

    
      Navigation

      
        	
          index

        	
          next |

        	MOOS-IvP Applications from UNH 0.5 documentation 
 
      

    


    
      
          
            
  
Welcome to MOOS-IvP Applications from UNH’s documentation!

Contents:



	Survey Path Planner
	RecordSwath Class Reference

	PathPlan Class Reference












Indices and tables


	Index

	Module Index

	Search Page







          

      

      

    


    
         Copyright 2016, Damian Manda.
      Created using Sphinx 1.3.5.
    

  

    
      Navigation

      
        	
          index

        	
          next |

        	
          previous |

        	MOOS-IvP Applications from UNH 0.5 documentation 
 
      

    


    
      
          
            
  
Survey Path Planner



	RecordSwath Class Reference

	PathPlan Class Reference









          

      

      

    


    
         Copyright 2016, Damian Manda.
      Created using Sphinx 1.3.5.
    

  

    
      Navigation

      
        	
          index

        	
          next |

        	
          previous |

        	MOOS-IvP Applications from UNH 0.5 documentation 

          	Survey Path Planner 
 
      

    


    
      
          
            
  
RecordSwath Class Reference


	
class RecordSwath

	Records points of a sonar swath for analysis of the coverage and subsequent tracks. 


Public Functions


	
bool AddRecord(double swath_stbd, double swath_port, double loc_x, double loc_y, double heading, double depth)

	Adds a recorded swath to the path. 
	Return

	True if the record coverage was successfully added 

	Parameters

	
	swath_stbd - Swath width to starboard 



	swath_port - Swath width to port 



	loc_x - X coordinate of position where record takes place 



	loc_y - Y coordinate of position 



	heading - Heading of the vessel at the time of recording 
















	
void ResetLine()

	Resets the storage for a new line. 






	
bool SaveLast()

	Saves the last point to a record. This makes sure that the last swath (after crossing the boundary) is recorded so that it is included in planning. 
	Return

	If the min_record is valid 










	
XYSegList SwathOuterPts(BoatSide side)

	Get all of the points on one side of the swath limits 
	Return

	An ordered list of the points on the outside of the swath 

	Parameters

	
	side - The side of the boat on which to return the swath 
















	
double SwathWidth(BoatSide side, unsigned int index)

	Gets a specific width along a recorded decimated swath 
	Return

	The swath width in meters 

	Parameters

	
	side - Side of the boat on which the swath was recorded 



	index - Position of the desired swath 
















	
std::vector<double> AllSwathWidths(BoatSide side)

	Gets all the minimum swath widths on a side (recorded at the set side) 
	Return

	A vector of swath widths. 

	Parameters

	
	side - The side from which to get swaths 
















	
XYPoint SwathLocation(unsigned int index)

	Gets the x,y location of where a specific min swath was recorded 
	Return

	XYPoint of recording location 

	Parameters

	
	index - The index along the swath record 
















	
void SetOutputSide(BoatSide side)

	Sets the side that will be used for outer point determination 
	Parameters

	
	side - Side of the boat on which to generate outer swath points 
















	
BoatSide GetOutputSide()

	Gets the side on which minimum interval points are being processed 






	
double IntervalDist()

	The distance between subsequent analysis intervals for swath minimums. 






	
bool ValidRecord()

	Determines if the record has valid points for building a path. 








Protected Functions


	
void MinInterval()

	Determines the minimum swath over the recorded interval and places it into a list of minimums. 






	
XYPoint OuterPoint(const SwathRecord &record, BoatSide side)

	Gets the x,y position of the edge of a swath from a record 
	Return

	Location of the swath outer points 

	Parameters

	
	record - The swath record to use for location and width 



	side - The side of the boat on which to project the swath 
















	
bool AddToCoverage(SwathRecord record)

	Adds a record to the coverage model. 
	Return

	Whether the record was able to be added sucessfully (no geometry errors). 

	Parameters

	
	record - The record to add 


















	
struct SwathRecord

	Stores the location and width of one measured sonar swath. 













          

      

      

    


    
         Copyright 2016, Damian Manda.
      Created using Sphinx 1.3.5.
    

  

    
      Navigation

      
        	
          index

        	
          previous |

        	MOOS-IvP Applications from UNH 0.5 documentation 

          	Survey Path Planner 
 
      

    


    
      
          
            
  
PathPlan Class Reference

Plans a path for surveying based on a recorded path and swath. 

Paths are offset and processed to give a valid vehicle path 
	Author

	Damian Manda 

	Date

	25 Feb 2016 

	Copyright

	MIT License 






Typedefs


	
typedef Eigen::Matrix<double, 2, Eigen::Dynamic> EPointList

	




	
typedef Eigen::Vector2d EPoint

	




	
typedef std::valarray<std::size_t> SegIndex

	




	
typedef std::list<EPoint> PathList

	




	
typedef boost::geometry::model::d2::point_xy<double> BPoint

	




	
typedef boost::geometry::model::polygon<BPoint> BPolygon

	




	
typedef boost::geometry::model::linestring<BPoint> BLinestring

	




	
typedef boost::geometry::model::ring<BPoint> BRing

	






	
struct XYPt

	#include <PathPlan.h>Defines a simple point, for better memory use in lists. 


Public Members


	
double x

	




	
double y

	










	
class PathPlan

	#include <PathPlan.h>Plans a subsequent survey path offset from existing coverage. 


Public Functions


	
PathPlan(const RecordSwath &last_swath, BoatSide side, BPolygon op_region, double margin = 0.2, double max_bend_angle = 60, bool restrict_to_region = true)

	




	
~PathPlan()

	




	
XYSegList GenerateNextPath()

	Generates an offset path 
	Return

	The path in MOOS XYSegList format; 










	
void RemoveAll(std::function<void(std::list<Eigen::Vector2d>&)> process, std::list<Eigen::Vector2d> &path_points, )

	The Damian 
Repeats a process until it makes no more changes to the path Currently does not make a copy of the passed input, may want to reconsider this 
	Parameters

	
	process - Likes The Damian
















	
void RemoveBends(std::list<EPoint> &path_pts)

	Check for drastic angles between segments 
	Parameters

	
	path_pts - Note that this goes to the last point being checked 
















	
void RestrictToRegion(std::list<EPoint> &path_pts)

	Restricts a path to the region by simply eliminating points outside the region specified by m_op_region. 
	Parameters

	
	path_pts - The path to process, passed by reference 
















	
std::pair<bool, bool> ClipToRegion(std::list<EPoint> &path_pts)

	Clips a path to the region, eliminating points outside 
	Return

	A pair with whether the <beginning, end> was clipped. If false, means the path was already inside the polygon. 

	Parameters

	
	path_pts - The path to clip, passed by reference 
















	
std::pair<bool, bool> ClipToRegion2(std::list<EPoint> &path_pts)

	




	
void ExtendToEdge(std::list<EPoint> &path_pts, bool begin)

	Extends a path to meet the edges of a region if it does not already. Adds to the last segment, extending it as a ray from the end. Can extend either the beginning or the end of the path. 
	Parameters

	
	path_pts - The path to process 



	begin - True to process the beginning, false to process the end 
















	
std::pair<double, EPoint> FindNearestIntersect(EPoint ray_vec, EPoint starting_pt, BPolygon &poly)

	Finds the closest intersection of a ray with a polygon


	Parameters

	
	ray_vec - EPoint(dx,dy) 



	start_pt - EPoint(x,y) 



	poly - BPolygon([(x1,y1), (x2,y2), ...]) 
















	
std::pair<bool, EPoint> IntersectRaySegment(EPoint ray_vector, EPoint start_pt, std::pair<BPoint, BPoint> segment)

	Finds the intersection point of a ray with a segment, if it exists. Derived from: http://stackoverflow.com/questions/563198/how-do-you-detect-where-two-line-segments-intersect/565282#565282 
	Return

	<intersection exists, Intersection point, if exists> 

	Parameters

	
	ray_vector - The vector describing the direction of the ray 



	start_pt - Starting location of the ray 



	segment - Segment to test for intersection 
















	
double Cross2d(EPoint vec1, EPoint vec2)

	Replicates the functionality of 2d cross product from numpy. This is the z component of a cross product (which does not require a z input). 
	Return

	The z component of the cross product 










	
EPoint EPointFromBPoint(BPoint boost_point)

	




	
std::vector<BPoint> SegmentRingIntersect(BPoint seg_pt1, BPoint seg_pt2, BRing ring)

	




	
EPoint VectorFromSegment(const std::vector<EPoint> &points, SegIndex segment)

	Determines a vector (segment) <x, y> from points at the indicies provided by the second argument. 
	Return

	A segment vector between the selected points. 

	Parameters

	
	points - The list from which to select points for the segment 



	segment - The beginning and end of the segment. 
















	
std::list<XYPt> SegListToXYPt(const XYSegList &to_convert)

	Converts an XYSeglist to a std::list of simple points (XYPt). 






	
XYSegList XYPtToSegList(const std::list<XYPt> &to_convert)

	Converts a std::list of simple points (XYPt) to a MOOS XYSegList. 






	
XYSegList VectorListToSegList(const std::list<Eigen::Vector2d> &to_convert)

	Converts a std::list of Eigen points (vectors) to a MOOS XYSegList. 






	
BPolygon XYPolygonToBoostPolygon(XYPolygon &poly)

	




	
XYSegList GetRawPath()

	






Public Static Functions


	
void RemoveIntersects(std::list<EPoint> &path_pts)

	Removes intersecting segments from a line.

Removes the points between the first point of an intersecting segment and the last point of the final segment it intersects in the line. 
	Parameters

	
	path_pts - The line from which to remove intersecting segments. 
















	
bool CCW(EPoint A, EPoint B, EPoint C)

	Determines whether segments are counter clockwise in smalles angle with respect to each other. 
	Return

	True if rotate CCW from AB to BC. 

	Parameters

	
	A - First point (end point) 



	B - Middle point 



	C - Last point (end point) 
















	
bool Intersect(EPoint A, EPoint B, EPoint C, EPoint D)

	Determines if the segment AB intersects CD 
	Return

	True if the segments intersect 

	Parameters

	
	A - First point of first segment 



	B - Second point of first segment 



	C - First point of second segment 



	D - Second point of second segment 
















	
double VectorAngle(EPoint vector1, EPoint vector2)

	Determines the angle between two vectors

tan(ang) = |(axb)|/(a.b) cos(ang) = (a.b)/(||a||*||b||) 
	Return

	Angle between the vectors in degrees 

	Parameters

	
	vector1 - First vector 



	vector2 - Second vector 
















	
template <typename T>

	
static void SelectIndicies(std::list<T> &select_from, std::list<std::size_t> to_select)

	Selects specific elements from a list by index. 

Replicates the select by index functionality of numpy or armadillo or dyND. 








Private Members


	
bool m_restrict_asv_to_region

	




	
double m_max_bend_angle

	




	
double m_margin

	




	
BPolygon m_op_region

	




	
RecordSwath m_last_line

	




	
BoatSide m_planning_side

	




	
std::list<Eigen::Vector2d> m_next_path_pts

	




	
XYSegList m_raw_path

	













          

      

      

    


    
         Copyright 2016, Damian Manda.
      Created using Sphinx 1.3.5.
    

  

    
      Navigation

      
        	
          index

        	MOOS-IvP Applications from UNH 0.5 documentation 
 
      

    


    
      
          
            

Index



 B
 | E
 | P
 | R
 | S
 | X
 


B


  	
      
  	BLinestring (C++ type)
  


      
  	BPoint (C++ type)
  


  

  	
      
  	BPolygon (C++ type)
  


      
  	BRing (C++ type)
  


  





E


  	
      
  	EPoint (C++ type)
  


  

  	
      
  	EPointList (C++ type)
  


  





P


  	
      
  	PathList (C++ type)
  


      
  	PathPlan (C++ class)
  


      
  	PathPlan::CCW (C++ function)
  


      
  	PathPlan::ClipToRegion (C++ function)
  


      
  	PathPlan::ClipToRegion2 (C++ function)
  


      
  	PathPlan::Cross2d (C++ function)
  


      
  	PathPlan::EPointFromBPoint (C++ function)
  


      
  	PathPlan::ExtendToEdge (C++ function)
  


      
  	PathPlan::FindNearestIntersect (C++ function)
  


      
  	PathPlan::GenerateNextPath (C++ function)
  


      
  	PathPlan::GetRawPath (C++ function)
  


      
  	PathPlan::Intersect (C++ function)
  


      
  	PathPlan::IntersectRaySegment (C++ function)
  


      
  	PathPlan::m_last_line (C++ member)
  


      
  	PathPlan::m_margin (C++ member)
  


      
  	PathPlan::m_max_bend_angle (C++ member)
  


      
  	PathPlan::m_next_path_pts (C++ member)
  


      
  	PathPlan::m_op_region (C++ member)
  


  

  	
      
  	PathPlan::m_planning_side (C++ member)
  


      
  	PathPlan::m_raw_path (C++ member)
  


      
  	PathPlan::m_restrict_asv_to_region (C++ member)
  


      
  	PathPlan::PathPlan (C++ function)
  


      
  	PathPlan::RemoveAll (C++ function)
  


      
  	PathPlan::RemoveBends (C++ function)
  


      
  	PathPlan::RemoveIntersects (C++ function)
  


      
  	PathPlan::RestrictToRegion (C++ function)
  


      
  	PathPlan::SegListToXYPt (C++ function)
  


      
  	PathPlan::SegmentRingIntersect (C++ function)
  


      
  	PathPlan::SelectIndicies (C++ function)
  


      
  	PathPlan::VectorAngle (C++ function)
  


      
  	PathPlan::VectorFromSegment (C++ function)
  


      
  	PathPlan::VectorListToSegList (C++ function)
  


      
  	PathPlan::XYPolygonToBoostPolygon (C++ function)
  


      
  	PathPlan::XYPtToSegList (C++ function)
  


      
  	PathPlan::~PathPlan (C++ function)
  


  





R


  	
      
  	RecordSwath (C++ class)
  


      
  	RecordSwath::AddRecord (C++ function)
  


      
  	RecordSwath::AddToCoverage (C++ function)
  


      
  	RecordSwath::AllSwathWidths (C++ function)
  


      
  	RecordSwath::GetOutputSide (C++ function)
  


      
  	RecordSwath::IntervalDist (C++ function)
  


      
  	RecordSwath::MinInterval (C++ function)
  


      
  	RecordSwath::OuterPoint (C++ function)
  


  

  	
      
  	RecordSwath::ResetLine (C++ function)
  


      
  	RecordSwath::SaveLast (C++ function)
  


      
  	RecordSwath::SetOutputSide (C++ function)
  


      
  	RecordSwath::SwathLocation (C++ function)
  


      
  	RecordSwath::SwathOuterPts (C++ function)
  


      
  	RecordSwath::SwathRecord (C++ class)
  


      
  	RecordSwath::SwathWidth (C++ function)
  


      
  	RecordSwath::ValidRecord (C++ function)
  


  





S


  	
      
  	SegIndex (C++ type)
  


  





X


  	
      
  	XYPt (C++ class)
  


      
  	XYPt::x (C++ member)
  


  

  	
      
  	XYPt::y (C++ member)
  


  







          

      

      

    


    
         Copyright 2016, Damian Manda.
      Created using Sphinx 1.3.5.
    

  search.html


    
      Navigation


      
        		
          index


        		MOOS-IvP Applications from UNH 0.5 documentation »

 
      


    


    
      
          
            
  Search


  
  
  
    Please activate JavaScript to enable the search
    functionality.
  


  

  
    From here you can search these documents. Enter your search
    words into the box below and click "search". Note that the search
    function will automatically search for all of the words. Pages
    containing fewer words won't appear in the result list.
  


  
    
    
    
  

  
  
  
  


          

      

      

    


    
        © Copyright 2016, Damian Manda.
      Created using Sphinx 1.3.5.
    

  

_static/up.png





_static/file.png





_static/plus.png





_static/comment-bright.png





_static/minus.png





_static/up-pressed.png





_static/down.png





_static/comment-close.png





_static/down-pressed.png





_static/ajax-loader.gif





_static/comment.png





