
Monte Documentation
Release 0.1

Monte Project

December 18, 2018

Contents

1 Introduction 3
1.1 Why Monte? . 3
1.2 Object Capability Discipline . 4
1.3 Why not Monte? . 5
1.4 Getting Started . 5
1.5 Acknowledgements . 7

2 A Taste of Monte: Hello Web 9
2.1 Expressions . 10
2.2 Objects and Message Passing . 10
2.3 Cooperation Without Vulerability . 10

3 Practical Security: The Mafia game 13
3.1 Objects . 13
3.2 Traditional Datatypes and Operators . 15
3.3 String Interpolation with quasi-literals . 19
3.4 Dynamic “type checking” with guards . 19
3.5 Final, Var, and DeepFrozen . 19
3.6 Assignment and Equality . 20
3.7 Data Structures for Game Play . 20
3.8 Destructuring with Patterns . 21

4 Monte Idioms Quick Reference 23
4.1 Simple Statements . 23
4.2 Basic Flow . 23
4.3 File I/O and Modules . 25
4.4 Web Applications . 25
4.5 Data Structures . 26
4.6 Eventual Sends . 27

5 Python-Monte Idioms 29
5.1 Iteration . 29
5.2 Objects . 30

6 The Type System 33
6.1 Untyped . 33
6.2 Dynamic . 33
6.3 Strong . 33
6.4 Nominal . 33

i

6.5 Manifest . 34
6.6 Optional . 34

7 Misuse-Resistant Language Design 35
7.1 Unicode Identifers . 35
7.2 Parenthesized Sub-Expressions . 35

8 Secure Distributed Computing 37
8.1 Practical Security II: The Mafia IRC Bot (WIP) . 37
8.2 Ejectors & Escape Expressions . 42
8.3 Vats . 43
8.4 Brands . 47
8.5 Promises . 48
8.6 Streamcaps . 49
8.7 Working with Packages . 51

9 Language Reference 53
9.1 Collections . 53
9.2 Quasiliterals . 53
9.3 Interfaces . 56
9.4 Miranda Protocol . 57
9.5 Loops and the Iteration Protocol . 59
9.6 Guard Protocol . 61
9.7 Controllers . 62
9.8 Slots . 63
9.9 Auditors . 64
9.10 Semantics of Monte . 66
9.11 Categorial Semantics . 73

10 Appendixes, Indices and Tables 77
10.1 Monte Grammar . 77
10.2 Roadmap: Montefesto . 80
10.3 safeScope . 83
10.4 Entrypoint Arguments . 112
10.5 Colophon: Monte Documentation Build Tools . 114
10.6 Glossary . 118

Python Module Index 121

ii

Monte Documentation, Release 0.1

Monte is a programming language inspired by the E and Python programming languages. Monte aims to be:

• A reliable scaffold for secure distributed computing

• An example of capability-safe programming language design

• A model for misuse-resistant programming

Contents 1

http://erights.org/
https://www.python.org/

Monte Documentation, Release 0.1

2 Contents

CHAPTER 1

Introduction

Why Monte?

Don’t we have enough languages already? This is a fair question. Here we’ll explain why we created Monte and
what’s interesting about it.

Because Security Matters

Secure distributed computing should not be hard. Computers are getting faster, smaller, more connected, and more
capable, but when it comes to security, everything is broken. A major cause is the “water balloon” design philosophy
of contemporary languages and frameworks: Security is only enforced at the edges of programs, and not within the
structure of programs themselves. Monte takes the object-capability paradigm of E 1 and expands on the approach,
delivering a powerful and expressive language.

Can we reuse existing languages?

Disciplined use of existing languages such as Java and ECMAScript can be used to build object capability
systems, but the standard practices and libraries are not compatible with this discipline. We believe that nothing
short of a capability-safe-by-construction language can enforce capability discipline.

Monte, like E before it, has dramatic advantages for secure distributed systems:

• Capability-based security enables the concise composition of powerful patterns of interoperation–patterns that
enable extensive cooperation even in the presence of severely limited trust.

• Monte promises benefit from a promise-pipelining architecture which ensures that most deadlocks cannot occur.
*0

• Monte offers cryptographic services directly to its users, easing the use of good cryptographic primitives.

Because Readability Matters

1 Miller, M.S.: Robust Composition: Towards a Unified Approach to Access Control and Concurrency Control. PhD thesis, Johns Hopkins
University, Baltimore, Maryland, USA (May 2006)

See also a history of E’s ideas.
0 As with all sufficiently complex concurrency systems, deadlock is possible. That said, it has not been observed outside of specially-constructed

pathological object graphs.

3

https://medium.com/message/everything-is-broken-81e5f33a24e1
http://erights.org/talks/thesis/index.html
http://www.erights.org/history/index.html

Monte Documentation, Release 0.1

The origin of Monte’s name

The Monte language has its roots in the E and Python languages. We took “Monty” from “Monty Python”, and
put an “e” in there. Thus, “Monte”.

Monte wraps its strengths in a Python-like syntax to make it quickly comfortable for a large number of software
engineers.

Monte is a pure object-based language in the Smalltalk tradition, making it easy to write modular, readable, main-
tainable software using the strategies familiar from Python, JavaScript, Ruby, Java, and other object-based languages.
All values are objects and all computation is done by sending messages to objects. It has the kind of powerful string
handling that will be recognized and seized upon by the Perl hacker.

Because Stability Matters

Monte is dynamically typed 2, like Smalltalk, rather than statically typed, like Java. Users of Perl and Python will
immediately recognize this is an advantage; Java and C++ programmers may not be so sure. Fortunately, Monte
inherits two forms of contract-based programming from E: guards and interfaces.

Monte is dynamic in three ways:

Dynamic Typing The type of a variable might not be known until runtime, and “types are open”.

Dynamic Binding It is possible to pass a message to an object that will never able to handle that message. This
provides a late-binding sort of polymorphism.

Dynamic Compiling Monte can compile and run Monte code at runtime, as part of its core runtime.

While “arbitrary code execution” is a notorious security vulnerability, Monte enables the fearless yet powerful use of
multi-party limited-trust mobile code.

Object Capability Discipline

A capability is a reference to an object and represents authority to invoke methods on the object. The key to supporting
dynamic code execution without vulnerability is object capability discipline, which consists of:

Memory safety and encapsulation There is no way to get a reference to an object except by creating one or being
given one at creation or via a message; no casting integers to pointers, for example.

From outside an object, there is no way to access the internal state of the object without the object’s consent
(where consent is expressed by responding to messages).

Primitive effects only via references The only way an object can affect the world outside itself is via references to
other objects. All primitives for interacting with the external world are embodied by primitive objects and any-
thing globally accessible is immutable data. There is no open(filename) function in the global namespace,
nor can such a function be imported. The runtime passes all such objects to an entrypoint, which then explicitly
delegates to other objects.

We’ll demonstrate how this leads to natural expression of the Principle of Least Power briefly in A Taste of Monte:
Hello Web and in more detail in Secure Distributed Computing.

2 in formal type theory, Monte is unityped.

4 Chapter 1. Introduction

Monte Documentation, Release 0.1

Why not Monte?

Monte assumes automatic memory management; the current reference implementation uses the PyPy garbage collec-
tor, and any other implementation will have to choose a similar scheme. As such, it is not a good language for low
level machine manipulation. So do not try to use Monte for writing device drivers.

Monte’s performance is currently quite unfavorable compared to raw C, and additionally, Monte’s target niches are
largely occupied by other dynamic languages with JIT-compiler-based runtimes, so it is not a design goal to compete
with C or other memory-unsafe languages.

Note: While Monte’s usable and most architectural issues are resolved, it is still undergoing rapid development. See
Roadmap: Montefesto for details.

Getting Started

Quick Start Docker Image

If you have Docker installed, the quickest way to get to an interactive prompt to run some Monte code is docker run
-it montelang/repl. This container provides the essentials needed for most examples in this documentation.

A container with a shell and the full set of Monte development tools is available on Docker Hub as well,
montelang/monte-dev.

Installation

If you don’t want to use Docker, the other supported environment requires the packaging/build tool Nix. It can be
installed on Linux and OSX from their installer script:

curl https://nixos.org/nix/install | sh

Alternately, you can install it manually from tarball, DEB, RPM, etc.

From Source

Builds of Monte from source are straightforward, using Nix:

git clone https://github.com/monte-language/typhon/
nix-env -f typhon -iA monte

From Cachix

One of our community members maintains a Cachix instance. Instructions are at the Monte Cachix page.

Once that’s set up, you can install Monte by running:

nix-env -i monte

1.3. Why not Monte? 5

http://nixos.org/nix/
http://nixos.org/releases/nix/latest/
https://cachix.org/
https://monte.cachix.org/

Monte Documentation, Release 0.1

Interacting with the Monte REPL

Monte has a traditional “Read - Evaluate - Print Loop”, or REPL, for exploration. Invoke it as monte repl. For
example:

>>> 1 + 1
2

>>> "abc".size()
3

Getting Help about an Object

Monte strives to provide useful error messages and self-documenting objects:

> help(Ref)
Result: Object type: RefOps
Ref management and utilities.
Method: broken/1
Method: isBroken/1
Method: isDeepFrozen/1
...

Editor Syntax Highlighting

Emacs and Flycheck

The monte-emacs repository provides emacs syntax highlighting on-the-fly syntax checking with flycheck.

Vim

The monte-vim repository provides vim syntax highlighting, and linter integration is available via a private Syntastic
repository.

Atom

Use Atom to install the package language-monte.

Support and Feedback

We welcome feedback:

• issues in monte pypy vm implementation (typhon)

• issues in monte documentation

Or come say hi on IRC, in #monte on irc.freenode.net!

6 Chapter 1. Introduction

https://github.com/monte-language/monte-emacs
http://www.flycheck.org/
https://github.com/monte-language/monte-vim
https://github.com/mostawesomedude/syntastic
https://github.com/mostawesomedude/syntastic
https://atom.io/packages/language-monte
https://github.com/monte-language/monte/issues
https://github.com/monte-language/typhon/issues

Monte Documentation, Release 0.1

Acknowledgements

Monte design and documentation borrow heavily from E in a Walnut by Marc Stiegler and The E Language and ELib
by Mark Miller.

Notes

1.5. Acknowledgements 7

http://wiki.erights.org/wiki/Walnut
http://erights.org/elang/index.html
http://erights.org/elib/index.html

Monte Documentation, Release 0.1

8 Chapter 1. Introduction

CHAPTER 2

A Taste of Monte: Hello Web

Let’s see what a simple web server looks like in Monte:

1 import "lib/http/server" =~ [=> makeHTTPEndpoint]
2 exports (main)
3

4 def helloWeb(_request) as DeepFrozen:
5 "Build a simple HTML response."
6

7 return [200, ["Content-Type" => "text/html"], b`<p>Hello!</p>`]
8

9 def main(argv, => makeTCP4ServerEndpoint) :Int as DeepFrozen:
10 "Obtain a port and create an HTTP server on that port."
11

12 def portNum :Int := _makeInt(argv.last())
13 def ep := makeHTTPEndpoint(makeTCP4ServerEndpoint(portNum))
14 traceln(`serving on port $portNum`)
15 ep.listen(helloWeb)
16 return 0

The makeHTTPEndpoint import reads much like Python’s from http.server import
makeHTTPEndpoint, though the mechanics of a module declaration in monte are a bit different: it uses
pattern matching to bind names to objects imported from modules.

DeepFrozen Module Exports

One of the constraints of object capability discipline is that there is no global mutable state, so exported objects
must be DeepFrozen; that is, transitively immutable. Since main calls helloWeb, helloWeb must be
DeepFrozen as well. We’ll discuss this and other static properties of Monte code in the Auditors section.

We declare that this module exports its main function, as is conventional for executable programs.

Todo

Document how to compile and run such a script.

Blocks in Monte are typically written with indentation, like Python, though blocks in general may be written with
curly-braces as well.

Note: Tabs are a syntax error in Monte.

9

Monte Documentation, Release 0.1

Expressions

The def-expr for defining the helloWeb function is similar to Python’s syntax for defining functions.

Expression Languages

Unlike Python and C, which use a mix of statements and expressions, Monte is an expression language, like
Scheme. So def body := ... is an expression with a value, just like string literals and method calls.

The expression inside the call to traceln(...) does string interpolation, similar to Perl, Ruby, and bash. It is a
quasiliteral expression:

> def portNum := 8080

> `serving on port $portNum`
"serving on port 8080"

Another quasiliteral is b‘<p>Hello!</p>‘, which denotes a Bytes object rather than a character string.

Objects and Message Passing

Monte is a pure object language, which means that all values in Monte are objects. All operations on objects are
done by passing messages. This includes ordinary method calls like argv.last() as well as function calls such
as traceln(portNum) and even syntax for constructing lists like [200, [], body] and maps like ["C" =>
"t"].

Cooperation Without Vulerability

Suppose our server takes an arbitrary expression from the web client and evaluates it:

1 import "lib/http/server" =~ [=> makeHTTPEndpoint]
2 import "lib/http/tag" =~ [=> tag]
3 import "formData" =~ [=> fieldMap]
4 exports (main)
5

6 object calculator as DeepFrozen:
7 to run(request):
8 return switch (request.getVerb()):
9 match =="GET":

10 calculator.get(request)
11 match =="POST":
12 calculator.post(request)
13

14 to get(_request):
15 def body := b`
16 <form method="POST">
17 <label>Arbitrary code to execute:<input name="code" /></label>
18 </form>
19 `
20 return [200, ["Content-Type" => "text/html"], body]
21

22 to post(request):
23 def code := fieldMap(request.getBody())["code"]

10 Chapter 2. A Taste of Monte: Hello Web

Monte Documentation, Release 0.1

24 def result := eval(code, safeScope)
25 # NB: The `tag` object does automatic HTML escaping. No extra effort
26 # is required to prevent XSS. ~ C.
27 def html := tag.pre(M.toString(result))
28 return [200, ["Content-Type" => "text/plain"], b`$html`]
29

30 def main(argv, => makeTCP4ServerEndpoint) :Int as DeepFrozen:
31 def portNum := _makeInt(argv.last())
32 def ep := makeHTTPEndpoint(makeTCP4ServerEndpoint(portNum))
33 traceln(`serving $calculator on port $portNum`)
34 ep.listen(calculator)
35 return 0

With conventional languages and frameworks, this would be injection, #1 on the list of top 10 web application security
flaws:

Injection can result in data loss or corruption, lack of accountability, or denial of access. Injection can
sometimes lead to complete host takeover.

But using object capability discipline, untrusted code has only the authority that we explicitly give it. This rich form of
cooperation comes with dramatically less vulnerability 1. The environment in this example is safeScope, which is the
same environment modules are evaluated in – it provides basic runtime services such as constructors for lists, maps,
and other structures, but no “powerful” objects. In particular, makeTCP4ServerEndpoint is not in scope when
the remote code is executed, so the code cannot use it to access the network. Neither does the code have any access to
read from nor write to files, clobber global state, nor launch missiles.

Notes

1 We implicitly grant authority to compute indefinitely. Object capability discipline does not address denial of service. Monte’s vats include a
conventional mechanism to put a finite limit on computation.

2.3. Cooperation Without Vulerability 11

https://www.owasp.org/index.php/Top_10_2013-A1-Injection

Monte Documentation, Release 0.1

12 Chapter 2. A Taste of Monte: Hello Web

CHAPTER 3

Practical Security: The Mafia game

Let’s look a bit deeper at Monte, working up to an implementation of the Mafia party game.

Objects

Monte has a simpler approach to object composition and inheritance than many other object-based and object-oriented
languages.

A Singleton Object

We will start our exploration of objects with a simple singleton object. Methods can be attached to objects with the
to keyword:

>>> object origin:
... to getX():
... return 0
... to getY():
... return 0
... # Now invoke the methods
... origin.getY()
0

Unlike Java or Python, Monte objects are not constructed from classes. Unlike JavaScript, Monte objects are not
constructed from prototypes. As a result, it might not be obvious at first how to build multiple objects which are
similar in behavior.

Functions are objects too

Functions are simply objects with a run method. There is no difference between this function:

>>> def square(x):
... return x * x
... square.run(4)
16

... and this object:

13

https://en.wikipedia.org/wiki/Mafia_%28party_game%29

Monte Documentation, Release 0.1

>>> object square:
... to run(x):
... return x * x
... square(4)
16

Warning: Python programmers beware, methods are not functions. Methods are just the public hooks to the
object that receive messages; functions are standalone objects.

Todo

document docstrings

Todo

document named args, defaults

Object constructors and encapsulation

Monte has a very simple idiom for class-like constructs:

>>> def makeCounter(var value :Int):
... return object counter:
... to increment() :Int:
... return value += 1
... to makeOffsetCounter(delta :Int):
... return makeCounter(value + delta)
...
... def c1 := makeCounter(1)
... c1.increment()
... def c2 := c1.makeOffsetCounter(10)
... c1.increment()
... c2.increment()
... [c1.increment(), c2.increment()]
[4, 14]

And that’s it. No declarations of object contents or special references to this or self.

Assignment Expressions

Monte is an expression language. The expression value += 1 returns the resulting sum. That’s why return
value += 1 works.

Inside the function makeCounter, we simply define an object called counter and return it. Each time we call
makeCounter(), we get a new counter object. As demonstrated by the makeOffsetCounter method, the
function (makeCounter) can be referenced from within its own body. (Similarly, our counter object could refer to
itself in any of its methods as counter.)

The lack of a this or self keyword may be surprising. But this straightforward use of lexical scoping saves us
the often tedious business in python or Java of copying the arguments from the parameter list into instance variables:
value is already an instance variable.

14 Chapter 3. Practical Security: The Mafia game

Monte Documentation, Release 0.1

The value passed into the function is not an ephemeral parameter that goes out of existence when the function exits.
Rather, it is a true variable, and it persists as long as any of the objects that uses it persist. Since the counter uses this
variable, value will exist as long as the counter exists.

Augmented Assignment

Just as you would read x += 1 short-hand for x := x + 1, read the augmented assignment players
without= (victim) as players := players.without(victim) .

A natural result is the complete encapsulation required for object capability discipline: value is not visible outside
of makeCounter(); this means that no other object can directly observe nor modify it. Monte objects have no
public attributes or fields or even a notion of public and private. Instead, all names are private: if a name is not visible
(i.e. in scope), there is no way to use it.

We refer to an object-making function such as makeCounter as a “Maker”. As a more serious example, let’s make
a sketch of our game:

>>> def makeMafia(var players :Set):
... def mafiosoCount :Int := players.size() // 3
... var mafiosos :Set := players.slice(0, mafiosoCount)
... var innocents :Set := players.slice(mafiosoCount)
...
... return object mafia:
... to getWinner():
... if (mafiosos.size() == 0):
... return "village"
... if (mafiosos.size() >= innocents.size()):
... return "mafia"
... return null
...
... to lynch(victim):
... players without= (victim)
... mafiosos without= (victim)
... innocents without= (victim)
...
... def game1 := makeMafia(["Alice", "Bob", "Charlie"].asSet())
... game1.lynch("Bob")
... game1.lynch("Charlie")
... game1.getWinner()
"mafia"

Traditional Datatypes and Operators

Monte includes basic data types such as Int, Double, Str, Char, and Bool. All integer arithmetic is unlimited
precision, like in Python.

The operators +, -, and * have their traditional meanings for Int and Double. The normal division operator /
always gives you a Double result. The floor divide operator // always gives you an Int, truncated towards negative
infinity. So:

>>> -3.5 // 1
-4

3.2. Traditional Datatypes and Operators 15

Monte Documentation, Release 0.1

Comments

Monte uses the same # ... syntax for comments as Python and bash.

Strings are enclosed in double quotes. Characters are enclosed in single quotes.

The function traceln sends diagnostic output to the console. The if and while constructs look much like their
Python equivalents, as do lists such as [4, 14].

Operator precedence is generally the same as in Java, Python, or C. In a few cases, Monte will throw a syntax error
and require the use of parentheses.

With that, let’s set aside our game sketch and look at a more complete rendition, mafia.mt:

15 # An implementation of the Mafia party game state machine.
16

17 import "lib/enum" =~ [=> makeEnum]
18 exports (makeMafia, DAY, NIGHT)
19

20 def [MafiaState :DeepFrozen,
21 DAY :DeepFrozen,
22 NIGHT :DeepFrozen] := makeEnum(["day", "night"])
23

24

25 def makeMafia(var players :Set, rng) as DeepFrozen:
26 # Intial mafioso count.
27 def mafiosoCount :Int := players.size() // 3
28

29 def sample(population :List, k :(Int <= population.size())) :List:
30 def n := population.size()
31 def ixs := [].diverge()
32 while (ixs.size() < k):
33 if (!ixs.contains(def ix := rng.nextInt(n))):
34 ixs.push(ix)
35 return [for ix in (ixs) population[ix]]
36

37 var mafiosos :Set := sample(players.asList(), mafiosoCount).asSet()
38 var innocents :Set := players - mafiosos
39

40 var state :MafiaState := NIGHT
41 var day := 0
42 var votes :Map := [].asMap()
43

44 object mafia:
45 to _printOn(out) :Void:
46 def mafiaSize :Int := mafiosos.size()
47 def playerSize :Int := players.size()
48 out.print(`<Mafia: $playerSize players, `)
49 def winner := mafia.getWinner()
50 if (winner == null):
51 out.print(`$state $day>`)
52 else:
53 out.print(`winner $winner>`)
54

55 to getState() :MafiaState:
56 return state
57

58 to getQuorum() :Int:
59 return switch (state) {

16 Chapter 3. Practical Security: The Mafia game

Monte Documentation, Release 0.1

60 match ==DAY { (mafiosos.size() + innocents.size() + 1) // 2}
61 match ==NIGHT {mafiosos.size()}
62 }
63

64 to getMafiaCount() :Int:
65 return mafiosoCount
66

67 to getWinner():
68 if (mafiosos.size() == 0):
69 return "village"
70 if (mafiosos.size() >= innocents.size()):
71 return "mafia"
72 return null
73

74 to advance() :Str:
75 if (mafia.getWinner() =~ outcome ? (outcome != null)):
76 return outcome
77 if ([state, day] == [NIGHT, 0]) {
78 state := DAY
79 day += 1
80 return "It's morning on the first day."
81 }
82 if (mafia.lynch() =~ note ? (note != null)):
83 state := switch (state) {
84 match ==DAY {NIGHT}
85 match ==NIGHT { day += 1; DAY}
86 }
87 votes := [].asMap()
88 return note
89 return `${votes.size()} votes cast.`
90

91

92 to vote(player ? (players.contains(player)),

93 choice ? (players.contains(choice))) :Void:
94 switch (state):
95 match ==DAY:
96 votes with= (player, choice)
97 match ==NIGHT:
98 if (mafiosos.contains(player)):
99 votes with= (player, choice)

100

101 to lynch() :NullOk[Str]:
102 def quorum :Int := mafia.getQuorum()
103 def counter := [].asMap().diverge()
104 for _ => v in (votes):
105 if (counter.contains(v)):
106 counter[v] += 1
107 else:
108 counter[v] := 1
109 traceln(`Counted votes as $counter`)
110

111 escape ej:
112 def [victim] exit ej := [for k => v in (counter) ? (v >= quorum) k]
113 def count := counter[victim]
114 def side := mafiosos.contains(victim).pick(
115 "mafioso", "innocent")
116 players without= (victim)
117 mafiosos without= (victim)

3.2. Traditional Datatypes and Operators 17

Monte Documentation, Release 0.1

118 innocents without= (victim)
119 return `With $count votes, $side $victim was killed.`
120 catch _:
121 return null
122

123 return ["game" => mafia, "mafiosos" => mafiosos]

Unit Testing

This module also uses Monte’s unit test facilities to capture a simulated game:

18 import "unittest" =~ [=> unittest]
19 import "lib/entropy/entropy" =~ [=> makeEntropy :DeepFrozen]
20 import "lib/entropy/pcg" =~ [=> makePCG :DeepFrozen]
21

22

23 def sim1(assert):
24 def names := ["Alice", "Bob", "Charlie",
25 "Doris", "Eileen", "Frank",
26 "Gary"]
27 def rng := makeEntropy(makePCG(731, 0))
28 def randName := fn { names[rng.nextInt(names.size())] }
29 def [=> game, =>mafiosos] := makeMafia(names.asSet(), rng)
30 assert.equal(`$game`, "<Mafia: 7 players, night 0>")
31 assert.equal(mafiosos, ["Eileen", "Frank"].asSet())
32

33 def steps := [game.advance()].diverge()
34 while (game.getWinner() == null):
35 # Rather than keep track of who is still in the game,
36 # just catch the guard failure.
37 try:
38 game.vote(randName(), randName())
39 catch _:
40 continue
41 def step := game.advance()
42 if (step !~ `@n votes cast.`):
43 steps.push(step)
44 steps.push(`$game`)
45

46 assert.equal(steps.snapshot(),
47 ["It's morning on the first day.",
48 "With 4 votes, innocent Alice was killed.",
49 "<Mafia: 6 players, night 1>",
50 "With 2 votes, mafioso Eileen was killed.",
51 "<Mafia: 5 players, day 2>",
52 "With 3 votes, mafioso Frank was killed.",
53 "<Mafia: 4 players, winner village>"])
54 unittest([sim1])

We still cannot import access to a true source of entropy; makePCG constructs a pseudo-random number generator
given an initial seed, and makeEntropy makes an object that takes the resulting sequence of bytes and packages
them up conveniently as integers etc. In Secure Distributed Computing, we will develop the part of the game that
provides a truly random seed. But for unit testing, the seed is an arbitrarily chosen constant.

18 Chapter 3. Practical Security: The Mafia game

Monte Documentation, Release 0.1

Additional flow of control

Other traditional structures include:

• try{...} catch errorVariable {...} finally {...}

• throw(ExceptionExpressionThatCanBeAString)

• break, continue

• switch (expression) {match pattern1 {...} match pattern2 {...} ... match
_ {defaultAction}}

String Interpolation with quasi-literals

Monte’s quasi-literals enable the easy processing of complex strings as described in detail later;
out.print(‘currently $state>‘) is a simple example wherein the back-ticks denote a quasi-literal,
and the dollar sign denotes a variable whose value is to be embedded in the string.

Dynamic “type checking” with guards

Monte guards perform many of the functions usually thought of as type checking, though they are so flexible that they
also work as concise assertions. Guards can be placed on variables (such as mafiososCount :Int), parameters
(such as players :Set), and return values (such as getState() :MafiaState).

Guards are not checked during compilation. They are checked during execution and will throw exceptions if the value
cannot be coerced to pass the guard.

Optimizing Monte Compilers

Monte does not specify a compilation model. Some guards can be optimized away by intelligent Monte compil-
ers, and linters may warn about statically-detectable guard failures.

Monte features strong types; monte values resist automatic coercion. As an example of strong typing in Monte,
consider the following statement:

def x := 42 + true

This statement will result in an error, because true is a boolean value and cannot be automatically transformed into
an integer, float, or other value which integers will accept for addition.

We can also build guards at runtime. The call to makeEnum returns a list where the first item is a new guard and the
remaining items are distinct new objects that pass the guard. No other objects pass the guard.

Todo

show: Guards play a key role in protecting security properties.

Final, Var, and DeepFrozen

Bindings in Monte are immutable by default.

3.3. String Interpolation with quasi-literals 19

Monte Documentation, Release 0.1

The DeepFrozen guard ensures that an object and everything it refers to are immutable. The def
makeMafia(...) as DeepFrozen expression results in this sort of binding as well as patterns such as DAY
:DeepFrozen.

Using a var pattern in a definition (such as mafiosos) or parameter (such as players) lets you assign to that
variable again later.

There are no (mutable) global variables, however. We cannot import a random number generator. Rather, the random
number generator argument rng is passed to the makeMafia maker function explicitly.

Assignment and Equality

Assignment uses the := operator, as in Pascal. The single equal sign = is never legal in Monte; use := for assignment
and == for testing equality.

== and != are the boolean tests for sameness. For any pair of refs x and y, “x == y” will tell whether these refs
designate the same object. The sameness test is monotonic, meaning that the answer it returns will not change for
any given pair of objects. Chars, booleans, integers, and floating point numbers are all compared by their contents,
as are Strings, ConstLists, and ConstMaps. Other objects only compare same with themselves, unless their definition
declares them:ref:Transparent<selfless>, which lets them expose their contents and have them compared for sameness.

Data Structures for Game Play

Monte has Set, List, and Map data structures that let us express the rules of the game concisely.

A game of mafia has some finite number of players. They don’t come in any particular order, though, so we write var
players :Set to ensure that players is always bound to a Set, though it may be assigned to different sets at
different times.

We use .size() to get the number of players, and once we get the mafiosos subset (using a sample function),
the set of innocents is the difference of players - mafiosos.

We initialize votes to the empty Map, written [].asMap() and add to it using votes with= (player,
choice).

To lynch, we use counter as a map from player to votes cast against that player. We initialize it to an empty
mutable map with [].asMap().diverge() and then iterate over the votes with for _ => v in votes:.

Functional Features (WIP)

Monte has support for the various language features required for programming in the so-called “functional” style.
Monte supports closing over values (by reference and by binding), and Monte also supports creating new function
objects at runtime. This combination of features enables functional programming patterns.

Monte also has several features similar to those found in languages in the Lisp and ML families which are often
conflated with the functional style, like strict lexical scoping, immutable builtin value types, comprehension syntax,
and currying for message passing.

Comprehensions in Monte are written similarly to Python’s, but in keeping with Monte’s style, the syntax el-
ements are placed in evaluation order: [for KEY_PATTERN => VALUE_PATTERN in (ITERABLE) if
(FILTER_EXPR) ELEMENT_EXPR]. Just as Python has dict comprehensions, Monte provides map comprehen-
sions – to produce a map, ELEMENT_EXPR would be replaced with KEY_EXPR => VALUE_EXPR.

20 Chapter 3. Practical Security: The Mafia game

Monte Documentation, Release 0.1

A list of players that got more than a quorum of votes is written [for k => v in (counter) ? (v >=
quorum) k]. Provided there is one such player, we remove the player from the game with players without=
(victim).

Destructuring with Patterns

Pattern matching is used in the following ways in Monte:

1. The left-hand side of a def expression has a pattern.

A single name is typical, but the first def expression above binds MafiaState, DAY, and NIGHT to the items
from makeEnum using a list pattern.

If the match fails, an ejector is fired, if provided; otherwise, an exception is raised.

2. Parameters to methods are patterns which are matched against arguments. Match failure raises an exception.

A final pattern such as to _printOn(out) or with a guard to sample(population :List) should
look familiar, but the such-that patterns in to vote(player ? (players.contains(player)),
...) are somewhat novel. The pattern matches only if the expression after the ? evaluates to true; at the
same time, player is usable in the such-that expression.

3. Each matcher in a switch expression has a pattern.

In the advance method, if state matches the ==DAY pattern–that is, if state == DAY–then NIGHT is
assigned to state. Likewise for the pattern ==NIGHT and the expression DAY.

An exception would be raised if neither pattern matched, but that can’t happen because we have state
:MafiaState.

4. Match-bind comparisons such as "<p>" =~ ‘<@tag>‘ test the value on the left against the pattern on the
right, and return whether the pattern matched or not.

5. Matchers in object expressions provide flexible handlers for message passing.

The [=> makeEnum] pattern syntax is short for ["makeEnum" => makeEnum], which picks out the value
corresponding to the key "makeEnum". The module_expansion section explains how imports turn out to be a special
case of method parameters.

3.8. Destructuring with Patterns 21

Monte Documentation, Release 0.1

22 Chapter 3. Practical Security: The Mafia game

CHAPTER 4

Monte Idioms Quick Reference

These examples show Monte syntax for conventional constructs as well as workhorse idioms that are somewhat novel
to Monte.

Simple Statements

>>> def a := 2 + 3
... var a2 := 4
... a2 += 1
... def b := `answer: $a`
... traceln(b)
... b
"answer: 5"

Basic Flow

>>> if ('a' == 'b'):
... "match"
... else:
... "no match"
"no match"

>>> var a := 0; def b := 4
... while (a < b):
... a += 1
... a
4

>>> var resource := "reserved"
... try:
... 3 // 0
... catch err:
... `error!`
... finally:
... resource := "released"
... resource
"released"

23

Monte Documentation, Release 0.1

>>> def x := [].diverge()
... for next in (1..3):
... x.push([next, next])
... x.snapshot()
[[1, 1], [2, 2], [3, 3]]

>>> def map := ['a' => 65, 'b' => 66]
... var sum := 0
... for key => value in (map):
... sum += value
... sum
131

Function

>>> def addTwoPrint(number):
... traceln(number + 2)
... return number + 2
...
... def twoPlusThree := addTwoPrint(3)
... twoPlusThree
5

Singleton Object (stateless)

>>> object adder:
... to add1(number):
... return number + 1
... to add2(number):
... return number + 2
... def result := adder.add1(3)
... result
4

Objects with state

>>> def makeOperator(baseNum):
... def instanceValue := 3
... object operator:
... to addBase(number):
... return baseNum + number
... to multiplyBase(number):
... return baseNum * number
... return operator
... def threeHandler := makeOperator(3)
... def threeTimes2 := threeHandler.multiplyBase(2)
... threeTimes2
6

24 Chapter 4. Monte Idioms Quick Reference

Monte Documentation, Release 0.1

Objects self-referencing during construction

>>> def makeRadio(car):
... `radio for $car`
... def makeCar(name):
... var x := 0
... var y := 0
... def car # using def with no assignment
... def myWeatherRadio := makeRadio(car)
... bind car:
... to receiveWeatherAlert():
... #process the weather report....
... traceln(myWeatherRadio)
... to getX():
... return x
... to getY():
... return y
... #list the rest of the car methods....
... return car
... makeCar("ferrari").getX()
0

Delegation

>>> def makeExtendedFile(myFile):
... return object extendedFile extends myFile:
... to append(text):
... var current := myFile.getText()
... current := current + text
... myFile.setText(current)
...
... makeExtendedFile(object _ {})._respondsTo("append", 1)
true

File I/O and Modules

Access to files is given to the main entry point:

>>> def main(argv, => makeFileResource):
... def fileA := makeFileResource("fileA")
... fileA <- setContents(b`abc\ndef`)
... def contents := fileA <- getContents()
... when (contents) ->
... for line in (contents.split("\n")):
... traceln(line)
...
... main._respondsTo("run", 1)
true

Web Applications

Access to TCP/IP networking is also given to the main entry point. The http/server module builds an HTTP
server from a TCP/IP listener:

4.3. File I/O and Modules 25

Monte Documentation, Release 0.1

import "http/server" =~ [=> makeHTTPEndpoint :DeepFrozen]
exports (main)

def hello(request) as DeepFrozen:
return [200, ["Content-Type" => "text/plain"], b`hello`]

def main(argv, => makeTCP4ServerEndpoint) as DeepFrozen:
def tcpListener := makeTCP4ServerEndpoint(8080)
def httpServer := makeHTTPEndpoint(tcpListener)
httpServer.listen(hello)

Data Structures

ConstList

>>> var a := [8, 6, "a"]
... a[2]
"a"

>>> var a := [8, 6, "a"]
... a.size()
3

>>> var a := [8, 6, "a"]
... for i in (a):
... traceln(i)
... a := a + ["b"]
... a.slice(0, 2)
[8, 6]

ConstMap

>>> def m := ["c" => 5]
... m["c"]
5

>>> ["c" => 5].size()
1

>>> def m := ["c" => 5]
... for key => value in (m):
... traceln(value)
... def flexM := m.diverge()
... flexM["d"] := 6
... flexM.size()
2

FlexList

>>> def flexA := [8, 6, "a", "b"].diverge()
... flexA.extend(["b"])
... flexA.push("b")

26 Chapter 4. Monte Idioms Quick Reference

Monte Documentation, Release 0.1

... def constA := flexA.snapshot()
[8, 6, "a", "b", "b", "b"]

FlexMap

>>> def m := ["c" => 5]
... def flexM := m.diverge()
... flexM["b"] := 2
... flexM.removeKey("b")
... def constM := flexM.snapshot()
["c" => 5]

Eventual Sends

>>> def abacus := object mock { to add(x, y) { return x + y } }
... var out := null
...
... abacus <- add(1, 2)
3

>>> def makeCarRcvr := fn autoMake { `shiny $autoMake` }
...
... def carRcvr := makeCarRcvr <- ("Mercedes")
... Ref.whenBroken(carRcvr, def lost(brokenRef) {
... traceln("Lost connection to carRcvr")
... })
... carRcvr
"shiny Mercedes"

>>> def [resultVow, resolver] := Ref.promise()
...
... when (resultVow) ->
... traceln(resultVow)
... catch prob:
... traceln(`oops: $prob`)
...
... resolver.resolve("this text is the answer")
... resultVow
"this text is the answer"

4.6. Eventual Sends 27

Monte Documentation, Release 0.1

28 Chapter 4. Monte Idioms Quick Reference

CHAPTER 5

Python-Monte Idioms

This is a collection of common Python idioms and their equivalent Monte idioms.

Iteration

Comprehensions

Python features list, set, and dict comprehensions. Monte has list and map comprehensions, although efficient set
comprehensions are missing.

The main difference between Python and Monte here is that Monte puts the for-loop construction at the beginning of
the comprehension.

Python:

squares = [x**2 for x in range(10)]

more_squares = {x: x**2 for x in (2, 4, 6)}

Monte:

def squares := [for x in (0..!10) x ** 2]

def moreSquares := [for x in ([2, 4, 6]) x => x ** 2]

Enumeration

Python’s enumerate is usually not necessary in Monte, because Monte has two-valued iteration and iterates over
key-value pairs.

Python:

for i, x in enumerate(xs):
f(i, x)

Monte:

for i => x in xs:
f(i, x)

29

Monte Documentation, Release 0.1

Objects

Classes

Monte does not have classes, but the maker pattern is equivalent.

Python:

class ClassName(object):
def __init__(self, param, namedParam=defaultValue):

self._param = param
self._namedParam = namedParam

def meth(self, arg):
return self._param(self._namedParam, arg)

Monte:

def makeClassName(param, => namedParam := defaultValue):
return object objectName:

to meth(arg):
return param(namedParam, arg)

Inheritance

Monte doesn’t have class-based inheritance. Instead, we have composition-based inheritance. This means that there is
not a parent class, but a parent object.

Python:

class Parent(object):
def meth(self, arg):

return arg * 2

def overridden(self, arg):
return arg + 2

class Child(Parent):
def overridden(self, arg):

return arg + 3

child = Child()

Monte, styled like Python:

def makeParent():
return object parent:

to meth(arg):
return arg * 2

to overridden(arg):
return arg + 2

def makeChild(parent):
return object child extends parent:

to overridden(arg):
return arg + 3

30 Chapter 5. Python-Monte Idioms

Monte Documentation, Release 0.1

def child := makeChild(makeParent())

Monte, styled like Monte:

object parent:
to meth(arg):

return arg * 2

to overridden(arg):
return arg + 2

object child extends parent:
to overridden(arg):

return arg + 3

Private Methods

Neither Python nor Monte have private methods. Python has a naming convention for methods which should not be
called from outside the class. Monte has an idiom for functions which cannot be called from outside the class.

Python:

class ClassName(object):

_state = 42

def _private(self):
return self._state

def public(self):
return self._private()

Monte, styled like Python:

def makeClassName():
var state := 42

def private():
return state

return object objectName:
to public():

return private()

Monte, styled like Monte:

def makeClassName():
var state := 42

return object objectName:
to public():

return state

5.2. Objects 31

Monte Documentation, Release 0.1

32 Chapter 5. Python-Monte Idioms

CHAPTER 6

The Type System

This is a brief overview of Monte’s type system.

Monte does not have a type system, in the type-theoretic sense. Instead, Monte features guards. However, we cannot
deny that guards both syntactically and semantically resemble types, so we are happy to call our guard system our
“type system” and compare it to other type systems.

We use the Smallshire classification of type system features to explain Monte’s typing features in a high-level overview.

Untyped

A language is untyped if there is only one type of value in the language. There are two common definitions here; one
is used by Smallshire, and one is used by Harper. Both are worth considering, since Monte straddles the edge.

Smallshire gives Ruby as an example of a typed language. Ruby is a close relative of Monte, and by Smallshire’s
definition, Monte is also a typed language, in this view, because objects still have innate distinct behaviors.

In constrast, Harper equates untyped and unityped languages. This would mark Ruby, and Monte too, as untyped.

We say that Monte is untyped, for reasons similar to Harper’s. Monte has a uniform calling interface, which means
that any message can be sent to any object, and rejection is always done inside the object’s message-receiving code at
runtime.

Dynamic

Monte is dynamic; it is possible to have a name for a value without restrictions on the type of the value.

Strong

Monte values have strong types which resist coercion. Indeed, in Monte, coercion is a reified object protocol. Objects
do not have to be coercible, and most builtin objects cannot be coerced.

Nominal

A language has nominal typing if types are identifiable, comparable, substitutable, etc. only if they are identical.
Monte guards and interfaces have this property; in particular, Monte interfaces are not equal just by having the same

33

https://vimeo.com/74354480
https://existentialtype.wordpress.com/2011/03/19/dynamic-languages-are-static-languages/

Monte Documentation, Release 0.1

declared names and methods.

Manifest

Monte guards are manifest type annotations, which means that they are never inferred by canonical expansion.

Optional

Guards are optional and do not have to be specified. Indeed, Monte boasts gradual typing, which means that a Monte
program can have any mix of guarded and unguarded names without affecting the correctness of guards.

34 Chapter 6. The Type System

CHAPTER 7

Misuse-Resistant Language Design

Several of Monte’s design decisions are based on the concept of misuse-resistant tools which are designed to frustrate
attempts to write faulty code, whether accidentally or intentionally.

Unicode Identifers

Monte has Unicode identifiers, like many contemporary languages. However, Monte generally rejects bare identifiers
which other languages would accept. Instead, we require arbitrary Unicode identifiers to be wrapped with a slight
decoration which serves as warning plumage.

Here are the examples from Unicode TR39 as valid Monte identifiers:

::"pypl"
::"toys--us"
::"1i𝜈"

None of these examples are valid bare identifiers in Monte.

Other Languages

Haskell has had Unicode identifiers since Haskell 98. Haskell support for Unicode identifiers is detailed in the Haskell
98 Report Lexical Structure. Haskell accepts “pypl” as a bare identifier for names.

Python 3 added Unicode identifiers in PEP 3131. Python 3 accepts “pypl” as a bare identifier for names and attributes.

Parenthesized Sub-Expressions

Whenever an expression is syntactically contained within another expression, it must be parenthesized, with the sole
exception of common guard-exprs used in patterns. This feature, explained in more detail in The Power of Irrelevance,
improves readability by clearly distinguishing patterns from expressions.

35

http://www.unicode.org/reports/tr39/
https://www.haskell.org/onlinereport/lexemes.html
https://www.haskell.org/onlinereport/lexemes.html
https://www.python.org/dev/peps/pep-3131/
http://erights.org/data/irrelevance.html

Monte Documentation, Release 0.1

36 Chapter 7. Misuse-Resistant Language Design

CHAPTER 8

Secure Distributed Computing

Practical Security II: The Mafia IRC Bot (WIP)

To demonstrate secure distributed programming in Monte, let’s take the mafia game code developed earlier and make
it into an IRC bot.

The mafiabot.mtmodule begins by importing the mafiamodule, an irc/client library, and the same modules
for dealing with entropy that we saw before:

1 import "mafia" =~ [=> makeMafia :DeepFrozen]
2 import "irc/client" =~ [=> makeIRCClient :DeepFrozen,
3 => connectIRCClient :DeepFrozen]
4 import "lib/entropy/entropy" =~ [=> makeEntropy :DeepFrozen]
5 import "lib/entropy/pcg" =~ [=> makePCG :DeepFrozen]
6 exports (main)

The main entry point is provided with a number of powerful references as named arguments:

• To seed our random number generator, we use currentRuntime to get a source of true randomness, i.e.
secure entropy.

• To give makeIRCService access to TCP/IP networking and event scheduling, we use
makeTPC4ClientEndPoint, getAddrInfo, and Timer.

192 def main(argv,
193 => makeTCP4ClientEndpoint,
194 => Timer,
195 => currentRuntime,
196 => getAddrInfo) as DeepFrozen:
197 def [_, seed] := currentRuntime.getCrypt().makeSecureEntropy().getEntropy()
198 def rng := makeEntropy(makePCG(seed, 0))
199 def [hostname] := argv
200 def irc := makeIRCService(makeTCP4ClientEndpoint, getAddrInfo, Timer,
201 hostname)
202 irc.connect(makeMafiaBot(rng))

We can go ahead and run this code from a file by using the monte commandline tool:

monte eval mafiabot.mt chat.freenode.net

Everything after the source filename is passed to main in argv as a list of strings.

37

Monte Documentation, Release 0.1

Networking

Unlike many other contemporary programming languages, Monte does not need an additional networking library to
provide solid primitive and high-level networking operations. This is because Monte was designed to handle network-
ing as easily as any other kind of input or output.

8 def makeIRCService(makeTCP4ClientEndpoint, getAddrInfo, Timer,
9 hostname :Str) as DeepFrozen:

10 def port := 6667 # TODO: named arg with default value
11

12 return object IRC:
13 to _printOn(out):
14 out.print(`IRC($hostname)`)
15

16 to connect(handler):
17 def client := makeIRCClient(handler, Timer)
18

19 def addrs := getAddrInfo(b`$hostname`, b``)
20 return when (addrs) ->
21 def choices := [
22 for addr in (addrs)
23 ? (addr.getFamily() == "INET" &&
24 addr.getSocketType() == "stream") addr.getAddress()]
25 def [address] + _ := choices
26 def ep := makeTCP4ClientEndpoint(address, port)
27 connectIRCClient(client, ep)
28 client

Distributed Systems

Monte comes with builtin explicit parallelism suitable for scaling to arbitrary numbers of processes or machines, and
a well-defined concurrency system that simplifies and streamlines the task of writing event-driven code.

Monte has one concurrent operation. Monte permits messages to be passed as eventual sends. An eventually-sent
message will be passed to the target object at a later time, generating a promise which can have more messages sent
to it. Unlike similar mechanisms in Twisted, Node.js, etc., Monte builds promises and eventual sending directly into
the language and runtime, removing the need for extraneous libraries.

Monte also has a single primitive for combining isolation and parallelism, the vat. Each vat isolates a collection of
objects from objects in other vats. Each eventual send in a vat becomes a distinct turn of execution, and vats execute
concurrently with one another. During a turn, a vat delivers a single queued send, which could result in more sends
being queued up for subsequent turns.

30 def makeChannelVow(client, name) as DeepFrozen:
31 "Return a vow because say() won't work until we have joined."
32 def [wait, done] := Ref.promise()
33 var waitingFor :NullOk[Set[Str]]:= null
34

35 object chan:
36 to _printOn(out):
37 out.print(`<channel $name>`)
38 to getName():
39 return name
40 to hasJoined():
41 return client.hasJoined(name)
42 to say(message) :Void:
43 client.say(name, message)

38 Chapter 8. Secure Distributed Computing

Monte Documentation, Release 0.1

44 to getUsers(notReady):
45 return client.getUsers(name, notReady)
46 to waitFor(them :Set[Str]):
47 waitingFor := them
48 return wait
49 to notify():
50 if (waitingFor != null):
51 escape oops:
52 def present := chan.getUsers(oops).getKeys().asSet()
53 traceln("notify present:", present, waitingFor,
54 waitingFor - present)
55 if ((waitingFor - present).size() == 0):
56 waitingFor := null
57 done.resolve(present)
58 to tell(whom, what, notInChannel):
59 if (chan.getUsers(notInChannel).contains(whom)):
60 client.say(whom, what)
61 else:
62 notInChannel(`cannot tell $whom: not in $name`)
63 to part(message):
64 client.part(name, message)
65 return when(chan.hasJoined()) ->
66 chan

Principle of Least Authority

Straightforward object-oriented design results in each object having the least authority it needs:

• makeIRCService provides the full range of IRC client behavior

• makeChannelVow provides access to one channel

• makeModerator encapsulates the play of one game

• makePlayer represents the role of one player in one game

• makeMafiaBot starts games on request, routes messages to the relevant moderator during game play, and
disposes of moderators when games end.

Even if one of these components is buggy or compromised, its ability to corrupt the system is limited to using the
capabilities in its static scope.

Contrast this with traditional identity-based systems, where programs execute with all privileges granted to a user or
role. In such a system, any compromise lets the attacker do anything that the user could do. A simple game such as
solitaire executes with all authority necessary to corrupt, exfiltrate, or ransom the user’s files.

With object capability discipline, when the time comes for a security inspection, we do not have to consider the
possibility that any compromise in any part of our program leaves the whole system wide open in this way. Each
component in the system can be reviewed independently and auditing a system for security becomes cost-effective to
an extent that is infeasible with other approaches 1.

68 def makeModerator(playerNames :Set[Str], rng,
69 chan :Near, mafiaChan) as DeepFrozen:
70 def [=> game, => mafiosos] := makeMafia(playerNames, rng)
71 var night0 := true
72

73 def makePlayer(me :Str):
74 return object player:

1 As documented in the DarpaBrowser report

8.1. Practical Security II: The Mafia IRC Bot (WIP) 39

http://www.combex.com/papers/darpa-report/index.html

Monte Documentation, Release 0.1

75 to _printOn(out):
76 out.print(`<player $me>`)
77 to voteFor(nominee :Str):
78 try:
79 game.vote(me, nominee)
80 catch _:
81 # nominee is not (any longer) a player
82 return
83 chan.say(game.advance())
84

85 def toPlayer := [for nick in (playerNames) nick => makePlayer(nick)]
86

87 return object moderator:
88 to _printOn(out):
89 out.print(`<moderator in $chan>`)
90

91 to begin():
92 # Night 0
93 chan.say(`$game`)
94 when (mafiaChan) ->
95 escape notHere:
96 for maf in (mafiosos):
97 chan.tell(
98 maf, `You're a mafioso in $chan.`, notHere)
99 chan.tell(

100 maf, `Join $mafiaChan to meet the others.`, notHere)
101 traceln("waiting for", mafiosos, "in", mafiaChan)
102 when (mafiaChan.waitFor(mafiosos)) ->
103 traceln("done waiting for", mafiosos)
104 night0 := false
105 # Morning of day 1...
106 chan.say(game.advance())
107

108 to said(who :Str, message :Str) :Bool:
109 "Return true to contine, false if game over."
110 mafiaChan.notify()
111 traceln("notifying", mafiaChan)
112 if (night0):
113 return true
114 if (message =~ `lynch @whom!`):
115 escape notPlaying:
116 def p := moderator.getPlayer(who, notPlaying)
117 p.voteFor(whom)
118 traceln("lynch", who, whom)
119

120 if (game.getWinner() =~ winner ? (winner != null)):
121 moderator.end()
122

123 return game.getWinner() == null
124

125 to getPlayer(name, notPlaying):
126 return toPlayer.fetch(name, notPlaying)
127

128 to end():
129 chan.say(`$game`)
130 chan.part("Good game!")
131 mafiaChan.part("bye bye")

40 Chapter 8. Secure Distributed Computing

Monte Documentation, Release 0.1

Note the way makeMafiaBot provides a secret channel for the mafiosos to collude at night:

133 def makeMafiaBot(rng) as DeepFrozen:
134 def nick := "mafiaBot"
135 def chanMod := [].asMap().diverge()
136 def keys := [].asMap().diverge()
137

138 return object mafiaBot:
139 to getNick():
140 return nick
141

142 to loggedIn(client):
143 return null
144

145 to privmsg(client, user, channel, message):
146 # traceln("mafiaBot got", message, "on", channel, "from", user,
147 # "channels", chanMod.getKeys())
148 def who := user.getNick()
149

150 if (message =~ `join @dest` &&
151 channel == nick &&
152 !keys.contains(dest)):
153 mafiaBot.join(client, who, dest)
154 else if (message == "start" &&
155 !keys.contains(channel)):
156 when(def chan := makeChannelVow(client, channel)) ->
157 mafiaBot.startGame(client, chan, channel)
158 else if (chanMod.snapshot() =~ [(channel) => m] | _):
159 if (!m.said(who, message)):
160 def chKey := keys[channel]
161 chanMod.removeKey(channel)
162 chanMod.removeKey(chKey)
163 keys.removeKey(channel)
164 keys.removeKey(chKey)
165 traceln("removed", channel, chKey)
166

167 to join(client, who :Str, channel :Str):
168 when(client.hasJoined(channel)) ->
169 client.say(channel, `Thank you for inviting me, $who.`)
170 client.say(channel, `Say "start" to begin.`)
171

172 to startGame(client, chan :Near, channel :Str):
173 def secret := `$channel-${rng.nextInt(2 ** 32)}`
174 def secretChan := makeChannelVow(client, secret)
175 escape notReady:
176 def users := chan.getUsers(notReady)
177 def playerNames := [
178 for name => _ in (users)
179 ? (name != nick)
180 # @chanop -> chanop
181 (if (name =~ `@@@op`) { op } else { name })]
182 traceln("players:", playerNames, users)
183

184 def m := makeModerator(playerNames.asSet(), rng,
185 chan, secretChan)
186 chanMod[channel] := chanMod[secret] := m
187 keys[channel] := secret
188 keys[secret] := channel
189 m.begin()

8.1. Practical Security II: The Mafia IRC Bot (WIP) 41

Monte Documentation, Release 0.1

Notes

Ejectors & Escape Expressions

Ejectors can be hard to explain with words alone, so we will start with code:

42
escape ej { 42 }

42
escape ej { ej(42) }

null
escape ej { ej() }

What’s in a Name?

Ejectors are traditionally named ej, from the E programming language, but other names are common too. k
is a traditional name from Scheme meaning “continuation”, referring to the technical definition of ejectors as
single-use delimited continuations. For catch clauses, the traditional name problem (or p for short) is common.

An escape expression creates an ejector, which is an ordinary-looking object, and then evaluates its body. Calling
.run() on an ejector will change the return value from the body’s return value to whatever is passed, or null by
default.

We can also optionally catch the value and manipulate it. However, any catch clause will only be run if the ejector
is called:

42
escape ej { 42 } catch p { 5 }

5
escape ej { ej() } catch p { 5 }

7
escape ej { ej(42) } catch p { p // 6 }

Ejector-based Control Flow

The first major use for ejectors is in implementing several common kinds of control flow. By themselves, ejectors can
be used to prematurely end or ‘short-circuit’ a computation; calling an ejector prevents any future computation:

42, no exception
escape ej { ej(42); 5 // 0 }

Ejectors even work when called by other objects:

6
def f(x, ej):

return ej(x) * 7
escape ej { f(6, ej) }

42 Chapter 8. Secure Distributed Computing

Monte Documentation, Release 0.1

Conditional Definitions

0
escape ej {

def x :Int exit ej := "five"
x

} catch problem { 0 }

throw.eject

Often we might want to ensure that the object we are calling will actually alter control flow. We will see many
motivating examples shortly. In these cases, we can use throw.eject/2 to ensure that we will not continue
computation:

if (weAreFinished):
throw.eject(ej, "finished")

launchMissiles<-()

This is equivalent to ej("finished") but will only launch missiles conditionally. We might imagine a simple
implementation of this method:

def throwEject(ej, problem):
ej(problem)
throw(problem)

Vats

Vats are Monte’s response to the vagaries of traditional operating-system-supported threads of control. Vats extend a
modicum of parallelism and concurrency to Monte programs while removing the difficult data races and lock manage-
ment that threads classically require.

Quickstart

From an entrypoint, the currentVat named argument will refer to the “top” or “first” vat:

> currentVat
Result: <vat(pa, immortal, 2 turns pending)>

Note: This vat is named “pa”, is “immortal”, which means that it will never terminate computation abruptly, and has
two turns of computation pending in its turn queue. All of this diagnostic information is Typhon-specific and may not
be available in all implementations.

We can sprout a new vat at any time from an existing vat. The two vats will be distinct:

> def newVat := currentVat.sprout("re")
Result: <vat(re, immortal, 0 turns pending)>
> newVat == currentVat
Result: false

We can also seed a vat with a computation. The computation must be DeepFrozen, but otherwise any object can be
used as a seed. This example is a bit dry but shows off the possibilities:

8.3. Vats 43

Monte Documentation, Release 0.1

> newVat
Result: <vat(re, immortal, 0 turns pending)>
> def seed() as DeepFrozen { traceln("Seeding!"); return fn x { traceln(`I was sent $x`) } }
Result: <seed>
> def seeded := newVat.seed(seed)
TRACE: From vat re
~ "Seeding!"

Result: <promise>
> seeded<-(42)
Result: <promise>
TRACE: From vat re
~ "I was sent 42"
> seeded<-(object popsicle as DeepFrozen {})
Result: <promise>
TRACE: From vat re
~ "I was sent <popsicle>"
> seeded<-(object uncopyable {})
Result: <promise>
TRACE: From vat re
~ "I was sent <promise>"

Seeding produces a far reference to the result of the seed’s call, which might not be itself DeepFrozen. To interact
with this reference, send messages to it. Note how sending popsicle caused the seeded object to receive a near (and
thus printable) reference to it; this is because DeepFrozen objects travel between near vats directly.

What’s in a Vat?

The Browser Analogy

A vat, by analogy, is like a tab in a modern Web browser. It contains some objects, which may have near references
between themselves, and a queue of pending messages to deliver to some of those objects. A browser tab might have
some JavaScript to run; a vat might choose to take a turn, delivering a message to an object within the vat and letting
the object pass any subsequent messages to its referents. Vats can be managed just like browser tabs, with vats being
spawned and destroyed according to the whims of anybody with references to those vats. Indeed, vats can be managed
just like any other object, and vats are correct with regards to capability security.

Vats, Formally and Informally

This is all confusing. What, precisely, is a vat?

Formally, a vat is just a container of objects. Vats have a turn queue, a list of messages yet to be delivered to objects
within the vat, along with an optional resolver for each message. Vats compute by repeatedly delivering individual
messages in the turn queue; each delivery is called a turn. Turns are taken in the order that they are enqueued, FIFO.

If a resolver is provided for a turn, then the resolver is resolved with the result of delivery. If delivery causes an
exception, then the vat catches the exception, sealing it, and smashes the resolver with the exception instead. In either
case, a membrane is applied to all objects which come into or leave the vat, including the result of delivery; this
membrane replaces all non-DeepFrozen values with far references.

Informally, a vat isolates an object graph. Objects inside the vat can only refer to things outside the vat by far reference;
there is no way to perform an immediate call across a vat boundary.

Whenever an object sends a message into a vat, the vat prepares to take a turn, whence the message will be delivered
to the correct object inside the vat. Sends out of the vat produce promises for references to results of those sends, and

44 Chapter 8. Secure Distributed Computing

Monte Documentation, Release 0.1

the promises have normal error-handling behavior; if you send a message to another vat, and an exception happens in
that other vat, then you’ll get a broken promise.

Vat Interface

Vats have two methods, .sprout/1 and .seed/1.

Why is .sprout/1 synchronous?

A common theme in Monte’s vat design is implicit and convenient asynchronous computation. So why is vat
sprouting synchronous? Well, Monte’s guiding philosophy is to never block. But producing a vat is a non-
blocking operation, since a sprouted vat starts out empty, and vats are isolated, so the new vat cannot affect the
current vat’s current turn.
In general, vats queue up work to do later. Since adding things to turn queues is non-blocking, vats return
promises for the work to be done later.
However, this isn’t the whole story. It’s true that vats aren’t totally empty; they generally acquire a safe scope as a
result of pass-by-copy semantics. A Monte implementation which supports many small vats is expected to imple-
ment a copy-on-write semantics for objects in vats. This is one of the compelling use cases for DeepFrozen; a
DeepFrozen object graph, like the safe scope or a vat seed, can live on a shared heap and be zero-copy shared
between all vats.

To sprout a new vat, call vat.sprout(name :Str) :Any, which returns a new vat. The new vat starts out
empty, with an empty turn queue.

To put computation into a vat, call vat.seed(seed :DeepFrozen) :Vow, which does several things. First,
the seeded vat copies the seed and its object graph into itself, isolating them from the calling vat. Then, the vat adds
seed<-() to its turn queue, and returns a promise for that pending turn.

FAQ

Vats are one of the more confusing parts of Monte, and some questions occur frequently.

So, no threads?

Correct. Monte does not have any way to block on I/O, so there is no need for threads at the application level.

Are vats parallel or concurrent?

It is implementation-dependent. Currently, Typhon is designed for an M:N threading model where up to M vats
may take N turns in parallel on N distinct threads. However, Typhon currently only takes 1 turn in parallel. Other
implementations may choose to do different parallelism models.

A key insight with vats is that a computation that is broken up into concurrent pieces on distinct vats can be transformed
into parallel execution with maximal parallelism just by altering the underlying interpreter. The correctness of the
computation does not change. This concept is from the actor model, which forms the theoretical basis for vats.

How do I perform parallel computations today?

Today, using Typhon, use the makeProcess entrypoint capability to run multiple processes to get node-level paral-
lelism. We recognize that this is a very unsatisfactory solution for all involved, and we plan to eventually implement
automatic parallel vats in Typhon.

8.3. Vats 45

https://en.wikipedia.org/wiki/Actor_model

Monte Documentation, Release 0.1

For the future. . . Try to structure your code into modules; Typhon may parallelize module loading in the future. Also
try to structure your code into vats, since we expect most interpreters to eventually implement parallel vat execution.

How do I perform concurrent operations?

Spawn more vats. All vats are concurrently turning. A vat will only ever lie fallow when it has no turns queued.

Why should we ever make synchronous calls?

In a nutshell, always make calls unless you intentionally want to create an asynchronous “edge” where your control
flow stops, only to resume later. And also when you’re working with promises and far references, since you can’t
make calls on those values!

Synchronous calls are very common. There are many kind of objects on which synchronous calls work, because they
are near references. For example, all literals are near, and so is all operator syntax:

def lue := 6 * 7

There are many objects in the safe scope which are perfectly fine to use with either calls or sends.

Here are some handy idioms. To check whether a value is near:

Ref.isNear(value)

A variant that might be more useful in the future:

value =~ n :Near

No, you misunderstood; why doesn’t Monte have only eventual sends?

Ah! There are several reasons, to be taken together as a measure of how difficult such a system would be to work with.

Some edges of Monte’s interaction with the external world are much better-modeled with calls than sends. A chau-
vanist argument can be made about how arithmetic should at least occasionally be lowered to a sequence of CPU
instructions. However, we have found that a trickier and more important problem is dealing with object graph recur-
sion, since Monte object graphs already can be quite treacherous. In Monte, object graphs can be cyclical and can hold
delayed or eventual values. This poses a serious challenge, since sends for traversal can end up interleaved with sends
which alter the structure or contents of the graph being traversed. Concretely:

• Equality testing: x == y is a question that can, if they are Transparent, traverse the full transitive closures
of both x and y.

• Serialization: Pretty-printing, databases, RPC, DOT files, and all other serialization must traverse the full object
graph as-is in order to not write out corrupted snapshots.

• Hashing: Implementations may choose to define internal object hashes to speed up sets and maps. Application-
level probabalistic data structures also often perform hashing. Like serialization, but just different enough to
justify three sentences and a bullet point.

• Garbage collection: GCs in the current state of the art are increasingly concurrent, running alongside mutators or
only performing collections on per-mutator heaps. Nonetheless, when the GC would like to perform a collection,
it often does need to traverse the object graph without worrying that an object will not race its own impending
deletion with an incoming message delivery. This could be dealt with by requiring all sends to go through the
vat turn queue, and pausing the vat in-between turns to collect. But then speed concerns pop up, and really this
is a very deep rabbit hole. . .

46 Chapter 8. Secure Distributed Computing

Monte Documentation, Release 0.1

So, for these reasons, we distinguish promises at the edges of our object graphs, and we implement these traversals
using calls. As a practical consequence, uncalls are calls and must return near values. This also influenced the design
of printers, which serialize by pretty-printing, and vats, which could optionally be implemented with per-vat GC.

Brands

The brand pattern divides the capability of establishing a secure communication channel into two facets, called a
sealer and unsealer.

def [ana, cata] := makeBrandPair("finney")
def box := ana.seal(42)
cata.unseal(box)

The resulting channel has the following properties:

• Authentic and Unforgeable: Boxes created by the sealer cannot be unsealed by any object other than the
unsealer; to the contrapositive, any object that the unsealer unseals must have been sealed with the corresponding
sealer.

• Asynchronous: Boxes created by the sealer can be unwrapped on any subsequent turn.

• Untyped: Any object can be transmitted along the channel.

Up & Down

To create a new brand, call makeBrandPair(nickname :Str). The nickname is purely cosmetic, to aid read-
ability and debugging; it does not have to be unique.

Make a sealer named `ana` and an unsealer named `cata`.
def [ana, cata] := makeBrandPair("finney")

The brand itself is an opaque object which proves that a sealer and unsealer are paired with each other. It is accessible
via the .getBrand/0 method:

Hey, these two are a pair!
ana.getBrand() == cata.getBrand() # should be true

Brands are usable as map keys:

def brandMap := [ana.getBrand() => [ana, cata]]
brandMap[cata.getBrand()] # should be `[ana, cata]`

The fundamental operation of a sealer is to .seal/1 an object into a box:

def box := ana.seal(42)
box # <box sealed by finney>

The unsealer, unsurprisingly, provides .unseal/1, which opens a box and returns its contents:

cata.unseal(box) # should be 42

The box is opaque and yields only one useful method, .getBrand/0, which can be useful for determining which
unsealer might be the correct one to use for unsealing:

brandMap[box.getBrand()] # should be `[ana, cata]`

8.4. Brands 47

Monte Documentation, Release 0.1

Note: The implementation of makeBrandPair in the Typhon prelude has other methods defined on boxes, but they
do not affect the security guarantees of the implementation.

Promises

Promises are a great way of dealing with eventual values, allowing one to compose and synchronise
processes that depend on values that are computed asynchronously.

—Quil

Monte provides user-controllable transparent proxy objects, promises, for highly customized asynchronous work-
flows.

Basic Promises

The basic usage of promises is to create a pair of objects, called the promise and the resolver:

Traditionally, promises are named "p" and resolvers are named "r".
def [p, r] := Ref.promise()

The Ref object in the safe scope can produce promise/resolver pairs. It also has many utility methods for manipulating
promises.

A promise is a transparent proxy; it does not expose its own behavior via message passing, but instead forwards all
received messages to another object. Instead, the resolver and Ref object coordinate to control the behavior of the
promise:

This next line will throw an exception; the promise isn't yet resolved,
so it can't deliver this immediate call.
p.add(5)
We can resolve the promise, at which point the promise will forward
immediate calls to its resolved value.
r.resolve(7)
And now we succeed!
p.add(12)

Promises do not just resolve; they can also break. A broken promise will never resolve, but instead refers to a
problem, which is an object (often a string) describing a failure.

Here we create a promise...
def [p, r] := Ref.promise()
And now we break the promise!
r.smash(`Promise was broken, sorry!`)
Referencing or using the promise will throw...
p.add(12)
...but some operations are still safe.
Ref.optProblem(p)

When-expressions and Delayed Actions

Promises are commonly used to perform delayed actions which will execute at some later time.

To queue an action, use an eventual send:

48 Chapter 8. Secure Distributed Computing

http://robotlolita.me/2015/11/15/how-do-promises-work.html

Monte Documentation, Release 0.1

This message will be delivered on some later turn.
def q := p<-add(5)

What is q? q is another promise. It will be resolved automatically, sometime after p resolves, with the value that p
returned from its sent message; in this case, if p was 7, then q would be 12.

Suppose that the action that we want to enqueue is more complex than a single passed message. In that case, Monte
provides the when-expression:

When the promise resolves, notify the user and start the next section.
when (p) ->

traceln(`Attention user: The promise $p has resolved.`)
This funny-looking syntax means to use the default verb of "run",
just like with a normal call.
nextSection<-()

catch problem:
Something went wrong. Better notify the user.
traceln(`Attention user: There was a problem: $problem`)
nextSection<-failed()

The when-expression consists of a when-block and an optional catch-block. When the promise given to the when-
expression becomes resolved, the when-block will run on its own turn; if the promise is broken, then the catch-block
will run instead.

Streamcaps

Stream capabilities (“streamcaps”) are objects which implement a protocol for streaming data. Monte directly supports
the streamcap protocol with unsafe objects and standard library tooling. The protocol is designed to be simple to
implement and easy to reason about.

Quick Overview

There are three interfaces to the streamcap protocol, called sources, sinks, and pumps. Objects may only implement
one interface at a time. Sources generate data, sinks consume data, and pumps transform data.

The simplest usage is delivering a single datum from a source to a sink:

source(sink)

We can enqueue an action to execute after delivery has succeeded:

when (source(sink)) -> { action() }

We can also handle errors in case of failed delivery:

when (source(sink)) -> { action() } catch problem { rescue(problem) }

Hand-delivering data to a sink is easy:

for datum in (data) { sink(datum) }

To receive data from a source, write an inline sink object:

object sink:
to run(datum):

return process<-(datum)
to complete():

8.6. Streamcaps 49

Monte Documentation, Release 0.1

success()
to abort(problem):

throw(problem)
source(sink)

In the standard library, the “lib/streams” module has tools for manipulating streamcaps. To deliver all (zero or more)
data from a source to a sink, we can use the flow helper:

import "lib/streams" =~ [=> flow]
when (flow(source, sink)) -> { done() }

Object Protocol

Pumps

Pumps are transformers of data. A pump does not participate in any sort of flow control, but merely operates on data
passing through.

The sole method of pumps is run/1, which takes a single datum and returns a list of zero or more data.

var acc :Int := 0
def accumulatingPump(i :Int) :List[Int] as Pump:

"Accumulate a sum of integers."
acc += i
return [acc]

Warning: Unlike the rest of the streamcap protocol, pumps must currently be synchronous; they must return
List. In the future, pumps should be able to return Vow[List].

Sinks

Sinks are data consumers. A sink receives data and returns asynchronous signals indicating the fate of each received
datum.

Sinks have three methods: run/1, complete/0, and abort/1. run/1 is for delivering data to the sink, and
returns a Vow[Void] which succeeds when delivery completes, or breaks when delivery fails:

when (sink(datum)) ->
traceln("Delivery complete!")

catch problem:
traceln("Delivery failed:")
traceln.exception(problem)

The complete/0 and abort/1 methods inform the sink that no more data will be delivered. complete/0 is for
successful termination, and abort/1 is for failed termination, with a problem. After a sink has terminated, further
deliveries may behave in arbitrary ways. In general, sinks will usually raise exceptions or return broken promises if
data is delivered after termination.

Sink Semantics

What does “delivery” really mean? A sink could decide that data is delivered when it is enqueued in an internal buffer,
or sent onward to a remote resource. A sink should not indicate that delivery has succeeded until the sink is ready to
receive more data, in order to provide implicit backpressure.

50 Chapter 8. Secure Distributed Computing

Monte Documentation, Release 0.1

Aborting a sink may alter the behavior of the sink with regards to enqueued or processing data. In particular, TCP
connections and streaming file handles may close uncleanly after being aborted. Sinks are allowed to have this behavior
because sinks are only required to flush upon being cleanly terminated.

Sources

Sources are data emitters. A source receives sinks and delivers data to those sinks.

Sources only have one method, run/1, which takes a sink:

source(sink)

Just like run/1 of sinks, sources return a Vow[Void] indicating whether the sink was called successfully:

when (source(sink)) -> { success() }

A typical source will return the sink’s delivery notification directly:

def cat():
return "meow"

def catSource(sink) as Source:
return sink(cat)

Patterns

Flow

The most common pattern for streamcaps is flowing all data from a source to a sink. Use the flow helper from
“lib/streams” to make this easy. Here’s a complete TCP echo server:

import "lib/streams" =~ [=> flow :DeepFrozen]
exports (main)

def main([via (_makeInt) port], => makeTCP4ServerEndpoint) as DeepFrozen:
def handler(source, sink):

return flow(source, sink)
def ep := makeTCP4ServerEndpoint(port)
ep.listenStream(handler)
return 0

Working with Packages

The source code for the Mafia game and IRC bot are in their own git repository, https://github.com/monte-language/mt-
mafia . Let’s download and run it:

git clone https://github.com/monte-language/mt-mafia
cd mt-mafia
monte test mafiabot
monte run mafiabot chat.freenode.net

This should result in the bot connecting to IRC and being ready to receive commands.

Monte packages are defined by a file in the project root directory named mt.json. This file includes package meta-
data and a list of dependencies. Previous to the first run, a Nix package is built from the project and its dependencies

8.7. Working with Packages 51

https://github.com/monte-language/mt-mafia
https://github.com/monte-language/mt-mafia

Monte Documentation, Release 0.1

(currently these can either be from a local directory or a Git repository). The monte test command collects all unit
tests in the project and starts the test runner, whereas monte run invokes the main function in mafiabot.mt. (The
build step can be invoked directly using monte build.)

The format for mt.json is a JSON file with the following keys:

name A name for the package.

paths A list of paths relative to the project root that contain Monte code. ”.” is acceptable if it’s in the root.

entrypoint The name of the module with the main function to invoke. Optional.

dependencies An object with package names as keys and dependency descriptions as values. Dependency descrip-
tions are objects with url keys naming a location to fetch the dependency from, and optionally type (either
“git” or “local” – defaults to git if omitted) and commit (describing the git revision to fetch) keys.

Building the Nix package involves first creating an mt-lock.json file with a full list of all dependencies and their
versions. You may keep this file to pin your builds to specific versions or get rid of it to re-run the dependency
discovery process.

52 Chapter 8. Secure Distributed Computing

CHAPTER 9

Language Reference

Collections

Monte has three builtin types of collections, each of which come in “const” (immutable) and “flex” (mutable) flavors.

Sets

Monte’s sets are ordered containers with the standard assortment of set-theoretic tools, like membership testing, iter-
ation, union, and intersection. Members are stored based on the sameness test; two members overlap if, and only if,
they are the same.

Sets support syntactic comparison using the <=> and related operators. The comparison takes the form of a subset
test. Two sets s and t are equivalent, s <=> t, if, and only if, they contain the same members and are the same size.

Quasiliterals

Quasiliterals, or QLs, are an important part of Monte syntax which allows us to embed arbitrary DSLs into Monte.
With the power of QLs, Monte can be extended into new territory in a very neat way.

What’s a Quasiliteral?

This is a quasiliteral:

`Backticks start and end quasiliterals`

A quasiliteral can have values mixed into it with $. A value can be a name:

def name :Str := "Todd"
`Hello, $name!`

A value can also be an expression, using brackets:

`2 + 2 = ${2 + 2}`

Quasiliterals can be used as patterns:

Equivalent to: def =="self" := "self"
def `self` := "self"

53

Monte Documentation, Release 0.1

Quasiliteral patterns also permit pattern-matching with @ to retrieve single names:

def `(@first, @second)` := "(42, 5)"

And any pattern can be used with brackets:

def `x := @{var x}` := "x := 7"
x += "-11" # What? I like slushies!

Finally, there are different quasiparsers, or QPs, which each have different behavior:

`` makes strings
`def x := 42` :Str
b`` makes bytestrings
b`def x := 42` :Bytes
m`` makes Monte AST objects
m`def x := 42` :(astBuilder.getAstGuard())

How to Use QLs

A quasiliteral expression starts with the name of a quasiparser (which can be empty) followed by a backtick. Then, a
mixture of strings and holes are allowed, followed by a final backtick. The holes can either be expression-holes, with
$, or pattern-holes, with @.

Warning: Pattern-holes cannot be used in QL expressions, only in QL patterns. Using a pattern-hole in a QL
expression is a syntax error!

Builtin Quasiparsers

There are three common QPs included in Monte’s safe scope.

Simple

Did You Know?

Monte originally used the same name as E for ::”‘‘”: simple__quasiParser. That’s why we call ::”‘‘” the
“simple” quasiparser.

The simple or empty QP builds strings:

`string` == "string" # true

It can mix any value into a string, even values that don’t pass Str:

`${7}` == "7" # true

The simple QP does this by calling M.toString/1 on the values. Correspondingly, the value’s _printOn/1 is
called, and can be customized:

object shirt { to _printOn(out) { out.print("tye-dye shirt") } }
def description :Str := `I am wearing a $shirt.`

When used as a pattern, the simple QP performs very simple but straightforward and powerful string parsing:

54 Chapter 9. Language Reference

Monte Documentation, Release 0.1

def container := "glass"
def `a $container of @drink` := "a glass of lemonade"

Bytes

The bytes QP builds bytestrings:

b`asdf`

The encoding of characters is unconditionally Latin-1. Non-Latin-1 characters cause errors to be thrown at runtime:

b`ErrorRaiser™`

Other than that quirk, the bytes QP behaves much like the simple QP, including parsing:

def b`@header:@value` := b`x:12`

Monte

Finally, the Monte QP builds Monte ASTs from literal Monte source:

m`def x := 42`

The Monte QP can be used for code generation, since it evaluates to objects usable with eval/2:

eval(m`2 + 2`, [].asMap())

Custom Quasiparsers

Anybody can write their own quasiparser.

Parsing with Values

The first half of the QP API deals with building the initial structure and including values.

.valueHole(index :Int) should create a value marker which can be used in place of some value which
will be included later. .valueMaker(pieces :List) will be called with a list of pieces, which can be ei-
ther strings or value markers, and it should return a partial structure. That structure can be completed with its
.substitute(values :List), which provides a list of values that can be swapped with the value markers.

To see how this API all comes together, let’s look at the kernel expansion of a simple QP call:

`Just another $day for this humble $string.`

What Monte actually does is call .valueMaker/1, like so:

::"``".valueMaker(["Just another ", ::"``".valueHole(0),
" for this humble ", ::"``".valueHole(1),
"."]).substitute([day, string])

9.2. Quasiliterals 55

Monte Documentation, Release 0.1

Parsing Patterns

The pattern API is similar and builds upon the expression API.

First, the .patternHole/1 method allows pattern hole markers to be built, just like with value holes. Then,
the structure is built with .matchMaker/1 instead of .valueMaker/1. This structure should have a comple-
tion method, .matchBind(values :List, specimen, ej) which attempts to unify the specimen with the
structure completed by the values or eject on failure.

Here’s a simple pattern:

def `how ${hard} could it be to match @this?` := "not hard, just complex"

And its expansion:

def via (_quasiMatcher.run(::"``".matchMaker(["how ", ::"``".valueHole(0),
" could it be to match ",
::"``".patternHole(0),
"?"]),

[hard])) [this] := "not hard, just complex"

Note how the _quasiMatcher helper in the safe scope takes care of the extra runtime plumbing.

Interfaces

An interface is a syntactic expression which defines an object protocol. An interface has zero or more method signa-
tures, and can be implemented by any object which has methods with equivalent signatures to the interface.

Let’s jump right in:

interface Trivial:
"A trivial interface."

This interface comes with a docstring, which is not required but certainly a good idea, and nothing else. Any object
could implement this interface:

object trivia implements Trivial:
"A trivial object implementing a trivial interface."

When an object implements an interface, the interface behaves like any other auditor and examines the object for
compliance with the object protocol. As with other auditors, the difference between the “implements” and “as”
keywords is whether the object is required to pass the auditor:

object levity as Trivial:
"A trivial object which is proven to implement Trivial."

Let’s look at a new interface. This interface carries some method signatures.

interface GetPut:
"Getting and putting."
to get()
to put(value)

object getAndPut as GetPut:
"A poor getter and putter."

to get():
return "get"

56 Chapter 9. Language Reference

Monte Documentation, Release 0.1

to put(_):
null

We can see that getAndPut implements the GetPut interface, but it isn’t very faithful to that interface. Interfaces
cannot enforce behavior, only signatures.

Miranda Protocol

If you cannot afford a method, one will be appointed for you.

Monte objects, left to their own devices, are black boxes; one cannot perform any sort of introspection on them.
However, there are some powers granted to anybody who can refer to an object. The runtime grants these powers
automatically, and we refer to them as the Miranda protocol.

The Miranda protocol grants powers in the form of methods, called Miranda methods, which all objects automatically
possess. An object may provide its own Miranda methods, but does not have to; objects are automatically granted
default Miranda methods with correct behavior. Or, as stated above, “if an object does not have a Miranda method,
one will be provided.”

Additionally, the Miranda protocol contains Miranda named arguments, which are named arguments passed along-
side every message to every object from the runtime.

Safety

Methods

Miranda methods should be safe to call. The default definitions will always respond without throwing exceptions. It
is rude but permissible for an object to provide a custom Miranda method implementation which can throw or eject,
or return incorrect or misleading information. Therefore, be aware of situations in which Miranda methods are being
used.

Warning: Special mention goes here to the most commonly-called Miranda method, _printOn/1. Any time
that an object is being turned into a string, it almost certainly involves a little bit of _printOn/1, so be careful.

Named Arguments

See FAIL.

Methods

_conformTo/1 _conformTo takes a guard and coerces this object to that guard, if possible. The default imple-
mentation returns null for all guards. Overriding this method lets an object become other objects when under
scrutiny by guards.

_getAllegedInterface/0 _getAllegedInterface returns an interface describing this object. If not
specified, an interface which represents the object faithfully will be created and returned.

The allegedness of the interface hinges on the ability to override this method; the returned interface can be just
as untrustworthy as the object that returns it.

9.4. Miranda Protocol 57

Monte Documentation, Release 0.1

_printOn/1 _printOn writes text representing this object onto the printer passed as an argument.

Customizing _printOn lets an object change how it is pretty-printed. The default pretty-printing algorithm is
readable but does not divulge the internal state of an object.

_respondsTo/2 _respondsTo(verb, arity) returns a Boolean value indicating whether this object will
respond to a message with the given verb and arity. The default implementation indicates whether the object’s
source code listed a method with the given verb and arity.

Warning: Determining whether a given object responds to a given message is undecidable. Therefore, there
are times when _respondsTo/2 is unavoidably wrong, both with false positives and false negatives.

_sealedDispatch/1 _sealedDispatch permits this object to discriminate its responses to messages based
on the capabilities of the calling object.

Occasionally, a calling object will wish to prove its capabilities by passing some sort of key or token to a
receiving object. The receiving object may then examine the key, and return an object based on the identity or
value of the key.

We provide _sealedDispatch/1 for a specific subset of these cases. The caller should pass a brand, and
the receiver dispatches on the brand, returning either a sealed box guarded by the passed-in brand, or null if
the brand wasn’t recognized.

By default, _sealedDispatch returns null. This makes it impossible to determine whether an object
actually has a customized _sealedDispatch.

A popular analogy for sealed dispatch is the story of the “Red Phone,” a direct line of communication between
certain governments in the past. The Red Phone doesn’t ring often, but when it does, you generally know
who’s calling. They’ll identify themselves, and if you can confirm that it’s the correct caller, then you can have
discussions with them that you wouldn’t have over an ordinary phone.

_uncall/0 _uncall undoes the call that created this object. The default implementation returns null, be-
cause objects are, by default, not uncallable. A good implementation of _uncall will return a list contain-
ing [maker, verb :Str, args :List, namedArgs :Map] such that M.call(maker, verb,
args, namedArgs) will produce a new object which is equal to this object. Promises or other far references
may not be returned. (No, you misunderstood; why doesn’t Monte have only eventual sends?)

Providing an instance of _uncall makes an object eligible for uncall-based catamorphisms (fold, reduce, ...).
In particular, uncallable objects are comparable by value using Transparent.

Note: In order to be eligible for value comparisons, you’ll need to both implement _uncall and also pass an
audition proving that your uncall is correct. See Selfless and Transparent for details.

_whenMoreResolved/1 _whenMoreResolved, by default, does nothing on near objects and sends notifica-
tions of partial fulfillment through references. It is not interesting.

Named Arguments

FAIL FAIL is an object which can be used in place of throw.eject when an error should propagate beyond the
current turn. During asynchronous callbacks, objects might unwittingly be called as part of a subsequent turn’s
callback, and their errors should propagate to their original callers. FAIL is throw.eject in synchronous
contexts and a wrapper for some resolver’s .smash/1 in callbacks or other asynchronous contexts.

58 Chapter 9. Language Reference

Monte Documentation, Release 0.1

Loops and the Iteration Protocol

Monte has only two kinds of looping constructs: for loops, which consume iterators to process a series of elements,
and while loops, which repeatedly consider a predicate before doing work. Both should be familiar to any experi-
enced programmer; let’s explore them in greater detail.

for loops

A for loop is a simple structure that takes an iterable object and loops over it:

var x := 0
for i in (1..10):

x += i

Here, we can clearly see the three elements of the for loop, the pattern, x; the iterable, 1..10, and the loop’s body,
x += i. For each element in the iterable, the iterable is matched against the pattern, which is available within the
body.

Within a for loop, the continue keyword will skip the current iteration of the loop, and break keyword will exit
the loop altogether:

Skip the even elements, and give up if we find multiples of three.
for i in (1..10):

if (i % 2 == 0):
continue

if (i % 3 == 0):
break

x -= i

Pair Patterns

All iterables yield not just one element, but a pair of elements on every iteration. To access both elements at once, we
can use a pair pattern:

def names := ["Scooby", "Shaggy", "Velma"]
for i => name in (names):

traceln(`Name $i: $name`)

For a list, like in the previous example, the right-hand side of the pair matches the current element, and the left-hand
side matches that element’s index. When iterating over a map, the pair will match the key and value:

def animals := [
"Bagira" => "panther",
"Baloo" => "bear",
"Shere Khan" => "tiger",

]
for animal => species in (animals):

traceln(`Animal $animal is a $species`)

while loops

In addition to the for loop, Monte provides a while loop:

9.5. Loops and the Iteration Protocol 59

Monte Documentation, Release 0.1

var x := 1
while (x < 402):

x *= 2

The while loop admits continue and break, just like in for loops.

Advanced Looping

The Secret Lives of Flow Control Structures

Flow control structures actually return values. For example, the if-else returns the last value in the executed clause:

def a := 3
def b := 4
def max := if (a > b) {a} else {b}

This behavior is most useful when used with the when-catch construct described in the When-expressions and Delayed
Actions section. The break statement, when used in a for or a while loop, can be followed by an expression, in which
case the loop returns the value of that expression.

ternary conditional expression

While monte does not have the c ? x : y ternary conditional operator, the if expression works just as
well. For example, to tests whether i is even:

>>> { def c := 'c'; if (c < 'e') { "Yay!" } else { "Nope" } }
"Yay!"

Loops as Expressions

Like all structures in Monte, for loops are expressions; they return values:

def result := for value in (0..10) { value }

Here, result is null, which is the default return value for for loops. To override that value, use break:

def result := for value in (0..10) { break value }

Since break was used, the loop exits on its first iteration, returning value, which was 0. So result is 0.

List & Map Comprehensions

for loops aren’t the only way to consume iterable objects. Monte also has comprehensions, which generate new
collections from iterables:

[for value in (iterable) transform(value)]

This will build and return a list. Maps can also be built with pair syntax:

[for key in (keyList) key => makeValue(key)]

And, of course, pair syntax can be used for both the pattern and expression in a comprehension:

60 Chapter 9. Language Reference

Monte Documentation, Release 0.1

[for key => value in (reverseMap) value => key]

Additionally, just like in Python and Haskell, comprehensions support filtering with a predicate; this is called the
for-such comprehension:

>>> def evens := [for number in (1..10) ? (number % 2 == 0) number]
... evens
[2, 4, 6, 8, 10]

Just like the such-that pattern, this such-that clause is evaluated for every iteration, and iterations where the clause
returns false are skipped. Also, just like the such-that pattern, and unlike some other languages’ comprehension
syntax, the predicate must return a Bool; if it doesn’t, then the entire comprehension will fail with an exception.

Writing Your Own Iterables

Monte has an iteration protocol which defines iterable and iterator objects. By implementing this protocol, it is possible
for user-created objects to be used in for loops and comprehensions.

Iterables need to have to _makeIterator(), which returns an iterator. Iterators need to have to next(ej),
which takes an ejector and either returns a list of [key, value] or fires the ejector with any value to end iteration.
Guards do not matter but can be helpful for clarity.

As an example, let’s look at an iterable that counts upward from zero to infinity:

object countingIterable:
to _makeIterator():

var i := 0
return object counter:

to next(_):
def rv := [i, i]
i += 1
return rv

Since the iterators ignore their ejectors, iteration will never terminate.

For another example, let’s look at an iterator that wraps another iterator and only lets even values through:

def onlyEvens(iterator):
return object evens:

to next(ej):
var rv := iterator.next(ej)
while (rv[1] % 2 != 0):

rv := iterator.next(ej)
return rv

Note that the ejector is threaded through to next(ej) into the inner iterator in order to allow iteration to terminate
if/when the inner iterator becomes exhausted.

Guard Protocol

Like many other subsystems in Monte, guards can be made from any ordinary object which implements the correct
methods.

9.6. Guard Protocol 61

Monte Documentation, Release 0.1

Are Guards Slow?

Since guards are Monte objects and can be user-defined, concerns about performance are reasonable.
According to Semantics of Monte, every assignment acts as if its guard were executed; that is: once for every
def, at definition, and for var, once at definition and once for every re-assignment.
But if an implementation can determine statically that the specimen will always pass (e.g. def x :Int :=
1) then the check can be optimized away. An ahead-of-time compiler might use type inference to prove that all
specimens at a definition site might be of a certain type. A just-in-time compiler might recognize at runtime that
a guard’s code is redundant with unboxing, and elide both the unboxing and the guard.
The Typhon virtual machine almost always can skip typical basic guards like Int and Bool.

The Basics

The main method for a guard is coerce/2, which takes an object to examine, called the specimen, and an ejector.
If the specimen conforms to the guard, then the guard returns the conformed value; otherwise, the ejector is used to
abort the computation.

object Any:
to coerce(specimen, _):

return specimen

object Void:
to coerce(_, _):

return null

Here are two example guards, Any and Void. Any passes all specimens through as-is, and Void ignores the specimen
entirely, always returning null.

Here’s an actual test. The Empty guard checks its specimen, which is a container, for emptiness and ejects on failure:

object Empty:
to coerce(specimen, ej):

if (specimen.size() != 0):
throw.eject(ej, `$specimen was not empty`)

The ejector does not need to have a meaningful object (nor even a string) as its payload, but the payload may be used
for diagnostic purposes by the runtime. For example, a debugger might display them to a developer, or a debugging
feature of the runtime might record them to a log.

Unretractable Guards

Informally, an unretractable guard cannot be fooled by impostor objects that only pretend to be guarded, and it also
will not change its mind about an object on two different coercions.

Formally, an unretractable guard Un is a guard such that for all Monte objects o, if o is successfully coerced by Un,
then it will always be successfully coerced by Un, regardless of the internal state of Un or o.

Controllers

Sometimes, when designing an API, we want to be able to customize Monte’s behavior while retaining the general
Monte idioms for values and layouts. Controller syntax lets us change behavior of code blocks in a safe and coherent

62 Chapter 9. Language Reference

Monte Documentation, Release 0.1

fashion.

How to Implement a Controller

Controller Expansion

Suppose that we have a standard if-expression:

if (cond()) {
advance()

} else {
fallback()

}

Now, suppose that we wished to customize this. We could define a controller named ifController, and then call
it with very similar syntax:

ifController (cond()) do {
advance()

} else {
fallback()

}

This expands roughly to the following:

(ifController :DeepFrozen).control("do", 1, 0, fn {
[[cond()], fn { advance() }]

}).control("else", 0, 0, fn {
[[], fn { fallback() }]

}).controlRun()

We see that controllers must be DeepFrozen, and that each code block, which we’ll call a “lambda-block”, corre-
sponds to a .control/4 call, with a .controlRun() to indicate the end of blocks.

Control with Lambda-Blocks

The power of controllers is locked within the lambda-blocks. Each block is a function which returns an [args,
lambda] pair. The controller can choose how many times it wants to call the block, and similarly, the block can
return new arguments every time it is called. Indeed, note above that cond() is called every time its containing
lambda-block is called.

What are the other arguments to .control(verb :Str, argCount :Int, paramCount :Int,
block)? The control verb is the bare word preceding each block. The argument count specifies how many arguments
will be returned by the block. Where are the parameters?

Let us imagine another hypothetical controller:

m (action) do x { f(x) }

In this situation, x is the one and only parameter, and so the controller receives a parameter count of 1.

Slots

Monte’s values are stored in slots, which are also values. This nested structure permits some flexibility.

The slot of a value is accessed using the & unary operator:

9.8. Slots 63

Monte Documentation, Release 0.1

def slot := &value

Final Slots

Final slots are created by final definitions:

def finalValue := 42
def finalSlot := &finalValue

Lazy Slots

Lazy slots are a convenient and elegant tool in the safe scope for creating simple lazy values. A lazy slot is constructed
with a thunk which will be transparently evaluated once (and only once) to compute the slot’s value.

def fib(i :Int) :Int:
return if (i > 1) {fib(i - 1) + fib(i - 2)} else {i}

def &lazySlot := makeLazySlot(fn {fib(30)}) # or fib(40) for more drama
traceln(`$lazySlot`) # this will take a few moments
traceln(`$lazySlot`) # but this will be instantaneous

Note: Lazy slots can be constructed with a var slot, and it can be an enlightening exercise. makeLazySlot is
provided as a courtesy since it acts like a final slot for auditions with DeepFrozen.

Var Slots

Var slots are created by var definitions:

var varValue := 7
def varSlot := &varValue

A var slot’s value can be assigned to, and the slot’s identity will not change:

varValue := 5
varSlot == &varValue # Still true after assignment

Auditors

The auditor subsystem allows objects to certify themselves as having certain properties. In order to gain certification,
specimen objects must pass audition, a process in which the source code of the specimen object is revealed to an
auditor, another object which examines the structure of the specimen and indicates whether it qualifies.

Stamps

Some auditors will admit any object which requests an audition. These auditors are called stamps. An object with a
stamp is advertising behavior that is not necessarily reflected in the object’s structure. Stamps can be used to indicate
that an object should be preferentially treated; additionally, a stamp with limited availability can be used to indicate
that an object belongs to a privileged set of objects.

64 Chapter 9. Language Reference

Monte Documentation, Release 0.1

A Showing of Common Auditors

DeepFrozen

The DeepFrozen auditor proves that objects are immutable and that the objects they refer to are also DeepFrozen.

> DeepFrozen
DeepFrozen

Note: The specific property proven by DeepFrozen: For any DeepFrozen object, all bindings referenced by the
object are also DeepFrozen.

Selfless

The Selfless auditor is a stamp. Any object bearing Selfless can also bear other stamps to indicate that equality
comparisons with that object should be done in a customized way.

> Selfless
Selfless

Transparent

The Transparent auditor proves that an object implements a custom _uncall/0 Miranda method with certain
properties. Any Transparent object can be compared by comparing the contents of its uncalled representation.

To prove an object Transparent, a small kit of facet objects must be obtained and attached to the maker definition:

def [makerAuditor :DeepFrozen, &&valueAuditor, &&serializer] := Transparent.makeAuditorKit()

Then the maker and object must both submit to audition. The maker must be DeepFrozen and the inner object
Selfless:

def makeSwatch(color) as DeepFrozen implements makerAuditor:
return object swatch implements Selfless, valueAuditor:

to _uncall():
return serializer(makeSwatch, [color])

The resulting maker will produce objects that can be compared as if by value:

> def red := makeSwatch("red")

> def xunre := makeSwatch("red")

> red == xunre
Result: true
> def blue := makeSwatch("blue")

> red == blue
Result: false

Note: Using the Transparent auditor as a guard is legal and works as expected, but is not required to obtain
correct comparison behavior.

9.9. Auditors 65

Monte Documentation, Release 0.1

Note: Specifically, the property proven by Transparent is that uncalling the object is the inverse of calling the
maker, and vice versa.

Bindings (WIP)

Todo

discuss bindings. Expand this section to “slots and bindings”? or discuss bindings under auditors?

Semantics of Monte

This is a brief specification of the evaluation semantics of Monte.

Monte is an object-based expression language which computes by delivering messages to objects. During computation,
expressions are evaulated, resulting in either success or failure; successful evaluation yields an object, while failing
evaluation yields an exceptional state.

Kernel-Monte

The Monte language as seen by the programmer has the rich set of syntactic conveniences expected of a modern
scripting language. However, to be secure, Monte must have a simple analyzable semantics. We reconcile these by
defining a subset of the full language called Kernel-Monte, and only this subset need be given a rigorous semantics.
The rest of Monte is defined by syntactic expansion to this subset.

Full-Monte

We define Full-Monte as the complete AST of Monte, and canonical expansion as the syntactic expansion which
expands Full-Monte to Kernel-Monte while preserving the intended semantics.

Note: Full-Monte should get its own page and have all of its rich semantics spelled out in gory detail.

Monte as a Tree

Left-to-Right Rule

The left-to-right rule states that evaluation proceeds lexically from left to right. This rule is violated only rarely:
• At the kernel level, DefExpr evaluates both its RHS and exit before any expressions buried in the LHS

pattern. Canonical expansion from Full-Monte to Kernel-Monte resolves any recursively-defined names
in order to make this less unintuitive.

• Object literals have their auditors evaluated before object creation and their patterns are unified after object
creation.

66 Chapter 9. Language Reference

Monte Documentation, Release 0.1

Kernel-Monte is specified as an AST (abstract syntax tree). Each node in the tree is either an expression or a pattern.
Expressions can be evaluated to product an object; patterns do not produce values but unify with values (i.e. objects)
to introduce names into scopes.

Along with every node, there is a static scope, a compile-time constant mapping of names to declaration and usage
sites. For every expression, it is known which names are visible and whether they were declared with def or var.

Computation proceeds by tree evaluation; the root of the tree is evaluated, which in turn can provoke evaluation of
various branch and leaf nodes as required.

Recursion in a Monte AST is possible via self-reference; all object patterns are visible within their corresponding
script’s scope.

Scope Introduction & Dismissal

No Stale Stack Frames Rule

The no stale stack frames rule states that A Monte expression must dismiss any scope which it introduces.
A stale stack frame is one that isn’t currently running; it is neither the current stack frame nor below the current
stack frame.
Monte forbids suspending computation mid-frame. There are no coroutines or undelimited continuations in
Monte. Monte also does not have an “async/await” syntax, since there is no way to implement this syntax
without stale stack frames. As a direct result, no partial execution can ever require a Monte implementation to
reify stack frames for suspended computation.
The policy is justified by readability concerns. Since Monte permits mutable state, one author’s code’s behavior
could be affected by another author’s code running further up the frame stack. Stale frames make comprehension
of code much harder as a result.

Many expressions, during evaluation, introduce scopes. When this is done, names declared after scope introduction
are said to be visible within the scope. An expression must pair every scope introduction with a scope dismissal. After
a scope has been dismissed, the names declared within the scope are no longer visible.

Note: This scoping rule is often called “lexical scoping” and should be familiar to users of other lexically-scoped
languages.

Names: Nouns, Slots, and References

Monte has a complex system underlying names.

A noun is an identifier which refers to a value (an object). There are three senses of reference from nouns to values,
each at a different level of abstraction.

At the simplest level, nouns refer directly to values. Identifiers in patterns match values, and nouns in expressions
evaluate to the values to which they were matched.

To represent mutable state, we indirect via slots. Slots are objects that contain values and may be updated over time
(much like pointers in C). Slots can be accessed and manipulated with slot patterns and slot expressions. A final slot
acts as though nouns refer directly to values, while a var slot has a put operation that updates its value.

A binding is a slot along with a guard that constrains the values in the slot. Bindings are essential to auditors.

To allow references across turns and vats, we indirect via references.

9.10. Semantics of Monte 67

Monte Documentation, Release 0.1

Exceptions

A Monte expression can yield either a successful result or an exceptional state. Exceptional states are intentionally
vague; they are usually represented as panics in virtual machines or stack unwinders in interpreters.

While in an exceptional state, most expressions evaluate to that same exceptional state. A TryExpr can replace an
exceptional state with a successful result. A FinallyExpr can perform some side computation despite an exceptional
state.

When an error is thrown, the computation switches to an exceptional state and the thrown error is sealed in an
implementation-dependent manner.

Expressions

Literals

Null

Produces null.

Char

Produces an object which passes Char and corresponds to the Unicode codepoint of the CharExpr.

Double

Produces an object which passes Double and corresponds to the IEEE 754 double-precision floating-point number
of the DoubleExpr.

Note: Implementations may, at their discretion, substitute any higher-precision IEEE 754 number for the given one.

Int

Produces an object which passes Int and corresponds to the integer of the IntExpr.

Str

Produces an object which passes Str and corresponds to the sequence of Unicode codepoints of the StrExpr. .

The string of codepoints is not normalized; it corresponds one-to-one with the codepoints in the Monte source literal.

Names

Binding

Produces the binding for the given noun.

68 Chapter 9. Language Reference

Monte Documentation, Release 0.1

Todo

discuss SlotExpr

Noun

Produces the value in the slot of the given noun.

Assign

An AssignExpr has a name and an expression. The expression is evaluated and the result is both assigned to the name
as a noun in the current scope and the produced value.

If the name’s slot is not assignable, an error is thrown.

Def

A DefExpr has a pattern, an (optional) exit expression, and a specimen expression. The specimen is evaluated, followed
by the exit (if present). The specimen is unified with the pattern, defining names into the surrounding scope. The
produced value is the specimen.

If unification fails, the result of the exit expression is used as an ejector to escape; if ejecting fails, then an error is
thrown.

Hide

A HideExpr has a single subexpression which is evaluated in a fresh scope. The produced value of the subexpression
is used as the produced value.

Message Passing

Call

A CallExpr has a receiver expression, a verb (string), some argument expressions, and some named argument expres-
sions. The receiver is evaluated, then each argument, and then each named argument. Then, a message consisting
of the verb, arguments, and named arguments is passed to the receiver. The value returned from the receiver is the
produced value.

Todo

discuss sameness and doctest _equalizer

Control Flow

Escape

9.10. Semantics of Monte 69

Monte Documentation, Release 0.1

Ejectors

An ejector is an object whose run method aborts the current computation and returns to where the ejector was
created.
Monte implements the return, break, and continue expressions with ejectors.
Ejectors are so-called single-use, delimited continuations: their dynamic scope is delimited to downward method
calls only, and any use after the first will fail.

An EscapeExpr has a pattern and inner expression and, optionally, a catch pattern and catch expression (not to be
confused with Try/catch expressions).

An ejector is created and a scope is introduced. The ejector is unified with the pattern and then the inner expression is
evaluated.

If the ejector was not called during evaluation of the inner expression, the scope is then dismissed and the produced
value from the inner expression is used as the produced value of the entire EscapeExpr.

If the ejector is called within the inner expression, then control immediately leaves the inner expression and the scope
is dismissed; if there is no catch pattern/expression, then the value passed to the ejector is immediately used as the
produced value. Otherwise, the value passed to the ejector is used as a specimen and unified with the catch pattern in
a freshly-introduced scope, and then the catch expression is evaluated. Finally, the catch scope is dismissed and the
produced value from the catch expression is used as the produced value of the escape-expr.

Finally

A FinallyExpr contain two expressions. The first expression is evaluated in a fresh scope and its resulting object or
failing state is retained. Then, the second expression is evaluated in a fresh scope. Finally, the retained state from the
first expression, success or failure, is the produced value of the entire finally-expr.

The second expression is evaluated regardless of whether the first expression returns an exceptional state; its state is
discarded. It is implementation-dependent whether exceptional states are chained together.

Chained Exceptions

Why doesn’t Monte require chained exceptions? In many languages, the exception from the first part of a
finally-expr would have a chain including the exception from the second part of the finally-expr. This faciliates
debugging.
Since Monte doesn’t offer tools for digging into exceptional states beyond catching them as a reified but opaque
value, there is little point in mandating implementation details for that value. Instead, one might expect unsafe
names like unsealException to have standard behavior, and that behavior might include exposing a possibly-
empty list of chained exceptions. This isn’t currently the case, but it might be in the future.

This table shows the possible states:

try finally result
success success success
error success error
success error error
error error error

70 Chapter 9. Language Reference

Monte Documentation, Release 0.1

If

An IfExpr has a test expression, a consequent expression, and an alternative expression. A scope is introduced, and
then the test expression is evaluated, producing a value which passes Bool. Either the consequent or the alternative
is evaluated and used as the produced value, depending on whether the test produced true or false. Finally, the
scope is dismissed.

If the test’s produced value does not conform to Bool, an error is thrown.

Sequence

A SequenceExpr contains zero or more expressions.

If a SequenceExpr contains zero expressions, then it evaluates to null.

Otherwise, a SequenceExpr evaluates each of its inner expressions in sequential order, using the final expression’s
produced value as the produced value of the entire sequence.

Try

A TryExpr has an expression and a catch pattern and expression. The first expression is evaluated in a fresh scope and
used as the produced value.

If an error is thrown in the first expression, then the scope is dismissed, a new scope is introduced, the error is unified
with the catch pattern, and the catch expression is evaluated and used as the produced value.

Objects

Evaluation of a message sent to an object proceeds as follows.

Matcher

A matcher has a pattern and an expression. A scope is introduced and incoming messages are unified with the pattern.
If the unification succeeds, the expression is evaluated and its produced value is returned to the caller.

Method

A method has a verb, a list of argument patterns, a list of named argument patterns, a guard expression, and a body
expression. When a message matches the verb of the method, a scope is introduced and each pattern is unified against
the message. Each argument pattern is unified against each argument, and then each named argument pattern is unified
against each named argument.

If the number of arguments in the message differs from the number of argument patterns in the method, an error is
thrown. Informally, the method and message must have the same arity.

If unification fails, an error is thrown.

After unification, the guard expression is evaluated and its produced value is stored for return value guarding. The
body expression is evaluated and its produced value is given as a specimen to the return value guard. The returned
prize from the guard is returned to the caller.

If the return value guard fails, an error is thrown.

9.10. Semantics of Monte 71

Monte Documentation, Release 0.1

Note: The return value guard is evaluated before the body, but called after the body.

Object

An ObjectExpr has a pattern, a list of auditor expressions, a list of methods, and a list of matchers. When evaluated,
a new object with the methods and matchers is created. That object is audited by each auditor in sequential order.
Finally, the object is unified with its pattern in the surrounding scope, and the first auditor, if present, is used as the
guard for the binding.

Objects close over all of the names which are visible in their scope. Additionally, objects close over the names defined
in the pattern of the ObjectExpr.

Patterns

Pattern evaluation is a process of unification. During unification, patterns are given a specimen and an ejector. Patterns
examine the specimens and create names in the surrounding scope. When patterns fail to unify, the ejector is fired. If
the ejector fails to leave control, then an error is thrown.

Pattern Nodes

Ignore

An IgnorePatt coerces its specimen with a guard.

Binding

A BindingPatt coerces its specimen with the Binding guard and binds the resulting prize as a binding.

Final

A FinalPatt coerces its specimen with a guard and binds the resulting prize into a final slot.

Var

A VarPatt coerces its specimen with a guard and binds the resulting prize into a var slot.

List

A ListPatt has a list of subpatterns. It coerces its specimen to a List and matches the elements of the specimen to
each subpattern, in sequential order.

If the ListPatt and specimen are different lengths, then unification fails.

72 Chapter 9. Language Reference

Monte Documentation, Release 0.1

Via

A ViaPatt contains an expression and a subpattern. The specimen and ejector are passed to the expression’s produced
value, and the result is unified with the subpattern.

Categorial Semantics

DF-Mont-Mess

Let DF-Mont-Mess be the category whose objects are DeepFrozen messages and whose arrows are DeepFrozen
Monte objects. For our diagrams, we will follow the convention that arrows are arrows and objects are encircled.

Since DF-Mont-Mess is a category, it must have an identity arrow for all messages.

["run", [42], [].asMap()] id

In Monte, this object simply repeats messages delivered to it:

object id {
match message {

message
}

}

DF-Mont

Let DF-Mont be the category whose objects are DeepFrozen values, not just messages, and whose arrows are
DeepFrozen objects, as well as several primitives. The most important primitive is likely the ability to perform a
call.

9.11. Categorial Semantics 73

Monte Documentation, Release 0.1

[1, "add", [1], [].asMap()]

2

call

This is like the Monte expression 1 + 1, or (1).add(1). It is also like the Monte expression 2. In DF-Mont,
Monte execution is represented by diagrams which commute, and the direction of computation is indicated by the
direction of arrows.

Initial Object

We can formalize the statement that every object in DF-Mont is DeepFrozen by showing that there is a unique
arrow (up to isomorphism) ! from DeepFrozen to any other object obj in the category.

[DeepFrozen, "coerce", [obj, null], [].asMap()]

obj

DeepFrozen

!

This diagram commutes. The up-to-isomorphism limitation comes from null in coerce/2; we may replace it in
this diagram with any other object.

74 Chapter 9. Language Reference

Monte Documentation, Release 0.1

Products

Lists act as our products. We can either use calls to do work on lists, or we can use categorical logic. The arrow [[1,
2], [3, 4]] → [[1, 2], "add", [[3, 4]], [].asMap()] is a member of a family of list-building
arrows.

[[1, 2], [3, 4]]

[1, 2, 3, 4]

listAdd [[1, 2], "add", [[3, 4]], [].asMap()]

listMake

call

9.11. Categorial Semantics 75

Monte Documentation, Release 0.1

76 Chapter 9. Language Reference

CHAPTER 10

Appendixes, Indices and Tables

Monte Grammar

Note: Lexical details such as indented blocks are not captured in this grammar.

Todo

finish grammar productions marked @@. Meanwhile, see monte_parser.mt for details.

blockExpr ::= FunctionExpr
| ObjectExpr
| bind
| def
| InterfaceExpr
| IfExpr
| ForExpr
| WhileExpr
| SwitchExpr
| EscapeExpr
| TryExpr
| WhenExpr
| LambdaExpr
| MetaExpr

block ::= “{” (sequence | “pass”) “}”
HideExpr ::= “{” ((expr ”;”)+ | /* empty */) “}”
IfExpr ::= “if” “(” expr ”)” block [“else” (“if” /* blockExpr@@ */ | block)]
SwitchExpr ::= “switch” “(” expr ”)” “{” matchers “}”
matchers ::= (“match” pattern block)+
TryExpr ::= “try” block catchers
catchers ::= [(“catch” pattern block)+] [“finally” block]
EscapeExpr ::= “escape” pattern blockCatch
WhileExpr ::= “while” “(” expr ”)” blockCatch
ForExpr ::= “for” pattern [“=>” pattern] “in” comp blockCatch
blockCatch ::= block [“catch” pattern block]
WhenExpr ::= “when” “(” (expr ”,”)+ ”)” “->” block catchers

77

https://github.com/monte-language/typhon/blob/master/mast/lib/monte/monte_parser.mt

Monte Documentation, Release 0.1

LambdaExpr ::= “fn” [(pattern ”,”)+] block
def ::= “def” ((“bind” name [guard] | name) (/* objectFunction@@ */ | assign) | assign)
bind ::= “bind” name [guard] objectExpr
ObjectExpr ::= “object” (“bind” name | “_” | name) objectExpr
objectExpr ::= [“extends” order] auditors “{” [(objectScript ”;”)+] “}”
objectScript ::= [doco] (“pass” | [(“@@meth”)+]) (“pass” | [(matchers)+])
matchers ::= (“match” pattern block)+
doco ::= .String.
FunctionExpr ::= “def” [”.” verb] “(” [(pattern ”,”)+] ”)” block
InterfaceExpr ::= “interface” namePatt [“guards” pattern] [“extends” (order ”,”)+] /* implements_@@ */ /* msgs@@ */
guardOpt ::= ”:” guard

| /* empty */
guard ::= IDENTIFIER “[” ((expr ”,”)+ | /* empty */) “]”

| IDENTIFIER
| “(” expr ”)”

module_header ::= “imports” StrExpr “=~” ((pattern)+) [exports] sequence
exports ::= “exports” “(” ((name ”,”)+ | /* empty */) ”)”
sequence ::= ((blockExpr | expr) ”;”)+

| /* empty */
assign ::= “def” pattern [“exit” order] ”:=” assign

| (VarPatt | BindPatt) /* empty */ ”:=” assign
| lval ”:=” assign
| VerbAssignExpr
| order

lval ::= order “[” ((expr ”,”)+ | /* empty */) “]”
| name

VerbAssignExpr ::= lval VERB_ASSIGN assign
logical_or ::= logical_and [“||” logical_or]
logical_and ::= comp [“&&” logical_and]
comp ::= order ((“=~” | ”!~”) | (“==” | ”!=”) | “&!” | (“^” | “&” | “|”)) comp

| order
order ::= CompareExpr

| RangeExpr
| BinaryExpr
| prefix

CompareExpr ::= prefix (“>” | “<” | “>=” | “<=” | “<=>”) order
RangeExpr ::= prefix (.. | ..!) order
shift ::= prefix (“<<” | “>>”) order
additiveExpr ::= multiplicativeExpr (“+” | “-”) additiveExpr
multiplicativeExpr ::= exponentiationExpr (“*” | “/” | “//” | “%”) order
exponentiationExpr ::= prefix “**” order
prefix ::= “-” prim

| (“~” | ”!”) calls
| SlotExpr
| BindingExpr
| CoerceExpr
| calls

SlotExpr ::= “&” name
BindingExpr ::= “&&” name
MetaExpr ::= “meta” . (“context” “(” ”)” | “getState” “(” ”)”)
CoerceExpr ::= calls ”:” guard
calls ::= prim ((((call | send) | index))+) [curryTail]
call ::= [. verb] argList
send ::= “<-” [verb] argList

78 Chapter 10. Appendixes, Indices and Tables

Monte Documentation, Release 0.1

curryTail ::= . verb
| “<-” verb

index ::= “[” ((expr ”,”)+ | /* empty */) “]”
verb ::= IDENTIFIER

| .String.
argList ::= “(” ((expr ”,”)+ | /* empty */) ”)”
pattern ::= postfixPatt
postfixPatt ::= SuchThatPatt

| prefixPatt
prefixPatt ::= MapPatt

| ListPatt
| SamePatt
| NotSamePatt
| QuasiliteralPatt
| ViaPatt
| IgnorePatt
| namePatt

namePatt ::= FinalPatt
| VarPatt
| BindPatt
| SlotPatt
| BindingPatt

SuchThatPatt ::= prefixPatt ”?” “(” expr ”)”
ListPatt ::= “[” ((pattern ”,”)+ | /* empty */) “]” [“+” pattern]
MapPatt ::= “[” (mapPattItem ”,”)+ “]” [“|” pattern]
mapPattItem ::= ((LiteralExpr | “(” expr ”)”) “=>” pattern | “=>” namePatt) [”:=” order]
SamePatt ::= “==” prim
NotSamePatt ::= ”!=” prim
QuasiliteralPatt ::= [IDENTIFIER] “‘” (((QUASI_TEXT | (AT_IDENT | “@{” pattern “}”)))+) “‘”
ViaPatt ::= “via” “(” expr ”)” pattern
FinalPatt ::= name guardOpt
VarPatt ::= “var” name guardOpt
BindPatt ::= “bind” name guardOpt
SlotPatt ::= “&” name guardOpt
BindingPatt ::= “&&” name
IgnorePatt ::= “_” guardOpt
prim ::= “(” expr ”)”

| LiteralExpr
| quasiliteral
| NounExpr
| HideExpr
| MapComprehensionExpr
| ListComprehensionExpr
| ListExpr
| MapExpr

expr ::= assign
| (“continue” | “break” | “return”) (“(” ”)” | ”;” | blockExpr)

NounExpr ::= name
name ::= IDENTIFIER

| ”::” stringLiteral
LiteralExpr ::= StrExpr

| IntExpr
| DoubleExpr
| CharExpr

10.1. Monte Grammar 79

Monte Documentation, Release 0.1

quasiliteral ::= [IDENTIFIER] “‘” (((QUASI_TEXT | (DOLLAR_IDENT | “${” expr “}”)))+) “‘”
ListExpr ::= “[” ((expr ”,”)+ | /* empty */) “]”
comprehension ::= pattern “in” iter expr

| pattern “=>” pattern “in” iter expr “=>” expr
iter ::= order [“if” comp]
MapExpr ::= “[” (mapItem ”,”)+ “]”
mapItem ::= expr “=>” expr

| “=>” (SlotExpr | BindingExpr | NounExpr)
IntExpr ::= (hexLiteral | decLiteral)
decLiteral ::= digits
digits ::= digit (((digit | “_”))+)+
digit ::= /* one of: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 */
hexLiteral ::= “0” (“x” | X) hexDigits
hexDigits ::= hexDigit (((hexDigit | “_”))+)+
hexDigit ::= /* one of: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, a, b, c, d, e, f, A, B, C, D, E, F */
DoubleExpr ::= floatLiteral
floatLiteral ::= digits (. digits [floatExpn] | floatExpn)
floatExpn ::= /* one of: e, E */ [/* one of: -, + */] digits
CharExpr ::= “”’ charConstant “”’
charConstant ::= ((“\” /* newline */)+)+ (/* none of: ‘, \, tab */ | “\” ((U /* 8 x */ hexDigit | “u” /* 4 x */ hexDigit | “x” /* 2 x */ hexDigit) | /* one of: b, t, n, f, r, \, ‘, ” */))
StrExpr ::= stringLiteral
stringLiteral ::= ‘”’ ((charConstant)+)+ ‘”’

Roadmap: Montefesto

.ia lo snura faircu’u kanji ka’e na’e nandu (“Secure distributed computation should not be hard.”)

—Corbin, on Monte

This is the roadmap for Monte development according to Allen and Corbin. If you want to work on anything on this
list, let us know; we’re very accepting of new contributors.

2015

• Finish key language features

– Named arguments

– m‘‘

– Bytes

– Finalize on-disk (on-wire) compiled code format

– Auditors

• Finish key runtime features

– Expose key C libraries to user-level code

* libsodium

* libuv

• Finish key compiler features

– Compiler error messages are informative

80 Chapter 10. Appendixes, Indices and Tables

Monte Documentation, Release 0.1

• Finish key integration features

– Profiling

* Time (vmprof)

2016

• “Exit stealth mode”; display a sleek and friendly front page to neophytes and visitors which explains:

– Why Monte exists

– How to get started using Monte

• Have stories for:

– Developing modular Monte codebases

• Finish key language features

– Streamcaps

– Vats

• Finish key integration features

– Initial IDE support

* vim (Corbin)

* emacs (Allen)

* Sublime/Atom (Mike, Justin)

2017

• Make Monte desireable

– Branding

– Object capability community outreach

• Improve the core

– Speed: Nobody should have to wait for code to compile

– Safe objects

* Many method improvements to builtin collections

* Semitransparent

* Vow

– Unsafe objects

* Timers

* Property tests

– Typhon-specific improvements

* Even faster interpreting

• Develop important libraries

– HTTP

10.2. Roadmap: Montefesto 81

Monte Documentation, Release 0.1

– Records

• Monte-related R&D

– Capn Proto

2018

• Advanced safe objects

– PassByCopy

– makeWeakMap

– Twines

– Elusive Eight: Useful numerical analysis methods for doubles

• Production-ready unsafe objects

– FS

– Tamed timers

– Typhon-specific improvements

* Even faster interpreting

• Develop Monte packaging

– Muffins

– Packages

– Environments

– mtpkgs

• Develop important libraries

– Debugger

– Pretty-printers

• Monte-related R&D

– Rationals

– Capn Proto: Message generation, CapTP/VatTP

– kubeless integration

Contributing

If you’d like to get involved with developing or using the Monte language, start by getting in touch with us on IRC. It
is useful, but not necessary, to be acquainted with Python‘s syntax and/or the computational concepts of E.

Then clone the repo and follow the directions below to begin running Monte code. If you have problems, join us in
#monte on irc.freenode.net, ask your question (use a pastebin to share any errors, rather than pasting into the channel),
and wait a few hours if nobody is around.

If you’d like to contribute to Monte, check out the Monte and Typhon issue trackers. It’s also worth grepping for TODO
in the source of both projects.

82 Chapter 10. Appendixes, Indices and Tables

https://docs.python.org/2/tutorial/
http://www.skyhunter.com/marcs/ewalnut.html
https://github.com/monte-language/monte
https://bpaste.net/
https://github.com/monte-language/monte/issues
https://github.com/monte-language/typhon/issues

Monte Documentation, Release 0.1

safeScope

Bindings in the safe scope are available to modules by default. They are all DeepFrozen.

Todo

Fix the module.name notation resulting from abuse of sphinx python support.

Todo

When Bool is fixed to reveal its interface, re-run mtDocStrings to document and, or, xor, not, butNot, pick, op__cmp.

Basic guards

class safeScope.Bool
The set of Boolean values: [true, false].asSet()

This guard is unretractable.

static coerce(_, _)
no docstring

static getDocstring()
no docstring

static getMethods()
no docstring

static supersetOf(_)
no docstring

class safeScope.Str
An ordered vector space.

As a guard, this object admits any value in the set of objects in the space. Comparison operators may be used
on this object to create subguards which only admit a partition of the set.

static _printOn(_)
no docstring

static _uncall()
no docstring

static add(_)
no docstring

static coerce(_, _)
no docstring

static makeEmptyRegion()
no docstring

static makeRegion(_, _, _, _)
no docstring

static op__cmp(_)
no docstring

10.3. safeScope 83

Monte Documentation, Release 0.1

static subtract(_)
no docstring

_makeIterator()
no docstring

add(_)
no docstring

asList()
no docstring

asSet()
no docstring

contains(_)
no docstring

endsWith(_)
no docstring

get(_)
no docstring

getSpan()
no docstring

indexOf(_, _)
no docstring

isEmpty()
no docstring

join(_)
no docstring

lastIndexOf(_)
no docstring

multiply(_)
no docstring

op__cmp(_)
no docstring

quote()
no docstring

replace(_, _)
no docstring

size()
no docstring

slice(_)
no docstring

split(_, _)
no docstring

startsWith(_)
Whether this string has s as a prefix.

84 Chapter 10. Appendixes, Indices and Tables

Monte Documentation, Release 0.1

toLowerCase()
no docstring

toUpperCase()
no docstring

trim()
no docstring

with(_)
no docstring

class safeScope.Char
An ordered vector space.

As a guard, this object admits any value in the set of objects in the space. Comparison operators may be used
on this object to create subguards which only admit a partition of the set.

static _printOn(_)
no docstring

static _uncall()
no docstring

static add(_)
no docstring

static coerce(_, _)
no docstring

static makeEmptyRegion()
no docstring

static makeRegion(_, _, _, _)
no docstring

static op__cmp(_)
no docstring

static subtract(_)
no docstring

add(_)
no docstring

asInteger()
no docstring

asString()
no docstring

getCategory()
no docstring

max(_)
no docstring

min(_)
no docstring

next()
no docstring

10.3. safeScope 85

Monte Documentation, Release 0.1

op__cmp(_)
no docstring

previous()
no docstring

quote()
no docstring

subtract(_)
no docstring

class safeScope.Double
An ordered vector space.

As a guard, this object admits any value in the set of objects in the space. Comparison operators may be used
on this object to create subguards which only admit a partition of the set.

static _printOn(_)
no docstring

static _uncall()
no docstring

static add(_)
no docstring

static coerce(_, _)
no docstring

static makeEmptyRegion()
no docstring

static makeRegion(_, _, _, _)
no docstring

static op__cmp(_)
no docstring

static subtract(_)
no docstring

aboveZero()
no docstring

abs()
no docstring

add(_)
no docstring

approxDivide(_)
no docstring

atLeastZero()
no docstring

atMostZero()
no docstring

belowZero()
no docstring

86 Chapter 10. Appendixes, Indices and Tables

Monte Documentation, Release 0.1

cos()
no docstring

floor()
no docstring

floorDivide(_)
no docstring

isZero()
no docstring

log()
no docstring

multiply(_)
no docstring

negate()
no docstring

op__cmp(_)
no docstring

pow(_)
no docstring

sin()
no docstring

sqrt()
no docstring

subtract(_)
no docstring

tan()
no docstring

toBytes()
no docstring

class safeScope.Int
An ordered vector space.

As a guard, this object admits any value in the set of objects in the space. Comparison operators may be used
on this object to create subguards which only admit a partition of the set.

static _printOn(_)
no docstring

static _uncall()
no docstring

static add(_)
no docstring

static coerce(_, _)
no docstring

static makeEmptyRegion()
no docstring

10.3. safeScope 87

Monte Documentation, Release 0.1

static makeRegion(_, _, _, _)
no docstring

static op__cmp(_)
no docstring

static subtract(_)
no docstring

aboveZero()
no docstring

abs()
no docstring

add(_)
no docstring

and(_)
no docstring

approxDivide(_)
no docstring

asDouble()
no docstring

atLeastZero()
no docstring

atMostZero()
no docstring

belowZero()
no docstring

bitLength()
no docstring

complement()
no docstring

floorDivide(_)
no docstring

isZero()
no docstring

max(_)
no docstring

min(_)
no docstring

mod(_)
no docstring

modPow(_, _)
no docstring

multiply(_)
no docstring

88 Chapter 10. Appendixes, Indices and Tables

Monte Documentation, Release 0.1

negate()
no docstring

next()
no docstring

op__cmp(_)
no docstring

or(_)
no docstring

pow(_)
no docstring

previous()
no docstring

shiftLeft(_)
no docstring

shiftRight(_)
no docstring

subtract(_)
no docstring

xor(_)
no docstring

class safeScope.Bytes
An ordered vector space.

As a guard, this object admits any value in the set of objects in the space. Comparison operators may be used
on this object to create subguards which only admit a partition of the set.

static _printOn(_)
no docstring

static _uncall()
no docstring

static add(_)
no docstring

static coerce(_, _)
no docstring

static makeEmptyRegion()
no docstring

static makeRegion(_, _, _, _)
no docstring

static op__cmp(_)
no docstring

static subtract(_)
no docstring

_makeIterator()
no docstring

10.3. safeScope 89

Monte Documentation, Release 0.1

_uncall()
no docstring

add(_)
no docstring

asList()
no docstring

asSet()
no docstring

contains(_)
no docstring

get(_)
no docstring

indexOf(_)
no docstring

isEmpty()
no docstring

join(_)
no docstring

lastIndexOf(_)
no docstring

multiply(_)
no docstring

op__cmp(_)
no docstring

replace(_, _)
no docstring

size()
no docstring

slice(_)
no docstring

split(_, _)
no docstring

toLowerCase()
no docstring

toUpperCase()
no docstring

trim()
no docstring

with(_)
no docstring

class safeScope.List
A guard which admits lists.

90 Chapter 10. Appendixes, Indices and Tables

Monte Documentation, Release 0.1

Only immutable lists are admitted by this object. Mutable lists created with diverge/0 will not be admitted;
freeze them first with snapshot/0.

static _printOn(_)
no docstring

static coerce(_, _)
no docstring

static extractGuard(_, _)
no docstring

static get(_)
no docstring

_makeIterator()
no docstring

printOn()
no docstring

_uncall()
no docstring

add(_)
no docstring

asMap()
no docstring

asSet()
no docstring

contains(_)
no docstring

diverge()
no docstring

empty()
no docstring

get(_)
no docstring

indexOf(_)
no docstring

isEmpty()
no docstring

join(_)
no docstring

last()
no docstring

multiply(_)
no docstring

op__cmp(_)
no docstring

10.3. safeScope 91

Monte Documentation, Release 0.1

put(_, _)
no docstring

reverse()
no docstring

size()
no docstring

slice(_)
no docstring

snapshot()
no docstring

sort()
no docstring

startOf(_, _)
no docstring

with(_, _)
no docstring

class safeScope.Map
A guard which admits maps.

Only immutable maps are admitted by this object. Mutable maps created with diverge/0 will not be admitted;
freeze them first with snapshot/0.

static _printOn(_)
no docstring

static coerce(_, _)
no docstring

static extractGuards(_, _)
no docstring

static get(_, _)
no docstring

_makeIterator()
no docstring

printOn()
no docstring

_uncall()
no docstring

asSet()
no docstring

contains(_)
no docstring

diverge()
no docstring

empty()
no docstring

92 Chapter 10. Appendixes, Indices and Tables

Monte Documentation, Release 0.1

fetch(_, _)
no docstring

get(_)
no docstring

getKeys()
no docstring

getValues()
no docstring

isEmpty()
no docstring

or(_)
no docstring

reverse()
no docstring

size()
no docstring

slice(_)
no docstring

snapshot()
no docstring

sortKeys()
no docstring

sortValues()
no docstring

with(_, _)
no docstring

without(_)
no docstring

class safeScope.Set
A guard which admits sets.

Only immutable sets are admitted by this object. Mutable sets created with diverge/0 will not be admitted; freeze
them first with snapshot/0.

static _printOn(_)
no docstring

static coerce(_, _)
no docstring

static extractGuard(_, _)
no docstring

static get(_)
no docstring

_makeIterator()
no docstring

10.3. safeScope 93

Monte Documentation, Release 0.1

printOn()
no docstring

_uncall()
no docstring

and(_)
no docstring

asList()
no docstring

asSet()
no docstring

butNot(_)
no docstring

contains(_)
no docstring

diverge()
no docstring

empty()
no docstring

isEmpty()
no docstring

op__cmp(_)
no docstring

or(_)
no docstring

size()
no docstring

slice(_, _)
no docstring

snapshot()
no docstring

subtract(_)
no docstring

with(_)
no docstring

without(_)
no docstring

safeScope.Pair
A guard which admits immutable pairs.

Pairs are merely lists of size two.

safeScope._printOn(_)
no docstring

safeScope.coerce(_, _)
no docstring

94 Chapter 10. Appendixes, Indices and Tables

Monte Documentation, Release 0.1

safeScope.extractGuards(_, _)
no docstring

safeScope.get(_, _)
no docstring

class safeScope.FinalSlot
A guard which emits makers of FinalSlots.

static coerce(_, _)
no docstring

static extractGuard(_, _)
no docstring

static get(_)
no docstring

static getDocstring()
no docstring

static getGuard()
no docstring

static getMethods()
no docstring

static supersetOf(_)
no docstring

class safeScope.VarSlot
A guard which admits makers of VarSlots.

static coerce(_, _)
no docstring

static extractGuard(_, _)
no docstring

static get(_)
no docstring

static getDocstring()
no docstring

static getGuard()
no docstring

static getMethods()
no docstring

static supersetOf(_)
no docstring

Guard utilities

class safeScope.Any
A guard which admits the universal set.

This object specializes to a guard which admits the union of its subguards: Any[X, Y, Z] =~ X Y Z

This guard is unretractable.

10.3. safeScope 95

Monte Documentation, Release 0.1

static coerce(_, _)
no docstring

static extractGuards(_, _)
no docstring

static getMethods()
no docstring

static supersetOf(_)
no docstring

class safeScope.Void
The singleton set of null: [null].asSet()

This guard is unretractable.

static coerce(_, _)
no docstring

static getDocstring()
no docstring

static getMethods()
no docstring

static supersetOf(_)
no docstring

safeScope.Empty
An unretractable predicate guard.

This guard admits any object which passes its predicate.

safeScope._printOn(_)
no docstring

safeScope.coerce(_, _)
no docstring

safeScope.NullOk
A guard which admits null.

When specialized, this object returns a guard which admits its subguard as well as null.

safeScope.coerce(_, _)
no docstring

safeScope.extractGuard(_, _)
no docstring

safeScope.get(_)
no docstring

safeScope.Same
When specialized, this object yields a guard which only admits precisely the object used to specialize it.

In simpler terms, Same[x] will match only those objects o for which o == x.

safeScope.extractValue(_, _)
no docstring

safeScope.get(_)
no docstring

96 Chapter 10. Appendixes, Indices and Tables

Monte Documentation, Release 0.1

safeScope.Vow
A guard which admits promises and their entailments.

Vows admit the union of unfulfilled promises, fulfilled promises, broken promises, and Near values. The unify-
ing concept is that of a partial future value to which messages will be sent but that is not Far.

When specialized, this guard returns a guard which ensures that promised prizes either conform to its subguard
or are broken.

safeScope._printOn(_)
no docstring

safeScope.coerce(_, _)
no docstring

safeScope.extractGuard(_, _)
no docstring

safeScope.get(_)
no docstring

safeScope.SubrangeGuard
The maker of subrange guards.

When specialized with a guard, this object produces a auditor for those guards which admit proper subsets of
that guard.

safeScope.get(_)
no docstring

safeScope._auditedBy
Whether an auditor has audited a specimen.

safeScope.run(_, _)
no docstring

Primitive values

safeScope.true
:Bool

safeScope.false
:Bool

safeScope.null
:Void

safeScope.NaN
:Double

safeScope.Infinity
:Double

Data Constructors

safeScope._makeInt
A maker of ‘Int‘s.

This maker can handle radices from 2 to 36:

> _makeInt.withRadix(36)(“zxcvasdfqwer1234”) 7942433573816828193485776

10.3. safeScope 97

Monte Documentation, Release 0.1

safeScope.fromBytes(_, _)
no docstring

safeScope.run(_)
no docstring

safeScope.withRadix(_)
no docstring

safeScope._makeDouble
The maker of ‘Double‘s.

safeScope.fromBytes(_, _)
no docstring

safeScope.run(_, _)
no docstring

safeScope._makeStr
The maker of ‘Str‘s.

safeScope.fromChars(_)
no docstring

safeScope.fromStr(_, _)
no docstring

safeScope._makeString
The maker of ‘Str‘s.

safeScope.fromChars(_)
no docstring

safeScope.fromStr(_, _)
no docstring

safeScope._makeBytes
The maker of Bytes.

safeScope.fromInts(_)
no docstring

safeScope.fromStr(_)
no docstring

safeScope._makeList
The maker of ‘List‘s.

safeScope.fromIterable(_)
no docstring

safeScope._makeMap
Given a List[Pair], produce a Map.

safeScope.fromPairs(_)
no docstring

safeScope._makeOrderedSpace
The maker of ordered vector spaces.

This object implements several Monte operators, including those which provide ordered space syntax.

safeScope.op__thru(_, _)
no docstring

98 Chapter 10. Appendixes, Indices and Tables

Monte Documentation, Release 0.1

safeScope.op__till(_, _)
no docstring

safeScope.spaceOfGuard(_)
no docstring

safeScope.spaceOfValue(_)
no docstring

safeScope._makeTopSet

safeScope.run(_, _, _, _, _)
no docstring

safeScope._makeOrderedRegion
Make regions for sets of objects with total ordering.

safeScope.run(_, _, _)
no docstring

safeScope._makeSourceSpan
no docstring

safeScope.run(_, _, _, _, _, _)
no docstring

safeScope._makeFinalSlot
A maker of final slots.

safeScope.asType()
no docstring

safeScope.run(_, _, _)
no docstring

safeScope._makeVarSlot
A maker of var slots.

safeScope.asType()
no docstring

safeScope.run(_, _, _)
no docstring

safeScope.makeLazySlot
Make a slot that lazily binds its value.

safeScope.run(_)
no docstring

Tracing

safeScope.trace
Write a line to the trace log.

This object is a Typhon standard runtime traceln. It prints prefixed lines to stderr.

Call .exception(problem) to print a problem to stderr, including a formatted traceback.

safeScope.exception(_)
no docstring

10.3. safeScope 99

Monte Documentation, Release 0.1

safeScope.traceln
Write a line to the trace log.

This object is a Typhon standard runtime traceln. It prints prefixed lines to stderr.

Call .exception(problem) to print a problem to stderr, including a formatted traceback.

safeScope.exception(_)
no docstring

Brands

safeScope.makeBrandPair
Make a [sealer, unsealer] pair.

safeScope.run(_)
no docstring

Quasiparsers

‘‘
A quasiparser of Unicode strings.

This object is the default quasiparser. It can interpolate any object into a string by pretty-printing it; in fact, that
is one of this object’s primary uses.

When used as a pattern, this object performs basic text matching. Patterns always succeed, grabbing zero or
more characters non-greedily until the next segment. When patterns are concatenated in the quasiliteral, only
the rightmost pattern can match any characters; the other patterns to the left will all match the empty string.

safeScope.matchMaker(_)
no docstring

safeScope.patternHole(_)
no docstring

safeScope.valueHole(_)
no docstring

safeScope.valueMaker(_)
no docstring

b‘‘
A quasiparser for Bytes.

This object behaves like simple__quasiParser; it takes some textual descriptions of bytes and returns a
bytestring. It can interpolate objects which coerce to Bytes and Str.

As a pattern, this object performs slicing of bytestrings. Semantics mirror simple__quasiParser with respect to
concatenated patterns and greediness.

safeScope.matchMaker(_)
no docstring

safeScope.patternHole(_)
no docstring

safeScope.valueHole(_)
no docstring

100 Chapter 10. Appendixes, Indices and Tables

Monte Documentation, Release 0.1

safeScope.valueMaker(_)
no docstring

m‘‘
A quasiparser for the Monte programming language.

This object will parse any Monte expression and return an opaque value. In the near future, this object will
instead return a translucent view into a Monte compiler and optimizer.

safeScope.fromStr(_)
no docstring

safeScope.getAstBuilder()
no docstring

safeScope.matchMaker(_)
no docstring

safeScope.patternHole(_)
no docstring

safeScope.valueHole(_)
no docstring

safeScope.valueMaker(_)
no docstring

mpatt‘‘
A quasiparser for the Monte programming language’s patterns.

This object is like m‘‘, but for patterns.

safeScope.fromStr(_)
no docstring

safeScope.getAstBuilder()
no docstring

safeScope.matchMaker(_)
no docstring

safeScope.patternHole(_)
no docstring

safeScope.valueHole(_)
no docstring

safeScope.valueMaker(_)
no docstring

Flow control

safeScope.M
Miscellaneous vat management and quoting services.

safeScope.call(_, _, _, _)
no docstring

safeScope.callWithMessage(_, _)
no docstring

safeScope.send(_, _, _, _)
no docstring

10.3. safeScope 101

Monte Documentation, Release 0.1

safeScope.sendOnly(_, _, _, _)
no docstring

safeScope.toQuote(_)
no docstring

safeScope.toString(_)
no docstring

safeScope.throw
no docstring

safeScope.eject(_, _)
no docstring

safeScope.run(_)
no docstring

safeScope._loop
Perform an iterative loop.

safeScope.run(_, _)
no docstring

safeScope._iterForever
Implementation of while-expression syntax.

safeScope._makeIterator()
no docstring

safeScope.next(_)
no docstring

Evaluation

safeScope.eval
Evaluate Monte source.

This object respects POLA and grants no privileges whatsoever to evaluated code. To grant a safe scope, pass
safeScope.

safeScope.evalToPair(_, _)
no docstring

safeScope.run(_, _)
no docstring

safeScope.astEval
no docstring

safeScope.evalToPair(_, _)
no docstring

safeScope.run(_, _)
no docstring

Reference/object operations

safeScope.Ref
Ref management and utilities.

102 Chapter 10. Appendixes, Indices and Tables

Monte Documentation, Release 0.1

safeScope.broken(_)
no docstring

safeScope.fulfillment(_)
no docstring

safeScope.isBroken(_)
no docstring

safeScope.isDeepFrozen(_)
no docstring

safeScope.isEventual(_)
no docstring

safeScope.isFar(_)
no docstring

safeScope.isNear(_)
no docstring

safeScope.isResolved(_)
no docstring

safeScope.isSelfish(_)
no docstring

safeScope.isSelfless(_)
no docstring

safeScope.makeProxy(_, _, _)
no docstring

safeScope.optProblem(_)
no docstring

safeScope.promise()
no docstring

safeScope.state(_)
no docstring

safeScope.whenBroken(_, _)
no docstring

safeScope.whenBrokenOnly(_, _)
no docstring

safeScope.whenResolved(_, _)
no docstring

safeScope.whenResolvedOnly(_, _)
no docstring

safeScope.promiseAllFulfilled

safeScope.run(_)
no docstring

safeScope.DeepFrozen
Auditor and guard for transitive immutability.

10.3. safeScope 103

Monte Documentation, Release 0.1

safeScope.audit(_)
no docstring

safeScope.coerce(_, _)
no docstring

safeScope.supersetOf(_)
no docstring

safeScope.Selfless
A stamp for incomparable objects.

Selfless objects are generally not equal to any objects but themselves. They may choose to implement alternative
comparison protocols such as Transparent.

safeScope.audit(_)
no docstring

safeScope.coerce(_, _)
no docstring

safeScope.passes(_)
no docstring

safeScope.Transparent
Objects that Transparent admits have reliable ._uncall() methods, in the sense that they correctly identify their
maker and their entire state, and that invoking the maker with the given args will produce an object with the same
state. Objects that are both Selfless and Transparent are compared for sameness by comparing their uncalls.

safeScope.coerce(_, _)
no docstring

safeScope.makeAuditorKit()
no docstring

safeScope.Near
A guard over references to near values.

This guard admits any near value, as well as any resolved reference to any near value.

This guard is unretractable.

safeScope.coerce(_, _)
no docstring

class safeScope.Binding
A guard which admits bindings.

static coerce(_, _)
no docstring

static getDocstring()
no docstring

static getMethods()
no docstring

static supersetOf(_)
no docstring

104 Chapter 10. Appendixes, Indices and Tables

Monte Documentation, Release 0.1

Abstract Syntax

safeScope.astBuilder

safeScope.AndExpr(_, _, _)
no docstring

safeScope.AssignExpr(_, _, _)
no docstring

safeScope.AugAssignExpr(_, _, _, _)
no docstring

safeScope.BinaryExpr(_, _, _, _)
no docstring

safeScope.BindPattern(_, _, _)
no docstring

safeScope.BindingExpr(_, _)
no docstring

safeScope.BindingPattern(_, _)
no docstring

safeScope.CatchExpr(_, _, _, _)
no docstring

safeScope.Catcher(_, _, _)
no docstring

safeScope.CoerceExpr(_, _, _)
no docstring

safeScope.CompareExpr(_, _, _, _)
no docstring

safeScope.CurryExpr(_, _, _, _)
no docstring

safeScope.DefExpr(_, _, _, _)
no docstring

safeScope.EscapeExpr(_, _, _, _, _)
no docstring

safeScope.ExitExpr(_, _, _)
no docstring

safeScope.FinalPattern(_, _, _)
no docstring

safeScope.FinallyExpr(_, _, _)
no docstring

safeScope.ForExpr(_, _, _, _, _, _, _)
no docstring

safeScope.ForwardExpr(_, _)
no docstring

safeScope.FunCallExpr(_, _, _, _)
no docstring

10.3. safeScope 105

Monte Documentation, Release 0.1

safeScope.FunSendExpr(_, _, _, _)
no docstring

safeScope.FunctionExpr(_, _, _, _)
no docstring

safeScope.FunctionInterfaceExpr(_, _, _, _, _, _, _)
no docstring

safeScope.FunctionScript(_, _, _, _, _)
no docstring

safeScope.GetExpr(_, _, _)
no docstring

safeScope.HideExpr(_, _)
no docstring

safeScope.IfExpr(_, _, _, _)
no docstring

safeScope.IgnorePattern(_, _)
no docstring

safeScope.InterfaceExpr(_, _, _, _, _, _, _)
no docstring

safeScope.ListComprehensionExpr(_, _, _, _, _, _)
no docstring

safeScope.ListExpr(_, _)
no docstring

safeScope.ListPattern(_, _, _)
no docstring

safeScope.LiteralExpr(_, _)
no docstring

safeScope.MapComprehensionExpr(_, _, _, _, _, _, _)
no docstring

safeScope.MapExpr(_, _)
no docstring

safeScope.MapExprAssoc(_, _, _)
no docstring

safeScope.MapExprExport(_, _)
no docstring

safeScope.MapPattern(_, _, _)
no docstring

safeScope.MapPatternAssoc(_, _, _, _)
no docstring

safeScope.MapPatternImport(_, _, _)
no docstring

safeScope.MatchBindExpr(_, _, _)
no docstring

106 Chapter 10. Appendixes, Indices and Tables

Monte Documentation, Release 0.1

safeScope.Matcher(_, _, _)
no docstring

safeScope.MessageDesc(_, _, _, _, _)
no docstring

safeScope.MetaContextExpr(_)
no docstring

safeScope.MetaStateExpr(_)
no docstring

safeScope.Method(_, _, _, _, _, _, _)
no docstring

safeScope.MethodCallExpr(_, _, _, _, _)
no docstring

safeScope.MismatchExpr(_, _, _)
no docstring

safeScope.Module(_, _, _, _)
no docstring

safeScope.NamedArg(_, _, _)
no docstring

safeScope.NamedArgExport(_, _)
no docstring

safeScope.NamedParam(_, _, _, _)
no docstring

safeScope.NamedParamImport(_, _, _)
no docstring

safeScope.NounExpr(_, _)
no docstring

safeScope.ObjectExpr(_, _, _, _, _, _)
no docstring

safeScope.OrExpr(_, _, _)
no docstring

safeScope.ParamDesc(_, _, _)
no docstring

safeScope.PatternHoleExpr(_, _)
no docstring

safeScope.PatternHolePattern(_, _)
no docstring

safeScope.PrefixExpr(_, _, _)
no docstring

safeScope.QuasiExprHole(_, _)
no docstring

safeScope.QuasiParserExpr(_, _, _)
no docstring

10.3. safeScope 107

Monte Documentation, Release 0.1

safeScope.QuasiParserPattern(_, _, _)
no docstring

safeScope.QuasiPatternHole(_, _)
no docstring

safeScope.QuasiText(_, _)
no docstring

safeScope.RangeExpr(_, _, _, _)
no docstring

safeScope.SameExpr(_, _, _, _)
no docstring

safeScope.SamePattern(_, _, _)
no docstring

safeScope.Script(_, _, _, _)
no docstring

safeScope.SendExpr(_, _, _, _, _)
no docstring

safeScope.SeqExpr(_, _)
no docstring

safeScope.SlotExpr(_, _)
no docstring

safeScope.SlotPattern(_, _, _)
no docstring

safeScope.SuchThatPattern(_, _, _)
no docstring

safeScope.SwitchExpr(_, _, _)
no docstring

safeScope.TempNounExpr(_, _)
no docstring

safeScope.To(_, _, _, _, _, _, _)
no docstring

safeScope.TryExpr(_, _, _, _)
no docstring

safeScope.ValueHoleExpr(_, _)
no docstring

safeScope.ValueHolePattern(_, _)
no docstring

safeScope.VarPattern(_, _, _)
no docstring

safeScope.VerbAssignExpr(_, _, _, _)
no docstring

safeScope.ViaPattern(_, _, _)
no docstring

108 Chapter 10. Appendixes, Indices and Tables

Monte Documentation, Release 0.1

safeScope.WhenExpr(_, _, _, _, _)
no docstring

safeScope.WhileExpr(_, _, _, _)
no docstring

safeScope.getAstGuard()
no docstring

safeScope.getExprGuard()
no docstring

safeScope.getNamePatternGuard()
no docstring

safeScope.getNounGuard()
no docstring

safeScope.getPatternGuard()
no docstring

Utilities for syntax expansions

safeScope._accumulateList
Implementation of list comprehension syntax.

safeScope.run(_, _)
no docstring

safeScope._accumulateMap
Implementation of map comprehension syntax.

safeScope.run(_, _)
no docstring

safeScope._bind
Resolve a forward declaration.

safeScope.run(_, _)
no docstring

safeScope._booleanFlow
Implementation of implicit breakage semantics in conditionally-defined names.

safeScope.broken()
no docstring

safeScope.failureList(_)
no docstring

safeScope._comparer
A comparison helper.

This object implements the various comparison operators.

safeScope.asBigAs(_, _)
no docstring

safeScope.geq(_, _)
no docstring

safeScope.greaterThan(_, _)
no docstring

10.3. safeScope 109

Monte Documentation, Release 0.1

safeScope.leq(_, _)
no docstring

safeScope.lessThan(_, _)
no docstring

safeScope._equalizer
A perceiver of identity.

This object can discern whether any two objects are distinct from each other.

safeScope.isSettled(_)
no docstring

safeScope.makeTraversalKey(_)
no docstring

safeScope.optSame(_, _)
no docstring

safeScope.sameEver(_, _)
no docstring

safeScope.sameYet(_, _)
no docstring

safeScope._makeVerbFacet
The operator obj.‘method‘.

safeScope.curryCall(_, _)
no docstring

safeScope.currySend(_, _)
no docstring

safeScope._mapEmpty
An unretractable predicate guard.

This guard admits any object which passes its predicate.

safeScope._printOn(_)
no docstring

safeScope.coerce(_, _)
no docstring

safeScope._mapExtract
Implementation of key pattern-matching syntax in map patterns.

safeScope.run(_)
no docstring

safeScope.withDefault(_, _)
no docstring

safeScope._matchSame

safeScope.different(_)
no docstring

safeScope.run(_)
no docstring

110 Chapter 10. Appendixes, Indices and Tables

Monte Documentation, Release 0.1

safeScope._quasiMatcher
Implementation of quasiliteral pattern syntax.

safeScope.run(_, _)
no docstring

safeScope._slotToBinding
Implementation of bind-pattern syntax for forward declarations.

safeScope.run(_, _)
no docstring

safeScope._splitList
Implementation of tail pattern-matching syntax in list patterns.

m‘def [x] + xs := l‘.expand() == m‘def via (_splitList.run(1)) [x, xs] := l‘

safeScope.run(_)
no docstring

safeScope._suchThat
The pattern patt ? (expr).

safeScope.run(_, _)
no docstring

safeScope._switchFailed
The implicit default matcher in a switch expression.

This object throws an exception.

safeScope._validateFor
Ensure that flag is true.

This object is a safeguard against malicious loop objects. A flag is set to true and closed over by a loop body;
once the loop is finished, the flag is set to false and the loop cannot be reëntered.

safeScope.run(_)
no docstring

Interface constructors

safeScope._makeMessageDesc
Describe a message.

safeScope.run(_, _, _, _)
no docstring

safeScope._makeParamDesc
Describe a parameter.

safeScope.run(_, _)
no docstring

safeScope._makeProtocolDesc
Produce an interface.

safeScope.makePair(_, _, _, _, _)
no docstring

safeScope.run(_, _, _, _, _)
no docstring

10.3. safeScope 111

Monte Documentation, Release 0.1

Entrypoint Arguments

Todo

Fix the module.name notation resulting from abuse of sphinx python support.

Time

__entrypoint_io__.Timer
An unsafe nondeterministic clock.

This object provides a useful collection of time-related methods: * fromNow(delay :Double): Produce a promise
which will fully resolve after at least delay seconds have elapsed in the runtime. The promise will resolve to a
Double representing the precise amount of time elapsed, in seconds. * sendTimestamp(callable): Send a Double
representing the runtime’s clock to callable.

There is extremely unsafe functionality as well: * unsafeNow(): The current system time.

Use with caution.

__entrypoint_io__.fromNow(_)
no docstring

__entrypoint_io__.sendTimestamp(_)
no docstring

__entrypoint_io__.unsafeNow()
no docstring

I/O

__entrypoint_io__.stdio
A producer of streamcaps for the ancient standard I/O bytestreams.

__entrypoint_io__.stderr()
no docstring

__entrypoint_io__.stdin()
no docstring

__entrypoint_io__.stdout()
no docstring

__entrypoint_io__.makeStdErr
no docstring

__entrypoint_io__.run()
no docstring

__entrypoint_io__.makeStdIn
no docstring

__entrypoint_io__.run()
no docstring

__entrypoint_io__.makeStdOut
no docstring

112 Chapter 10. Appendixes, Indices and Tables

Monte Documentation, Release 0.1

__entrypoint_io__.run()
no docstring

__entrypoint_io__.makeFileResource
Make a file Resource.

__entrypoint_io__.run(_)
no docstring

Networking

__entrypoint_io__.makeTCP4ClientEndpoint
Make a TCPv4 client endpoint.

__entrypoint_io__.run(_, _)
no docstring

__entrypoint_io__.makeTCP4ServerEndpoint
Make a TCPv4 server endpoint.

__entrypoint_io__.run(_)
no docstring

__entrypoint_io__.makeTCP6ClientEndpoint
Make a TCPv6 client endpoint.

__entrypoint_io__.run(_, _)
no docstring

__entrypoint_io__.makeTCP6ServerEndpoint
Make a TCPv4 server endpoint.

__entrypoint_io__.run(_)
no docstring

__entrypoint_io__.getAddrInfo
no docstring

__entrypoint_io__.run(_, _)
no docstring

Runtime

__entrypoint_io__.currentRuntime
The Typhon runtime.

This object is a platform-specific view into the configuration and performance of the current runtime in the
current process.

This object is necessarily unsafe and nondeterministic.

__entrypoint_io__.getCrypt()
no docstring

__entrypoint_io__.getHeapStatistics()
no docstring

__entrypoint_io__.getReactorStatistics()
no docstring

10.4. Entrypoint Arguments 113

Monte Documentation, Release 0.1

__entrypoint_io__.unsealException
Unseal a specimen.

__entrypoint_io__.run(_, _)
no docstring

Processes and Vats

__entrypoint_io__.currentProcess
The current process on the local node.

__entrypoint_io__.getArguments()
no docstring

__entrypoint_io__.getEnvironment()
no docstring

__entrypoint_io__.getPID()
no docstring

__entrypoint_io__.interrupt()
no docstring

__entrypoint_io__.makeProcess
Create a subordinate process on the current node from the given executable, arguments, and environment.

=> stdin, => stdout, and => stderr control the same-named methods on the resulting process object, which will
return a sink, source, and source respectively. If any of these named arguments are true, then the corresponding
method on the process will return a live streamcap which is connected to the process; otherwise, the returned
streamcap will be a no-op.

=> stdinFount, if not null, will be treated as a fount and it will be flowed to a drain representing stdin. =>
stdoutDrain and => stderrDrain are similar but should be drains which will have founts flowed to them.

__entrypoint_io__.run(_, _, _)
no docstring

Colophon: Monte Documentation Build Tools

Restructured text

The docs are written in restructured text.

Sphinx

The docs are built with Sphinx and hosted on readthedocs.

The virtualenv for building the docs is separate from the main Monte virtualenv. Create a separate virtualenv and pip
install -r docs_requirements.txt, then make html to make the docs. Locally built docs will show up
in the docs/build directory.

114 Chapter 10. Appendixes, Indices and Tables

http://docutils.sourceforge.net/docs/user/rst/quickref.html
http://sphinx-doc.org/
https://readthedocs.org/projects/monte/

Monte Documentation, Release 0.1

Syntax Railroad Diagrams and Haskell Parser

rr_ext.py is an extension that integrates the railroad-diagrams library by Tab Atkins into the build process. It
provides a custom .. syntax:: directive.

If syntax_dest is set in conf.py, the syntax diagram info is written to a file in JSON format. download:rr_grammar.py
converts this format to a sphinx grammar production display.

download:rr_happy.py is work-in-progress to generate a haskell monadic parser.

Doctests

Use make doctest to extract the source/docs_examples.mt test suite from the documentation. Then run it a la typhon
loader test docs_examples.

TODO List

Todo

discuss bindings. Expand this section to “slots and bindings”? or discuss bindings under auditors?

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/monte/checkouts/latest/docs/source/auditors.rst,
line 101.)

Todo

expansion of various forms of try

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/monte/checkouts/latest/docs/source/block-
expr.rst, line 147.)

Todo

while doctests, expansion

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/monte/checkouts/latest/docs/source/block-
expr.rst, line 176.)

Todo

for doctests, expansion

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/monte/checkouts/latest/docs/source/block-
expr.rst, line 204.)

Todo

doctest /** docstring */

10.5. Colophon: Monte Documentation Build Tools 115

https://github.com/tabatkins/railroad-diagrams
http://www.sphinx-doc.org/en/stable/markup/para.html#grammar-production-displays

Monte Documentation, Release 0.1

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/monte/checkouts/latest/docs/source/block-
expr.rst, line 235.)

Todo

interface syntax diagram @@s

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/monte/checkouts/latest/docs/source/block-
expr.rst, line 342.)

Todo

various items marked “@@” in railroad diagrams. Also, finish re-organizing them around precedence (use haskell
codegen to test).

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/monte/checkouts/latest/docs/source/block-
expr.rst, line 349.)

Todo

finish grammar productions marked @@. Meanwhile, see monte_parser.mt for details.

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/monte/checkouts/latest/docs/source/grammar.rst,
line 8.)

Todo

When new packaging efforts are ready, update this to mention that module namespaces are either the stdlib or a
package name.

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/monte/checkouts/latest/docs/source/modules.rst,
line 55.)

Todo

special operator rules because of security

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/monte/checkouts/latest/docs/source/operators.rst,
line 30.)

Todo

VERB_ASSIGN lexical details

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/monte/checkouts/latest/docs/source/operators.rst,
line 128.)

Todo

discuss, doctest SlotExpression &x, BindingExpression &&x

116 Chapter 10. Appendixes, Indices and Tables

https://github.com/monte-language/typhon/blob/master/mast/lib/monte/monte_parser.mt

Monte Documentation, Release 0.1

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/monte/checkouts/latest/docs/source/operators.rst,
line 490.)

Todo

named args in argList

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/monte/checkouts/latest/docs/source/operators.rst,
line 567.)

Todo

discuss matchers in object expressions

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/monte/checkouts/latest/docs/source/operators.rst,
line 584.)

Todo

document docstrings

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/monte/checkouts/latest/docs/source/ordinary-
programming.rst, line 59.)

Todo

document named args, defaults

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/monte/checkouts/latest/docs/source/ordinary-
programming.rst, line 61.)

Todo

show: Guards play a key role in protecting security properties.

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/monte/checkouts/latest/docs/source/ordinary-
programming.rst, line 268.)

Todo

Fix the module.name notation resulting from abuse of sphinx python support.

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/monte/checkouts/latest/docs/source/runtime.rst,
line 9.)

Todo

When Bool is fixed to reveal its interface, re-run mtDocStrings to document and, or, xor, not, butNot, pick, op__cmp.

10.5. Colophon: Monte Documentation Build Tools 117

Monte Documentation, Release 0.1

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/monte/checkouts/latest/docs/source/runtime.rst,
line 13.)

Todo

Fix the module.name notation resulting from abuse of sphinx python support.

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/monte/checkouts/latest/docs/source/runtime.rst,
line 2599.)

Todo

discuss SlotExpr

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/monte/checkouts/latest/docs/source/semantics.rst,
line 208.)

Todo

discuss sameness and doctest _equalizer

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/monte/checkouts/latest/docs/source/semantics.rst,
line 256.)

Todo

specify canStartIndentedBlock, braceStack exactly

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/monte/checkouts/latest/docs/source/symbols.rst,
line 26.)

Todo

Document how to compile and run such a script.

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/monte/checkouts/latest/docs/source/taste.rst,
line 33.)

Glossary

ejector : Coercion An object which can be called once to prematurely end control flow.

guard : Coercion An object which provides the coercion protocol.

message An object of the form [verb :Str, args :List, namedArgs :Map] which is passed from call-
ing objects to target objects to faciliate computation.

prize : Coercion The result of a successful coercion.

quasiliteral, QL An literal expression or pattern which is composed of both literal and variable pieces.

quasiparser, QP An object which provides the Quasiliterals protocol.

118 Chapter 10. Appendixes, Indices and Tables

Monte Documentation, Release 0.1

verb A string which forms the first element of a message.

• genindex

• modindex

• search

10.6. Glossary 119

Monte Documentation, Release 0.1

120 Chapter 10. Appendixes, Indices and Tables

Python Module Index

_
__entrypoint_io__, 112

s
safeScope, 83

121

Monte Documentation, Release 0.1

122 Python Module Index

Index

Symbols
__entrypoint_io__ (module), 112
_accumulateList (in module safeScope), 109
_accumulateMap (in module safeScope), 109
_auditedBy (in module safeScope), 97
_bind (in module safeScope), 109
_booleanFlow (in module safeScope), 109
_comparer (in module safeScope), 109
_equalizer (in module safeScope), 110
_iterForever (in module safeScope), 102
_loop (in module safeScope), 102
_makeBytes (in module safeScope), 98
_makeDouble (in module safeScope), 98
_makeFinalSlot (in module safeScope), 99
_makeInt (in module safeScope), 97
_makeIterator() (in module safeScope), 102
_makeIterator() (safeScope.Bytes method), 89
_makeIterator() (safeScope.List method), 91
_makeIterator() (safeScope.Map method), 92
_makeIterator() (safeScope.Set method), 93
_makeIterator() (safeScope.Str method), 84
_makeList (in module safeScope), 98
_makeMap (in module safeScope), 98
_makeMessageDesc (in module safeScope), 111
_makeOrderedRegion (in module safeScope), 99
_makeOrderedSpace (in module safeScope), 98
_makeParamDesc (in module safeScope), 111
_makeProtocolDesc (in module safeScope), 111
_makeSourceSpan (in module safeScope), 99
_makeStr (in module safeScope), 98
_makeString (in module safeScope), 98
_makeTopSet (in module safeScope), 99
_makeVarSlot (in module safeScope), 99
_makeVerbFacet (in module safeScope), 110
_mapEmpty (in module safeScope), 110
_mapExtract (in module safeScope), 110
_matchSame (in module safeScope), 110
_printOn() (in module safeScope), 94, 96, 97, 110
_printOn() (safeScope.Bytes static method), 89
_printOn() (safeScope.Char static method), 85

_printOn() (safeScope.Double static method), 86
_printOn() (safeScope.Int static method), 87
_printOn() (safeScope.List method), 91
_printOn() (safeScope.List static method), 91
_printOn() (safeScope.Map method), 92
_printOn() (safeScope.Map static method), 92
_printOn() (safeScope.Set method), 93
_printOn() (safeScope.Set static method), 93
_printOn() (safeScope.Str static method), 83
_quasiMatcher (in module safeScope), 110
_slotToBinding (in module safeScope), 111
_splitList (in module safeScope), 111
_suchThat (in module safeScope), 111
_switchFailed (in module safeScope), 111
_uncall() (safeScope.Bytes method), 89
_uncall() (safeScope.Bytes static method), 89
_uncall() (safeScope.Char static method), 85
_uncall() (safeScope.Double static method), 86
_uncall() (safeScope.Int static method), 87
_uncall() (safeScope.List method), 91
_uncall() (safeScope.Map method), 92
_uncall() (safeScope.Set method), 94
_uncall() (safeScope.Str static method), 83
_validateFor (in module safeScope), 111

A
aboveZero() (safeScope.Double method), 86
aboveZero() (safeScope.Int method), 88
abs() (safeScope.Double method), 86
abs() (safeScope.Int method), 88
abstract syntax, 66
add() (safeScope.Bytes method), 90
add() (safeScope.Bytes static method), 89
add() (safeScope.Char method), 85
add() (safeScope.Char static method), 85
add() (safeScope.Double method), 86
add() (safeScope.Double static method), 86
add() (safeScope.Int method), 88
add() (safeScope.Int static method), 87
add() (safeScope.List method), 91
add() (safeScope.Str method), 84

123

Monte Documentation, Release 0.1

add() (safeScope.Str static method), 83
and() (safeScope.Int method), 88
and() (safeScope.Set method), 94
AndExpr() (in module safeScope), 105
Any (class in safeScope), 95
approxDivide() (safeScope.Double method), 86
approxDivide() (safeScope.Int method), 88
asBigAs() (in module safeScope), 109
asDouble() (safeScope.Int method), 88
asInteger() (safeScope.Char method), 85
asList() (safeScope.Bytes method), 90
asList() (safeScope.Set method), 94
asList() (safeScope.Str method), 84
asMap() (safeScope.List method), 91
asSet() (safeScope.Bytes method), 90
asSet() (safeScope.List method), 91
asSet() (safeScope.Map method), 92
asSet() (safeScope.Set method), 94
asSet() (safeScope.Str method), 84
AssignExpr() (in module safeScope), 105
asString() (safeScope.Char method), 85
astBuilder (in module safeScope), 105
astEval (in module safeScope), 102
asType() (in module safeScope), 99
atLeastZero() (safeScope.Double method), 86
atLeastZero() (safeScope.Int method), 88
atMostZero() (safeScope.Double method), 86
atMostZero() (safeScope.Int method), 88
audit() (in module safeScope), 103, 104
AugAssignExpr() (in module safeScope), 105

B
belowZero() (safeScope.Double method), 86
belowZero() (safeScope.Int method), 88
BinaryExpr() (in module safeScope), 105
binding, 67
Binding (class in safeScope), 104
BindingExpr() (in module safeScope), 105
BindingPattern() (in module safeScope), 105
BindPattern() (in module safeScope), 105
bitLength() (safeScope.Int method), 88
Bool (class in safeScope), 83
broken() (in module safeScope), 102, 109
butNot() (safeScope.Set method), 94
Bytes (class in safeScope), 89

C
call() (in module safeScope), 101
callWithMessage() (in module safeScope), 101
Catcher() (in module safeScope), 105
CatchExpr() (in module safeScope), 105
Char (class in safeScope), 85
coerce() (in module safeScope), 94, 96, 97, 104, 110
coerce() (safeScope.Any static method), 95

coerce() (safeScope.Binding static method), 104
coerce() (safeScope.Bool static method), 83
coerce() (safeScope.Bytes static method), 89
coerce() (safeScope.Char static method), 85
coerce() (safeScope.Double static method), 86
coerce() (safeScope.FinalSlot static method), 95
coerce() (safeScope.Int static method), 87
coerce() (safeScope.List static method), 91
coerce() (safeScope.Map static method), 92
coerce() (safeScope.Set static method), 93
coerce() (safeScope.Str static method), 83
coerce() (safeScope.VarSlot static method), 95
coerce() (safeScope.Void static method), 96
CoerceExpr() (in module safeScope), 105
CompareExpr() (in module safeScope), 105
complement() (safeScope.Int method), 88
contains() (safeScope.Bytes method), 90
contains() (safeScope.List method), 91
contains() (safeScope.Map method), 92
contains() (safeScope.Set method), 94
contains() (safeScope.Str method), 84
cos() (safeScope.Double method), 86
currentProcess (in module __entrypoint_io__), 114
currentRuntime (in module __entrypoint_io__), 113
curryCall() (in module safeScope), 110
CurryExpr() (in module safeScope), 105
currySend() (in module safeScope), 110

D
DeepFrozen (in module safeScope), 103
DefExpr() (in module safeScope), 105
different() (in module safeScope), 110
diverge() (safeScope.List method), 91
diverge() (safeScope.Map method), 92
diverge() (safeScope.Set method), 94
Double (class in safeScope), 86

E
eject() (in module safeScope), 102
ejector, 69
ejector : Coercion, 118
Empty (in module safeScope), 96
empty() (safeScope.List method), 91
empty() (safeScope.Map method), 92
empty() (safeScope.Set method), 94
endsWith() (safeScope.Str method), 84
EscapeExpr() (in module safeScope), 105
eval (in module safeScope), 102
evalToPair() (in module safeScope), 102
evaluation semantics, 66
exception() (in module safeScope), 99, 100
ExitExpr() (in module safeScope), 105
expression, 66
extractGuard() (in module safeScope), 96, 97

124 Index

Monte Documentation, Release 0.1

extractGuard() (safeScope.FinalSlot static method), 95
extractGuard() (safeScope.List static method), 91
extractGuard() (safeScope.Set static method), 93
extractGuard() (safeScope.VarSlot static method), 95
extractGuards() (in module safeScope), 94
extractGuards() (safeScope.Any static method), 96
extractGuards() (safeScope.Map static method), 92
extractValue() (in module safeScope), 96

F
failureList() (in module safeScope), 109
false (in module safeScope), 97
fetch() (safeScope.Map method), 92
FinallyExpr() (in module safeScope), 105
FinalPattern() (in module safeScope), 105
FinalSlot (class in safeScope), 95
floor() (safeScope.Double method), 87
floorDivide() (safeScope.Double method), 87
floorDivide() (safeScope.Int method), 88
ForExpr() (in module safeScope), 105
ForwardExpr() (in module safeScope), 105
fromBytes() (in module safeScope), 97, 98
fromChars() (in module safeScope), 98
fromInts() (in module safeScope), 98
fromIterable() (in module safeScope), 98
fromNow() (in module __entrypoint_io__), 112
fromPairs() (in module safeScope), 98
fromStr() (in module safeScope), 98, 101
fulfillment() (in module safeScope), 103
FunCallExpr() (in module safeScope), 105
FunctionExpr() (in module safeScope), 106
FunctionInterfaceExpr() (in module safeScope), 106
FunctionScript() (in module safeScope), 106
FunSendExpr() (in module safeScope), 105

G
geq() (in module safeScope), 109
get() (in module safeScope), 95–97
get() (safeScope.Bytes method), 90
get() (safeScope.FinalSlot static method), 95
get() (safeScope.List method), 91
get() (safeScope.List static method), 91
get() (safeScope.Map method), 93
get() (safeScope.Map static method), 92
get() (safeScope.Set static method), 93
get() (safeScope.Str method), 84
get() (safeScope.VarSlot static method), 95
getAddrInfo (in module __entrypoint_io__), 113
getArguments() (in module __entrypoint_io__), 114
getAstBuilder() (in module safeScope), 101
getAstGuard() (in module safeScope), 109
getCategory() (safeScope.Char method), 85
getCrypt() (in module __entrypoint_io__), 113
getDocstring() (safeScope.Binding static method), 104

getDocstring() (safeScope.Bool static method), 83
getDocstring() (safeScope.FinalSlot static method), 95
getDocstring() (safeScope.VarSlot static method), 95
getDocstring() (safeScope.Void static method), 96
getEnvironment() (in module __entrypoint_io__), 114
GetExpr() (in module safeScope), 106
getExprGuard() (in module safeScope), 109
getGuard() (safeScope.FinalSlot static method), 95
getGuard() (safeScope.VarSlot static method), 95
getHeapStatistics() (in module __entrypoint_io__), 113
getKeys() (safeScope.Map method), 93
getMethods() (safeScope.Any static method), 96
getMethods() (safeScope.Binding static method), 104
getMethods() (safeScope.Bool static method), 83
getMethods() (safeScope.FinalSlot static method), 95
getMethods() (safeScope.VarSlot static method), 95
getMethods() (safeScope.Void static method), 96
getNamePatternGuard() (in module safeScope), 109
getNounGuard() (in module safeScope), 109
getPatternGuard() (in module safeScope), 109
getPID() (in module __entrypoint_io__), 114
getReactorStatistics() (in module __entrypoint_io__), 113
getSpan() (safeScope.Str method), 84
getValues() (safeScope.Map method), 93
greaterThan() (in module safeScope), 109
guard : Coercion, 118

H
HideExpr() (in module safeScope), 106

I
IfExpr() (in module safeScope), 106
IgnorePattern() (in module safeScope), 106
indexOf() (safeScope.Bytes method), 90
indexOf() (safeScope.List method), 91
indexOf() (safeScope.Str method), 84
Infinity (in module safeScope), 97
Int (class in safeScope), 87
InterfaceExpr() (in module safeScope), 106
interrupt() (in module __entrypoint_io__), 114
isBroken() (in module safeScope), 103
isDeepFrozen() (in module safeScope), 103
isEmpty() (safeScope.Bytes method), 90
isEmpty() (safeScope.List method), 91
isEmpty() (safeScope.Map method), 93
isEmpty() (safeScope.Set method), 94
isEmpty() (safeScope.Str method), 84
isEventual() (in module safeScope), 103
isFar() (in module safeScope), 103
isNear() (in module safeScope), 103
isResolved() (in module safeScope), 103
isSelfish() (in module safeScope), 103
isSelfless() (in module safeScope), 103
isSettled() (in module safeScope), 110

Index 125

Monte Documentation, Release 0.1

isZero() (safeScope.Double method), 87
isZero() (safeScope.Int method), 88

J
join() (safeScope.Bytes method), 90
join() (safeScope.List method), 91
join() (safeScope.Str method), 84

K
Kernel-Monte, 66

L
last() (safeScope.List method), 91
lastIndexOf() (safeScope.Bytes method), 90
lastIndexOf() (safeScope.Str method), 84
leq() (in module safeScope), 110
lessThan() (in module safeScope), 110
lexical scoping, 67
List (class in safeScope), 90
ListComprehensionExpr() (in module safeScope), 106
ListExpr() (in module safeScope), 106
ListPattern() (in module safeScope), 106
LiteralExpr() (in module safeScope), 106
log() (safeScope.Double method), 87

M
M (in module safeScope), 101
makeAuditorKit() (in module safeScope), 104
makeBrandPair (in module safeScope), 100
makeEmptyRegion() (safeScope.Bytes static method), 89
makeEmptyRegion() (safeScope.Char static method), 85
makeEmptyRegion() (safeScope.Double static method),

86
makeEmptyRegion() (safeScope.Int static method), 87
makeEmptyRegion() (safeScope.Str static method), 83
makeFileResource (in module __entrypoint_io__), 113
makeLazySlot (in module safeScope), 99
makePair() (in module safeScope), 111
makeProcess (in module __entrypoint_io__), 114
makeProxy() (in module safeScope), 103
makeRegion() (safeScope.Bytes static method), 89
makeRegion() (safeScope.Char static method), 85
makeRegion() (safeScope.Double static method), 86
makeRegion() (safeScope.Int static method), 87
makeRegion() (safeScope.Str static method), 83
makeStdErr (in module __entrypoint_io__), 112
makeStdIn (in module __entrypoint_io__), 112
makeStdOut (in module __entrypoint_io__), 112
makeTCP4ClientEndpoint (in module __entry-

point_io__), 113
makeTCP4ServerEndpoint (in module __entry-

point_io__), 113
makeTCP6ClientEndpoint (in module __entry-

point_io__), 113

makeTCP6ServerEndpoint (in module __entry-
point_io__), 113

makeTraversalKey() (in module safeScope), 110
Map (class in safeScope), 92
MapComprehensionExpr() (in module safeScope), 106
MapExpr() (in module safeScope), 106
MapExprAssoc() (in module safeScope), 106
MapExprExport() (in module safeScope), 106
MapPattern() (in module safeScope), 106
MapPatternAssoc() (in module safeScope), 106
MapPatternImport() (in module safeScope), 106
MatchBindExpr() (in module safeScope), 106
Matcher() (in module safeScope), 106
matchMaker() (in module safeScope), 100, 101
max() (safeScope.Char method), 85
max() (safeScope.Int method), 88
message, 69, 118
MessageDesc() (in module safeScope), 107
MetaContextExpr() (in module safeScope), 107
MetaStateExpr() (in module safeScope), 107
Method() (in module safeScope), 107
MethodCallExpr() (in module safeScope), 107
min() (safeScope.Char method), 85
min() (safeScope.Int method), 88
MismatchExpr() (in module safeScope), 107
mod() (safeScope.Int method), 88
modPow() (safeScope.Int method), 88
Module() (in module safeScope), 107
multiply() (safeScope.Bytes method), 90
multiply() (safeScope.Double method), 87
multiply() (safeScope.Int method), 88
multiply() (safeScope.List method), 91
multiply() (safeScope.Str method), 84

N
name, 67
NamedArg() (in module safeScope), 107
NamedArgExport() (in module safeScope), 107
NamedParam() (in module safeScope), 107
NamedParamImport() (in module safeScope), 107
NaN (in module safeScope), 97
Near (in module safeScope), 104
negate() (safeScope.Double method), 87
negate() (safeScope.Int method), 88
next() (in module safeScope), 102
next() (safeScope.Char method), 85
next() (safeScope.Int method), 89
noun, 67
NounExpr() (in module safeScope), 107
null (in module safeScope), 97
NullOk (in module safeScope), 96

O
object, 66

126 Index

Monte Documentation, Release 0.1

ObjectExpr() (in module safeScope), 107
op__cmp() (safeScope.Bytes method), 90
op__cmp() (safeScope.Bytes static method), 89
op__cmp() (safeScope.Char method), 85
op__cmp() (safeScope.Char static method), 85
op__cmp() (safeScope.Double method), 87
op__cmp() (safeScope.Double static method), 86
op__cmp() (safeScope.Int method), 89
op__cmp() (safeScope.Int static method), 88
op__cmp() (safeScope.List method), 91
op__cmp() (safeScope.Set method), 94
op__cmp() (safeScope.Str method), 84
op__cmp() (safeScope.Str static method), 83
op__thru() (in module safeScope), 98
op__till() (in module safeScope), 98
optProblem() (in module safeScope), 103
optSame() (in module safeScope), 110
or() (safeScope.Int method), 89
or() (safeScope.Map method), 93
or() (safeScope.Set method), 94
OrExpr() (in module safeScope), 107

P
Pair (in module safeScope), 94
ParamDesc() (in module safeScope), 107
passes() (in module safeScope), 104
pattern, 66
patternHole() (in module safeScope), 100, 101
PatternHoleExpr() (in module safeScope), 107
PatternHolePattern() (in module safeScope), 107
pow() (safeScope.Double method), 87
pow() (safeScope.Int method), 89
PrefixExpr() (in module safeScope), 107
previous() (safeScope.Char method), 86
previous() (safeScope.Int method), 89
prize : Coercion, 118
promise() (in module safeScope), 103
promiseAllFulfilled (in module safeScope), 103
put() (safeScope.List method), 91

Q
QL, 118
QP, 118
QuasiExprHole() (in module safeScope), 107
quasiliteral, 118
quasiparser, 118
QuasiParserExpr() (in module safeScope), 107
QuasiParserPattern() (in module safeScope), 107
QuasiPatternHole() (in module safeScope), 108
QuasiText() (in module safeScope), 108
quote() (safeScope.Char method), 86
quote() (safeScope.Str method), 84

R
RangeExpr() (in module safeScope), 108
Ref (in module safeScope), 102
replace() (safeScope.Bytes method), 90
replace() (safeScope.Str method), 84
reverse() (safeScope.List method), 92
reverse() (safeScope.Map method), 93
run() (in module __entrypoint_io__), 112–114
run() (in module safeScope), 97–100, 102, 103, 109–111

S
safeScope (module), 83
Same (in module safeScope), 96
sameEver() (in module safeScope), 110
SameExpr() (in module safeScope), 108
SamePattern() (in module safeScope), 108
sameYet() (in module safeScope), 110
scope, 66
Script() (in module safeScope), 108
Selfless (in module safeScope), 104
semantics, 66
send() (in module safeScope), 101
SendExpr() (in module safeScope), 108
sendOnly() (in module safeScope), 102
sendTimestamp() (in module __entrypoint_io__), 112
SeqExpr() (in module safeScope), 108
Set (class in safeScope), 93
shiftLeft() (safeScope.Int method), 89
shiftRight() (safeScope.Int method), 89
sin() (safeScope.Double method), 87
size() (safeScope.Bytes method), 90
size() (safeScope.List method), 92
size() (safeScope.Map method), 93
size() (safeScope.Set method), 94
size() (safeScope.Str method), 84
slice() (safeScope.Bytes method), 90
slice() (safeScope.List method), 92
slice() (safeScope.Map method), 93
slice() (safeScope.Set method), 94
slice() (safeScope.Str method), 84
slot, 63, 67
slot object, 63
SlotExpr() (in module safeScope), 108
SlotPattern() (in module safeScope), 108
snapshot() (safeScope.List method), 92
snapshot() (safeScope.Map method), 93
snapshot() (safeScope.Set method), 94
sort() (safeScope.List method), 92
sortKeys() (safeScope.Map method), 93
sortValues() (safeScope.Map method), 93
spaceOfGuard() (in module safeScope), 99
spaceOfValue() (in module safeScope), 99
split() (safeScope.Bytes method), 90
split() (safeScope.Str method), 84

Index 127

Monte Documentation, Release 0.1

sqrt() (safeScope.Double method), 87
stale stack frames, 67
startOf() (safeScope.List method), 92
startsWith() (safeScope.Str method), 84
state() (in module safeScope), 103
static scope, 66
stderr() (in module __entrypoint_io__), 112
stdin() (in module __entrypoint_io__), 112
stdio (in module __entrypoint_io__), 112
stdout() (in module __entrypoint_io__), 112
Str (class in safeScope), 83
SubrangeGuard (in module safeScope), 97
subtract() (safeScope.Bytes static method), 89
subtract() (safeScope.Char method), 86
subtract() (safeScope.Char static method), 85
subtract() (safeScope.Double method), 87
subtract() (safeScope.Double static method), 86
subtract() (safeScope.Int method), 89
subtract() (safeScope.Int static method), 88
subtract() (safeScope.Set method), 94
subtract() (safeScope.Str static method), 83
SuchThatPattern() (in module safeScope), 108
supersetOf() (in module safeScope), 104
supersetOf() (safeScope.Any static method), 96
supersetOf() (safeScope.Binding static method), 104
supersetOf() (safeScope.Bool static method), 83
supersetOf() (safeScope.FinalSlot static method), 95
supersetOf() (safeScope.VarSlot static method), 95
supersetOf() (safeScope.Void static method), 96
SwitchExpr() (in module safeScope), 108
syntactic expansion, 66

T
tan() (safeScope.Double method), 87
TempNounExpr() (in module safeScope), 108
throw (in module safeScope), 102
Timer (in module __entrypoint_io__), 112
To() (in module safeScope), 108
toBytes() (safeScope.Double method), 87
toLowerCase() (safeScope.Bytes method), 90
toLowerCase() (safeScope.Str method), 84
toQuote() (in module safeScope), 102
toString() (in module safeScope), 102
toUpperCase() (safeScope.Bytes method), 90
toUpperCase() (safeScope.Str method), 85
trace (in module safeScope), 99
traceln (in module safeScope), 99
Transparent (in module safeScope), 104
trim() (safeScope.Bytes method), 90
trim() (safeScope.Str method), 85
true (in module safeScope), 97
TryExpr() (in module safeScope), 108

U
unification, 72
unsafeNow() (in module __entrypoint_io__), 112
unsealException (in module __entrypoint_io__), 113

V
valueHole() (in module safeScope), 100, 101
ValueHoleExpr() (in module safeScope), 108
ValueHolePattern() (in module safeScope), 108
valueMaker() (in module safeScope), 100, 101
VarPattern() (in module safeScope), 108
VarSlot (class in safeScope), 95
verb, 119
VerbAssignExpr() (in module safeScope), 108
ViaPattern() (in module safeScope), 108
Void (class in safeScope), 96
Vow (in module safeScope), 96

W
whenBroken() (in module safeScope), 103
whenBrokenOnly() (in module safeScope), 103
WhenExpr() (in module safeScope), 108
whenResolved() (in module safeScope), 103
whenResolvedOnly() (in module safeScope), 103
WhileExpr() (in module safeScope), 109
with() (safeScope.Bytes method), 90
with() (safeScope.List method), 92
with() (safeScope.Map method), 93
with() (safeScope.Set method), 94
with() (safeScope.Str method), 85
withDefault() (in module safeScope), 110
without() (safeScope.Map method), 93
without() (safeScope.Set method), 94
withRadix() (in module safeScope), 98

X
xor() (safeScope.Int method), 89

128 Index

	Introduction
	Why Monte?
	Object Capability Discipline
	Why not Monte?
	Getting Started
	Acknowledgements

	A Taste of Monte: Hello Web
	Expressions
	Objects and Message Passing
	Cooperation Without Vulerability

	Practical Security: The Mafia game
	Objects
	Traditional Datatypes and Operators
	String Interpolation with quasi-literals
	Dynamic ``type checking'' with guards
	Final, Var, and DeepFrozen
	Assignment and Equality
	Data Structures for Game Play
	Destructuring with Patterns

	Monte Idioms Quick Reference
	Simple Statements
	Basic Flow
	File I/O and Modules
	Web Applications
	Data Structures
	Eventual Sends

	Python-Monte Idioms
	Iteration
	Objects

	The Type System
	Untyped
	Dynamic
	Strong
	Nominal
	Manifest
	Optional

	Misuse-Resistant Language Design
	Unicode Identifers
	Parenthesized Sub-Expressions

	Secure Distributed Computing
	Practical Security II: The Mafia IRC Bot (WIP)
	Ejectors & Escape Expressions
	Vats
	Brands
	Promises
	Streamcaps
	Working with Packages

	Language Reference
	Collections
	Quasiliterals
	Interfaces
	Miranda Protocol
	Loops and the Iteration Protocol
	Guard Protocol
	Controllers
	Slots
	Auditors
	Semantics of Monte
	Categorial Semantics

	Appendixes, Indices and Tables
	Monte Grammar
	Roadmap: Montefesto
	safeScope
	Entrypoint Arguments
	Colophon: Monte Documentation Build Tools
	Glossary

	Python Module Index

