Returns

	dict with identity info.

	
userid = None

	The user ID of the identity.

May be None if no particular identity was established.

	
class morepath.IdentityPolicy

	Identity policy API.

Implement this API if you want to have a custom way to establish
identities for users in your application.

	
forget(response, request)

	Forget identity on response.

Implements morepath.App.forget_identity, which is called from
user logout code.

Remove identifying information from the response. This could
delete a cookie or issue a basic auth re-authentication.

	Parameters

	
	response (morepath.Response) – response object on which to forget identity.

	request (morepath.Request) – request object.

	
identify(request)

	Establish what identity this user claims to have from request.

	Parameters

	request (morepath.Request.) – Request to extract identity information from.

	Returns

	morepath.Identity instance or
morepath.NO_IDENTITY if identity cannot
be established.

	
remember(response, request, identity)

	Remember identity on response.

Implements morepath.App.remember_identity, which is called
from user login code.

Given an identity object, store it on the response, for
instance as a cookie. Some policies may not do any storing but
instead retransmit authentication information each time in the
request.

	Parameters

	
	response (morepath.Response) – response object on which to store identity.

	request (morepath.Request) – request object.

	identity (morepath.Identity) – identity to remember.

	
morepath.NO_IDENTITY = <morepath.authentication.NoIdentity object>

	The user is not yet logged in.

The request is anonymous.

	
morepath.EXCVIEW = <function excview_tween_factory>

	Exception views.

If an exception is raised by application code and a view is
declared for that exception class, use it.

If no view can be found, raise it all the way up – this will be a
500 internal server error and an exception logged.

	
morepath.HOST_HEADER_PROTECTION = <function poisoned_host_header_protection_tween_factory>

	Protect Morepath applications against the most basic host header
poisoning attacts.

The regex approach has been copied from the Django project. To find more
about this particular kind of attack have a look at the following
references:

	http://skeletonscribe.net/2013/05/practical-http-host-header-attacks

	https://www.djangoproject.com/weblog/2012/dec/10/security/

	https://github.com/django/django/commit/77b06e41516d8136b56c040cba7e235b

	
class morepath.Converter(decode, encode=None)

	Decode from strings to objects and back.

Used internally by the morepath.App.converter() directive.

Only used for decoding for a list with a single value, will
error if more or less than one value is entered.

Used for decoding/encoding URL parameters and path parameters.

Create new converter.

	Parameters

	
	decode – function that given string can decode them into objects.

	encode – function that given objects can encode them into
strings.

	
decode(strings)

	Decode list of strings into Python value.

String must have only a single entry.

	Parameters

	strings – list of strings.

	Returns

	Python value

	
encode(value)

	Encode Python value into list of strings.

	Parameters

	value – Python value

	Returns

	List of strings with only a single entry

	
is_missing(value)

	True is a given value is the missing value.

	
morepath.dispatch_method(*predicates, **kw)

	Decorator to make a method on a context class dispatch.

This takes the predicates to dispatch on as zero or more parameters.

	Parameters

	
	predicates – sequence of Predicate instances to do
the dispatch on. You create predicates using
reg.match_instance() [https://reg.readthedocs.io/en/latest/api.html#reg.match_instance], reg.match_key() [https://reg.readthedocs.io/en/latest/api.html#reg.match_key],
reg.match_class() [https://reg.readthedocs.io/en/latest/api.html#reg.match_class], or with a custom predicate class.

You can also pass in plain string argument, which is turned into
a reg.match_instance() [https://reg.readthedocs.io/en/latest/api.html#reg.match_instance] predicate.

	get_key_lookup – a function that gets a
PredicateRegistry instance and returns a key lookup. A
PredicateRegistry instance is itself a key lookup, but
you can return a caching key lookup (such as
reg.DictCachingKeyLookup [https://reg.readthedocs.io/en/latest/api.html#reg.DictCachingKeyLookup] or
reg.LruCachingKeyLookup [https://reg.readthedocs.io/en/latest/api.html#reg.LruCachingKeyLookup]) to make it more efficient.

	first_invocation_hook – a callable that accepts an instance of the
class in which this decorator is used. It is invoked the first
time the method is invoked.

morepath.error – exception classes

The exception classes used by Morepath.

Morepath republishes some configuration related errors from
Dectate:

	dectate.ConfigError [https://dectate.readthedocs.io/en/latest/api.html#dectate.ConfigError]

	dectate.ConflictError [https://dectate.readthedocs.io/en/latest/api.html#dectate.ConflictError]

	dectate.DirectiveReportError [https://dectate.readthedocs.io/en/latest/api.html#dectate.DirectiveReportError]

	dectate.DirectiveError [https://dectate.readthedocs.io/en/latest/api.html#dectate.DirectiveError]

	dectate.TopologicalSortError [https://dectate.readthedocs.io/en/latest/api.html#dectate.TopologicalSortError]

Morepath specific errors:

	
exception morepath.error.AutoImportError(module_name)

	Raised when Morepath fails to import a module during autoscan.

	
exception morepath.error.TrajectError

	Raised when path supplied to traject is not allowed.

	
exception morepath.error.LinkError

	Raised when a link cannot be made.

	
exception morepath.error.TopologicalSortError

	Raised if dependencies cannot be sorted topologically.

This is due to circular dependencies.

morepath.pdbsupport – debugging support

	
morepath.pdbsupport.set_trace(*args, **kw)

	Set pdb trace as in import pdb; pdb.set_trace, ignores reg.

Use from morepath import pdbsupport; pdbsupport.set_trace() to use.

The debugger won’t step into reg, inspect or repoze.lru.

 morepath.directive – Extension API

morepath.directive – Extension API

This module contains the extension API for Morepath. It is useful
when you want to define new directives in a Morepath extension. An
example an extension that does this is more.static [https://github.com/morepath/more.static].

If you just use Morepath you should not have to import from
morepath.directive in your code. Instead you use the directives
defined in here through morepath.App.

Morepath uses the Dectate [http://dectate.readthedocs.org] library to implement its directives. The
directives are installed on morepath.App using the
dectate.App.directive() decorator.

We won’t repeat the directive documentation here. If you are
interested in creating a custom directive in a Morepath extension it
pays off to look at the source code of this module. If your custom
directive needs to interact with a core directive you can inherit from
them, and/or refer to them with group_class.

When configuration is committed it is written into various
configuration registries which are attached to the
dectate.App.config [https://dectate.readthedocs.io/en/latest/api.html#dectate.App.config] class attribute. If you implement your own
directive dectate.Action [https://dectate.readthedocs.io/en/latest/api.html#dectate.Action] that declares one of these
registries in dectate.Action.config [https://dectate.readthedocs.io/en/latest/api.html#dectate.Action.config] you can import their class
from morepath.directive.

Registry classes

	
class morepath.directive.ConverterRegistry

	A registry for converters.

Used to decode/encode URL parameters and path variables used
by the morepath.App.path() directive.

Is aware of inheritance.

	
actual_converter(spec)

	Return an actual converter for a given spec.

	Parameters

	spec – if a type, return the registered converter for
that; if a list use its first element as a spec for a
converter; else, assume it is a converter and return it.

	Returns

	a morepath.Converter instance.

	
argument_and_explicit_converters(arguments, converters)

	Use explict converters unless none supplied, then use default args.

	
register_converter(type, converter)

	Register a converter for type.

	Parameters

	
	type – the Python type for which to register
the converter.

	converter – a morepath.Converter instance.

	
class morepath.directive.PathRegistry(app_class, converter_registry)

	A registry for routes.

Subclasses morepath.traject.TrajectRegistry.

Used by morepath.App.path() and morepath.App.mount()
directives to register routes. Also used by the
morepath.App.defer_links() and
morepath.App.defer_class_links() directives.

	Parameters

	converter_registry – a
morepath.directive.ConverterRegistry instance

	
register_defer_class_links(model, get_variables, app_factory)

	Register factory for app to defer class links to.

See morepath.App.defer_class_links() for more information.

	Parameters

	
	model – model class to defer links for.

	get_variables – get variables dict for obj.

	app_factory – function that model class, app instance
and variables dict as arguments and should return another
app instance that does the link generation.

	
register_defer_links(model, app_factory)

	Register factory for app to defer links to.

See morepath.App.defer_links() for more information.

	Parameters

	
	model – model class to defer links for.

	app_factory – function that takes app instance and model
object as arguments and should return another app instance that
does the link generation.

	
register_inverse_path(model, path, factory_args, converters=None, absorb=False)

	Register information for link generation.

	Parameters

	
	model – model class

	path – the route

	factory_args – a list of the arguments of the factory
function for this path.

	converters – a converters dict.

	absorb – bool, if true this is an absorbing path.

	
register_mount(app, path, variables, converters, required, get_converters, mount_name, code_info, app_factory)

	Register a mounted app.

See morepath.App.mount() for more information.

	Parameters

	
	app – morepath.App subclass.

	path – route

	variables – function that given model instance extracts
dictionary with variables used in path and URL parameters.

	converters – converters structure

	required – required URL parameters

	get_converters – get a converter dynamically.

	mount_name – explicit name of this mount

	code_info – a dectate.CodeInfo [https://dectate.readthedocs.io/en/latest/api.html#dectate.CodeInfo] instance used to
register this directive.

	app_factory – function that constructs app instance given
variables extracted from path and URL parameters.

	
register_path(model, path, variables, converters, required, get_converters, absorb, code_info, model_factory)

	Register a route.

See morepath.App.path() for more information.

	Parameters

	
	model – model class

	path – route

	variables – function that given model instance extracts
dictionary with variables used in path and URL parameters.

	converters – converters structure

	required – required URL parameters

	get_converters – get a converter dynamically.

	absorb – absorb path

	code_info – the dectate.CodeInfo [https://dectate.readthedocs.io/en/latest/api.html#dectate.CodeInfo] object describing
the line of code used to register the path.

	model_factory – function that constructs model object given
variables extracted from path and URL parameters.

	
register_path_variables(model, func)

	Register variables function for a model class.

	Parameters

	
	model – model class

	func – function that gets a model instance argument and
returns a variables dict.

	
class morepath.directive.PredicateRegistry(app_class)

	A registry of what predicates are registered for which functions.

It also keeps track of how predicates are to be ordered.

	
get_predicates(dispatch)

	Create Reg predicates.

This creates reg.Predicate [https://reg.readthedocs.io/en/latest/api.html#reg.Predicate] objects for a particular
dispatch function.

Uses PredicateRegistry.sorted_predicate_infos() to sort
the predicate infos.

	Parameters

	dispatch – the dispatch function to create the predicates for.

	Returns

	a list of reg.Predicate [https://reg.readthedocs.io/en/latest/api.html#reg.Predicate] instances in the
correct order.

	
install_predicates()

	Install the predicates with reg.

This should be called during configuration once all predicates
and fallbacks are known. Uses
PredicateRegistry.get_predicates() to get out the
predicates in the correct order.

	
register_predicate(func, dispatch, name, default, index, before, after)

	Register a predicate for installation into the reg registry.

See morepath.App.predicate() for details.

	Parameters

	
	func – the function that implements the predicate.

	dispatch – the dispatch function to register the predicate on.

	name – name of the predicate.

	default – default value.

	index – index to use.

	before – predicate function to have priority over.

	after – predicate function that has priority over this one.

	
register_predicate_fallback(dispatch, func, fallback_func)

	Register a predicate fallback for installation into reg registry.

See morepath.App.predicate_fallback() for details.

	Parameters

	
	dispatch – the dispatch function to register fallback on.

	func – the predicate function to register fallback for.

	fallback_func – the fallback function.

	
sorted_predicate_infos(dispatch)

	Topologically sort predicate infos for a dispatch function.

	Parameters

	dispatch – the dispatch function to sort for.

	Returns

	a list of sorted PredicateInfo instances.

	
class morepath.directive.SettingRegistry

	Registry of settings.

Used by the morepath.App.setting directive and
morepath.App.setting_section directives.

Stores sections as attributes, which then have the settings as
attributes.

This settings registry is exposed through
morepath.App.settings.

	
register_setting(section_name, setting_name, func)

	Register a setting.

	Parameters

	
	section_name – name of section to register in

	setting_name – name of setting

	func – function that when called without arguments
creates the setting value.

	
class morepath.directive.TemplateEngineRegistry(setting_registry)

	A registry of template engines.

Is used by the morepath.App.view(),
morepath.App.json() and morepath.App.html() directives
for template-based rendering.

	Parameters

	setting_registry – a morepath.directive.SettingRegistry
instance.

	
get_template_render(name, original_render)

	Get a template render function.

	Parameters

	
	name – filename of the template (with extension, without path),
such as foo.pt.

	original_render – render function supplied with the view
directive.

	Returns

	a render function that uses the template to render
the result of a view function.

	
initialize_template_loader(extension, func)

	Initialize a template loader for an extension.

Used by the morepath.App.template_loader() directive.

	Parameters

	
	extension – template extension like .p.t

	func – function that given a list of template directories
returns a load object that be used to load the template for use.

	
register_template_directory_info(key, directory, before, after, configurable)

	Register a directory to look for templates.

Used by the morepath.App.template_directory() directive.

	Parameters

	
	key – unique key identifying this directory

	directory – absolute path to template directory

	before – key to before in template lookup

	after – key to sort after in template lookup

	configurable – dectate.Configurable used that
registered this template directory. Used for implicit
sorting by app inheritance.

	
register_template_render(extension, func)

	Register way to get a view render function for a file extension.

Used by the morepath.App.template_render() directive. See
there for more information about parameters.

	Parameters

	
	extension – template extension like .pt

	func – function that given loader, name and original_renderer
constructs a view render function.

	
sorted_template_directories()

	Get sorted template directories.

Use explicit before and after information but also
App inheritance to sort template directories in order of template
lookup.

	Returns

	a list of template directory paths in the right order

	
class morepath.directive.TweenRegistry

	Registry for tweens.

	
register_tween_factory(tween_factory, over, under)

	Register a tween factory.

	Parameters

	tween_factory – a function that constructs a tween given
a morepath.App instance and a function that takes a
morepath.Request argument and returns a
morepath.Response (or a webob.response.Response [https://docs.pylonsproject.org/projects/webob/en/latest/api/response.html#webob.response.Response]).

	Over

	this tween factory wraps the tween created by the over
factory (possibly indirectly).

	Under

	the under factory wraps the tween created by this one
(possibly indirectly).

	
sorted_tween_factories()

	Sort tween factories topologically by over and under.

	Returns

	a sorted list of tween infos.

	
wrap(app)

	Wrap app with tweens.

This wraps morepath.publish.publish() with tweens.

	Parameters

	app – an instance of morepath.App.

	Returns

	the application wrapped with tweens. This is a function
that takes request and returns a a response.

Action classes

To instantiate an action you need to give it the same arguments as the
directive it implements. Reading the source of existing actions is
helpful when you want to implement your own actions. See
morepath/directive.py.

	
class morepath.directive.SettingAction

	morepath.App.setting()

	
class morepath.directive.SettingSectionAction

	morepath.App.setting_section()

	
class morepath.directive.PredicateFallbackAction

	morepath.App.predicate_fallback()

	
class morepath.directive.PredicateAction

	morepath.App.predicate()

	
class morepath.directive.FunctionAction

	morepath.App.function()

	
class morepath.directive.ConverterAction

	morepath.App.converter()

	
class morepath.directive.PathAction

	Helps to implement morepath.App.path()

	
class morepath.directive.PathCompositeAction

	morepath.App.path()

	
class morepath.directive.PermissionRuleAction

	morepath.App.permission_rule()

	
class morepath.directive.TemplateDirectoryAction

	morepath.App.template_directory()

	
class morepath.directive.TemplateLoaderAction

	morepath.App.template_loader()

	
class morepath.directive.TemplateRenderAction

	morepath.App.template_render()

	
class morepath.directive.ViewAction

	morepath.App.view()

	
class morepath.directive.JsonAction

	morepath.App.json()

	
class morepath.directive.HtmlAction

	morepath.App.html()

	
class morepath.directive.MountAction

	morepath.App.mount()

	
class morepath.directive.DeferLinksAction

	morepath.App.defer_links()

	
class morepath.directive.DeferClassLinksAction

	morepath.App.defer_class_links()

	
class morepath.directive.TweenFactoryAction

	morepath.App.tween_factory()

	
class morepath.directive.IdentityPolicyFunctionAction

	Helps to implement morepath.App.identity_policy()

	
class morepath.directive.IdentityPolicyAction

	morepath.App.identity_policy()

	
class morepath.directive.VerifyIdentityAction

	morepath.App.verify_identity()

	
class morepath.directive.DumpJsonAction

	morepath.App.dump_json()

	
class morepath.directive.LinkPrefixAction

	morepath.App.link_prefix()

 Contributor Guide

Contributor Guide

If you want to contribute to the project, this part of the
documentation is for you.

	Developing Morepath
	Community

	Install Morepath for development

	Install pre-commit hook for Black integration

	Running the tests

	Black

	flake8

	radon

	Running the documentation tests

	Building the HTML documentation

	Developing Reg, Dectate or Importscan

	Tox

	Deprecation

	Design Notes
	Publish any model

	Routing

	Traversal

	Linking

	Model is web-agnostic

	View/model separation

	Isolation between applications

	Sharing between applications

	Models can be published once per application

	Linking to another application

	Reusable components

	Declarative

	Conflicts

	Overrides

	Implementation Overview
	Introduction

	How it all works

	Dependencies

	Internal APIs

 Developing Morepath

Developing Morepath

Community

Communication is important, so see Community for information
on how to get in touch!

Install Morepath for development

Clone Morepath from github:

$ git clone git@github.com:morepath/morepath.git

If this doesn’t work and you get an error ‘Permission denied (publickey)’,
you need to upload your ssh public key to github [https://help.github.com/articles/generating-an-ssh-key].

Then go to the morepath directory:

$ cd morepath

Make sure you have virtualenv [https://pypi.python.org/pypi/virtualenv] installed.

Create a new virtualenv for Python 3 inside the morepath directory:

$ virtualenv -p python3 env/py3

Activate the virtualenv:

$ source env/py3/bin/activate

Make sure you have recent setuptools and pip installed:

$ pip install -U setuptools pip

Install the various dependencies and development tools from
requirements/develop.txt:

$ pip install -Ur requirements/develop.txt --src src

This needs your ssh key installed in github [https://help.github.com/articles/generating-an-ssh-key] to work.

The --src src option makes sure that the dependent reg,
dectate and importscan projects are checked out in the src
directory. You can make changes to them during development too.

For upgrading the sources and requirements just run the command again.

Note

The following commands work only if you have the virtualenv activated.

Install pre-commit hook for Black integration

We’re using Black for formatting the code and it’s recommended to
install the pre-commit hook [https://black.readthedocs.io/en/stable/version_control_integration.html] for Black integration before committing:

$ pre-commit install

Running the tests

You can run the tests using py.test [http://pytest.org/latest/]:

$ py.test

To generate test coverage information as HTML do:

$ py.test --cov --cov-report html

You can then point your web browser to the htmlcov/index.html file
in the project directory and click on modules to see detailed coverage
information.

Black

To format the code with the Black Code Formatter [https://black.readthedocs.io] run in the root directory:

$ black morepath

Black has also integration [https://black.readthedocs.io/en/stable/editor_integration.html] for the most popular editors.

flake8

flake8 [https://pypi.python.org/pypi/flake8] is a tool that can do various checks for common Python
mistakes using pyflakes [https://pypi.python.org/pypi/pyflakes] and checks for PEP8 [http://www.python.org/dev/peps/pep-0008/] style compliance. We
want a codebase where there are no flake8 messages.

To do pyflakes and pep8 checking do:

$ flake8 morepath

radon

radon [https://radon.readthedocs.org/en/latest/commandline.html] is a tool that can check various measures of code complexity.

To check for cyclomatic complexity [https://en.wikipedia.org/wiki/Cyclomatic_complexity] (excluding the tests):

$ radon cc morepath -e "morepath/tests*"

To filter for anything not ranked A:

$ radon cc morepath --min B -e "morepath/tests*"

And to see the maintainability index:

$ radon mi morepath -e "morepath/tests*"

Running the documentation tests

The documentation contains code. To check these code snippets, you
can run this code using this command:

(py3) $ sphinx-build -b doctest doc doc/build/doctest

Or alternatively if you have Make installed:

(py3) $ cd doc
(py3) $ make doctest

Or from the Morepath project directory:

(py3) $ make -C doc doctest

Building the HTML documentation

To build the HTML documentation (output in doc/build/html), run:

$ sphinx-build doc doc/build/html

Or alternatively if you have Make installed:

$ cd doc
$ make html

Or from the Morepath project directory:

$ make -C doc html

Developing Reg, Dectate or Importscan

If you need to adjust the sources of Reg, Dectate or Importscan and
test them together with Morepath, they’re available in the src
directory. You can edit them and test changes in the Morepath project
directly.

If you want to run the tests for one of them, let’s say Reg, do:

$ cd src/reg
$ py.test

Tox

With tox you can test Morepath under different Python environments.

We have Travis continuous integration installed on Morepath’s github
repository and it runs the same tox tests after each checkin.

First you should install all Python versions which you want to
test. The versions which are not installed will be skipped. You should
at least install Python 3.7 which is required by flake8, coverage and
doctests.

One tool you can use to install multiple versions of Python is pyenv [https://github.com/yyuu/pyenv].

To find out which test environments are defined for Morepath in tox.ini run:

$ tox -l

You can run all tox tests with:

$ tox

You can also specify a test environment to run e.g.:

$ tox -e py37
$ tox -e pep8
$ tox -e docs

To find out which dependencies and which versions
tox installs in the testenv, you can use:

$ tox -e freeze

Deprecation

In some cases we have to make changes that break compatibility and
break user code. We mark these in CHANGES.txt (CHANGES)
using breaking change, deprecated or removed.

These entries should explain the change, and also tell the user what
to do to upgrade their code. Do include an before/after code example
as that makes it much easier, even if it’s a simple import change.

We like to keep things moving and reserve the right to introduce
breaking changes. When we do make a breaking change it should be
marked clearly in CHANGES.txt (CHANGES) with a Breaking
change marker.

If it is not a great burden we use deprecations. Morepath in this case
retains the old APIs but issues a deprecation warning. See
Upgrading to a new Morepath version for the notes for end-users concerning this. Here is
the deprecation procedure for developers:

	Add a Deprecated entry in CHANGES.txt that describes what
to do, as in a breaking change.

	Issue a deprecation warning in the code that is deprecated.

	Put a **Deprecated** entry in the docstring of whatever got
deprecated with a brief comment on what to do.

	Put an issue labeled remove deprecation in the tracker for one
release milestone after the upcoming release that states we should
remove the deprecation. Create the milestone if needed.

This way we don’t maintain deprecated code and their warnings
indefinitely – one release later we remove the backwards
compatibility code and deprecation warnings.

	Once we go and remove code, we repeat the information on what to do
in a new Removed* entry in CHANGES.txt; treat it just like
Breaking change and recycle the text written for the previous
Deprecated entry for the stuff we’re now removing.

 Design Notes

Design Notes

Some of the use cases that influenced Morepath’s design are documented
here.

Publish any model

It should be possible to publish any model object to the web on a
readable URL. This includes model objects that are retrieved from a
relational database and were created with a ORM.

Allowing individual models to be published on separate URLs avoids the
god object antipattern where all web operations are routed through a
single object. Instead each model, through view objects, can
handle model-specific requests and operations. This encourages a more
modular and reusable application design.

Routing

It should be easy to declare explicit routes to model. A route
consists of a routing pattern with zero or more variables. The
variables are used to identify the model, for instance using a
relational database query.

Having routes makes it easier to reason about the URL structure of an
application. Routes also make it easier to expose models that are
retrieved using a query or are constructed on the fly, without
imposing a specific structure on the models.

Traversal

It should be possible to associate routes with specific models in the
application, not just to the root. This way models with sub-paths to
sub-components can be made available as reusable components; an example
of this could be a container. If the model is published, its
sub-components are then exposed as well.

This allows for increased reuse of not just models but relationships
between models, and lets the developer publish nested structures that
cannot be specified using routing alone.

Linking

If a model is published, it should be possible to automatically
generate a link to a model instance in the form of a URL.

This way there is no need to construct URLs manually, and there is no
need to have to refer to routes explicitly in order to construct URLs.
The system knows which route to use and how to construct the
parameters that go into the route itself, given the model.

This is useful when creating RESTful web services (where hypermedia is
the engine of application state), or to construct rich client-side
applications that get all their URLs from the server from a REST-style
web service.

Model is web-agnostic

Model classes should not have to have any web knowledge; no particular
base classes are required, and no methods or attributes need to be
implemented in order to publish instances of that model to the web. In
case of an ORM, the ORM does not need to be reconfigured in order to
publish ORM-mapped classes to the web. Models do not receive any
request object and do not have to generate a response object.

Instead this knowledge is external to the models. Models should be
optimized for programmatic use in general.

View/model separation

View objects are responsible for translating the model to the web and
web operations to operations on the model. Views receive the request
object and generate the response object. This is again to avoid giving
the models knowledge about the web. This is a kind of model/view
separation where the view is the intermediary between the model and
the web.

Isolation between applications

The system allows multiple applications to be published at the same
time. Applications work in isolation from each other by default. For
instance, publishing a model on a URL does not affect another
application, and publishing a view for a model does not make that
view available in the other application.

Sharing between applications

In order to support reusable components, it should be possible to
explicitly break application isolation and make routes to models and
views globally available. Each application will share this information.

[Morepath in fact now allows more controlled sharing; only Morepath
itself is globally shared]

Models can be published once per application

Per application a model can be exposed on a single URL pattern. So,
the same instance could be published once per application, in a URL
structure optimal for each application.

Again this supports applications working in isolation - they may treat
database models differently than other applications do.

Linking to another application

It should be possible to construct URLs to models in the context of
another application, if this application is given explicitly during
link time.

Reusable components

It should be possible to define a base class (or interface) for a
model that automatically pulls in (globally registered) views and
sub-paths when you subclass from it. This lets a framework developer
define APIs that an application developer can implement. By doing so,
the application developer automatically gets a whole set of views for
their models.

Declarative

It should be possible to register the components in a declarative
way. This avoids spaghetti registration code, and also makes it
possible to more easily reason about registrations (for instance to do
overrides or detect conflicts).

Conflicts

If you try to do the same registration multiple times, the system
should fail explicitly, as otherwise this would lead to subtle errors.

Overrides

It should be possible to override one registration with another one.
This should either be an explicit operation, or the result of
overriding in a different registry that has precedence over the
defaults.

 Implementation Overview

Implementation Overview

Introduction

This documentation contains an overview of how the implementation of
Morepath works. This includes a description of the different pieces of
Morepath as well as an overview of the internal APIs.

How it all works

import-time

When a Morepath-based application starts, the first thing that happens
is that all directives in modules that are imported are registered
with Morepath’s configuration engine. This configuration engine is
implemented using the Dectate [http://dectate.readthedocs.org] library. Configuration is associated
with morepath.App subclasses.

Only the minimum code is executed to register the directives with
their App classes; the directive actions are not performed yet.

Besides normal Python imports, morepath.scan() and
morepath.autoscan() can be used to automatically import modules
so that their directives are registered.

commit

Configuration is then committed using morepath.App.commit(), or
the more low-level morepath.commit().

This causes dectate.commit() [https://dectate.readthedocs.io/en/latest/api.html#dectate.commit] to be called for a particular App
class. This takes all the configuration as recorded during import-time
and resolves it. This involves:

	detect any conflicts between documentation and reporting it.

	detect any morepath.error.DirectiveError errors raised by
individual directive actions.

	resolve subclassing so that apps inherit from base apps and can override
as well.

	performing the resulting configuration actions in the correct order.

All this is implemented by Dectate [http://dectate.readthedocs.org].

Morepath specific directives are defined in
morepath.directive. Each directly or indirectly cause
dectate.Action [https://dectate.readthedocs.io/en/latest/api.html#dectate.Action] objects to be created. When the action is
performed various configuration registry objects are affected. These
registries are the end result of configuration.

morepath.directive.RegRegistry is the most advanced of
registries used in Morepath and is based on reg.Registry. In
this registry generic dispatch functions as defined in
morepath.generic get individual implementations registered for
them. Reg dispatches to specific implementations based on the function
arguments used to call the generic function. Much of the functionality
in Morepath ultimately causes a registration into the Reg registry and
during runtime uses the API in morepath.generic.

A special registry contains the settings; setting functions as
declared by morepath.App.setting() and
morepath.App.setting_section() are executed and stored in a
morepath.directive.SettingRegistry which is accessible through
morepath.App.settings.

instantiate the app

Once configuration has successfully completed, the app can be
instantiated. Apps are also instantiated during run-time when they are
mounted and a path resolves into a mounted app.

The app is now also a WSGI function so can be run with any WSGI
server.

run-time

When a request comes in through WSGI into
morepath.App.__call__(), a morepath.Request object is
created.

morepath.publish.publish() defines the core Morepath
publication procedure, which turns requests into responses. This
is done by first resolving the model and then rendering the resulting
model instance as a response.

During the first request, tweens (as declared using
morepath.App.tween_factory()) are created and wrapped around
morepath.publish.publish(). Tweens are request/response based
middleware functions. A standard Morepath tween implemented by
morepath.core.excview_tween_factory(), renders exceptions
raised by application code as views. The default Morepath tween
factories are declared in morepath.core and tween factories get
registered into morepath.directive.TweenRegistry.

resolve the model

morepath.publish.resolve_model() looks up a model object as
created by the factory functions the user declared with the
morepath.App.path() directive and the morepath.App.mount()
directives.

morepath.path contains the
morepath.directive.PathRegistry that has the API to register
paths.

The route registration and resolution system is implemented by
morepath.traject.

Default converters used during this step are declared in
morepath.core. Converters are declared with the
morepath.App.converter() directive and are registered in the
morepath.directive.ConverterRegistry.

render the model object

morepath.publish.resolve_response() then renders the model
object to a response using a view function as declared by user with
the morepath.App.view() directive (and morepath.App.json()
and morepath.App.html()).

This behavior is implemented using the
morepath.directive.ViewRegistry. This builds on Reg [http://reg.readthedocs.org] and uses
special predicates declared in morepath.core and registered
into the Reg registry using
morepath.directive.PredicateRegistry. The views are
registered in the Reg registry too.

Views can use templates as declared with the
morepath.App.template_directory,
morepath.App.template_loader and
morepath.App.template_render directives. These are registered
into the morepath.directive.TemplateEngineRegistry.

Before a view is rendered a permission check is done for a model
object and an identity. This uses the rules defined by
morepath.App.permission_rule() are used. These are registered
into the Reg registry.

Permission checks use morepath.Request.identity. When this is
accessed the first time during a request the user’s identity is
constructed from information in the request according to the
morepath.App.identity_policy(), as implemented by
morepath.authentication.

creating links

During the rendering of the model object to a response a link can be
generated for a model object by user code that invokes
morepath.Request.link. morepath.App has a bunch of
private functions (morepath.App._get_path etc) that implement
constructing paths. This uses inverse path information
(morepath.path.Path) stored into the Reg registry using
morepath.directive.PathRegistry.register_inverse_path().

Dependencies

Morepath uses the following dependencies:

	Webob [http://webob.org]: a request and response implementation based on WSGI.

	Reg [http://reg.readthedocs.org]: a generic dispatch library. This is used for all functions
you can register that are aware of subclassing, in particular views.

	Dectate [http://dectate.readthedocs.org]: the configuration engine. This is used to implement
directives and how configuration actions are executed during commit.

	importscan [http://importscan.readthedocs.org]: automatically recursively import all modules in a
package.

Internal APIs

These are the internal modules used by Morepath. For more information
click on the module headings to see the internal APIs. See also
morepath for the public API and morepath.directive for
the extension API.

	morepath.app – App class

	morepath.authentication – Authentication

	morepath.autosetup – Configuration Automation

	morepath.converter – Convert URL variables

	morepath.core – Default Morepath Configuration

	morepath.path – Path registry

	morepath.predicate – Predicate registry

	morepath.publish – Web publisher

	morepath.reify – Caching property

	morepath.request – Request and Response

	morepath.settings – Settings

	morepath.template – Template Engines

	morepath.toposort – Topological sorting

	morepath.traject – Routing

	morepath.tween – Tweens

	morepath.view – View registry

morepath.error and morepath.pdbsupport are documented as
part of the public API.

 morepath.app – App class

morepath.app – App class

Here we define the Morepath application class:
morepath.App. The application class makes available the
directives to the developer. When instantiated it is a WSGI [https://www.python.org/dev/peps/pep-3333]
application that can be hooked into WSGI servers.

Because it is a dectate.App [https://dectate.readthedocs.io/en/latest/api.html#dectate.App] subclass, the class object has
two special class attributes: dectate.App.dectate [https://dectate.readthedocs.io/en/latest/api.html#dectate.App.dectate], which
contains Dectate internals, and dectate.App.config [https://dectate.readthedocs.io/en/latest/api.html#dectate.App.config] which
contains the actual configurations.

To actually serve requests it uses morepath.publish.publish().

Entirely documented in morepath.App in the public API.

 morepath.authentication – Authentication

morepath.authentication – Authentication

This module defines the authentication system of Morepath.

Authentication is done by establishing an identity for a request using
an identity policy registered by the morepath.App.identity_policy()
directive.

morepath.NO_IDENTITY, morepath.Identity,
morepath.IdentityPolicy are part of the public API.

See also morepath.directive.IdentityPolicyRegistry

	
class morepath.authentication.NoIdentity

	The user is not yet logged in.

The request is anonymous.

 morepath.autosetup – Configuration Automation

morepath.autosetup – Configuration Automation

This module defines functionality to automatically configure Morepath.

morepath.scan(), morepath.autoscan()
are part of the public API.

	
morepath.autosetup.import_package(distribution)

	Takes a pkg_resources distribution and loads the module contained
in it, if it matches the rules layed out in morepath.autoscan().

	
morepath.autosetup.import_package(distribution)

	Takes a pkg_resources distribution and loads the module contained
in it, if it matches the rules layed out in morepath.autoscan().

	
class morepath.autosetup.DependencyMap

	A registry that tracks dependencies between distributions.

Used by morepath_packages() to find installed Python distributions
that depend on Morepath, directly or indirectly.

	
depends(project_name, on_project_name, visited=None)

	Check whether project transitively depends on another.

A project depends on another project if it directly or
indirectly requires the other project.

	Parameters

	
	project_name – Python distribution name.

	on_project_name – Python distribution name it depends on.

	Returns

	True if project_name depends on on_project_name.

	
load()

	Fill the registry with dependency information.

	
relevant_dists(on_project_name)

	Iterable of distributions that depend on project.

Dependency is transitive.

	Parameters

	on_project_name – Python distribution name

	Returns

	iterable of Python distribution objects that depend on
project

	
morepath.autosetup.get_module_name(distribution)

	Determines the module name to import from the given distribution.

If an entry point named scan is found in the group morepath,
it’s value is used. If not, the project_name is used.

See morepath.autoscan() for details and an example.

	
morepath.autosetup.caller_module(level=2)

	Give module where calling function is defined.

	Level

	levels deep to look up the stack frame

	Returns

	a Python module

	
morepath.autosetup.caller_package(level=2)

	Give package where calling function is defined.

	Level

	levels deep to look up the stack frame

	Returns

	a Python module (representing the __init__.py of a package)

 morepath.converter – Convert URL variables

morepath.converter – Convert URL variables

Convert path variables and URL parameters to Python objects.

This module contains functionality that can convert traject and URL
parameters (?foo=3) into Python values (ints, date, etc) that are
passed into model factories that are configured using the
morepath.App.path() and morepath.App.mount()
directives. The inverse conversion back from Python value to string
also needs to be provided to support link generation.

morepath.Converter is exported to the public API.

See also morepath.directive.ConverterRegistry

	
class morepath.converter.ListConverter(converter)

	How to decode from list of strings to list of objects and back.

Used morepath.converter.ConverterRegistry to handle
lists of repeated names in parameters.

Used for decoding/encoding URL parameters and path variables.

Create new converter.

	Parameters

	converter – the converter to use for list entries

	
decode(strings)

	Decode list of strings into list of Python values.

	Parameters

	strings – list of strings

	Returns

	list of Python values

	
encode(values)

	Encode list of Python values into list of strings

	Parameters

	values – list of Python values.

	Returns

	List of strings.

	
is_missing(value)

	True is a given value is the missing value.

	
morepath.converter.IDENTITY_CONVERTER = <morepath.converter.Converter object>

	Converter that has no effect.

String becomes string.

 morepath.core – Default Morepath Configuration

morepath.core – Default Morepath Configuration

This module contains default Morepath configuration shared by
all Morepath applications. It is the only part of the Morepath
implementation that uses directives like user of Morepath does.

It uses Morepath directives to configure:

	view predicates (for model, request method, etc), including
what HTTP errors should be returned when a view cannot be matched.

	converters for common Python values (int, date, etc)

	a tween that catches exceptions raised by application code
and looks up an exception view for it.

	a default exception view for HTTP exceptions defined by
webob.exc [https://docs.pylonsproject.org/projects/webob/en/latest/api/exceptions.html#module-webob.exc], i.e. subclasses of webob.exc.HTTPException [https://docs.pylonsproject.org/projects/webob/en/latest/api/exceptions.html#webob.exc.HTTPException].

Should you wish to do so you could even override these directives in a
subclass of morepath.App. We do not guarantee we won’t break
your code with future version of Morepath if you do that, though.

	
morepath.core.date_converter()

	Converter for date.

	
morepath.core.datetime_converter()

	Converter for datetime.

	
morepath.core.excview_tween_factory(app, handler)

	Exception views.

If an exception is raised by application code and a view is
declared for that exception class, use it.

If no view can be found, raise it all the way up – this will be a
500 internal server error and an exception logged.

	
morepath.core.int_converter()

	Converter for int.

	
morepath.core.method_not_allowed(self, obj, request)

	if request predicate not matched, method not allowed.

Fallback for morepath.App.view().

	
morepath.core.model_not_found(self, obj, request)

	if model not matched, HTTP 404.

Fallback for morepath.App.view().

	
morepath.core.model_predicate(self, obj, request)

	match model argument by class.

Predicate for morepath.App.view().

	
morepath.core.name_not_found(self, obj, request)

	if name not matched, HTTP 404.

Fallback for morepath.App.view().

	
morepath.core.name_predicate(self, obj, request)

	match name argument with request.view_name.

Predicate for morepath.App.view().

	
morepath.core.poisoned_host_header_protection_tween_factory(app, handler)

	Protect Morepath applications against the most basic host header
poisoning attacts.

The regex approach has been copied from the Django project. To find more
about this particular kind of attack have a look at the following
references:

	http://skeletonscribe.net/2013/05/practical-http-host-header-attacks

	https://www.djangoproject.com/weblog/2012/dec/10/security/

	https://github.com/django/django/commit/77b06e41516d8136b56c040cba7e235b

	
morepath.core.request_method_predicate(self, obj, request)

	match request method.

Predicate for morepath.App.view().

	
morepath.core.standard_exception_view(self, request)

	We want the webob standard responses for any webob-based HTTP exception.

Applies to subclasses of webob.HTTPException.

	
morepath.core.unicode_converter()

	Converter for text.

 morepath.path – Path registry

morepath.path – Path registry

Registration of routes.

This builds on morepath.traject.

See also morepath.directive.PathRegistry

	
class morepath.path.PathInfo(path, parameters)

	Abstract representation of a path.

	Parameters

	
	path – a str representing a path

	parameters – a dict representing URL parameters.

	
url(prefix, name)

	Turn a path into a URL.

	Parameters

	
	prefix – the URL prefix to put in front of the path. This
should contain something like http://localhost, so the URL
without the path or parameter information.

	name – additional view name to postfix to the path.

	Returns

	a URL with the prefix, the name and URL encoded parameters.

	
class morepath.path.Path(path, factory_args, converters, absorb)

	Registered path for linking purposes.

	Parameters

	
	path – the route.

	factory_args – the arguments for the factory function used to
construct this path. This is used to determine the URL parameters
for the path.

	converters – converters dictionary that is used to represent
variables in the path.

	absorb – bool indicating this is an absorbing path.

	
__call__(app, model, variables)

	Get path info given model and variables.

	Parameters

	
	app – the app instance. Not actually used in the
implementation but passed if this is registered as a method.

	model – model class. Not actually used in the
implementation but used for dispatch in
GenericApp._class_path().

	variables – dict with the variables used in the path. each
argument to the factory function should be represented.

	Returns

	PathInfo instance representing the path.

	
__init__(path, factory_args, converters, absorb)

	Initialize self. See help(type(self)) for accurate signature.

	
get_variables_and_parameters(variables, extra_parameters)

	Get converted variables and parameters.

	Parameters

	
	variables – dict of variables to use in the path.

	extra_parameters – dict of additional parameters to use.

	Returns

	variables, parameters tuple with dicts of converted
path variables and converted URL parameters.

	
morepath.path.get_arguments(callable, exclude)

	Introspect callable to get callable arguments and their defaults.

	Parameters

	
	callable – callable object such as a function.

	exclude – a set of names not to extract.

	Returns

	a dict with as keys the argument names and as values the
default values (or None if no default value was defined).

	
morepath.path.filter_arguments(arguments, exclude)

	Filter arguments.

Given a dictionary with arguments and defaults, filter out
arguments in exclude.

	Parameters

	
	arguments – arguments dict

	exclude – set of argument names to exclude.

	Returns

	filtered arguments dict

	
morepath.path.fixed_urlencode(s, doseq=0)

	urllib.urlencode fixed for ~

Workaround for Python bug:

https://bugs.python.org/issue16285

tilde should not be encoded according to RFC3986

 morepath.predicate – Predicate registry

morepath.predicate – Predicate registry

The morepath.App.predicate() directive lets you install predicates
for function that use reg.dispatch_method() [https://reg.readthedocs.io/en/latest/api.html#reg.dispatch_method]. This is
used by morepath.core to install the view predicates, and you can
also use it for your own functions.

This implements the functionality that drives Reg to install these
predicates.

See also morepath.directive.PredicateRegistry

	
class morepath.predicate.PredicateInfo(func, name, default, index, before, after)

	Used by PredicateRegistry internally.

Is used to store registration information on a predicate
before it is registered with Reg.

 morepath.publish – Web publisher

morepath.publish – Web publisher

Functionality to turn a morepath.Request into a
morepath.Response using Morepath configuration. It looks up a
model instance for the request path and parameters, then looks up a
view for that model object to create the response.

The publish module:

	resolves the request into a model object.

	resolves the model object and the request into a view.

	the view then generates a response.

It all starts at publish().

	
morepath.publish.get_view_name(stack)

	Determine view name from leftover stack of path segments

	Parameters

	stack – a list of path segments left over after consuming
the path.

	Returns

	view name string or None if no view name can be determined.

	
morepath.publish.publish(request)

	Handle request and return response.

It uses resolve_model() to use the information in
request (path, request method, etc) to resolve to a model
object. resolve_response() then creates a view for
the request and the object.

	Parameters

	
	request – morepath.Request instance.

	return – morepath.Response instance.

	
morepath.publish.resolve_model(request)

	Resolve request to a model object.

This takes the path information as a stack of path segments in
morepath.Request.unconsumed and consumes it step by step
using morepath.TrajectRegistry.consume() to find the model
object as declared by morepath.App.path() directive. It can
traverse through mounted applications as indicated by the
morepath.App.mount() directive.

	Param

	morepath.Request instance.

	Returns

	model object or None if not found.

	
morepath.publish.resolve_response(obj, request)

	Given model object and request, create response.

This uses get_view_name() to set up the view name on the
request object.

If no view name exist it raises webob.exc.HTTPNotFound [https://docs.pylonsproject.org/projects/webob/en/latest/api/exceptions.html#webob.exc.HTTPNotFound].

It then uses morepath.App.get_view() to resolve the view for
the model object and the request by doing dynamic dispatch.

	Parameters

	
	obj – model object to get response for.

	request – morepath.Request instance.

	Returns

	morepath.Response instance

 morepath.reify – Caching property

morepath.reify – Caching property

	
class morepath.reify.reify(wrapped)

	Cache a property.

Use as a method decorator. It operates almost exactly like the
Python @property decorator, but it puts the result of the
method it decorates into the instance dict after the first call,
effectively replacing the function it decorates with an instance
variable. It is, in Python parlance, a non-data descriptor. An
example:

from morepath import reify

class Foo(object):
 @reify
 def jammy(self):
 print('jammy called')
 return 1

And usage of Foo:

>>> f = Foo()
>>> v = f.jammy
jammy called
>>> print(v)
1
>>> print(f.jammy)
1
>>> # jammy func not called the second time; it replaced itself with 1

 morepath.request – Request and Response

morepath.request – Request and Response

Morepath request implementation.

Entirely documented in morepath.Request and
morepath.Response in the public API.

 morepath.settings – Settings

morepath.settings – Settings

This module defines a registry of settings.

See morepath.directive.SettingRegistry

	
class morepath.settings.SettingSection

	A setting section that contains setting.

 morepath.template – Template Engines

morepath.template – Template Engines

This module lets you register template engines.

See morepath.directive.TemplateEngineRegistry

	
class morepath.template.TemplateDirectoryInfo(key, directory, before, after, configurable)

	Used by TemplateEngineRegistry internally.

 morepath.toposort – Topological sorting

morepath.toposort – Topological sorting

Topological sort functionality.

	
class morepath.toposort.Info(key, before, after)

	Toposorted info helper.

Base class that helps with toposorted. before and after
can be lists of keys, or a single key, or None.

	
morepath.toposort.toposorted(infos)

	Sort infos topologically.

Info object must have a key attribute, and before and after
attributes that returns a list of keys. You can use Info.

 morepath.traject – Routing

morepath.traject – Routing

Implementation of routing.

The idea is to turn the routes into a tree, so that the routes:

a/b
a/b/c
a/d

become a tree like this:

a
 b
 b
 c
 d

Nodes in the tree can have a value attached that can be found through
routing; in Morepath the value is a model instance factory.

When presented with a path, Traject traverses this internal tree.

For a description of a similar algorithm also read: http://littledev.nl/?p=99

	
class morepath.traject.Node

	A node in the traject tree.

	
__init__()

	Initialize self. See help(type(self)) for accurate signature.

	
add(step)

	Add a step into the tree as a child node of this node.

	
add_name_node(step)

	Add a step into the tree as a node that doesn’t match variables.

	
add_variable_node(step)

	Add a step into the tree as a node that matches variables.

	
resolve(segment, variables)

	Match a path segment, traversing this node.

Matches non-variable nodes before nodes with variables in them.

Updates the variables argument.

	Segment

	a path segment

	Variables

	variables dictionary to update.

	Returns

	matched node, or None if node didn’t match.

	
class morepath.traject.ParameterFactory(parameters, converters, required, extra=False)

	Convert URL parameters.

Given expected URL parameters, converters for them and required
parameters, create a dictionary of converted URL parameters with
Python values.

	Parameters

	
	parameters – dictionary of parameter names -> default values.

	converters – dictionary of parameter names -> converters.

	required – dictionary of parameter names -> required booleans.

	extra – should extra unknown parameters be included?

	
__call__(request)

	Convert URL parameters to Python dictionary with values.

	
__init__(parameters, converters, required, extra=False)

	Initialize self. See help(type(self)) for accurate signature.

	
class morepath.traject.Path(path)

	Helper when registering paths.

Used by morepath.App.path() to register inverse paths used for
link generation.

Also used by morepath.App.path() for creating discriminators.

	Parameters

	path – the route.

	
__init__(path)

	Initialize self. See help(type(self)) for accurate signature.

	
discriminator()

	Creates a unique discriminator for the path.

	
interpolation_str()

	Create a string for interpolating variables.

Used for link generation (inverse).

	
variables()

	Get the variables used by the path.

	Returns

	a list of variable names

	
class morepath.traject.Step(s, converters=None)

	A single step in the tree.

	Parameters

	
	s – the path segment, such as 'foo' or '{variable}' or
'foo{variable}bar'.

	converters – dict of converters for variables.

	
__eq__(other)

	True if this step is the same as another.

	
__ge__(other, NotImplemented=NotImplemented)

	Return a >= b. Computed by @total_ordering from (not a < b).

	
__gt__(other, NotImplemented=NotImplemented)

	Return a > b. Computed by @total_ordering from (not a < b) and (a != b).

	
__init__(s, converters=None)

	Initialize self. See help(type(self)) for accurate signature.

	
__le__(other, NotImplemented=NotImplemented)

	Return a <= b. Computed by @total_ordering from (a < b) or (a == b).

	
__lt__(other)

	Used for inserting steps in correct place in the tree.

The order in which a step is inserted into the tree compared
to its siblings affects which step preferentially matches first.

In Traject, steps that contain no variables match before steps
that do contain variables. Steps with more specific variables
sort before steps with more general ones, i.e. prefix{foo} sorts
before {foo} as prefix{foo} is more specific.

	
__ne__(other)

	True if this step is not equal to another.

	
discriminator_info()

	Information needed to construct path discriminator.

	
has_variables()

	True if there are any variables in this step.

	
match(s, variables)

	Match this step with actual path segment.

	Parameters

	
	s – path segment to match with

	variables – variables dictionary to update with new converted
variables that are found in this segment.

	Returns

	bool. The bool indicates whether s matched with
the step or not.

	
validate()

	Validate whether step makes sense.

Raises morepath.error.TrajectError if there is a problem
with the segment.

	
validate_parts()

	Check whether all non-variable parts of the segment are valid.

Raises morepath.error.TrajectError if there is a problem
with the segment.

	
validate_variables()

	Check whether all variables of the segment are valid.

Raises morepath.error.TrajectError if there is a problem
with the variables.

	
class morepath.traject.StepNode(step)

	A node that is also a step in that it can match.

	Parameters

	step – the step

	
__init__(step)

	Initialize self. See help(type(self)) for accurate signature.

	
match(segment, variables)

	Match a segment with the step.

	
class morepath.traject.TrajectRegistry

	Tree of route steps.

	
__init__()

	Initialize self. See help(type(self)) for accurate signature.

	
add_pattern(path, model_factory, defaults=None, converters=None, absorb=False, required=None, extra=None, code_info=None)

	Add a route to the tree.

	Parameters

	
	path – route to add.

	model_factory – the factory used to construct the model instance

	defaults – mapping of URL parameters to default value
for parameter

	converters – converters to store with the end step of the route

	absorb – does this path absorb all segments

	required – list or set of required URL parameters

	extra – bool indicating whether extra parameters are expected

	code_info – dectate.CodeInfo [https://dectate.readthedocs.io/en/latest/api.html#dectate.CodeInfo] instance describing
the code line that registered this path.

	
consume(request)

	Consume a stack given route, returning object.

Removes the successfully consumed path segments from
morepath.Request.unconsumed.

Extracts variables from the path and URL parameters from the request.

Then constructs the model instance given this information.
(or morepath.App instance in case of mounted apps).

	Parameters

	request – the request to consume segments from and to
retrieve URL parameters from.

	Returns

	the model instance that can be found, or None if
no model instance exists for this sequence of segments.

	
morepath.traject.create_path(segments)

	Builds a path from a list of segments.

	Parameters

	stack – a list of segments

	Returns

	a path

	
morepath.traject.create_variables_re(s)

	Create regular expression that matches variables from route segment.

	Parameters

	s – a route segment with variables in it.

	Returns

	a regular expression that matches with variables for the route.

	
morepath.traject.generalize_variables(s)

	Generalize a route segment.

	Parameters

	s – a route segment.

	Returns

	a generalized route where all variables are empty ({}).

	
morepath.traject.interpolation_str(s)

	Create a Python string with interpolation variables for a route segment.

Given a{foo}b, creates a%sb.

	
morepath.traject.is_identifier(s)

	Check whether a variable name is a proper identifier.

	Parameters

	s – variable

	Returns

	True if variable is an identifier.

	
morepath.traject.normalize_path(path)

	Converts path into normalized path.

Rules:

	Collapse dots:

>>> normalize_path('/../blog')
'/blog'

	Ensure absolute paths:

>>> normalize_path('./site')
'/site'

	Remove double-slashes:

>>> normalize_path('//index')
'/index'

For example:

>>> normalize_path('../static//../app.py')
'/app.py'

	Parameters

	path – path string to parse

	Returns

	normalized path.

	
morepath.traject.parse_path(path)

	Parses path, creates normalized segment list.

Dots are collapsed:

>>> parse_path('../static//../app.py')
['app.py']

	Parameters

	path – path string to parse

	Returns

	normalized list of path segments.

	
morepath.traject.parse_variables(s)

	Parse variables out of a segment.

Raised a morepath.error.TrajectError if a variable
is not a valid identifier.

	Parameters

	s – a path segment

	Returns

	a list of variables.

	
morepath.traject.IDENTIFIER = re.compile('^[^\\d\\W]\\w*$')

	regex for a valid variable name in a route.

same rule as for Python identifiers.

	
morepath.traject.PATH_VARIABLE = re.compile('\\{([^}]*)\\}')

	regex to find curly-brace marked variables {foo} in routes.

 morepath.tween – Tweens

morepath.tween – Tweens

Tweens are lightweight middleware using webob.

A tween is a function that takes a morepath.Request and returns
a morepath.Response. A tween factory is a function that given
an application instance and tween constructs another tween that wraps it.

Used by morepath.App.tween_factory().

See also morepath.directive.TweenRegistry

 morepath.view – View registry

morepath.view – View registry

Rendering views.

A view is a function that returns something. This can be a
morepath.Response, but it can also be a structure (such a
dict) that should be rendered to a response. If the view is a JSON
view this dumps this structure as JSON. If the view is a HTML view
this structure can be converted to HTML using a template.

morepath.render_json(), morepath.render_html() and
morepath.redirect() are members of the public API.

	
class morepath.view.View(func, render=None, load=None, permission=None, internal=False, code_info=None)

	A view as registered with morepath.App.get_view().

	Parameters

	
	func – view function. Given a model instance and a request
argument, this function must return either a structure that can
be turned into a response or a response.

	render – a function used to render view function return value
as a response.

	load – a function used to load the body data into a third
argument to the view.

	permission – permission class that the identity must have
according to permission rules. If the view doesn’t have the
permission access is forbidden.

	internal – bool to indicate whether this view is internal.
If the view is internal you can use it with
morepath.Request.view() but it doesn’t have a URL
and will be 404 Not Found.

	
__call__(app, obj, request)

	Render a model instance.

If view is internal it cannot be rendered.

If the identity does not have the permission for
this object according to the permission rules then
webob.exc.HTTPForbidden [https://docs.pylonsproject.org/projects/webob/en/latest/api/exceptions.html#webob.exc.HTTPForbidden] is raised.

Any functions specified using morepath.Request.after()
are run against the response once it is created, if that
response is not an error.

	Parameters

	
	obj – the model instance

	request – the request

	Returns

	A webob.response.Response [https://docs.pylonsproject.org/projects/webob/en/latest/api/response.html#webob.response.Response] instance.

	
__init__(func, render=None, load=None, permission=None, internal=False, code_info=None)

	Initialize self. See help(type(self)) for accurate signature.

	
morepath.view.render_view(content, request)

	Default render function for view if none was supplied.

This just assumes the content is a string and renders it into
a response.

	Parameters

	
	content – content as returned by view function.

	request – request object

	Returns

	a response instance with the content.

 History

History

The change log and how to use it.

	History of Morepath
	Web Framework Inspirations

	Configuration system

	Routing system

	Reg

	Publisher

	Combining it all

	Spinning a Web Framework

	CHANGES
	0.20 (unreleased)

	0.19 (2020-01-30)

	0.18.2 (2019-01-22)

	0.18.1 (2017-06-30)

	0.18 (2017-03-17)

	0.17 (2016-12-23)

	0.16.1 (2016-10-04)

	0.16 (2016-10-04)

	0.15 (2016-07-18)

	0.14 (2016-04-26)

	0.13.2 (2016-04-13)

	0.13.1 (2016-04-13)

	0.13 (2016-04-06)

	0.12 (2016-01-27)

	0.11.1 (2015-06-29)

	0.11 (2015-06-29)

	0.10 (2015-04-09)

	0.9 (2014-11-25)

	0.8 (2014-11-13)

	0.7 (2014-11-03)

	0.6 (2014-09-08)

	0.5.1 (2014-08-28)

	0.5 (2014-08-28)

	0.4.1 (2014-07-08)

	0.4 (2014-07-07)

	0.3 (2014-06-23)

	0.2 (2014-04-24)

	0.1 (2014-04-08)

	Upgrading to a new Morepath version

 History of Morepath

History of Morepath

For more recent changes, see CHANGES.

Morepath was originally created by Martijn Faassen, but now has a team
of developers (see CREDITS.txt in the project).

The genesis of Morepath is complex and involves a number of projects.

Web Framework Inspirations

Morepath was inspired by Zope, in particular its component
architecture; a reimagined version of this is available in Reg, a core
dependency of Morepath.

An additional inspiration was the Grok web framework Martijn conceived
of and helped to create, which was based on Zope 3 technologies, and
Pyramid, a reimagined version of Zope 3, created by Chris McDonough.

Pyramid in particular has been the source of a lot of ideas, including
bits of implementation.

Once the core of Morepath had been created Martijn found there had
been quite a bit of parallel evolution with Flask. Flask served as a
later inspiration in its capabilities and documentation. Morepath also
used Werkzeug (basis for Flask) for a while to implement its request
and response objects, but eventually we found WebOb the better fit for
Morepath and switched to that.

Configuration system

In 2006 Martijn co-founded the Grok web framework. The fundamental
configuration mechanism this project uses was distilled into the
Martian library:

https://pypi.python.org/pypi/martian

Martian was reformulated by Chris McDonough (founder of the Pyramid
project) into Venusian, a simpler, decorator based approach:

https://pypi.python.org/pypi/venusian

Morepath originally used Venusian as a foundation to its configuration
system. It is good that Venusian defers execution of decorators until
after import-time, but Venusian also makes setup more difficult to
reason about for users than simply registering the decorator with the
configuration system during import-time.

Morepath’s configuration system had grown over time and had grown a
few hacks here and there. Removing Venusian was not simple as a
result. The configuration system of Morepath was also underdocumented,
a long standing issue in Morepath.

So in 2016 we extracted Morepath’s configuration system into its
own reusable project, called dectate [http://dectate.readthedocs.org]. Martijn also extensively
refactored it and removed the Venusian dependency. Morepath now uses
Dectate as a clean and well-documented configuration system.

Routing system

In 2009 Martijn wrote a library called Traject:

https://pypi.python.org/pypi/traject

Martijn was familiar with Zope traversal. Zope traversal matches a URL
with an object by parsing the URL and going through an object graph
step by step to find the matching object. This works well for objects
stored in an object database, as they’re already in such a
graph. Martijn tried to make this work properly with a relational
database exposed through an ORM, but noticed that he had to adjust the
object mapping too much just to please the traversal system.

This led Martijn to a routing system, so expose the relational
database objects to a URL. But he didn’t want to give up some nice
properties of traversal, in particular that for any object that you
can traverse to you can also generate a URL. He also wanted to
maintain a separation between models and views. This led to the
creation of Traject.

Martijn used Traject successfully in a number of projects (based on
Grok), and also ported Traject to JavaScript as part of the Obviel
client-side framework. While Traject is fairly web-framework
independent, to Martijn’s knowledge Traject hasn’t found much adoption
elsewhere.

Morepath contains a further evolution of the Traject concept (though
not the Traject library directly).

Reg

In early 2010 Martijn started the iface project with Thomas Lotze. In
2012 Martijn started the Crom project. Finally he combined them into
the Comparch project in 2013. He then renamed Comparch to Reg, and
finally converted Reg to a generic function implementation [http://blog.startifact.com/posts/reg-now-with-more-generic.html].

In late 2014 there was another major change in Reg, when Martijn
generalized it into a predicate dispatch implementation. In the summer
of 2016 Stefano Taschini had a bunch of good ideas and we managed to
simplify Reg’s implementation and got rid of its implicitness by
introducing dispatch methods.

See Reg’s history section [http://reg.readthedocs.org/en/latest/history.html] for more information on its history. The
Reg project provides the fundamental registries that Morepath builds
on.

Publisher

In 2010 Martijn wrote a system called Dawnlight:

https://bitbucket.org/faassen/dawnlight

It was the core of an object publishing system with a system to find a
model and a view for that model, based on a path. It used some
concepts Martijn had learned while implementing Traject (a URL path
can be seen as a stack that’s being consumed), and it was intended to
be easy to plug in Traject. Martijn didn’t use Dawnlight himself, but
it was adopted by the developers of the Cromlech web framework
(Souheil Chelfouh and Alex Garel):

http://pypi.dolmen-project.org/pypi/cromlech.dawnlight

Morepath contains a reformulation of the Dawnlight system,
particularly in its publisher module.

Combining it all

In 2013 Martijn started to work with CONTACT Software. They encouraged
me to rethink these various topics. This led Martijn to combine these
lines of development into Morepath: Reg registries, decorator-based
configuration, and traject-style publication of models and resources.

Spinning a Web Framework

In the fall of 2013 Martijn gave a keynote speech at PyCon DE about
the creative processes behind Morepath, called “Spinning a Web
Framework”:

 CHANGES

CHANGES

0.20 (unreleased)

	Nothing changed yet.

0.19 (2020-01-30)

	Removed: Removed support for Python 2.

You have to upgrade to Python 3 if you want to use this version.

	Added support for Python 3.8 and PyPy 3.6.

	Make Python 3.7 the default.

	Update to new signature of reg.arginfo, which returns now a FullArgSpec
tuple instead of an ArgSpec tuple.

	Add integration for the Black code formatter.

0.18.2 (2019-01-22)

	Fixes an infinite recursion error during morepath.autoscan.

The error that occurred when morepath.autoscan was run in an environment where
two packages depended on each other, as well as depending on morepath
through an intermediary.

See #536 [https://github.com/morepath/morepath/issues/536]

	Added support for Python 3.6 and 3.7 and dropped support for Python 3.3

0.18.1 (2017-06-30)

	Link generation was unstable when supplied with multiple URL parameters.
Sort URL parameters so that link generation is stable. This is convenient
in tests.

This could potentially break tests which weren’t stable in the past. Fixing
the tests to use the alphabetical sort order should fix the issue.

	The poisoned host header protection is no longer case-sensitive.

	Underscores are now allowed in host headers. Though they are not valid in
domain names, they are valid in host names and offer no attack surface.

0.18 (2017-03-17)

	New: The load` API, which allows you to define how incoming JSON
(through a POST, PUT or PATH request) will be converted to a Python object and
how it will be validated. This feature lets you plug in external
serialization and validation libraries, such as Marshmallow, Colander,
Cerberus, Jsonschema or Voluptuous.

	Removed: morepath.body_model_predicate is removed from the
Morepath API together with the morepath.App.load_json directive
and the morepath.request.body_obj property.
If you use the load_json directive, this functionality has been moved
to a separate more.body_model [https://github.com/morepath/more.body_model] package. Use this package instead by
subclassing your App from more.body_model.BodyModelApp.

	Uploading huge files lead to excessive memory consumption as the whole body
was consumed for no good reason. This is now fixed.

See #504 [https://github.com/morepath/morepath/issues/504]

	Fixes link prefix not applying to mounted applications.

See #516 [https://github.com/morepath/morepath/issues/516]

0.17 (2016-12-23)

	Removed: The class morepath.ViewRegistry is gone.

	Upload universal wheels to pypi during release.

	Refactored and simplified implementation of ConverterRegistry.

	Bugfix: exception views in mounted apps weren’t looked up correctly
anymore.

	Adds compatibility with WebOb 1.7.

	Removed extra spaces after the colon in json.
For example: {“foo”: “bar”} is now {“foo”:”bar”}.

	Morepath now keeps track of what code was used to resolve a path and
a view. You use more.whytool [https://pypi.python.org/pypi/morepath] to get a command line tool that
provides insight in what code was used for a request.

0.16.1 (2016-10-04)

	Adjust setup.py to require Reg 0.10 and Dectate 0.12, otherwise
Morepath won’t work properly.

0.16 (2016-10-04)

Release highlights

	A new, cleaner and faster implementation of Reg underlies this
version of Morepath. It turns generic functions into methods on the
App class, and removes implicit behavior entirely.

This has some impact if you used the low-level function
directive or if you defined your own predicates with the
predicate and predicate_fallback directives, see details
below.

	A new build environment based around virtualenv and pip. We’ve
removed the old buildout-based build environment. doc/developing.rst
has much more.

	Performance work boosts performance of Morepath significantly.

Removals & Deprecations

	Removed: morepath.remember_identity is removed from the
Morepath API.

Use

request.app.remember_identity(response, request, identity)

Instead of

remember_identity(response, request, identity, lookup=request.lookup)

	Removed: morepath.forget_identity is removed from the
Morepath API.

Use

request.app.forget_identity(response, request)

Instead of

morepath.forget_identity(response, request, lookup=request.lookup)

	Removed morepath.settings is removed from the Morepath API.

Use the morepath.App.settings property instead. You can access
this through app.settings. You can access this through
request.app.settings if you have the request. The following
directives now get an additional optional first argument called
app: permission_rule, verify_identity, dump_json,
load_json, link_prefix and the variables function passed
to the path directive.

	Removed morepath.enable_implicit and
morepath.disable_implicit are both removed from the Morepath API.

Morepath now uses generic methods on the application class. The
application class determines the context used.

	Removed We previously used buildout to install a development
environment for Morepath. We now use pip. See doc/developing.rst
for details, and also below.

Features

	Breaking change Dectate used to support the directive
pseudo-directive to let you define directives. But this could lead
to import problems if you forgot to import the module where the
pseudo-directives are defined before using them. In this release we
define the directives directly on the App class using the new
dectate.directive mechanism, avoiding this problem.

If you have code that defines new directives, you have to adjust
your code accordingly; see the Dectate changelog [http://dectate.readthedocs.io/en/latest/changes.html] for more
details.

	Breaking change Previously Morepath used Reg’s dispatch
functions directly, with a mechanism to pass in a lookup
argument to a dispatch function to control the application
context. The lookup was maintained on App.lookup. Tests were to
pass the lookup explicitly. Reg also maintained this lookup in a
thread-local variable, and any dispatch call that did not have a
explicit lookup argument passed in used this implicit lookup
directly.

Reg has undergone a major refactoring which affects Morepath. As a
result, Morepath is faster and dispatch code becomes more
Pythonic. The concept of lookup is gone: no more lookup argument,
app.lookup or implicit lookup. Instead, Morepath now makes use
of dispatch methods on the application. The application itself
provides the explicit dispatch context. See #448 [https://github.com/morepath/morepath/issues/448] for the
discussion leading up to this change.

Most Morepath application and library projects should continue to
work unchanged, but some changes are necessary if you used
some advanced features:

	If in your code you call a generic function from
morepath.generic directly it won’t work anymore. Call the
equivalent method on the app instance instead.

	If you pass through the lookup argument explicitly, remove
this. Calling the dispatch method on the app instance is enough to
indicate context.

	If you defined a generic function in your code, you should move it
to a morepath.App subclass instead and use
morepath.dispatch_method instead of reg.dispatch. Using
reg.dispatch_method directly is possible but not recommended:
morepath.dispatch_method includes caching behavior that speeds
up applications. For example:

class MyApp(morepath.App):
 @morepath.dispatch_method('obj')
 def my_dispatch(self, obj):
 pass

	The function directive has been replaced by the method directive,
where you indicate the dispatch method on the first argument. For
example:

@App.method(MyApp.my_dispatch, obj=Foo)
def my_dispatch_impl(app, obj):
 return "Implementation for Foo"

	The predicate directive can be used to install new predicates for
dispatch methods. The first argument should be a reference to the
dispatch method, for instance:

@App.predicate(App.get_view, name='model', default=None,
 index=ClassIndex)
def model_predicate(obj):
 return obj.__class__

There is a new public method called App.get_view that you can
install view predicates on.

	The predicate_fallback directive gets a reference to the
method too. The decorated function needs to take the same
arguments as the dispatch method; previously it could be a subset.
So for example:

@App.predicate_fallback(App.get_view, model_predicate)
def model_not_found(self, obj, request):
 raise HTTPNotFound()

Where self refers to the app instance.

Bug fixes

	Fix code_examples path for doctests with tox.

Build environment

	We now use virtualenv and pip instead of buildout to set up the
development environment. The development documentation has been
updated accordingly. Also see issues #473 [https://github.com/morepath/morepath/issues/473] and #484 [https://github.com/morepath/morepath/pull/484].

	Have the manifest file for source distribution include all files
under VCS.

	As we reached 100% code coverage for pytest, coveralls integration
was replaced by the --fail-under=100 argument of coverage
report in the tox coverage test.

Other

	Refactored traject routing code with an eye on performance.

	Use abstract base classes from the standard library for
morepath.IdentityPolicy.

	Reorganize the table of contents of the documentation into a
hierarchy (#468 [https://github.com/morepath/morepath/pull/468]).

	Expand the test suite to cover morepath.Request.reset, loop
detection for deferred class links, dispatching of
@App.verify_identity-decorated functions on the identity
argument (#464 [https://github.com/morepath/morepath/issues/464]). Coverage ratio is now 100%.

0.15 (2016-07-18)

Removals & Deprecations

	Removed: morepath.autosetup and morepath.autocommit are
both removed from the Morepath API.

Use autoscan. Also use new explicit App.commit method, or
rely on Morepath automatically committing during the first
request. So instead of:

morepath.autosetup()
morepath.run(App())

you do:

morepath.autoscan()
App.commit() # optional
morepath.run(App())

	Removed: the morepath.security module is removed, and you cannot
import from it anymore. Change imports from it to the public API, so go
from:

from morepath.security import NO_IDENTITY

to:

from morepath import NO_IDENTITY

	Deprecated morepath.remember_identity and
morepath.forget_identity are both deprecated.

Use the morepath.App.remember_identity and
morepath.App.forget_identity methods, respectively.

Instead of

remember_identity(response, request, identity, lookup=request.lookup)
...
morepath.forget_identity(response, request, lookup=request.lookup)

you do:

request.app.remember_identity(response, request, identity)
...
request.app.forget_identity(response, request)

	Deprecated morepath.settings is deprecated.

Use the morepath.App.settings property instead.

	Deprecated morepath.enable_implicit and
morepath.disable_implicit are both deprecated.

You no longer need to choose between implicit or explicit lookup for
generic functions, as the generic functions that are part of the API
have all been deprecated.

Features

	Factored out new App.mounted_app_classes() class method which
can be used to determine the mounted app classes after a
commit. This can used to get the argument to dectate.query_tool
if the commit is known to have already been done earlier.

	The morepath.run function now takes command-line arguments to
set the host and port, and is friendlier in general.

	Add App.init_settings for pre-filling the settings registry with
a python dictionary. This can be used to load the settings from a
config file.

	Add a reset method to the Request class that resets it to
the state it had when request processing started. This is used by
more.transaction to reset request processing when it retries a
transaction.

Bug fixes

	Fix a bug where a double slash at the start of a path was not
normalized.

Cleanups

	Cleanups and testing of reify functionality.

	More doctests in the narrative documentation.

	A few small performance tweaks.

	Remove unused imports and fix pep8 in core.py.

Other

	Add support for Python 3.5 and make it the default Python
environment.

0.14 (2016-04-26)

	New We have a new chat channel available. You can join us by clicking
this link:

https://discord.gg/0xRQrJnOPiRsEANa

Please join and hang out! We are retiring the (empty) Freenode
#morepath channel.

	Breaking change: Move the basic auth policy to
more.basicauth extension extension. Basic auth is just one of
the authentication choices you have and not the default. To update
code, make your project depend on more.basicauth and import
BasicAuthIdentityPolicy from more.basicauth.

	Breaking change: Remove some exception classes that weren’t
used: morepath.error.ViewError, morepath.error.ResolveError.
If you try to catch them in your code, just remove the whole
except statement as they were never raised.

	Deprecated Importing from morepath.security directly. We
moved a few things from it into the public API: enable_implicit,
disable_implicit, remember_identity, forget_identity,
Identity, IdentityPolicy, NO_IDENTITY. Some of these
were already documented as importable from morepath.security.
Although importing from morepath.security won’t break yet, you
should stop importing from it and import directly from morepath
instead.

	Deprecated morepath.autosetup and morepath.autocommit
are both deprecated.

Use autoscan. Also use new explicit App.commit method, or
rely on Morepath automatically committing during the first
request. So instead of:

morepath.autosetup()
morepath.run(App())

you do:

morepath.autoscan()
App.commit() # optional
morepath.run(App())

	Breaking change Extensions that imported RegRegistry directly
from morepath.app are going to be broken. This kind of import:

from morepath.app import RegRegistry

needs to become:

from morepath.directive import RegRegistry

This change was made to avoid circular imports in Morepath, and
because App did not directly depend on RegRegistry anymore.

	Breaking change: the variables function for the path
directive has to be defined taking a first obj argument. In
the past it was possible to define a variables function that
took no arguments. This is now an error.

	Introduce a new commit method on App that commits the App
and also recursively commits all mounted apps. This is more explicit
than autocommit and less verbose than using the lower-level
dectate.commit.

	Automatic commit of the app is done during the first request if the
app wasn’t committed previously. See issue #392.

	Introduce a deprecation warnings (for morepath.security,
morepath.autosetup) and document how a user can deal with such
warnings.

	Adds host header validation to protect against header poisoning attacks.

See https://github.com/morepath/morepath/issues/271

You can use morepath.HOST_HEADER_PROTECTION in your own tween
factory to wrap before or under it.

	Refactor internals of publishing/view engine. Reg is used more
effectively for view lookup, order of some parameters is reversed
for consistency with public APIs.

	Document the internals of Morepath, see implementation document.
This includes docstrings for all the internal APIs.

	The framehack module was merged into autosetup. Increased
the coverage to this module to 100%.

	New cookiecutter template for Morepath, and added references in the
documentation for it.

See https://github.com/morepath/morepath-cookiecutter

	Test cleanup; scan in many tests turns out to be superfluous. Issue
#379

	Add a test that verifies we can instantiate an app before configuration
is done. See issue #378 for discussion.

	Started doctesting some of the docs.

	Renamed RegRegistry.lookup to RegRegistry.caching_lookup as
the lookup property was shadowing a lookup property on
reg.Registry. This wasn’t causing bugs but made debugging
harder.

	Refactored link generation. Introduce a new defer_class_links
directive that lets you defer link generation using
Request.class_link() in addition to Request.link(). This is
an alternative to defer_links, which cannot support
Request.class_link.

	Morepath now has extension API docs that are useful when you want to
create your own directive and build on one of Morepath’s registries
or directives.

	A friendlier morepath.run that tells you how to quit it with
ctrl-C.

	A new document describing how to write a test for Morepath-based
applications.

	Document how to create a Dectate-based command-line query tool that
lets you query Morepath directives.

	Uses the topological sort implementation in Dectate. Sort out a mess
where there were too many TopologicalSortError classes.

0.13.2 (2016-04-13)

	Undid change in 0.13.1 where App could not be instantiated if
not committed, as ran into real-world code where this assumption
was broken.

0.13.1 (2016-04-13)

	Enable queries by the Dectate query tool.

	Document scan function in API docs.

	Work around an issue in Python where ~ (tilde) is quoted by
urllib.quote & urllib.encode, even though it should not be
according to the RFC, as ~ is considered unreserved.

https://www.ietf.org/rfc/rfc3986.txt

	Document some tricks you can do with directives in a new “Directive
tricks” document.

	Refactor creation of tweens into function on TweenRegistry.

	Update the REST document; it was rather old and made no mention of
body_model.

	Bail out with an error if an App is instantiated without being
committed.

0.13 (2016-04-06)

	Breaking change. Morepath has a new, extensively refactored
configuration system based on dectate [http://dectate.readthedocs.org] and importscan [http://importscan.readthedocs.org]. Dectate is
an extracted, and heavily refactored version of Morepath’s
configuration system that used to be in morepath.config
module. It’s finally documented too!

Dectate and thus Morepath does not use Venusian (or Venusifork)
anymore so that dependency is gone.

Code that uses morepath.autosetup should still work.

Code that uses morepath.setup and scans and commits manually
needs to change. Change this:

from morepath import setup

config = morepath.setup()
config.scan(package)
config.commit()

into this:

import morepath

morepath.scan(package)
morepath.autocommit()

Similarly config.scan() without arguments to scan its own
package needs to be rewritten to use morepath.scan() without
arguments.

Anything you import directly now does not need to be scanned
anymore; the act of importing a module directly registers the
directives with Morepath, though as before they won’t be active
until you commit. But scanning something you’ve imported before
won’t do any harm.

The signature for morepath.scan is somewhat different than that
of the old config.scan. There is no third argument
recursive=True anymore. The onerror argument has been
renamed to handle_error and has different behavior; the
importscan [http://importscan.readthedocs.org] documentation describes the details.

If you were writing tests that involve Morepath, the old structure of
the test was:

import morepath

def test_foo():
 config = morepath.setup()

 class App(morepath.App):
 testing_config = config

 ... use directives on App ...

 config.commit()

 ... do asserts ...

This now needs to change to:

import morepath

def test_foo():
 class App(morepath.App):
 pass

 ... use directives on App ...

 morepath.commit([App])

 ... do asserts ...

So, you need to use the morepath.commit() function and give it a
list of the application objects you want to commit,
explicitly. morepath.autocommit() won’t work in the context of a
test.

If you used a test that scanned code you need to adjust it too, from:

import morepath
import some_package

def test_foo():
 config = morepath.setup()

 config.scan(some_package)

 config.commit()

 ... do asserts ...

to this:

import morepath
import some_package

def test_foo():
 morepath.scan(some_package)
 morepath.commit([some_package.App])

 ... do asserts ...

Again you need to be explicit and use morepath.commit to commit
those apps you want to test.

If you had a low-level reference to app.registry in your code it
will break; the registry has been split up and is now under
app.config. If you want access to lookup you can use
app.lookup.

If you created custom directives, the way to create directives
is now documented as part of the dectate [http://dectate.readthedocs.org] project. The main updates you
need to do are:

	subclass from dectate.Action instead of morepath.Directive.

	no more app first argument.

	no super call is needed anymore in __init__.

	add a config class variable to declare the registries
you want to affect. Until we break up the main registry this
is:

from morepath.app import Registry

...
config = { 'registry': Registry }

	reverse the arguments to perform, so that the object
being registered comes first. So change:

def perform(self, registry, obj):
 ...

into:

def perform(self, obj, registry):
 ...

But instead of registry use the registry you set up in your
action’s config.

	no more prepare. Do error checking inside the perform
method and raise a DirectiveError if something is wrong.

If you created sub-actions from prepare, subclass from
dectate.Composite instead and implement an actions method.

	group_key method has changed to group_class class variable.

If you were using morepath.sphinxext to document directives
using Sphinx autodoc, use dectate.sphinxext instead.

	Breaking change If you want to use Morepath directives on
@staticmethod, you need to change the order in which these are
applied. In the past:

@App.path(model=Foo, path='bar')
@staticmethod
def get_foo():

But now you need to write:

@staticmethod
@App.path(model=Foo, path='bar')
def get_foo():

	Breaking change You cannot use a Morepath path directive on
a @classmethod directly anymore. Instead you can do this:

class Foo(object):
 @classmethod
 def get_something():
 pass

@App.path('/', model=Something)(Foo.get_something)

	Breaking change. Brought app.settings back, a shortcut to the
settings registry. If you use settings, you need to replace any
references to app.registry.settings to app.settings.

	Add request.class_link. This lets you link using classes instead
of instances as an optimization. In some cases instantiating an
object just so you can generate a link to it is relatively
expensive. In that case you can use request.class_link
instead. This lets you link to a model class and supply a
variables dictionary manually.

	Breaking change. In Morepath versions before this there was an
class attribute on App subclasses called registry. This was
a giant mixed registry which subclassed a lot of different
registries used by Morepath (reg registry, converter registry,
traject registry, etc). The Dectate configuration system allows us
to break this registry into a lot of smaller interdependent registries
that are configured in the config of the directives.

While normally you shouldn’t be, if you were somehow relying on
App.registry in your code you should now rewrite it to use
App.config.reg_registry, App.config.setting_registry,
App.config.path_registry etc.

0.12 (2016-01-27)

	Breaking change. The request.after function is now called even if
the response was directly created by the view (as opposed to the view
returning a value to be rendered by morepath). Basically, request.after
is now guaranteed to be called if the response’s HTTP status code lies within
the 2XX-3XX range.

See https://github.com/morepath/morepath/issues/346

	Fixed a typo in the defer_link documentation.

	Morepath’s link generation wasn’t properly quoting paths and
parameters in all circumstances where non-ascii characters or
URL-quoted characters were used. See issue #337.

	Morepath could not handle varargs or keyword arguments properly
in path functions. Now bails out with an error early during
configuration time. To fix existing code, get rid of any *args or
**kw.

	Morepath could not properly generate links if a path directive
defines a path variable for the path but does not actually use it in
the path function. Now we complain during configuration time. To fix
existing code, add all variables that are defined in the path
(i.e. {id}) to the function signature.

	Certain errors (ConfigError) were not reporting directive line number
information. They now do.

	Better ConfigError reporting when setting_section is in use.

	Removed the unused request parameter from the link method in
morepath.request. See issue #351.

	Require venusifork 2.0a3. This is a hacked version which works around
some unusual compatibility issues with six.

0.11.1 (2015-06-29)

	setuptools has the nasty habit to change underscores in project
names to minus characters. This broke the new autoscan machinery for
packages with an underscore in their name (such as
morepath_sqlalchemy). This was fixed.

0.11 (2015-06-29)

	Breaking change. The morepath.autoconfig and morepath.autosetup
methods had to be rewritten. Before, Morepath was unable to autoload packages
installed using pip.

As a result, Morepath won’t be able to autoload packages if the setup.py
name differs from the name of the distributed package or module.

For example: A package named my-app containing a module named myapp
won’t be automatically loaded anymore.

Packages like this need to be loaded manually now:

import morepath
import myapp

config = morepath.setup()
config.scan(myapp)
config.commit()

See https://github.com/morepath/morepath/issues/319

	The config.scan method now excludes ‘test’ and ‘tests’ directories
by default.

See https://github.com/morepath/morepath/issues/326

	The template_directory directive will no longer inspect the current
module if the template directory refers to an absolute path. This makes it
easier to write tests where the current module might not be available.

Fixes https://github.com/morepath/morepath/issues/299

	The identity_policy passes settings to the function if it
defines such an argument. This way an identity policy can be created
that takes settings into account.

See https://github.com/morepath/morepath/issues/309

	Dots in the request path are now always normalized away. Before, Morepath
basically relied on the client to do this, which was a potential security
issue.

See https://github.com/morepath/morepath/issues/329

	Additional documentation on the Morepath config system:
http://morepath.readthedocs.org/en/latest/configuration.html

	Additional documentation on how to serve static images in
https://morepath.readthedocs.org/en/latest/more.static.html

	Move undocumented pdb out of __init__.py as it could
sometimes trip up things. Instead documented it in the API docs in
the special morepath.pdbsupport module.

https://github.com/morepath/morepath/issues/328

0.10 (2015-04-09)

	Server-side templating language support: there is now a template
argument for the html directive (and view and json).
You need to use a plugin to add particular template languages to
your project, such as more.chameleon and more.jinja2, but
you can also add your own.

See http://morepath.readthedocs.org/en/latest/templates.html

	Add a new “A Review of the Web” document to the docs to show how
Morepath fits within the web.

http://morepath.readthedocs.org/en/latest/web.html

	The publisher does not respond to a None render function
anymore. Instead, the view directive now uses a default
render_view if None is configured. This simplifies the
publisher guaranteeing a render function always exists.

Fixes https://github.com/morepath/morepath/issues/283

	Introduce a request.resolve_path method that allows you to resolve
paths to objects programmatically.

	Modify setup.py to use io.open instead of open to
include the README and the CHANGELOG and hardcode UTF-8 so it works
on all versions of Python with all default encodings.

	Various documentation fixes.

0.9 (2014-11-25)

	Breaking change. In previous releases of Morepath, Morepath did
not include the full hostname in generated links (so /a instead
of http://example.com/a). Morepath 0.9 does include the full
hostname in generated links by default. This to support the
non-browser client use case better. In the previous system without
fully qualified URLs, client code needs to manually add the base of
links itself in order to be able to access them. That makes client
code more complicated than it should be. To make writing such client
code as easy as possible Morepath now generates complete URLs.

This should not break any code, though it can break tests that rely
on the previous behavior. To fix webtest style tests, prefix
the expected links with http://localhost/.

If for some reason you want the old behavior back in an application,
you can use the link_prefix directive:

@App.link_prefix()
def my_link_prefix(request):
 return '' # prefix nothing again

	Directives are now logged to the morepath.directive log, which
is using the standard Python logging infrastructure. See
http://morepath.readthedocs.org/en/latest/logging.html

	Document more.forwarded proxy support in
http://morepath.readthedocs.org/en/latest/paths_and_linking.html

	Document behavior of request.after in combination with directly
returning a response object from a view.

	Expose body_model_predicate to the public Morepath API. You
can now say your predicate comes after it.

	Expose LAST_VIEW_PREDICATE to the Morepath API. This is the last
predicate defined by the Morepath core.

	Update the predicate documentation.

	Updated the more.static doc to reflect changes in it.

	Fix doc for grouping views with the with statement.

	Suggest a few things to try when your code doesn’t appear to be
scanned properly.

	A new view predicate without a fallback resulted in an internal
server error if the predicate did not match. Now it results in a 404
Not Found by default. To override this default, define a predicate
fallback.

0.8 (2014-11-13)

	Breaking change. Reg 0.9 introduces a new, more powerful
way to create dispatch functions, and this has resulted in
a new, incompatible Reg API.

Morepath has been adjusted to make use of the new Reg. This won’t
affect many Morepath applications, and they should be able to
continue unchanged. But some Morepath extensions and advanced
applications may break, so you should be aware of the changes.

	The @App.function directive has changed from this:

class A(object):
 pass

class B(object):
 pass

@reg.generic
def dispatch_function(a, b):
 pass

@App.function(dispatch_function, A, B)
def dispatched_to(a, b):
 return 'dispatched to A and B'

to this:

class A(object):
 pass

class B(object):
 pass

@reg.dispatch('a', 'b')
def dispatch_function(a, b):
 pass

@App.function(dispatch_function, a=A, b=B)
def dispatched_to(a, b):
 return 'dispatched to A and B'

The new system in Reg (see its docs [http://reg.readthedocs.org]) is a lot more flexible than
what we had before. When you use function you don’t need to
know about the order of the predicates anymore – this is
determined by the arguments to @reg.dispatch(). You can now
also have function arguments that Reg ignores for dispatch.

	The @App.predicate and @App.predicate_fallback directive
have changed. You can now install custom predicates and fallbacks
for any generic function that’s marked with
@reg.dispatch_external_predicates(). The Morepath view code
has been simplified to be based on this, and is also more powerful
as it can now be extended with new predicates that use
predicate-style dispatch.

	Introduce the body_model predicate for views. You can give it
the class of the request.body_obj you want to handle with this
view. In combination with the load_json directive this allows
you to write views that respond only to the POSTing or PUTing of a
certain type of object.

	Internals refactoring: we had a few potentially overridable dispatch
functions in morepath.generic that actually were never
overridden in any directives. Simplify this by moving their
implementation into morepath.publish and
morepath.request. generic.link, generic.consume and
generic.response are now gone.

	Introduce a link_prefix directive that allows you to set the
URL prefix used by every link generated by the request.

	A bug fix in request.view(); the lookup on the request
was not properly updated.

	Another bug fix in request.view(); if deferred_link_app app
is used, request.app should be adjusted to the app currently
being deferred to.

	request.after behavior is clarified: it does not run for any
exceptions raised during the handling of the request, only for the
“proper” response. Fix a bug where it did sometimes run.

	Previously if you returned None for a path in a variables
function for a path, you would get a path with None in it. Now
it is a LinkError.

	If you return a non-dict for variables for a path, you get a proper
LinkError now.

	One test related to defer_links did not work correctly in Python 3. Fixed.

	Add API doc for body_obj. Also fix JSON and objects doc to talk
about request.body_obj instead of request.obj.

	Extend API docs for security: detail the API an identity policy
needs to implement and fix a few bugs.

	Fix ReST error in API docs for autoconfig and autosetup.

	Fix a few ReST links to the API docs in the app reuse document.

0.7 (2014-11-03)

	Breaking change. There has been a change in the way the mount
directive works. There has also been a change in the way linking
between application works. The changes result in a simpler, more
powerful API and implementation.

The relevant changes are:

	You can now define your own custom __init__ for
morepath.App subclasses. Here you can specify the arguments
with which your application object should be mounted. The previous
variables class attribute is now ignored.

It’s not necessary to use super() when you subclass from
morepath.App directly.

So, instead of this:

class MyApp(morepath.App):
 variables = ['mount_id']

You should now write this:

class MyApp(morepath.App):
 def __init__(self, mount_id):
 self.mount_id = mount_id

	The mount directive should now return an instance of the
application being mounted, not a dictionary with mount
parameters. The application is specified using the app
argument to the directive. So instead of this:

@RootApp.mount(app=MyApp, path='sub/{id}')
def mount_sub(id):
 return {
 'mount_id': id
 }

You should now use this:

@RootApp.mount(app=MyApp, path='sub/{id}')
def mount_sub(id):
 return MyApp(mount_id=id)

	The mount directive now takes a variables argument. This
works like the variables argument to the path
directive and is used to construct links.

It is given an instance of the app being mounted, and it should
reconstruct those variables needed in its path as a dictionary. If
omitted, Morepath tries to get them as attributes from the
application instance, just like it tries to get attributes of any
model instance.

MyApp above is a good example of where this is required: it
does store the correct information, but as the mount_id
attribute, not the id attribute. You should add a variables
argument to the mount directive to explain to Morepath how
to obtain id:

@RootApp.mount(app=MyApp, path='sub/{id}',
 variables=lambda app: dict(id=app.mount_id))
def mount_sub(id):
 return MyApp(mount_id=id)

The simplest way to avoid having to do this is to name the
attributes the same way as the variables in the paths, just like
you can do for model classes.

	In the past you’d get additional mount context variables as extra
variables in the function decorated by the path decorator.
This does not happen anymore. Instead you can add a special
app parameter to this function. This gives you access to the
current application object, and you can extract its attributes
there.

So instead of this:

@MyApp.path(path='models/{id}', model=Model)
def get_root(mount_id, id):
 return Model(mount_id, id)

where mount_id is magically retrieved from the way MyApp was
mounted, you now write this:

@MyApp.path(path='models/{id}', model=Model)
def get_root(app, id):
 return Model(app.mount_id, id)

	There was an request.mounted attribute. This was a special an
instance of a special Mounted class. This Mounted class is
now gone – instead mounted applications are simply instances of
their class. To access the currently mounted application, use
request.app.

	The Request object had child and sibling methods as
well as a parent attribute to navigate to different “link
makers”. You’d navigate to the link maker of an application in
order to create links to objects in that application. These are
now gone. Instead you can do this navigation from the application
object directly, and instead of link makers, you get application
instances. You can pass an application instance as a special
app argument to request.link and request.view.

So instead of this:

request.child(foo).link(obj)

You now write this:

request.link(obj, app=request.app.child(foo))

And instead of this:

request.parent.link(obj)

You now write this:

request.link(obj, app=request.app.parent)

Note that the new defer_links directive can be used to
automate this behavior for particular models.

	The .child method on App can the app class as well as the
parameters for the function decorated by the mount directive:

app.child(MyApp, id='foo')

This can also be done by name. So, assuming MyApp was mounted
under my_app:

app.child('my_app', id='foo')

This is how request.child worked already.

As an alternative you can now instead pass an app instance:

app.child(MyApp(mount_id='foo'))

Unlike the other ways to get the child, this takes the parameters
need to create the app instance, as opposed to taking the
parameters under which the app was mounted.

Motivation behind these changes:

Morepath used to have a Mount class separate from the App
classes you define. Since Morepath 0.4 application objects became
classes, and it made sense to make their instances the same as the
mounted application. This unification has now taken place.

It then also made sense to use its navigation methods (child and
friend) to navigate the mount tree, instead of using the rather
complicated “link maker” infrastructure we had before.

This change simplifies the implementation of mounting considerably,
without taking away features and actually making the APIs involved
more clear. This simplification in turn made it easier to implement
the new defer_links directive.

	Breaking change. The arguments to the render function have
changed. This is a function you can pass to a view directive. The
render function now takes a second argument, the request. You need
to update your render functions to take this into account. This only
affects code that supplies an explicit render function to the
view, json and html directives, and since not a lot of
those functions exist, the impact is expected to be minimal.

	Breaking change. In certain circumstances it was useful to
access the settings through an application instance using
app.settings. This does not work anymore; access the settings
through app.registry.settings instead.

	dump_json and load_json directives. This lets you
automatically convert an object going to a response to JSON, and
converts JSON coming in as a request body from JSON to an
object. See http://morepath.readthedocs.org/en/latest/json.html for
more information.

	defer_links directive. This directive can be used to declare
that a particular mounted application takes care of linking to
instances of a class. Besides deferring request.link() it will
also defer request.view. This lets you combine applications with
more ease. By returning None from it you can also defer links to
this app’s parent app.

	app.ancestors() method and app.root attribute. These can be
used for convenient access to the ancestor apps of a mounted
application. To access from the request, use request.app.root
and request.app.ancestors().

	The App class now has a request_class class attribute. This
determines the class of the request that is created and can be
overridden by subclasses. more.static now makes use of this.

	Several generic functions that weren’t really pulling their weight
are now gone as part of the mount simplification:
generic.context and generic.traject are not needed anymore,
along with generic.link_maker.

	Change documentation to use uppercase class names for App classes
everywhere. This reflects a change in 0.4 and should help clarity.

	Added documentation about auto-reloading Morepath during development.

	No longer silently suppress ImportError during scanning: this can
hide genuine ImportError in the underlying code.

We were suppressing ImportError before as it can be triggered
by packages that rely on optional dependencies.

This is a common case in the .tests subdirectory of a package
which may import a test runner like pytest. pytest is only a
test dependency of the package and not a mainline dependencies, and
this can break scanning. To avoid this problem, Morepath’s autosetup
and autoconfig now automatically ignore .tests and .test
sub-packages.

Enhanced the API docs for autosetup and autoconfig to describe
scenarios which can generate legitimate ImportError exceptions
and how to handle them.

	Fix of examples in tween documentation.

	Minor improvement in docstrings.

0.6 (2014-09-08)

	Fix documentation on the with statement; it was not using the local
view variable correctly.

	Add #morepath IRC channel to the community docs.

	Named mounts. Instead of referring to the app class when
constructing a link to an object in an application mounted
elsewhere, you can put in the name of the mount. The name of the
mount can be given explicitly in the mount directive but defaults to
the mount path.

This helps when an application is mounted several times and needs to
generate different links depending on where it’s mounted; by
referring to the application by name this is loosely coupled and
will work no matter what application is mounted under that name.

This also helps when linking to an application that may or may not
be present; instead of doing an import while looking for
ImportError, you can try to construct the link and you’ll get a
LinkError exception if the application is not there. Though this
still assumes you can import the model class of what you’re linking
to.

(see issue #197)

	Introduce a sibling method on Request. This combines the
.parent.child step in one for convenience when you want to
link to a sibling app.

0.5.1 (2014-08-28)

	Drop usage of sphinxcontrib.youtube in favor of raw HTML embedding,
as otherwise too many things broke on readthedocs.

0.5 (2014-08-28)

	Add more.static documentation on local components.

	Add links to youtube videos on Morepath: the keynote at PyCon DE
2013, and the talk on Morepath at EuroPython 2014.

	Add a whole bunch of extra code quality tools to buildout.

	verify_identity would be called even if no identity could be
established. Now skip calling verify_identity when we already
have NO_IDENTITY. See issue #175.

	Fix issue #186: mounting an app that is absorbing paths could
sometimes generate the wrong link. Thanks to Ying Zhong for the bug
report and test case.

	Upgraded to a newer version of Reg (0.8) for @reg.classgeneric
support as well as performance improvements.

	Add a note in the documentation on how to deal with URL parameters
that are not Python names (such as foo@, or blah[]). You can
use a combination of extra_parameters and get_converters to
handle them.

	Document the use of the with statement for directive
abbreviation (see the Views document).

	Created a mailing list:

https://groups.google.com/forum/#!forum/morepath

Please join!

Add a new page on community to document this.

0.4.1 (2014-07-08)

	Compatibility for Python 3. I introduced a meta class in Morepath
0.4 and Python 3 did not like this. Now the tests pass again in
Python 3.

	remove generic.lookup, unused since Morepath 0.4.

	Increase test coverage back to 100%.

0.4 (2014-07-07)

	BREAKING CHANGE Move to class-based application registries. This
breaks old code and it needs to be updated. The update is not
difficult and amounts to:

	subclass morepath.App instead of instantiating it to create a
new app. Use subclasses for extension too.

	To get a WSGI object you can plug into a WSGI server, you need to
instantiate the app class first.

Old way:

app = morepath.App()

So, the app object that you use directives on is an
instance. New way:

class app(morepath.App):
 pass

So, now it’s a class. The directives look the same as before, so this
hasn’t changed:

@app.view(model=Foo)
def foo_default(self, request):
 ...

To extend an application with another one, you used to have to pass
the extends arguments. Old way:

sub_app = morepath.App(extends=[core_app])

This has now turned into subclassing. New way:

class sub_app(core_app):
 pass

There was also a variables argument to specify an application
that can be mounted. Old way:

app = morepath.App(variables=['foo'])

This is now a class attribute. New way:

class app(morepath.App):
 variables = ['foo']

The name argument to help debugging is gone; we can look at the
class name now. The testing_config argument used internally in
the Morepath tests has also become a class attribute.

In the old system, the application object was both configuration
point and WSGI object. Old way:

app = morepath.App()

configuration
@app.path(...)
...

wsgi
morepath.run(app)

In the Morepath 0.4 this has been split. As we’ve already seen, the
application class serves. To get a WSGI object, you need to first
instantiate it. New way:

class app(morepath.App):
 pass

configuration
@app.path(...)
...

wsgi
morepath.run(app())

To mount an application manually with variables, we used to need the
special mount() method. Old way:

mounted_wiki_app = wiki_app.mount(wiki_id=3)

In the new system, mounting is done during instantiation of the app:

mounted_wiki_app = wiki_app(wiki_id=3)

Class names in Python are usually spelled with an upper case. In the
Morepath docs the application object has been spelled with a lower
case. We’ve used lower-case class names for application objects even
in the updated docs for example code, but feel free to make them
upper-case in your own code if you wish.

Why this change? There are some major benefits to this change:

	both extending and mounting app now use natural Python mechanisms:
subclassing and instantation.

	it allows us to expose the facility to create new directives to
the API. You can create application-specific directives.

	You can define your own directives on your applications using the
directive directive:

@my_app.directive('my_directive')

This exposes details of the configuration system which is
underdocumented for now; study the morepath.directive module
source code for examples.

	Document how to use more.static to include static resources into
your application.

	Add a recursive=False option to the config.scan method. This
allows the non-recursive scanning of a package. Only its
__init__.py will be scanned.

	To support scanning a single module non-recursively we need a
feature that hasn’t landed in mainline Venusian yet, so depend on
Venusifork for now.

	A small optimization in the publishing machinery. Less work is done
to update the generic function lookup context during routing.

0.3 (2014-06-23)

	Ability to absorb paths entirely in path directive, as per issue #132.

	Refactor of config engine to make Venusian and immediate config more
clear.

	Typo fix in docs (Remco Wendt).

	Get version number in docs from setuptools.

	Fix changelog so that PyPI page generates HTML correctly.

	Fix PDF generation so that the full content is generated.

	Ability to mark a view as internal. It will be available to
request.view() but will give 404 on the web. This is useful for
structuring JSON views for reusability where you don’t want them to
actually show up on the web.

	A request.child(something).view() that had this view in turn
call a request.view() from the context of the something
application would fail – it would not be able to look up the view
as lookups still occurred in the context of the mounting
application. This is now fixed. (thanks Ying Zhong for reporting it)

Along with this fix refactored the request object so it keeps a
simple mounted attribute instead of a stack of mounts; the
stack-like nature was not in use anymore as mounts themselves have
parents anyway. The new code is simpler.

0.2 (2014-04-24)

	Python 3 support, in particular Python 3.4 (Alec Munro - fudomunro
on github).

	Link generation now takes SCRIPT_NAME into account.

	Morepath 0.1 had a security system, but it was undocumented. Now
it’s documented (docs now in Morepath Security [http://blog.startifact.com/posts/morepath-security.html]), and some of its
behavior was slightly tweaked:

	new verify_identity directive.

	permission directive was renamed to permission_rule.

	default unauthorized error is 403 Forbidden, not 401 Unauthorized.

	morepath.remember and morepath.forbet renamed to
morepath.remember_identity and morepath.forget_identity.

	Installation documentation tweaks. (Auke Willem Oosterhoff)

	.gitignore tweaks (Auke Willem Oosterhoff)

0.1 (2014-04-08)

	Initial public release.

 Upgrading to a new Morepath version

Upgrading to a new Morepath version

Morepath keeps a detailed changelog (CHANGES) that describes
what has changed in each release of Morepath. You can learn about new
features in Morepath this way, but also about things in your code that
might possibly break. Pay particular attention to entries marked
Breaking change, Deprecated and Removed.

Breaking change means that you have to update your code as
described if you use this feature of Morepath.

Deprecated means that your code won’t break yet but you get a
deprecation warning instead. You can then upgrade your code to use the
newer APIs. You can show deprecation warnings by passing the following
flag to the Python interpreter when you run your code:

$ python -W error::DeprecationWarning

If you use an entry point to create a command-line tool you will
have to supply your Python interpreter manually:

$ python -W error::DeprecationWarning the_tool

You can also turn these on in your code:

import warnings
warnings.simplefilter('always', DeprecationWarning)

It’s also possible to turn deprecation warnings into an error:

import warnings
warnings.simplefilter('error', DeprecationWarning)

A Deprecated entry in the changelog changes into a Removed in
a future release; we are not maintaining deprecation warnings
forever. If you see a Removed entry, it pays off to run your code
with deprecation warnings turned on before you upgrade to this
version.

 Python Module Index

 Python Module Index

 m

 		 	

 		
 m	

 	[image: -]
 	
 morepath	

 	
 	
 morepath.app	

 	
 	
 morepath.authentication	

 	
 	
 morepath.autosetup	

 	
 	
 morepath.converter	

 	
 	
 morepath.core	

 	
 	
 morepath.directive	

 	
 	
 morepath.error	

 	
 	
 morepath.path	

 	
 	
 morepath.pdbsupport	

 	
 	
 morepath.predicate	

 	
 	
 morepath.publish	

 	
 	
 morepath.reify	

 	
 	
 morepath.request	

 	
 	
 morepath.settings	

 	
 	
 morepath.template	

 	
 	
 morepath.toposort	

 	
 	
 morepath.traject	

 	
 	
 morepath.tween	

 	
 	
 morepath.view	

 Index

Index

 _
 | A
 | C
 | D
 | E
 | F
 | G
 | H
 | I
 | J
 | L
 | M
 | N
 | P
 | R
 | S
 | T
 | U
 | V
 | W

_

 	
 	__call__() (morepath.App method)

 	(morepath.path.Path method)

 	(morepath.traject.ParameterFactory method)

 	(morepath.view.View method)

 	__eq__() (morepath.traject.Step method)

 	__ge__() (morepath.traject.Step method)

 	__gt__() (morepath.traject.Step method)

 	__init__() (morepath.App method)

 	(morepath.path.Path method)

 	(morepath.traject.Node method)

 	(morepath.traject.ParameterFactory method)

 	(morepath.traject.Path method)

 	(morepath.traject.Step method)

 	(morepath.traject.StepNode method)

 	(morepath.traject.TrajectRegistry method)

 	(morepath.view.View method)

 	
 	__le__() (morepath.traject.Step method)

 	__lt__() (morepath.traject.Step method)

 	__ne__() (morepath.traject.Step method)

 	_path() (morepath.App class method)

A

 	
 	actual_converter() (morepath.directive.ConverterRegistry method)

 	add() (morepath.traject.Node method)

 	add_name_node() (morepath.traject.Node method)

 	add_pattern() (morepath.traject.TrajectRegistry method)

 	add_variable_node() (morepath.traject.Node method)

 	after() (morepath.Request method)

 	
 	ancestors() (morepath.App method)

 	App (class in morepath)

 	app (morepath.Request attribute)

 	argument_and_explicit_converters() (morepath.directive.ConverterRegistry method)

 	as_dict() (morepath.Identity method)

 	AutoImportError

 	autoscan() (in module morepath)

C

 	
 	caller_module() (in module morepath.autosetup)

 	caller_package() (in module morepath.autosetup)

 	child() (morepath.App method)

 	class_link() (morepath.Request method)

 	clean() (morepath.App class method)

 	commit() (in module morepath)

 	(morepath.App class method)

 	
 	consume() (morepath.traject.TrajectRegistry method)

 	Converter (class in morepath)

 	converter() (morepath.App class method)

 	ConverterAction (class in morepath.directive)

 	ConverterRegistry (class in morepath.directive)

 	create_path() (in module morepath.traject)

 	create_variables_re() (in module morepath.traject)

D

 	
 	date_converter() (in module morepath.core)

 	datetime_converter() (in module morepath.core)

 	decode() (morepath.Converter method)

 	(morepath.converter.ListConverter method)

 	defer_class_links() (morepath.App class method)

 	defer_links() (morepath.App class method)

 	DeferClassLinksAction (class in morepath.directive)

 	
 	DeferLinksAction (class in morepath.directive)

 	DependencyMap (class in morepath.autosetup)

 	depends() (morepath.autosetup.DependencyMap method)

 	discriminator() (morepath.traject.Path method)

 	discriminator_info() (morepath.traject.Step method)

 	dispatch_method() (in module morepath)

 	dump_json() (morepath.App class method)

 	DumpJsonAction (class in morepath.directive)

E

 	
 	encode() (morepath.Converter method)

 	(morepath.converter.ListConverter method)

 	
 	EXCVIEW (in module morepath)

 	excview_tween_factory() (in module morepath.core)

F

 	
 	filter_arguments() (in module morepath.path)

 	fixed_urlencode() (in module morepath.path)

 	
 	forget() (morepath.IdentityPolicy method)

 	forget_identity() (morepath.App method)

 	FunctionAction (class in morepath.directive)

G

 	
 	generalize_variables() (in module morepath.traject)

 	get_arguments() (in module morepath.path)

 	get_module_name() (in module morepath.autosetup)

 	get_predicates() (morepath.directive.PredicateRegistry method)

 	
 	get_template_render() (morepath.directive.TemplateEngineRegistry method)

 	get_variables_and_parameters() (morepath.path.Path method)

 	get_view() (morepath.App method)

 	get_view_name() (in module morepath.publish)

H

 	
 	has_variables() (morepath.traject.Step method)

 	HOST_HEADER_PROTECTION (in module morepath)

 	
 	html() (morepath.App class method)

 	HtmlAction (class in morepath.directive)

I

 	
 	IDENTIFIER (in module morepath.traject)

 	identify() (morepath.IdentityPolicy method)

 	Identity (class in morepath)

 	identity (morepath.Request attribute)

 	IDENTITY_CONVERTER (in module morepath.converter)

 	identity_policy() (morepath.App class method)

 	IdentityPolicy (class in morepath)

 	IdentityPolicyAction (class in morepath.directive)

 	IdentityPolicyFunctionAction (class in morepath.directive)

 	import_package() (in module morepath.autosetup), [1]

 	
 	Info (class in morepath.toposort)

 	init_settings() (morepath.App class method)

 	initialize_template_loader() (morepath.directive.TemplateEngineRegistry method)

 	install_predicates() (morepath.directive.PredicateRegistry method)

 	int_converter() (in module morepath.core)

 	interpolation_str() (in module morepath.traject)

 	(morepath.traject.Path method)

 	is_identifier() (in module morepath.traject)

 	is_missing() (morepath.Converter method)

 	(morepath.converter.ListConverter method)

J

 	
 	json() (morepath.App class method)

 	
 	JsonAction (class in morepath.directive)

L

 	
 	link() (morepath.Request method)

 	link_prefix() (morepath.App class method)

 	(morepath.Request method)

 	LinkError

 	
 	LinkPrefixAction (class in morepath.directive)

 	ListConverter (class in morepath.converter)

 	load() (morepath.autosetup.DependencyMap method)

 	logger_name (morepath.App attribute)

M

 	
 	match() (morepath.traject.Step method)

 	(morepath.traject.StepNode method)

 	method() (morepath.App class method)

 	method_not_allowed() (in module morepath.core)

 	model_not_found() (in module morepath.core)

 	model_predicate() (in module morepath.core)

 	morepath (module)

 	morepath.app (module)

 	morepath.authentication (module)

 	morepath.autosetup (module)

 	morepath.converter (module)

 	morepath.core (module)

 	morepath.directive (module)

 	morepath.error (module)

 	
 	morepath.path (module)

 	morepath.pdbsupport (module)

 	morepath.predicate (module)

 	morepath.publish (module)

 	morepath.reify (module)

 	morepath.request (module)

 	morepath.settings (module)

 	morepath.template (module)

 	morepath.toposort (module)

 	morepath.traject (module)

 	morepath.tween (module)

 	morepath.view (module)

 	mount() (morepath.App class method)

 	MountAction (class in morepath.directive)

 	mounted_app_classes() (morepath.App class method)

N

 	
 	name_not_found() (in module morepath.core)

 	name_predicate() (in module morepath.core)

 	NO_IDENTITY (in module morepath)

 	
 	Node (class in morepath.traject)

 	NoIdentity (class in morepath.authentication)

 	normalize_path() (in module morepath.traject)

P

 	
 	ParameterFactory (class in morepath.traject)

 	parent (morepath.App attribute)

 	parse_path() (in module morepath.traject)

 	parse_variables() (in module morepath.traject)

 	Path (class in morepath.path)

 	(class in morepath.traject)

 	path() (morepath.App class method)

 	PATH_VARIABLE (in module morepath.traject)

 	PathAction (class in morepath.directive)

 	PathCompositeAction (class in morepath.directive)

 	PathInfo (class in morepath.path)

 	
 	PathRegistry (class in morepath.directive)

 	permission_rule() (morepath.App class method)

 	PermissionRuleAction (class in morepath.directive)

 	poisoned_host_header_protection_tween_factory() (in module morepath.core)

 	predicate() (morepath.App class method)

 	predicate_fallback() (morepath.App class method)

 	PredicateAction (class in morepath.directive)

 	PredicateFallbackAction (class in morepath.directive)

 	PredicateInfo (class in morepath.predicate)

 	PredicateRegistry (class in morepath.directive)

 	publish (morepath.App attribute)

 	publish() (in module morepath.publish)

R

 	
 	redirect() (in module morepath)

 	register_converter() (morepath.directive.ConverterRegistry method)

 	register_defer_class_links() (morepath.directive.PathRegistry method)

 	register_defer_links() (morepath.directive.PathRegistry method)

 	register_inverse_path() (morepath.directive.PathRegistry method)

 	register_mount() (morepath.directive.PathRegistry method)

 	register_path() (morepath.directive.PathRegistry method)

 	register_path_variables() (morepath.directive.PathRegistry method)

 	register_predicate() (morepath.directive.PredicateRegistry method)

 	register_predicate_fallback() (morepath.directive.PredicateRegistry method)

 	register_setting() (morepath.directive.SettingRegistry method)

 	register_template_directory_info() (morepath.directive.TemplateEngineRegistry method)

 	register_template_render() (morepath.directive.TemplateEngineRegistry method)

 	register_tween_factory() (morepath.directive.TweenRegistry method)

 	reify (class in morepath.reify)

 	relevant_dists() (morepath.autosetup.DependencyMap method)

 	
 	remember() (morepath.IdentityPolicy method)

 	remember_identity() (morepath.App method)

 	render_html() (in module morepath)

 	render_json() (in module morepath)

 	render_view() (in module morepath.view)

 	Request (class in morepath)

 	request() (morepath.App method)

 	request_class (morepath.App attribute)

 	request_method_predicate() (in module morepath.core)

 	reset() (morepath.Request method)

 	resolve() (morepath.traject.Node method)

 	resolve_model() (in module morepath.publish)

 	resolve_path() (morepath.Request method)

 	resolve_response() (in module morepath.publish)

 	Response (class in morepath)

 	root (morepath.App attribute)

 	run() (in module morepath)

S

 	
 	scan() (in module morepath)

 	set_trace() (in module morepath.pdbsupport)

 	setting() (morepath.App class method)

 	setting_section() (morepath.App class method)

 	SettingAction (class in morepath.directive)

 	SettingRegistry (class in morepath.directive)

 	settings (morepath.App attribute)

 	SettingSection (class in morepath.settings)

 	
 	SettingSectionAction (class in morepath.directive)

 	sibling() (morepath.App method)

 	sorted_predicate_infos() (morepath.directive.PredicateRegistry method)

 	sorted_template_directories() (morepath.directive.TemplateEngineRegistry method)

 	sorted_tween_factories() (morepath.directive.TweenRegistry method)

 	standard_exception_view() (in module morepath.core)

 	Step (class in morepath.traject)

 	StepNode (class in morepath.traject)

T

 	
 	template_directory() (morepath.App class method)

 	template_loader() (morepath.App class method)

 	template_render() (morepath.App class method)

 	TemplateDirectoryAction (class in morepath.directive)

 	TemplateDirectoryInfo (class in morepath.template)

 	TemplateEngineRegistry (class in morepath.directive)

 	TemplateLoaderAction (class in morepath.directive)

 	
 	TemplateRenderAction (class in morepath.directive)

 	TopologicalSortError

 	toposorted() (in module morepath.toposort)

 	TrajectError

 	TrajectRegistry (class in morepath.traject)

 	tween_factory() (morepath.App class method)

 	TweenFactoryAction (class in morepath.directive)

 	TweenRegistry (class in morepath.directive)

U

 	
 	unconsumed (morepath.Request attribute)

 	unicode_converter() (in module morepath.core)

 	
 	url() (morepath.path.PathInfo method)

 	userid (morepath.Identity attribute)

V

 	
 	validate() (morepath.traject.Step method)

 	validate_parts() (morepath.traject.Step method)

 	validate_variables() (morepath.traject.Step method)

 	variables() (morepath.traject.Path method)

 	verify_identity() (morepath.App class method)

 	
 	VerifyIdentityAction (class in morepath.directive)

 	View (class in morepath.view)

 	view() (morepath.App class method)

 	(morepath.Request method)

 	ViewAction (class in morepath.directive)

W

 	
 	wrap() (morepath.directive.TweenRegistry method)

_static/plus.png

_static/file.png

_static/minus.png

_static/up-pressed.png

_static/up.png

nav.xhtml

 Table of Contents

 		
 Documentation

 		
 Getting Started

 		
 Morepath: Super Powered Python Web Framework

 		
 Video intro

 		
 Morepath Super Powers

 		
 Morepath Knows About Your Models

 		
 More documentation, please!

 		
 I just want to try it!

 		
 Quickstart

 		
 Hello world

 		
 Code Walkthrough

 		
 Routing

 		
 Request object

 		
 Redirects

 		
 HTTP Errors

 		
 Community

 		
 Github

 		
 Chat

 		
 Mailing list/forum

 		
 Examples

 		
 Installation

 		
 Quick and Dirty Installation

 		
 Creating a Morepath Project Using Cookiecutter

 		
 Creating a Morepath Project Manually

 		
 Depending on Morepath development versions

 		
 Superpowers

 		
 Link with Ease

 		
 Generic UI

 		
 Model-driven Permissions

 		
 Composable Views

 		
 Extensible Applications

 		
 Extensible Framework

 		
 Comparison with other Web Frameworks

 		
 Overview

 		
 Routing

 		
 Linking

 		
 Permissions

 		
 View lookup

 		
 WSGI

 		
 Explicit request

 		
 Testability and Global state

 		
 No default database

 		
 Pluggable template languages

 		
 Code configuration

 		
 Components and Generic functions

 		
 A Review of the Web

 		
 HTTP protocol

 		
 Web browser

 		
 Web server

 		
 Web application

 		
 Web service

 		
 Custom HTTP client

 		
 Framework

 		
 Server web framework

 		
 JavaScript

 		
 Bower

 		
 AJAX

 		
 Client web framework

 		
 WSGI

 		
 HTTP request

 		
 HTTP response

 		
 Resource

 		
 URL

 		
 URL parameters

 		
 Path

 		
 Link generation

 		
 Headers

 		
 Cookies

 		
 Content types

 		
 View

 		
 HTTP request method

 		
 View predicate

 		
 HTTP status codes

 		
 JSON

 		
 JSON-LD

 		
 HTTP API

 		
 REST web service

 		
 HTML and CSS

 		
 Web page

 		
 Single-page web application

 		
 User Guide

 		
 Paths and Linking

 		
 Introduction

 		
 Paths

 		
 URL query parameters

 		
 Extra URL query parameters

 		
 Linking

 		
 Linking with path variables

 		
 Linking with URL query parameters

 		
 Prefixing links with a base URL

 		
 Linking to external applications

 		
 Type hints

 		
 Conversion

 		
 Default converters

 		
 Type hints and converters

 		
 List converters

 		
 get_converters

 		
 Required

 		
 Absorbing

 		
 Linking with the model class

 		
 Proxy support

 		
 Views

 		
 Introduction

 		
 Named views

 		
 Default views

 		
 Generic views

 		
 Details

 		
 Ambiguity between path and view

 		
 render

 		
 Templates

 		
 Permissions

 		
 Manipulating the response

 		
 request_method

 		
 Grouping views

 		
 Predicates

 		
 request.view

 		
 Exception views

 		
 Templates

 		
 Introduction

 		
 Example

 		
 Overrides

 		
 Details

 		
 Integrating a new template engine

 		
 Configuration

 		
 Introduction

 		
 How it works

 		
 Scanning a package

 		
 Scanning dependencies

 		
 JSON and validation

 		
 Introduction

 		
 dump_json

 		
 load function for views

 		
 Security

 		
 Introduction

 		
 Identity

 		
 Verify identity

 		
 Session or token based identity verification

 		
 Login and logout

 		
 Permissions

 		
 Permission rules

 		
 Morepath Super Powers Go!

 		
 Settings

 		
 Introduction

 		
 Defining a setting

 		
 Accessing a setting

 		
 Defining multiple settings

 		
 Loading settings from a config file

 		
 Logging

 		
 Directive logging

 		
 App Reuse

 		
 Application Isolation

 		
 Application Extension

 		
 Application Overrides

 		
 Nesting Applications

 		
 Linking to other mounted apps

 		
 Deferring links and views

 		
 Further reading

 		
 Tweens

 		
 Introduction

 		
 signature of a handler

 		
 Under and over

 		
 What can a tween do?

 		
 Creating a tween factory

 		
 Tweens and settings

 		
 Tweens and apps

 		
 more.transaction

 		
 Static resources with Morepath

 		
 Introduction

 		
 Application layout

 		
 Manual scan

 		
 Bower

 		
 Registering bower_components

 		
 Saying which components to use

 		
 Including stuff

 		
 Local components

 		
 A note about mounted applications

 		
 Other static content

 		
 Advanced Topics

 		
 Organizing your Project

 		
 Introduction

 		
 Sounds Like a Lot of Work

 		
 Python project

 		
 Project layout

 		
 Project setup

 		
 Project naming

 		
 Namespace packages

 		
 App Module

 		
 Run Module

 		
 Upgrading your project to a newer version of Morepath

 		
 Debugging scanning problems

 		
 Model module

 		
 Path module

 		
 View module

 		
 Directive debugging

 		
 Building Large Applications

 		
 Introduction

 		
 A Code Hosting Site

 		
 Simplest approach

 		
 Problems

 		
 Multiple sub-apps

 		
 Mounting apps

 		
 No more path repetition

 		
 Testing in isolation

 		
 Reusing an app

 		
 Different teams

 		
 Swapping in a new sub-app

 		
 Customizing an app

 		
 Swapping in, for one customer

 		
 Framework apps

 		
 REST

 		
 Introduction

 		
 Elements of REST

 		
 HTTP as a transport system

 		
 Modeling as resources

 		
 HTTP response status codes

 		
 load

 		
 Linking: HATEOAS

 		
 Compose from reusable apps

 		
 Writing automated tests

 		
 Testing â��Hello world!â��

 		
 Directive tricks

 		
 Querying configuration

 		
 Creating a tool

 		
 Usage

 		
 Reference

 		
 API

 		
 morepath

 		
 morepath.error â�� exception classes

 		
 morepath.pdbsupport â�� debugging support

 		
 morepath.directive â�� Extension API

 		
 Registry classes

 		
 Action classes

 		
 Contributor Guide

 		
 Developing Morepath

 		
 Community

 		
 Install Morepath for development

 		
 Install pre-commit hook for Black integration

 		
 Running the tests

 		
 Black

 		
 flake8

 		
 radon

 		
 Running the documentation tests

 		
 Building the HTML documentation

 		
 Developing Reg, Dectate or Importscan

 		
 Tox

 		
 Deprecation

 		
 Design Notes

 		
 Publish any model

 		
 Routing

 		
 Traversal

 		
 Linking

 		
 Model is web-agnostic

 		
 View/model separation

 		
 Isolation between applications

 		
 Sharing between applications

 		
 Models can be published once per application

 		
 Linking to another application

 		
 Reusable components

 		
 Declarative

 		
 Conflicts

 		
 Overrides

 		
 Implementation Overview

 		
 Introduction

 		
 How it all works

 		
 Dependencies

 		
 Internal APIs

 		
 History

 		
 History of Morepath

 		
 Web Framework Inspirations

 		
 Configuration system

 		
 Routing system

 		
 Reg

 		
 Publisher

 		
 Combining it all

 		
 Spinning a Web Framework

 		
 CHANGES

 		
 0.20 (unreleased)

 		
 0.19 (2020-01-30)

 		
 0.18.2 (2019-01-22)

 		
 0.18.1 (2017-06-30)

 		
 0.18 (2017-03-17)

 		
 0.17 (2016-12-23)

 		
 0.16.1 (2016-10-04)
