
Monte Python Documentation
Release 2.2.0

Benjamin Audren

October 21, 2015

Contents

1 Installation Guide 3
1.1 Prerequisites . 3
1.2 Installation . 4

2 Getting Started 7
2.1 Foreword . 7
2.2 Input parameter file . 7
2.3 Output directory . 8
2.4 Analyzing chains and plotting . 9
2.5 Global running strategy . 10

3 Example of a complete work session 11

4 Using MultiNest with Monte Python 15
4.1 Installation . 15
4.2 Basic usage and parameters . 16
4.3 References . 18

5 Using the Cosmo Hammer with Monte Python 19
5.1 Using with Monte Python . 19

6 Existing likelihoods, and how to create new ones 21
6.1 One likelihood is one directory, one .py and one .data file . 21
6.2 Existing likelihoods . 22
6.3 Mock data likelihoods . 22
6.4 Creating new likelihoods belonging to pre-defined category . 23
6.5 Creating new likelihoods from scratch . 24

7 Documentation 27
7.1 run Module . 27
7.2 Initialise Module . 28
7.3 Parser module . 28
7.4 Data module . 33
7.5 Prior module . 38
7.6 Likelihood class module . 38
7.7 Sampler module . 41
7.8 Mcmc module . 42
7.9 Nested Sampling module . 43
7.10 Cosmo Hammer module . 43

i

7.11 Analyze module . 43
7.12 Io module . 47

8 Indices and tables 51

Python Module Index 53

ii

Monte Python Documentation, Release 2.2.0

The main page lives here, from which you can download the code, see the changelog. The Github page is available
there.

All useful information concerning the installation, some tips on how to organize the folder, and the complete descrip-
tion of the code source is found below.

For the list of command line arguments, please see the documentation of the create parser function. You
can also ask this same information interactively by asking:

python montepython/MontePython.py -h / --help
python montepython/MontePython.py run -h
python montepython/MontePython.py info -h

The first one gives you all the possible modes for running (run, or info), while the other two give you the information
specific for each modes. Note that asking for -h or --help will result in using a short or long format for the help.

Contents:

Contents 1

http://baudren.github.io/montepython.html
https://github.com/baudren/montepython_public/

Monte Python Documentation, Release 2.2.0

2 Contents

CHAPTER 1

Installation Guide

1.1 Prerequisites

1.1.1 Python

First of all, you need a clean installation of Python (version 2.7 is better, though it works also with 2.6 and 2.5 (see
below). version 3.0 is not supported), with at least the numpy module (version ≥ 1.4.1) and the cython module. This
last one is to convert the C code CLASS into a Python class.

If you also want the output plot to have cubic interpolation for analyzing chains, you should also have the scipy module
(at least version 0.9.0). In case this one is badly installed, you will have an error message when running the analyze
module of Monte Python, and obtain only linear interpolation. Though not fatal, this problem produces ugly plots.

To test for the presence of the modules numpy, scipy, cython on your machine, you can type

$ python
$ >>> import numpy
$ >>> import scipy
$ >>> import cython
$ >>> exit()

If one of these steps fails, go to the corresponding websites, and follow the instructions (if you have the privilege to
have the root password on your machine, an apt-get install python-numpy, python-scipy and cython will do the trick.
Otherwise, all these packages can also be downloaded and installed locally, with the command python setup.py
install --user).

Note that you can use the code with Python 2.6 also, even though you need to download two packages separately
ordereddict and argparse. For this, it is just a matter of downloading the two files ordereddict.py and argparse.py), and
placing them in your code directory without installation steps.

1.1.2 Class

Next in line, you must compile the python wrapper of CLASS. Download the latest version (≥ 1.5.0), and follow the
basic instruction. Instead of make class, type make -j. If you are using a Class version ≥ 2.3.0, the wrapper
will be installed by doing this step, so skip ahead.

In case you are using an older version of Class, the compilation only created an archiv .ar of the code, useful in the
next step. After this, do:

class]$ cd python/
python]$ python setup.py build
python]$ python setup.py install --user

3

http://www.python.org/
http://www.numpy.org/
http://www.cython.org/
http://www.class-code.net/
http://www.scipy.org/
http://code.activestate.com/recipes/576693/
https://pypi.python.org/pypi/argparse
http://www.class-code.net/

Monte Python Documentation, Release 2.2.0

If you have correctly installed cython, this should add Classy as a new python module. You can check the success of
this operation by running the following command:

~]$ python
>>> from classy import Class

If the installation was successful, this should work within any directory. If you get no error message from this line,
you know everything is fine.

Note: If the step python setup.py install --user does not succeed, but that the build is successful,
then as far as Monte Python is concerned, there are no issues. The code will be found nonetheless.

If at some point you have several different coexisting versions of Class on the system, and you are worried that Monte
Python is not using the good one, rest reassured. As long as you run Monte Python with the proper path to the proper
Class in your configuration file (see Installation) then it will use this one.

1.2 Installation

1.2.1 Main code

Move the latest release of Monte Python to one of your folders, called e.g. code/ (for instance, this could be the
folder containing also class/), and untar its content:

code]$ bunzip montepython-v1.0.0.tar.bz2
code]$ tar -xvf montepython-v1.0.0.tar
code]$ cd montepython

You will have to create one file holding the path of the codes you want to use. There is a predefined tem-
plate, default.conf.template, in the root directory of the code. You should copy it to a new file called
default.conf, which will tell Monte Python, where your other programs (in particular Class) are installed, and
where you are storing the data for the likelihoods. It will be interpreted as a python file, so be careful to reproduce the
syntax exactly. At minimum, default.conf should contain one line, filled with the path of your class/ directory:

path['cosmo'] = 'path/to/your/class/'

To check that Monte Python is ready to work, simply type python montepython/MontePython.py --help
(or just montepython/MontePython.py --help). This will provide you with a short description of the avail-
able command line arguments, explained in Parser module.

1.2.2 Planck likelihood

With the release of Planck data comes the release of its likelihood. It is distributed from this ESA website, along with
the data. Download all tar.gz files, extract them to the place of your convenience.

The Planck Likelihood Code (plc) is based on a library called clik. It will be extracted, alongside several .clik folders
that contain the likelihoods. The installation of the code is described in the archive, and it uses an auto installer device,
called waf.

Warning: Note that you are strongly advised to configure clik with the Intel mkl library, and not with lapack.
There is a massive gain in execution time: without it, the code is dominated by the execution of the low-l polarisa-
tion data from WMAP.

In your Monte Python configuration file, to use this code, you should add the following line

4 Chapter 1. Installation Guide

http://www.sciops.esa.int/index.php?project=planck&page=Planck_Legacy_Archive

Monte Python Documentation, Release 2.2.0

path['clik'] = 'path/to/your/plc/folder/'

The four likelihoods defined in Monte Python for Planck are Planck_highl, Planck_lowl, Planck_lensing, lowlike (the
polarization data from WMAP). In each of the respective data files for these likelihood, please make sure that the line,
for instance,

Planck_highl.path_clik = data.path['clik']+'../something.clik'

points to the correct clik file. Now, before trying to run this likelihood, you will need to source the code to your system,
by typing:

~]$ source /path/to/your/plc/folder/bin/clik_profile.sh

Once you made sure of this, you can then use the base.param file distributed with MontePython, that defines all the
needed nuisance parameters, the covariance matrix as well as the bestfit file, in this command:

python montepython/MontePython.py -o planck/ -p base.param -c covmat/base.covmat \
-bf bestfit/base.bestfit --conf default.conf -f 1.5

Note: The use of the factor 1.5 is to increase the acceptance rate, due to the non gaussianity of the nuisance parameters
posterior.

1.2.3 WMAP likelihood

Warning: As of version 1.2.5, with Planck data being available, installing this likelihood might not be so impor-
tant anymore. You might prefer to skip this, at it is an optional part of the installation process.

Warning: So far, the use of the WMAP wrapper is separated from the Planck wrapper, but it might be merged in
the future, as it is based on the same code clik developped internally for Planck by Karim Benabed.

To use the likelihood of WMAP, we propose a python wrapper, located in the wrapper_wmap directory. Just like
with the Class wrapper, you need to install it, although the procedure differs. Go to the wrapper directory, and enter:

wrapper_wmap]$./waf configure install_all_deps

This should read the configuration of your distribution, and install the WMAP likelihood code and its dependencies
(cfitsio) automatically on your machine. For our purpose, though, we prefer using the intel mkl libraries, which are
much faster. To tell the code about your local installation of mkl libraries, please add to the line above some options:

--lapack_mkl=/path/to/intel/mkl/10.3.8 --lapack_mkl_version=10.3

Once the configuration is done properly, finalize the installation by typing:

wrapper_wmap]$./waf install

The code will generate a configuration file, that you will need to source before using the WMAP likelihood with
Monte Python. The file is clik_profile.sh, and is located in wrapper_wmap/bin/. So if you want to use
the likelihood ’wmap’, before any call to Monte Python (or inside your scripts), you should execute

~]$ source /path/to/MontePython/wrapper_wmap/bin/clik_profile.sh

The wrapper will use the original version of the WMAP likelihood codes downloaded and placed in the folder
wrapper_wmap/src/likelihood_v4p1/ during the installation process. This likelihood will be compiled
later, when you will call it for the first time from the Monte Python code. Before calling it for the first time, you could
eventually download the WMAP patch from Wayne Hu’s web site, for a faster likelihood.

1.2. Installation 5

Monte Python Documentation, Release 2.2.0

You should finally download the WMAP data files by yourself, place them anywhere on your system, and specify the
path to these data files in the file likelihoods/wmap/wmap.data.

6 Chapter 1. Installation Guide

CHAPTER 2

Getting Started

2.1 Foreword

Python has a very nice way of handling errors in the execution. Instead of a segmentation fault as in C, when the code
breaks, you have access to the whole stack of actions that lead to the error. This helps you pin-point which function
was called, which line was responsible for the error.

It can however be lengthy, and to help everyone reading it, a messaging system was implemented in Monte Python.
After a blank line, a summary of the actual error will be displayed. When reporting for an error, please attach the
entire output, as this is priceless for debugging.

2.2 Input parameter file

An example of input parameter file is provided with the download package, under the name example.param. Input
files are organised as follows:

data.experiments = ['experiment1', 'experiment2', ...]

data.parameters['cosmo_name'] = [mean, min, max, sigma, scale, 'cosmo']
...

data.parameters['nuisance_name'] = [mean, min, max, sigma, scale, 'nuisance']
...

data.parameters['cosmo_name'] = [mean, min, max, sigma, scale, 'derived']
...

data.cosmo_arguments['cosmo_name'] = value

data.N = 10
data.write_step = 5

The first command is rather explicit. You will list there all the experiments you want to take into account. Their
name should coincide with the name of one of the several sub-directories in the montepython/likelihoods/
directory. Likelihoods will be explained in the Likelihood class module

In data.parameters, you can list all the cosmo and nuisance parameter that you want to vary in the Markov
chains. For each of them you must give an array with six elements, in this order:

• mean value (your guess for the best fitting value, from which the first jump will start)

• minimum value (set to -1 or None for unbounded prior edge),

7

Monte Python Documentation, Release 2.2.0

• maximum value (set to -1 or None for unbounded prior edge),

• sigma (your guess for the standard deviation of the posterior of this parameter, its square will be used as the
variance of the proposal density when there is no covariance matrix including this parameter passed as an input),

• scale (most of the time, it will be 1, but occasionnaly you can use a rescaling factor for convenience, for instance
{tt 1.e-9} if you are dealing with 𝐴𝑠 or 0.01 if you are dealing with 𝜔𝑏)

• role (cosmo for MCMC parameters used by the Boltzmann code, nuisance for MCMC parameters used only
by the likelihoods, and derived for parameters not directly varied by the MCMC algorithm, but to be kept in
the chains for memory).

In data.cosmo_arguments, you can pass to the Boltzmann code any parameter that you want to fix to a non-
default value (cosmological parameter, precision parameter, flag, name of input file needed by the Bolztmann code,
etc.). The names and values should be the same as in a Class input file, so the values can be numbers or a strings, e.g:

data.cosmo_arguments['Y_He'] = 0.25

or

data.cosmo_arguments['Y_He'] = 'BBN'
data.cosmo_arguments['sBBN file'] = data.path['cosmo']+'/bbn/sBBN.dat'

All elements you input with a cosmo, derived or cosmo_arguments role will be interpreted by the cosmological
code (only Class so far). They are not coded anywhere inside Monte Python. Monte Python takes parameter names,
assigns values, and passes all of these to Class as if they were written in a Class input file. The advantages of this
scheme are obvious. If you need to fix or vary whatever parameter known by Class, you don’t need to edit Monte
Python, you only need to write these parameters in the input parameter file. Also, Class is able to interpret input
parameters from a Class input file with a layer of simple logic, allowing to specify different parameter combinations.
Parameters passed from the parameter file of Monte Python go through the same layer of logic.

If a cosmo, derived or cosmo_arguments parameter is not understood by the Boltzmann code, Monte Python
will stop and return an explicit error message. A similar error will occur if one of the likelihoods requires a nuisance
parameter that is not passed in the list.

You may wish occasionally to use in the MCMC runs a new parameter that is not a Class parameter, but can be mapped
to one or several Class parameters (e.g. you may wish to use in your chains log(1010𝐴𝑠) instead of 𝐴𝑠). There is a
function, in the module data, that you can edit to define such mappings: it is called update_cosmo_arguments.
Before calling CLASS, this function will simply substitute in the list of arguments your customized parameters by
some Class parameters. Several exemple of such mappings are already implemented, allowing you for instance to use
’Omega_Lambda’, ’ln10^{10}A_s’ or ’exp_m_2_tau_As’ in your chains. Looking at these examples, the
user can easily write new ones even without knowing python.

The last two lines of the input parameter file are the number of steps you want your chain to contain (data.N) and the
number of accepted steps the system should wait before writing it down to a file (data.write_step). Typically,
you will need a rather low number here, e.g. data.write_step = 5 or 10. The reason for not setting this
parameter to one is just to save a bit of time in writing on the disk.

In general, you will want to specify the number of steps in the command line, with the option -N (see sec-
tion~ref{commands}). This will overwrite the value passed in the input parameter file. The value by default in the
parameter file, data.N = 10, is intentionnaly low, simply to prevent doing any mistake while testing the program
on a cluster.

2.3 Output directory

You are assumed to use the code in the following way: for every set of experiments and parameters you want to test,
including different priors, some parameters fixed, etcldots you should use one output folder. This way, the folder will

8 Chapter 2. Getting Started

Monte Python Documentation, Release 2.2.0

keep track of the exact calling of the code, allowing you to reproduce the data at later times, or to complete the existing
chains. All important data are stored in your folder/log.param file.

Incidentaly, if you are starting the program in an existing folder, already containing a log.param file, then you do
not even have to specify a parameter file: the code will use it automatically. This will avoid mixing things up. If you
are using one anyway, the code will warn you that it did not read it: it will always only use the log.param file.

In the folder montepython, you can create a folder chains where you will organize your runs e.g. in the following
way:

montepython/chains/set_of_experiments1/model1
montepython/chains/set_of_experiments1/model2
...
montepython/chains/set_of_experiments2/model1
montepython/chains/set_of_experiments2/model2
...

The minimum amount of command lines for running Monte Python is an input file, an output directory and a con-
figuration file: if you have already edited defaut.conf or copied it to your own my-machine.conf, you may
already try a mini-run with the command

montepython]$ montepython/MontePython.py -conf my-machine.conf -p example.param -o test

2.4 Analyzing chains and plotting

Once you have accumulated a few chains, you can analyse the run to get convergence estimates, best-fit values,
minimum credible intervals, a covariance matrix and some plots of the marginalised posterior probability. You can
run again Monte Python with the info prefix followed by the name of a directory or of several chains, e.g. info
chains/myrun/ or info chains/myrun/2012-10-26* chains/myrun/2012-10-27*. There is no
need to pass an input file with parameter names since they have all been stored in the log.param.

Information on the acceptance rate and minimum − logℒ = 𝜒2
eff/2 is written in chains/myrun/myrun.log. In-

formation on the convergence (Gelman-Rubin test for each chain parameter), on the best fit, mean and minimum
credible interval for each parameter at the 68.26%, 95.4%, 99.7% level are written in horizontal presentation in
chains/myrun/myrun.h_info, and in vertical presentation in chains/myrun/myrun.v_info (without
99.7% in the vertical one). A latex file to produce a table with parameter names, means and 68% errors in written in
chains/myrun/myrun.tex.

The covariance matrix of the run is written in chains/myrun/myrun.covmat. It can be used as an input
for the proposal density in a future run. The first line, containing the parameter name, will be read when the
covariance matrix will be passed in input. This means that the list of parameters in the input covariance ma-
trix and in the run don’t need to coincide: the code will automatically eliminate, add and reorder parameters (see
mcmc.get_covariance_matrix()). Note that the rescaling factors passed in the input file are used internally
during the run and also in the presentation of results in the .h_info, .v_info, .tex files, but not in the covariance
matrix file, which refers to the true parameters.

The 1D posteriors and 2D posterior contours are plotted in chains/myrun/plots/myrun_1D.pdf and
chains/myrun/plots/myrun_triangle.pdf. You will find in the Parser module documentation a list of
commands to customize the plots.

When the chains are not very converged and the posterior probability has local maxima, the code will fail to compute
minimum credible intervals and say it in a warning. The two solutions are either to re-run and increase the number of
samples, or maybe just to decrease the number of bins with the --bins option.

2.4. Analyzing chains and plotting 9

Monte Python Documentation, Release 2.2.0

2.5 Global running strategy

In the current version of Monte Python, we deliberately choose not to use MPI communication between instances of
the code. Indeed the use of MPI usually makes the installation step more complicated, and the gain is, in our opinion,
not worth it. Several chains are launched as individual serial runs (if each instance of Monte Python is launched on
several cores, Class and the WMAP likelihood will parallelize since they use OpenMP). They can be run with the same
command since chain names are created automatically with different numbers for each chain: the chain names are in
the form yyyy-mm-dd_N__i.txt where yyyy is the year, mm the month, dd the day, N the requested number of
steps and i the smallest available integer at the time of starting a new run.

However the absence of communication between chains implies that the proposal density cannot be updated au-
tomatically during the initial stage of a run. Hence the usual strategy consists in launching a first run with a
poor (or no) covariance matrix, and a low acceptance rate; then to analyze this run and produce a better covari-
ance matrix; and then to launch a new run with high acceptance rate, leading to nice plots. Remember that in
order to respect strictly markovianity and the Metropolis Hastings algorithm, one should not mix up chains pro-
duced with different covariance matrices: this is easy if one takes advantage of the info syntax, for example info
chains/myrun/2012-10-26_10000*. However mixing runs that started from very similar covariance matrices
is harmless.

It is also possible to run on several desktops instead of a single cluster. Each desktop should have a copy of the output
folder and with the same log.param file, and after running the chains can be grouped on a single machine and
analyse. In this case, take care of avoiding that chains are produced with the same name (easy to ensure with either the
-N or --chain-number options). This is a good occasion to keep the desktops of your department finally busy.

10 Chapter 2. Getting Started

CHAPTER 3

Example of a complete work session

I just downloaded and installed Monte Python, read the previous pages, and I wish to launch and analyse my first run.

I can first create a few folders in order to keep my montepython directory tidy in the future. I do a

$ mkdir chains for storing all my chains

$ mkdir chains/planck if the first run I want to launch is based on the fake planck likelihood proposed in the
example.param file

$ mkdir input for storing all my input files

$ mkdir scripts for storing all my scripts for running the code in batch mode

I then copy example.param in my input folder, with a name of my choice, e.g. lcdm.param, and edit it if needed:

$ cp example.param input/lcdm.param

I then launch a short chain with

$ montepython/Montepython.py run -p input/lcdm.param -o chains/planck/lcdm -N 5

I can see on the screen the evolution of the initialization of the code. At the end I check that I have a chain and a
log.param written in my chains/planck/lcdm/log.param directory. I can immediately repeat the experi-
ence with the same command. The second chain is automatically created with number 2 instead of 1. I can also run
again without the input file:

$ montepython/Montepython.py run -o chains/planck/lcdm -N 5

This works equally well because all information is taken from the log.param file.

In some cases, initally, I don’t have a covariance matrix to pass in input 1 . But in this particular example I can try the
one delivered with the Monte Python package, in the covmat/ directory:

$ montepython/Montepython.py run -p input/lcdm.param\
-o chains/planck/lcdm -c covmat/fake_planck_lcdm.covmat -N 5

I don’t have yet a covariance matrix to pass in input, otherwise I would have run with

$ montepython/Montepython.py run -p input/lcdm.param -o chains/planck/lcdm -c mycovmat.covmat -N 5

I now wish to launch longer runs on my cluster or on a powerful desktop. The syntax of the script depends on the
cluster. In the simplest case it will only contain some general commands concerning the job name, wall time limit etc.,
and the command line above (I can use the one without input file, provided that I made already one short interactive

1 If I am also a CosmoMC user, I might have an adequate covmat to start with, before using the covmat that Monte Python will produce. Fot
this I just need to edit the first line, add comas between paramater names, and for parameter that are identical to those in my run, replace CosmoMC
parameter names with equivalent Class parameter names.}

11

Monte Python Documentation, Release 2.2.0

run, and that the log.param already exists; but I can now increase the number of steps, e.g. to 5000 or 10000).
On some cluster, the chain file is created immediately in the output directory at start up. In this case, the automatic
numbering of chains proposed by Monte Python will be satisfactory.

Warning: On some clusters, the automatic numbering will conflict when the chains are created too fast. Please
look at the section on how to use mpi_run for guidance

In other clusters, the chains are created on a temporary file, and then copied at the end to the output file. In this case,
if I do nothing, there is a risk that chain names are identical and clash. I should then relate the chain name to the
job number, with an additional command line --chain_number $JOBID. Some clusters, $JOBID is a string,
but the job number can be extracted with a line like export JOBNUM="$(echo $PBS_JOBID|cut -d’.’
-f1)", and passed to Monte Python as --chain_number $JOBNUM.

If I use in a future run the Planck likelihood, I should not forget to add in the script (before calling Monte Python) the
line

source /path/to/my/plc/bin/clik_profile.sh

I then launch a chain by submitting the script, with e.g. qsub scripts/lcdm.sh. I can launch many chains in
one command with

$ for i in {1..10}; do qsub scripts/lcdm.sh;done

If you cluster creates the chains too fast, there might be conflicts in the chain names. One way to go around this issue is
to run with mpi, which is a parallelization process. The chains will be initialised one after the other, each one sending
a go signal to the next in line.

To launch a job with mpi, the syntax is exactly the same than without, except that you will start the whole command
with, depending on your installation, mpirun or mpiexec:

mpirun -np 4 python montepython/MontePython.py run -o chains/...

will simply launch 4 chains, each using the environment variable $OMP_NUM_THREADS for the number of cores to
compute Class.

When the runs have stopped, I can analyse them with

$ montepython/Montepython.py info chains/planck/lcdm

If I had been running without a covariance matrix, the results would probably be bad, with a very low acceptance rate
and few points. It would have however created a covariance matrix chains/planck/lcdm/lcdm.covmat. I
can decide to copy it in order to keep track of it even after analysing future runs,

cp chains/planck/lcdm/lcdm.covmat chains/planck/lcdm/lcdm_run1.covmat

I now add to my script, in the line starting with montepython/Montepyhton.py, the option

-c chains/planck/lcdm/lcdm_run1.covmat

run on the same day as the previous one, it might be smart to change also a bit the number of steps (e.g. from 5000 to
5001) in order to immediately identify chains belonging to the same run.

When this second run is finished, I analyse it with e.g.

montepython/Montepython.py info chains/planck/lcdm/2012-10-27_5001*

If all R-1 numbers are small (typically < 0.05) and plots look nice, I am done. If not, there can be two reasons: the
covariance matrix is still bad, or I just did not get enough samples.

I can check the acceptance rate of this last run by looking at the chains/planck/lcdm/lcdm.log file. If I
am in a case with nearly gaussian posterior (i.e. nearly ellipsoidal contours), an acceptance rate < 0.2 or > 0.3

12 Chapter 3. Example of a complete work session

Monte Python Documentation, Release 2.2.0

can be considered as bad. In other cases, even 0.1 might be the best that I can expect. If the acceptance rate is
bad, I must re-run with an improved covariance matrix in order to converge quicker. I copy the last covariance
matrix to lcdm_run2.covmat and use this one for the next run. If the acceptance rate is good but the chains are
not well converged because they are simply too short, then I should better rerun with the same covariance matrix
lcdm_run1.covmat: in this way, I know that the proposal density is frozen since the second run, and I can safely
analyse the second and third runs altogether.

If I do two or three runs in that way, I always loose running time, because each new chain will have a new burn-in
phase (i.e. a phase when the log likelihood is very bad and slowly decreasing towards values close to the minimum).
If this is a concern, I can avoid it in three ways:

• before launching the new run, I set the input mean value of each parameter in the input file to the best-fit value
found in the previous run. The runs will then start from the best-fit value plus or minus the size of the first jump
drown from the covariance matrix, and avoid burn-in. Since I have changed the input file, I must rerun with a
new output directory, e.g. chain/lcdm2. This is a clean method.

• I might prefer a less clean but slightly quicker variant: I modify the mean values, like in the previous item, but
directly in the log.param file, and I rerun in the same directory without an input file. This will work, but it is
advisable not to edit the log.param manually, since it is supposed to keep all the information from previous
runs.

• I may restart the new chains from the previous chains using the -r command line option. The name of previous
chains can be written after -r manually or through a script.

• I can also restart from the best-fit found previously, using the -bf command line option, specifying the
.bestfit file to use.

When I am pleased with the final plots and result, I can customize the plot content and labels by writing a short file
plot_files/lcdm.plot passed through the -extra command line option, and paste the latex file produced by
Monte Python in my paper.

13

Monte Python Documentation, Release 2.2.0

14 Chapter 3. Example of a complete work session

CHAPTER 4

Using MultiNest with Monte Python

Monte Python can easily use the implementation of MultiNest by F. Feroz and M. Hobson 1, through the Python
wrapper PyMultiNest by J. Buchner 2.

Some hints about why and how to use MultiNest can be found in ‘A Basic usage and parameters‘_. A more thorough
description of the MultiNest sampler can be found in the MultiNest papers 1. The PyMultiNest tutorial is also worth
checking out, as well as the respective README files of both MultiNest and PyMultiNest.

Note: By using MultiNest and PyMultiNest, you agree to their respective licenses, that can be found in the LICENSE
(or LICENCE) files into the respective installation folders.

4.1 Installation

This basically follows the installation procedure in the PyMultiNest documentation.

4.1.1 1. MultiNest

Download MultiNest from here, either using the releases page or cloning with git

$ git clone http://github.com/JohannesBuchner/MultiNest

Note: MultiNest requires the libraries lapack and mpi (optional), and the compilation tool cmake.

We now follow the instructions in the README file to compile:

$ cd /path/to/MultiNest # Folder where MultiNest was downloaded
$ cd build
$ cmake .. # -DCMAKE_Fortran_COMPILER=gfortran
$ make

It is not necessary to install (make install), but it is so to add the folder in which the library was installed to the
list of paths in which compilers will looll for libraries to link. In Linux (and other systems using a bash shell), this
consists simply of adding at the end of the file \home\<your user>\.bashrc the line

export LD_LIBRARY_PATH=/path/to/MultiNest/lib${LD_LIBRARY_PATH:+:$LD_LIBRARY_PATH}

1 arXiv:0704.3704, arXiv:0809.3437 and arXiv:1306.2144.
2 arXiv:1402.0004.

15

http://ccpforge.cse.rl.ac.uk/gf/project/multinest/
http://github.com/JohannesBuchner/PyMultiNest
http://johannesbuchner.github.io/pymultinest-tutorial/
http://johannesbuchner.github.io/PyMultiNest/pymultinest.html
http://github.com/JohannesBuchner/MultiNest
http://github.com/JohannesBuchner/MultiNest/releases
http://arxiv.org/abs/0704.3704
http://arxiv.org/abs/0809.3437
http://arxiv.org/abs/1306.2144
http://arxiv.org/abs/1402.0004

Monte Python Documentation, Release 2.2.0

By default, MultiNest will try to use the Intel Fortran Compiler if installed. If you want to use gfortran instead,
add the flag -DCMAKE_Fortran_COMPILER=gfortran to cmake. If you want to force compilation with MPI
support (though gfortran should autodetect it and implement it in most systems), use mpif90 as compiler name.

4.1.2 2. PyMultiNest

Note: In a future implementation (hopefully soon), PyMultiNest will be installed automatically. Right now, the
installations has to be done manually as it follows.

Download PyMultiNest from here, either using the releases page or cloning with git

$ git clone http://github.com/JohannesBuchner/PyMultiNest

Now go to the installation directory and install:

$ cd PyMultiNest
$ python setup.py install # --user

You may need the flag --user in the last command if you do not have admin privileges.

If everything went ok, you should be able to run import pymultinest in a python console without getting any
output. In that case, you are good to go!

4.2 Basic usage and parameters

The MultiNest sampling is invoked with the command line option -m NS. As in the MCMC case, the parameter file
is read and the sampling is launched. The output files are created inside a subfolder NS inside the chain folder. This
will create the expected log.param file inside the chain’s root folder, and the expected raw MultiNest files in the NS
subfolder (see MultiNest’s README), along with two more files: [chain name].paramnames, which contains
the ordering of the parameters in the nested sampling chain files (not necessarily the ordering in which they appear in
the log.param, since clustering parameters must go first), and [chain name].arguments, which contains the
user defined MultiNest arguments and their values (see below).

Note: If the sampling has been interrupted, simply run it again and MultiNest should be able to restart where it
finished. If you intend to start a new sampling with different parameters for MultiNest, it is safer to delete the NS
subfolder (otherwise, the behaviour is not well defined).

Note: MultiNest can benefit greatly from being run in parallel with MPI. If it has been correctly compiled with
MPI (try to run the examples distributed with the MultiNest code with MPI), it is possible to take advantage of it
using Monte Python: simply run the sampler python MontePython.py preceded by the appropriate MPI runner
(mpirun for Open MPI, mpiexec for MPICH, etc.).

Once the sampling has finished, the output of it can be analised as in the MCMC case with MontePython.py
-info [chain_folder]/NS (notice that one must specify the NS subfolder). This will create a chain file in the
chain root folder containing the (accepted) points of the nested sampling, and it will be automatically analysed as a
MCMC chain, producing the expected files and plots.

The MultiNest parameters are added after the -m NS flag in the command line. They are described in the next section
(more thorough descriptions are to be looked for within the MultiNest documentation).

16 Chapter 4. Using MultiNest with Monte Python

http://github.com/JohannesBuchner/PyMultiNest
http://github.com/JohannesBuchner/PyMultiNest/releases

Monte Python Documentation, Release 2.2.0

4.2.1 Automatic parameters

(Technical section, you can skip)

The following parameters are defined automatically by the content of the .param file, and you should not care about
them:

• ndims | n_dims : number of varying parameters.

• nPar | n_params : number of varying parameters.

• root | outputfiles_basename : prefix of the MultiNest output files: name of the chain plus a hyphen.

• outfile | write_output : whether to write output files (yes, of course).

• resume | resume : whether to allow for resuming a previously killed run, enabled by default.

• initMPI | init_MPI : initialise MPI within MultiNest (disabled: MPI, if requested, is initialised by Monte
Python).

• feedback | verbose (True) : print information periodically.

4.2.2 Manually set parameters

The following parameters can be changed by hand to adjust the sampling to one’s needs. In the following, they are
presented as

[MultiNest name] | [PyMultiNest name] (default value)

and are set in every run by command line options as

--NS_[PyMultiNest name] [value]

E.g. to set the number of “live points” to 100, one should add to the command python MontePython.py [...]
-m NS the option

--NS_n_live_points 100

Note: The default values are those defined in PyMultiNest (at least most of them), and are not hard-coded in Monte
Python.

Note: The parameters not appearing in the following lists are not managed in the current implementation.

General sampling options

• nlive | n_live_points (400) : number of points used in every iteration.

• IS | importance_nested_sampling (True) : whether to use Importance Nested Samplin (see
arXiv:1306.2144).

• efr | sampling_efficiency (0.8) : defines the sampling efficiency (see ‘Use cases’ below).

• ceff | const_efficiency_mode (True) : constant efficiency mode – slower, but more accurate
evidence estimation.

• seed | seed (-1): seed of the random number generator (if negative, uses system clock).

• logZero | log_zero (-1e90) : if the log-likelihood of a sample is smaller than this value, the sample
is ignored.

4.2. Basic usage and parameters 17

http://arxiv.org/abs/1306.2144

Monte Python Documentation, Release 2.2.0

• updInt | n_iter_before_update (100) : number of iteration after which the output files are up-
dated.

Ending conditions

• tol | evidence_tolerance (0.5)

• maxiter | max_iter (0)

The sampling ends after maxiter iterations, or when the tolerance condition on the evidence defined by tol is
fulfilled, whatever happens first.

Multi-modal sampling

• mmodal | multimodal (False) : whether to try to find separate modes in the posterior.

• maxModes | max_modes (100) : maximum number of separate modes to consider.

• Ztol | mode_tolerance (-1e90) : if the local log-evidence is greater than this value, a mode is cre-
ated.

Note: Here, multi-modal sampling is disabled by default. If enabled, Imporance Nested Sampling will be automati-
cally disabled, since both modes are not compatible.

We left out the option concerning the clustering parameters, i.e. on which parameters’s subspace is MultiNest to look
for posterior mode separation:

nCdims | n_clustering_params

In (Py)MultiNest, clustering parameters are specified as the n first ones, which must be at the beginning of the
parameters list. Here, instead, we override that limitation, and the clustering parameters are specified as

--NS_clustering_params param1 param2 ...

The reason for doing it this way is giving more flexibility to the user, being able to change the clustering parameters
without having to modify the ordering of the parameters in the param file to put the clustering parameters at the
beginnig. But this comes at a price: the raw MultiNest chain files have the parameters ordered with the clustering
parameters at the beginning, and then the rest as they appear in the .param file. The ordering of the parameters is
save to a file [chain name].paramnames in the NS subfolder. If you intend to use MustiNest’s raw output files,
you must take this into account! If, instead, you use nested sampling simply as a means to get a covariance matrix and
some sample points (saved in chain_NS__[accepted/rejected].txt), you do not need to care about this.

4.3 References

18 Chapter 4. Using MultiNest with Monte Python

CHAPTER 5

Using the Cosmo Hammer with Monte Python

Monte Python can now use the software Cosmo Hammer written by J. Akeret and S. Seehars, which is based on the
emcee sampler, itself based on the Affine Invariant Markov Chain Monte Carlo

Note: By using the Cosmo Hammer, you agree to abide by the GNU General Public License v3.0 or higher (see their
website)

Please look at their website for specifics about the installation.

5.1 Using with Monte Python

you can choose to use the Cosmo Hammer by specifying the argument: -m CH

You should probably always set the environment variable OMP_NUM_THREADS to your maximum number of cores:

$] export OMP_NUM_THREADS=4

before running.

19

http://www.astro.ethz.ch/refregier/research/Software/cosmohammer/
http://arxiv.org/abs/1202.3665
http://msp.berkeley.edu/camcos/2010/5-1/p04.xhtml

Monte Python Documentation, Release 2.2.0

20 Chapter 5. Using the Cosmo Hammer with Monte Python

CHAPTER 6

Existing likelihoods, and how to create new ones

This page is intended to explain in more concrete terms the information contained in the Likelihood class module
documentation. More specifically, you should be able to write new likelihood files and understand the structure of
existing ones.

6.1 One likelihood is one directory, one .py and one .data file

We have seen already that cosmological parameters are passed directly from the input file to Class, and do not appear
anywhere in the code itself, i.e. in the files located in the montepython/ directory. The situation is the same for
likelihoods. You can write the name of a likelihood in the input file, and Monte Python will directly call one of the
external likelihood codes implemented in the montepython/likelihoods/ directory. This means that when you
add some new likelihoods, you don’t need to declare them in the code. You implement them in the likelihoods
directory, and they are ready to be used if mentioned in the input file.

For This to work, a precise syntax must be respected. Each likelihood is associated to a name, e.g. hst, wmap,
WiggleZ (the name is case-sensitive). This name is used:

• for calling the likelihood in the input file, e.g. data.experiments = [’hst’, ...],

• for naming the directory of the likelihood, e.g. montepython/likelihoods/hst/,

• for naming the input data file describing the characteristics of the experiment,
montepython/likelihoods/hst/hst.data (this file can point to raw data files located in the
data directory)

• for naming the class declared in montepython/likelihoods/hst/__init__.py and used also in
montepython/likelihoods/hst/hst.data

Warning: Note that since release 2.0.0, the likelihood python source is not called any longer hst.py, but
__init__.py. The reason was for packaging and ease of use when calling from a Python console.

When implementing new likelihoods, you will have to follow this rule. You could already wish to have two
Hubble priors/likelihoods in your folder. For instance, the distributed version of hst corresponds to a gaussian
prior with standard deviation ℎ = 0.738 ± 0.024. If you want to change these numbers, you can simply edit
montepython/likelihoods/hst/hst.data. But you could also keep hst unchanged and create a new
likelihood called e.g. spitzer. We will come back to the creation of likelihoods later, but just to illustrate the
structure of likelihoods, let us see how to create such a prior/likelihood:

$ mkdir likelihoods/spitzer
$ cp likelihoods/hst/hst.data likelihoods/spitzer/spitzer.data
$ cp likelihoods/hst/__init__.py likelihoods/spitzer/__init__.py

21

Monte Python Documentation, Release 2.2.0

Then edit montepython/likelihoods/spitzer/__init__.py and replace in the initial declaration the
class name hst by spitzer:

class spitzer(Likelihood_prior):

Edit also montepython/likelihoods/spitzer/spitzer.data, replace the class name hst by
spitzer, and the numbers by your constraint:

spitzer.h = 0.743
spitzer.sigma = 0.021

You are done. You can simply add data.experiments = [...,’spitzer’, ...] to the list of experi-
ments in the input parameter file and the likelihood will be used.

6.2 Existing likelihoods

We release the first version of Monte Python with the likelihoods:

• spt, bicep, cbi, acbar, bicep, quad, the latest public versions of CMB data from SPT, Bicep, CBI,
ACBAR, BICEP and Quad; for the SPT likelihoods we include three nuisance parameters obeying to gaussian
priors, like in the original SPT paper, and for ACBAR one nuisance parameter with top-hat prior. These exper-
iments are described by the very same files as in a ComsoMC implementation. They are located in the data/
directory. For each experiment, there is a master file xxx.dataset containing several variables and the names
of other files with the raw data. In the files likelihoods/xxx/xxx.data, we just give the name of the
different xxx.dataset files, that Monte Python is able to read just like CosmoMC.

• wmap, original likelihood file accessed through the wmap wrapper. The file
likelihoods/wmap/wmap.data allows you to call this likelihood with a few different options
(e.g. switching on/off Gibbs sampling, choosing the minimum and maximum multipoles to include, etc.) As
usual, we implemented the nuisance parameter A_SZ with a flat prior. In the input parameter file, you can
decide to vary this parameter in the range 0-2, or to fix it to some value.

• hst is the HST Key Project gaussian prior on ℎ,

• sn constains the luminosity distance-redhsift relation using the Union 2 data compilation,

• WiggleZ constraints the matter power spectrum 𝑃 (𝑘) in four different redshift bins using recent WiggleZ data,

plus a few other likelihoods referring to future experiments, described in the next subsection. All these likelihoods are
strictly equivalent to those in the CosmoMC patches released by the various experimental collaborations.

6.3 Mock data likelihoods

We also release simplified likelihoods fake_planck_bluebook, euclid_lensing and euclid_pk for do-
ing forecasts for Planck, Euclid (cosmic shear survey) and Euclid (redshift survey).

In the case of Planck, we use a simple gaussian likelihood for TT, TE, EE (like in astro-ph/0606227 with no lensing
extraction) with sensitivity parameters matching the numbers published in the Planck bluebook. In the case of Euclid,
our likelihoods and sensitivity parameters are specified in the Euclid Red Book. The sensitivity parameters can always
be modified by the user, by simply editing the .data files.

These likelihoods compare theoretical spectra to a fiducial spectrum (and not to random data generated given the
fiducial model: this approach is simpler and leads to the same forecast error bars, see this paper again).

Let us illustrate the way in which this works with fake_planck_bluebook, although the two Euclid likelihoods
obey exactly to the same logic.

22 Chapter 6. Existing likelihoods, and how to create new ones

http://arxiv.org/abs/astro-ph/0606227
http://arxiv.org/abs/1110.3193
http://arxiv.org/abs/astro-ph/0606227

Monte Python Documentation, Release 2.2.0

When you download the code, the file montepython/likelihoods/fake_planck_bluebook/fake_planck_bluebook.data
has a field fake_planck_bluebook.fiducial_file pointing to the file
’fake_planck_bluebook_fiducial.dat’. You downloaded this file together with the code: it is lo-
cated in data and it contains the TT/TE/EE spectrum of a particular fiducial model (with parameter values logged in
the first line of the file). If you launch a run with this likelihood, it will work immediately and fit the various models
to this fiducial spectrum.

But you probably wish to choose your own fiducial model. This is extremely simple with Monte Python. You can delete
the provided fiducial file\:code:‘fake_planck_bluebook_fiducial.dat’, or alternatively, you can change the name of the
fiducial file in likelihoods/fake_planck_bluebook/fake_planck_bluebook.data. When you start
the next run, the code will notice that there is no input fiducial spectrum. It will then generate one automatically, write
it in the correct file with the correct location, and stop after this single step. Then, you can launch new chains, they
will fit this fiducial spectrum.

When you generate the fiducial model, you probably want to control exactly fiducial parameter values. If you start
from an ordinary input file with no particular options, Monte Python will perform one random jump and generate the
fiducial model. Fiducial parameter values will be logged in the first line of the fiducial file. But you did not choose
them yourself. However, when you call Monte Python with the intention of generating a fiducial spectrum, you can
pass the command line option -f 0. This sets the variance of the proposal density to zero. Hence the fiducial model
will have precisely the parameter values specified in the input parameter file. The fiducial file is even logged in the
log.param of all the runs that have been using it.

6.4 Creating new likelihoods belonging to pre-defined category

A likelihood is a class (let’s call it generically xxx), declared and defined in
montepython/likelihoods/xxx/__init__.py, using input numbers and input files names specified
in montepython/likelihoods/xxx/xxx.data. The actual data files should usually be placed in the
data/ folder (with the exception of WMAP data). Such a class will always inherit from the properties of the most
generic class defined inside montepython/likelihoods_class.py. But it may fall in the category of some
pre-defined likelihoods and inherit more properties. In this case the coding will be extremely simple, you won’t need
to write a specific likelihood code.

In the current version, pre-defined classes are:

Likelihood_newdat suited for all CMB experiments described by a file in the .newdat format (same files as
in CosmoMC).

Likelihood_mock_cmb suited for all CMB experiments dexcribed with a simplified gaussian likelihood, like our
fake_planck_bluebook likelihood.

Likelihood_mpk suited for matter power spectrum data that would be described with a .dataset file in Cos-
moMC. This generic likelihood contains a piece of code following closely the routine mpk developped for Cos-
moMC. In the released version of Monte Python, this likelihood type is only used by each of the four redshift
bins of the WiggleZ data, but it is almost ready for being used with other data set in this format.

Suppose, for instance, that a new CMB dataset nextcmb is released in the .newdat format. You will then copy the
.newdat file and other related files (with window functions, etc.) in the folder data/. You will then create a new
likelihood, starting from an existing one, e.g cbi:

$ mkdir likelihoods/nextcmb
$ cp likelihoods/cbi/cbi.data likelihoods/nextcmb/nextcmb.data
$ cp likelihoods/cbi/__init__.py likelihoods/nextcmb/__init__.py

The python file should only be there to tell the code that nextcmb is in the .newdat format. Hence it should only
contain:

6.4. Creating new likelihoods belonging to pre-defined category 23

Monte Python Documentation, Release 2.2.0

from montepython.likelihood_class import Likelihood_newdat
class nextcmb(Likelihood_newdat):

pass

This is enough: the likelihood is fully defined. The data file should only contain the name of the .newdat file:

nextcmb.data_directory = data.path['data']
nextcmb.file = 'next-cmb-file.newdat'

Once you have edited these few lines, you are done! No need to tell Monte Python that there is a new likelihood! Just
call it in your next run by adding data.experiments = [...,’nextcmb’, ...] to the list of experiments
in the input parameter file, and the likelihood will be used.

You can also define nuisance parameters, contamination spectra and nuisance priors for this likelihood, as explained
in the next section.

6.5 Creating new likelihoods from scratch

The likelihood sn is an example of individual likelihood code: the actual code is explicitly written in sn.py. To
create your own likelihood files, the best to is look at such examples and follow them. We do not provide a full tutorial
here, and encourage you to ask for help if needed. Here are however some general indications.

Your customised likelihood should inherit from generic likelihood properties through:

from montepython.likelihood_class import Likelihood
class my-likelihood(Likelihood):

Implementing the likelihood amounts in developing in the python file my-likelihood.py the properties of two
essential functions, __init__ and loglkl. But you don’t need to code everything from scratch, because the generic
likelihood already knows the most generic steps. The previous link will give you all the functions defined from
this base class, that your daughter class will inherit from. Here follows a detailled explanation about how to use these.

One thing is that you don’t need to write from scratch the parser reading the .data file: this will be done automatically
at the beginning of the initialization of your likelihood. Consider that any field defined with a line in the .data file,
e.g. my-likelihood.variance = 5, are known in the likelihood code: in this example you could write in the
python code something like chi2+=result**2/self.variance.

You don’t need either to write from scratch an interface with Class. You just need to write somewhere in the initial-
ization function some specific parameters that should be passed to Class. For instance, if you need the matter power
spectrum, write

self.need_cosmo_arguments(data,{'output':'mPk'})

that uses the method need_cosmo_arguments. If this likelihood is used, the field mPk will be appended to the
list of output fields (e.g. output=tCl,pCl,mPk), unless it was already there. If you write

self.need_cosmo_arguments(data,{'l_max_scalars':3300})

the code will check if l_max_scalars was already set at least to 3300, and if not, it will increase it to 3300. But if
another likelihood needs more it will be more.

You don’t need to redefine functions like for instance those defining the role of nuisance parameters (especially for
CMB experiments). If you write in the .data file

my-likelihood.use_nuisance = ['N1','N2']

the code will know that this likelihood cannot work if these two nuisance parameters are not specified in the parameter
input file (they can be varying or fixed; fix them by writing a 0 in the sigma entry). If you try to run without them, the

24 Chapter 6. Existing likelihoods, and how to create new ones

Monte Python Documentation, Release 2.2.0

code will stop with an explicit error message. If the parameter N1 has a top-hat prior, no need to write it: just specify
prior edges in the input parameter file. If N2 has a gaussian prior, specify it in the .data file, e.g.:

my-likelihood.N2_prior_center = 1
my-likelihood.N2_prior_variance = 2

Since these fields refer to pre-defined properties of the likelihood, you don’t need to write explicitly in the code
something like chi2 += (N2-center)**2/variance, adding the prior is done automatically. Finally, if these
nuisance parameters are associated to a CMB dataset, they may stand for a multiplicative factor in front of a contam-
ination spectrum to be added to the theoretical 𝐶ℓ‘s. This is the case for the nuisance parameters of the acbar, spt
and wmap likelihoods delivered with the code, so you can look there for concrete examples. To assign this role to
these nuisance parameters, you just need to write

my-likelihood.N1_file = 'contamination_corresponding_to_N1.data'

and the code will understand what it should do with the parameter N1 and the file
data/contamination_corresponding_to_N1.data. Optionally, the factor in front of the contami-
nation spectrum can be rescaled by a constant number using the syntax:

my-likelihood.N1_scale = 0.5

Creating new likelihoods requires a basic knowledge of python. If you are new in python, once you know the basics,
you will realise how concise a code can be. You can compare the length of the likelihood codes that we provide with
their equivalent in Fortran in the CosmoMC package.

6.5. Creating new likelihoods from scratch 25

Monte Python Documentation, Release 2.2.0

26 Chapter 6. Existing likelihoods, and how to create new ones

CHAPTER 7

Documentation

This documentation was extracted directly from the code. The comments written as docstrings are automatically read
and processed. This should prevent the documentation from straying too far from the current shape of the code.

Contents:

7.1 run Module

run.add_covariance_matrix(command)
Make sure that the command uses the covariance matrix from the folder

run.from_run_to_info(command)
Translate a command corresponding to a run into one for analysis

run.mock_update_run(custom_command=’‘)
Tentative covmat update run

Not reachable yet by any option.

run.mpi_run(custom_command=’‘)
Launch a simple MPI run, with no communication of covariance matrix

Each process will make sure to initialise the folder if needed. Then and only then, it will send the signal to its
next in line to proceed. This allows for initialisation over an arbitrary cluster geometry (you can have a single
node with many cores, and all the chains living there, or many nodes with few cores). The speed loss due to the
time spend checking if the folder is created should be negligible when running decently sized chains.

Each process will send the number that it found to be the first available to its friends, so that the gathering of
information post-run is made easier. If a chain number is specified, this will be used as the first number, and
then incremented afterwards with the rank of the process.

run.run(custom_command=’‘)
Main call of the function

It recovers the initialised instances of cosmo Class, Data and the NameSpace containing the command line
arguments, feeding into the sampler.

Parameters custom_command (str) – allows for testing the code

run.safe_initialisation(custom_command=’‘, comm=None, nprocs=1)
Wrapper around the init function to handle errors

Keyword Arguments

• custom_command (str) – testing purposes

27

Monte Python Documentation, Release 2.2.0

• comm (MPI.Intracomm) – object that helps communicating between the processes

• nprocs (int) – number of processes

7.2 Initialise Module

initialise.initialise(custom_command=’‘)
Initialisation routine

This function recovers the input from the command line arguments, from parser_mp, the parameter files.

It then extracts the path of the used Monte Python code, and proceeds to initialise a data instance, a cosmo-
logical code instance.

Parameters custom_command (str) – allows for testing the code

initialise.recover_cosmological_module(data)
From the cosmological module name, initialise the proper Boltzmann code

Note: Only CLASS is currently wrapped, but a python wrapper of CosmoMC should enter here.

initialise.recover_local_path(command_line)
Read the configuration file, filling a dictionary

Returns path (dict) – contains the absolute path to the location of the code, the data, the cosmolog-
ical code, and potential likelihood codes (clik for Planck, etc)

7.3 Parser module

Defines the command line options and their help messages in create_parser() and read the input command line
in parse(), dealing with different possible configurations.

The fancy short/long help formatting, as well as the automatic help creation from docstrings is entirely due to
Francesco Montesano.

class parser_mp.MpArgumentParser(prog=None, usage=None, description=None, epilog=None,
version=None, parents=[], formatter_class=<class
‘argparse.HelpFormatter’>, prefix_chars=’-‘, from-
file_prefix_chars=None, argument_default=None, con-
flict_handler=’error’, add_help=True)

Bases: argparse.ArgumentParser

Extension of the default ArgumentParser

error(message)
Override method to raise error :Parameters: message (string) –

error message

safe_parse_args(args=None)
Allows to set a default subparser

This trick is there to maintain the previous way of calling MontePython.py

set_default_subparser(default, args=None)
If no subparser option is found, add the default one

Note: This function relies on the fact that all calls to MontePython will start with a -. If this came to

28 Chapter 7. Documentation

Monte Python Documentation, Release 2.2.0

change, this function should be revisited

parser_mp.add_subparser(sp, name, **kwargs)
Add a parser to the subparser sp with name.

All the logic common to all subparsers should go here

Parameters

• sp (subparser instance)

• name (str) – name of the subparser

• kwargs (dict) – keywords to pass to the subparser

• output

• ——

• sparser (Argparse instance) – new subparser

parser_mp.create_parser()
Definition of the parser command line options

The main parser has so far two subparsers, corresponding to the two main modes of operating the code, namely
run and info. If you simply call python montepython/MontePython.py -h, you will find only this
piece of information. To go further, and find the command line options specific to these two submodes, one
should then do: python montepython/MontePython.py run -h, or info -h.

All command line arguments are defined below, for each of the two subparsers. This function create the auto-
matic help command.

Each flag outputs the following argument to a destination variable, specified by the dest keyword argument in
the source code. Please check there to understand the variable names associated with each option.

run

-N [int] number of steps in the chain (OBL). Note that when running on a cluster, your run might be
stopped before reaching this number.

-o [str] output folder (OBL). For instance -o chains/myexperiments/mymodel. Note that
in this example, the folder chains/myexperiments must already exist.

-p [str] input parameter file (OBL). For example -p input/exoticmodel.param.

-c [str] input covariance matrix (OPT). A covariance matrix is created when analyzing previous runs.

Note that the list of parameters in the input covariance matrix and in the run do not necessarily
coincide.

-j [str] jumping method (global (default), sequential or fast) (OPT).

With the global method the code generates a new random direction at each step, with the se-
quential one it cycles over the eigenvectors of the proposal density (= input covariance matrix).

The global method the acceptance rate is usually lower but the points in the chains are less
correlated. We recommend using the sequential method to get started in difficult cases, when
the proposal density is very bad, in order to accumulate points and generate a covariance matrix
to be used later with the default jumping method.

The fast method implements the Cholesky decomposition presented in
http://arxiv.org/abs/1304.4473 by Antony Lewis.

7.3. Parser module 29

http://arxiv.org/abs/1304.4473

Monte Python Documentation, Release 2.2.0

-m [str] sampling method, by default ‘MH’ for Metropolis-Hastings, can be set to ‘NS’ for Nested
Sampling (using Multinest wrapper PyMultiNest), ‘CH’ for Cosmo Hammer (using the Cosmo
Hammer wrapper to emcee algorithm), and finally ‘IS’ for importance sampling.

Note that when running with Importance sampling, you need to specify a folder to start from.

–update [int] update frequency for Metropolis Hastings. If greater than zero, number of steps after
which the proposal covariance matrix is updated automatically (OPT).

-f [float] jumping factor (>= 0, default to 2.4) (OPT).

The proposal density is given by the input covariance matrix (or a diagonal matrix with elements
given by the square of the input sigma’s) multiplied by the square of this factor. In other words,
a typical jump will have an amplitude given by sigma times this factor.

The default is the famous factor 2.4, advertised by Dunkley et al. to be an optimal trade-off
between high acceptance rate and high correlation of chain elements, at least for multivariate
gaussian posterior probabilities. It can be a good idea to reduce this factor for very non-gaussian
posteriors.

Using -f 0 -N 1 is a convenient way to get the likelihood exactly at the starting point passed
in input.

–conf [str] configuration file (default to default.conf) (OPT). This file contains the path to your
cosmological module directory.

–chain-number [str] arbitrary number of the output chain, to overcome the automatic one (OPT).

By default, the chains are named yyyy-mm-dd_N__i.txt with year, month and day being
extracted, N being the number of steps, and i an automatically updated index.

This means that running several times the code with the same command will create different
chains automatically.

This option is a way to enforce a particular number i. This can be useful when running on a
cluster: for instance you may ask your script to use the job number as i.

-r [str] restart from last point in chain, to avoid the burn-in stage (OPT).

At the beginning of the run, the previous chain will be deleted, and its content transfered to the
beginning of the new chain.

-b [str] start a new chain from the bestfit file computed with analyze. (OPT)

–fisher [None] Calculates the inverse of the fisher matrix to use as proposal distribution

–silent [None] silence the standard output (useful when running on clusters)

–Der-target-folder [str] Add additional derived params to this folder. It has to be used in conjunc-
tion with Der-param-list, and the method set to Der: -m Der. (OPT)

–Der-param-list [str] Specify a number of derived parameters to be added. A com-
plete example would be to add Omega_Lambda as a derived parameter: python
montepython/MontePython.py run -o existing_folder -m Der
--Der-target-folder non_existing_folder --Der-param-list
Omega_Lambda

–IS-starting-folder [str] Perform Importance Sampling from this folder or set of chains (OPT)

For Nested Sampling and Cosmo Hammer arguments, see nested_sampling and
cosmo_hammer.

info

Replaces the old -info command, which is deprecated but still available.

30 Chapter 7. Documentation

Monte Python Documentation, Release 2.2.0

files [string/list of strings] you can specify either single files, or a complete folder, for example info
chains/my-run/2012-10-26*, or info chains/my-run.

If you specify several folders (or set of files), a comparison will be performed.

–minimal [None] use this flag to avoid computing the posterior distribution. This will decrease the
time needed for the analysis, especially when analyzing big folders.

–bins [int] number of bins in the histograms used to derive posterior probabilities and credible inter-
vals (default to 20). Decrease this number for smoother plots at the expense of masking details.

–no-mean [None] remove the mean likelihood from the plot. By default, when plotting marginalised
1D posteriors, the code also shows the mean likelihood per bin with dashed lines; this flag
switches off the dashed lines.

–extra [str] extra file to customize the output plots. You can actually set all the possible op-
tions in this file, including line-width, ticknumber, ticksize, etc... You can specify four fields,
info.redefine (dict with keys set to the previous variable, and the value set to a numerical com-
putation that should replace this variable), info.to_change (dict with keys set to the old variable
name, and value set to the new variable name), info.to_plot (list of variables with new names to
plot), and info.new_scales (dict with keys set to the new variable names, and values set to the
number by which it should be multiplied in the graph). For instance,

info.to_change={'oldname1':'newname1','oldname2':'newname2',...}
info.to_plot=['name1','name2','newname3',...]
info.new_scales={'name1':number1,'name2':number2,...}

–noplot [bool] do not produce any plot, simply compute the posterior (OPT) (flag)

–noplot-2d [bool] produce only the 1d posterior plot (OPT) (flag)

–contours-only [bool] do not fill the contours on the 2d plots (OPT) (flag)

–all [None] output every subplot and data in separate files (OPT) (flag)

–ext [str] change the extension for the output file. Any extension handled by matplotlib can be
used. (pdf (default), png (faster))

–fontsize [int] desired fontsize (default to 16)

–ticksize [int] desired ticksize (default to 14)

–line-width [int] set line width (default to 4)

–decimal [int] number of decimal places on ticks (default to 3)

–ticknumber [int] number of ticks on each axis (default to 3)

–legend-style [str] specify the style of the legend, to choose from sides or top.

–keep-non-markovian [bool] Use this flag to keep the non-markovian part of the chains produced
at the beginning of runs with –update mode This option is only relevant when the chains were
produced with –update (OPT) (flag)

–keep-fraction [float] after burn-in removal, analyze only last fraction of each chain. (between 0 and
1). Normally one would not use this for runs with –update mode, unless –keep-non-markovian
is switched on (OPT)

–want-covmat [bool] calculate the covariant matrix when analyzing the chains. Warning: this will
interfere with ongoing runs utilizing update mode (OPT) (flag)

Returns args (NameSpace) – parsed input arguments

7.3. Parser module 31

Monte Python Documentation, Release 2.2.0

parser_mp.custom_help(split_string=’<++>’)
Create a custom help action.

It expects split_string to appear in groups of three. If the option string is ‘-h’, then uses the short description
between the first two split_string. If the option string is ‘-h’, then uses all that is between the first and the third
split_string, stripping the first one.

Parameters

• split_string (str) – string to use to select the help string and how to select them. They must
appear in groups of 3

• output

• ——

• CustomHelp (class definition)

parser_mp.existing_file(fname)
Check if the file exists. If not raise an error

Parameters fname (string) – file name to parse

Returns fname (string)

parser_mp.get_dict_from_docstring(key_symbol=’<**>’, description_symbol=’<++>’)
Create the decorator

Parameters

• key_symbol (str) – identifies the key of a argument/option

• description_symbol (str) – identify the description of a argument/option

• Returns

• ——

• wrapper (function)

parser_mp.initialise_parser(**kwargs)
Create the argument parser and returns it :Parameters: * kwargs (dictionary) –

keyword to pass to the parser

•output

•——

•p (MpArgumentParser instance) – parser with some keyword added

parser_mp.parse(custom_command=’‘)
Check some basic organization of the folder, and exit the program in case something goes wrong.

Keyword Arguments custom_command (str) – For testing purposes, instead of reading the com-
mand line argument, read instead the given string. It should ommit the start of the command, so
e.g.: ‘-N 10 -o toto/’

parser_mp.parse_docstring(docstring, key_symbol=’<**>’, description_symbol=’<++>’)
Extract from the docstring the keys and description, return it as a dict

Parameters

• docstring (str)

• key_symbol (str) – identifies the key of an argument/option

32 Chapter 7. Documentation

Monte Python Documentation, Release 2.2.0

• description_symbol (str) – identify the description of an argument/option

• output

• ——

• helpdic (dict) – help strings for the parser

parser_mp.positive_int(string)
Check if the input is integer positive :Parameters: * string (string) –

string to parse

•output (int) – return the integer

7.4 Data module

class data.Data(command_line, path)
Bases: object

Store all relevant data to communicate between the different modules.

The Data class holds the cosmological information, the parameters from the MCMC run, the information com-
ing from the likelihoods. It is a wide collections of information, with in particular two main dictionaries:
cosmo_arguments and mcmc_parameters.

It defines several useful methods. The following ones are called just once, at initialization:

•fill_mcmc_parameters()

•read_file()

•read_version()

•group_parameters_in_blocks()

On the other hand, these two following functions are called every step.

•check_for_slow_step()

•update_cosmo_arguments()

Finally, the convenient method get_mcmc_parameters() will be called in many places, to return the
proper list of desired parameters.

It has a number of different attributes, and the more important ones are listed here:

•boundary_loglike

•cosmo_arguments

•mcmc_parameters

•need_cosmo_update

•log_flag

Note: The experiments attribute is extracted from the parameter file, and contains the list of likelihoods to use

Note: The path argument will be used in case it is a first run, and hence a new folder is created. If starting from
an existing folder, this dictionary will be compared with the one extracted from the log.param, and will use the
latter while warning the user.

7.4. Data module 33

Monte Python Documentation, Release 2.2.0

Warning: New in version 2.0.0, you can now specify an oversampling of the nuisance parameters, to
hasten the execution of a run with likelihoods that have many of them. You should specify a new field in
the parameter file, data.over_sampling = [1, ...], that contains a 1 on the first element, and then the over
sampling of the desired likelihoods. This array must have the same size as the number of blocks (1 for the
cosmo + 1 for each likelihood with varying nuisance parameters). You need to call the code with the flag -j
jast for it to be used.

To create an instance of this class, one must feed the following parameters and keyword arguments:

Parameters

• command_line (NameSpace) – NameSpace containing the input from the parser_mp.
It stores the input parameter file, the jumping methods, the output folder, etc... Most of
the information extracted from the command_file will be transformed into Data attributes,
whenever it felt meaningful to do so.

• path (dict) – Contains a dictionary of important local paths. It is used here to find the
cosmological module location.

boundary_loglike = None
Define the boundary loglike, the value used to defined a loglike that is out of bounds. If a point in the
parameter space is affected to this value, it will be automatically rejected, hence increasing the multiplicity
of the last accepted point.

cosmo_arguments = None
Simple dictionary that will serve as a communication interface with the cosmological code. It con-
tains all the parameters for the code that will not be set to their default values. It is updated from
mcmc_parameters.

Return type dict

mcmc_parameters = None
Ordered dictionary of dictionaries, it contains everything needed by the mcmc module for the MCMC
procedure. Every parameter name will be the key of a dictionary, containing the initial configuration, role,
status, last accepted point and current point.

Return type ordereddict

NS_arguments = None
Dictionary containing the parameters needed by the PyMultiNest sampler. It is filled just before the run of
the sampler. Those parameters not defined will be set to the default value of PyMultiNest.

Return type dict

over_sampling = None
List storing the respective over sampling of the parameters. The first entry, applied to the cosmological
parameters, will always be 1. Setting it to anything else would simply rescale the whole process. If not
specified otherwise in the parameter file, all other numbers will be set to 1 as well.

Return type list

need_cosmo_update = None
added in version 1.1.1. It stores the truth value of whether the cosmological block of parameters was
changed from one step to another. See group_parameters_in_blocks()

Return type bool

log_flag = None
Stores the information whether or not the likelihood data files need to be written down in the log.param
file. Initially at False.

34 Chapter 7. Documentation

Monte Python Documentation, Release 2.2.0

Return type bool

fill_mcmc_parameters()
Initializes the ordered dictionary mcmc_parameters from the input parameter file.

It uses read_file(), and initializes instances of parameter to actually fill in mcmc_parameters.

initialise_likelihoods(experiments)
Given an array of experiments, return an ordered dict of instances

Note: in the __init__ method, experiments is naturally self.experiments, but it is useful to keep it as a
parameter, for the case of importance sampling.

read_file(param, structure, field=’‘, separate=False)
Execute all lines concerning the Data class from a parameter file

All lines starting with data. will be replaced by self., so the current instance of the class will contain all
the information.

Note: A rstrip() was added at the end, because of an incomprehensible bug on some systems that imagined
some inexistent characters at the end of the line... Now should work

Note: A security should be added to protect from obvious attacks.

Parameters

• param (str) – Name of the parameter file

• structure (str) – Name of the class entries we want to execute (mainly, data, or any other
likelihood)

Keyword Arguments

• field (str) – If nothing is specified, this routine will execute all the lines corresponding to
the structure parameters. If you specify a specific field, like path, only this field will be
read and executed.

• separate (bool) – If this flag is set to True, a container class will be created for the structure
field, so instead of appending to the namespace of the data instance, it will append to a
sub-namespace named in the same way that the desired structure. This is used to extract
custom values from the likelihoods, allowing to specify values for the likelihood directly
in the parameter file.

group_parameters_in_blocks()
Regroup mcmc parameters by blocks of same speed

This method divides all varying parameters from mcmc_parameters into as many categories as there
are likelihoods, plus one (the slow block of cosmological parameters).

It creates the attribute block_parameters, to be used in the module mcmc.

Note: It does not compute by any mean the real speed of each parameter, instead, every parameter
belonging to the same likelihood will be considered as fast as its neighbour.

7.4. Data module 35

Monte Python Documentation, Release 2.2.0

Warning: It assumes that the nuisance parameters are already written sequentially, and grouped to-
gether (not necessarily in the order described in experiments). If you mix up the different nuisance
parameters in the .param file, this routine will not method as intended. It also assumes that the cosmo-
logical parameters are written at the beginning of the file.

assign_over_sampling_indices()
Create the list of varied parameters given the oversampling

read_version(param_file)
Extract version and subversion from an existing log.param

get_mcmc_parameters(table_of_strings)
Returns an ordered array of parameter names filtered by table_of_strings.

Parameters table_of_strings (list) – List of strings whose role and status must be matched by
a parameter. For instance,

>>> data.get_mcmc_parameters(['varying'])
['omega_b', 'h', 'amplitude', 'other']

will return a list of all the varying parameters, both cosmological and nuisance ones (derived
parameters being fixed, they wont be part of this list). Instead,

>>> data.get_mcmc_parameters(['nuisance', 'varying'])
['amplitude', 'other']

will only return the nuisance parameters that are being varied.

check_for_slow_step(new_step)
Check whether the value of cosmological parameters were changed, and if no, skip computation of the
cosmology.

update_cosmo_arguments()
Put in cosmo_arguments the current values of mcmc_parameters

This method is called at every step in the Markov chain, to update the dictionary. In the Markov chain, the
scale is not remembered, so one has to apply it before giving it to the cosmological code.

Note: When you want to define new parameters in the Markov chain that do not have a one to one
correspondance to a cosmological name, you can redefine its behaviour here. You will find in the source
several such examples.

Note: For complex CLASS parameters, that expect a string of numbers separated with commas, you
can now use the name of the argument, for instance m_ncdm, then append a double underscore and a
number. So if you run with two cosmological parameters, m_ncdm__1 and m_ncdm__2, this function
will automatically concatenate the two and feed class m_ncdm. You still have to make sure that the other
variables are properly set, like N_ncdm to 2, in this example.

static folder_is_initialised(folder)
Static method to call for checking if a folder was already initialised

This method can be used to speed up the mpi initialisation in run. If a process finds that the folder is
already a proper Monte Python one, it sends directly a ‘go’ signal to its next in line.

Warning: This method assumes that the last lines of the log.param are the path indication. If this
would ever change, adjust this method accordingly.

36 Chapter 7. Documentation

Monte Python Documentation, Release 2.2.0

__cmp__(other)
Redefinition of the ‘compare’ method for two instances of this class.

It will decide which basic operations to perform when the code asked if two instances are the same (in
case you want to launch a new chain in an existing folder, with your own parameter file) Comparing
cosmological code versions (warning only, will not fail the comparison)

__call__(ctx)
Interface layer with CosmoHammer

Store quantities to a the context, to be accessed by the Cosmo Module and each of the likelihoods.

Parameters ctx (context) – Contains several dictionaries storing data and cosmological infor-
mation

class data.Parameter(array, key)
Bases: dict

Store all important fields, and define a few convenience methods

This class replaces the old function defined in the Data class, called from_input_to_mcmc_parameters. The tra-
duction is now done inside the Parameter class, which interprets the array given as an input inside the parameter
file, and returns a dictionary having all relevant fields initialized.

Warning: This used to be an ordered dictionary, for no evident reason. It is now reverted back to an
ordinary dictionary. If this broke anything, it will be reverted back

At the end of this initialization, every field but one is filled for the specified parameter, be it fixed or varying.
The missing field is the ‘last_accepted’ one, that will be filled in the module mcmc.

Note: The syntax of the parameter files is defined here - if one wants to change it, one should report the changes
in there.

The other fields are

Variables

• initial (array) – Initial array of input values defined in the parameter file. Contains (in
this order) mean, minimum, maximum, 1-sigma. If the min/max values (TO CHECK pro-
posal density boundaries) are unimportant/unconstrained, use None or -1 (without a period
!)

• scale (float) – 5th entry of the initial array in the parameter file, defines the factor with
which to multiply the values defined in initial to give the real value.

• role (str) – 6th entry of the initial array, can be cosmo, nuisance or derived. A derived
parameter will not be considered as varying, but will be instead recovered from the cosmo-
logical code for each point in the parameter space.

• prior (Prior) – defined through the optional 7th entry of the initial array, can be om-
mited or set to flat (same), or set to gaussian. An instance of the prior defined in prior
will be initialized and set to this value.

• tex_name (str) – A tentative tex version of the name, provided by the function
io_mp.get_tex_name().

• status (str) – Depending on the 1-sigma value in the initial array, it will be set to fixed or
varying (resp. zero and non-zero)

• current (float) – Stores the value at the current point in parameter space (not allowed
initially)

7.4. Data module 37

Monte Python Documentation, Release 2.2.0

Parameters

• value (list) – Array read from the parameter file

• key (str) – Name of the parameter

7.5 Prior module

class prior.Prior(array)
Bases: object

Store the type of prior associated to a parameter

It takes as an optional input argument the array of the input parameters defined in the parameter file.

The current implemented types are ‘flat’ (default), and ‘gaussian’, which expect also a mean and sigma. Possible
extension would take a ‘external’, needing to read an external file to read for the definition.

The entry ‘prior’ of the dictionary mcmc_parameters will hold an instance of this class. It defines one main
function, called draw_from_prior(), that returns a number within the prior volume.

draw_from_prior()
Draw a random point from the prior range considering the prior type

Returns value (float) – A random sample inside the prior region

value_within_prior_range(value)
Check for a value being in or outside the prior range

is_bound()
Checks whether the allowed parameter range is finite

map_from_unit_interval(value)
Linearly maps a value of the interval [0,1] to the parameter range.

For the sake of speed, assumes the parameter to be bound to a finite range, which should have been
previously checked with is_bound()

7.6 Likelihood class module

Contains the definition of the base likelihood class Likelihood, with basic functions, as well as more specific
likelihood classes that may be reused to implement new ones.

class likelihood_class.Likelihood(path, data, command_line)
Bases: object

General class that all likelihoods will inherit from.

It copies the content of self.path from the initialization routine of the Data class, and defines a handful of useful
methods, that every likelihood might need.

If the nuisance parameters required to compute this likelihood are not defined (either fixed or varying), the code
will stop.

Parameters

• data (class) – Initialized instance of Data

• command_line (NameSpace) – NameSpace containing the command line arguments

add_contamination_spectra(cl, data)

38 Chapter 7. Documentation

Monte Python Documentation, Release 2.2.0

add_nuisance_prior(lkl, data)

computeLikelihood(ctx)
Interface with CosmoHammer

Parameters ctx (Context) – Contains several dictionaries storing data and cosmological infor-
mation

get_cl(cosmo, l_max=-1)
Return the 𝐶ℓ from the cosmological code in 𝜇K2

loglkl(cosmo, data)
Placeholder to remind that this function needs to be defined for a new likelihood.

Raises NotImplementedError

need_cosmo_arguments(data, dictionary)
Ensure that the arguments of dictionary are defined to the correct value in the cosmological code

Warning: So far there is no way to enforce a parameter where smaller is better. A bigger value will
always overried any smaller one (cl_max, etc...)

Parameters

• data (dict) – Initialized instance of data

• dictionary (dict) – Desired precision for some cosmological parameters

read_contamination_spectra(data)

read_from_file(path, data, command_line)
Extract the information from the log.param concerning this likelihood.

If the log.param is used, check that at least one item for each likelihood is recovered. Otherwise, it means
the log.param does not contain information on the likelihood. This happens when the first run fails early,
before calling the likelihoods, and the program did not log the information. This check might not be
completely secure, but it is better than nothing.

Warning: This checks relies on the fact that a likelihood should always have at least one line of code
written in the likelihood.data file. This should be always true, but in case a run fails with the error
message described below, think about it.

Warning: As of version 2.0.2, you can specify likelihood options in the parameter file. They have
complete priority over the ones specified in the likelihood.data file, and it will be reflected in the
log.param file.

class likelihood_class.Likelihood_clik(path, data, command_line)
Bases: likelihood_class.Likelihood

loglkl(cosmo, data)

class likelihood_class.Likelihood_clocks(path, data, command_line)
Bases: likelihood_class.Likelihood

Base implementation of H(z) measurements

loglkl(cosmo, data)

class likelihood_class.Likelihood_mock_cmb(path, data, command_line)
Bases: likelihood_class.Likelihood

compute_lkl(cl, cosmo, data)

7.6. Likelihood class module 39

Monte Python Documentation, Release 2.2.0

loglkl(cosmo, data)

class likelihood_class.Likelihood_mpk(path, data, command_line, common=False, com-
mon_dict={})

Bases: likelihood_class.Likelihood

add_common_knowledge(common_dictionary)
Add to a class the content of a shared dictionary of attributes

The purpose of this method is to set some attributes globally for a Pk likelihood, that are shared amongst all
the redshift bins (in WiggleZ.data for instance, a few flags and numbers are defined that will be transfered
to wigglez_a, b, c and d

loglkl(cosmo, data)

class likelihood_class.Likelihood_newdat(path, data, command_line)
Bases: likelihood_class.Likelihood

compute_lkl(cl, cosmo, data)

loglkl(cosmo, data)

class likelihood_class.Likelihood_prior(path, data, command_line)
Bases: likelihood_class.Likelihood

It copies the content of self.path from the initialization routine of the Data class, and defines a handful of useful
methods, that every likelihood might need.

If the nuisance parameters required to compute this likelihood are not defined (either fixed or varying), the code
will stop.

Parameters

• data (class) – Initialized instance of Data

• command_line (NameSpace) – NameSpace containing the command line arguments

loglkl()

class likelihood_class.Likelihood_sn(path, data, command_line)
Bases: likelihood_class.Likelihood

read_configuration_file()
Extract Python variables from the configuration file

This routine performs the equivalent to the program “inih” used in the original c++ library.

read_light_curve_parameters()
Read the file jla_lcparams.txt containing the SN data

Note: the length of the resulting array should be equal to the length of the covariance matrices stored in
C00, etc...

read_matrix(path)
extract the matrix from the path

This routine uses the blazing fast pandas library (0.10 seconds to load a 740x740 matrix). If not installed,
it uses a custom routine that is twice as slow (but still 4 times faster than the straightforward numpy.loadtxt
method)

Note: the length of the matrix is stored on the first line... then it has to be unwrapped. The pandas routine
read_table understands this immediatly, though.

40 Chapter 7. Documentation

Monte Python Documentation, Release 2.2.0

7.7 Sampler module

This module defines one key function, run(), that distributes the work to the desired actual sampler (Metropolis
Hastings, or Nested Sampling so far).

It also defines a serie of helper functions, that aim to be generically used by all different sampler methods:

• get_covariance_matrix()

• read_args_from_chain()

• read_args_from_bestfit()

• accept_step()

• compute_lkl()

sampler.accept_step(data)
Transfer the ‘current’ point in the varying parameters to the last accepted one.

sampler.check_flat_bound_priors(parameters, names)
Ensure that all varying parameters are bound and flat

It is a necessary condition to use the code with Nested Sampling or the Cosmo Hammer.

sampler.compute_fisher(data, cosmo, center, step_size)

sampler.compute_fisher_element(data, cosmo, center, one, two=None)

sampler.compute_lkl(cosmo, data)
Compute the likelihood, given the current point in parameter space.

This function now performs a test before calling the cosmological model (new in version 1.2). If any cos-
mological parameter changed, the flag data.need_cosmo_update will be set to True, from the routine
check_for_slow_step.

Returns

loglike (float) – The log of the likelihood (−𝜒2

2) computed from the sum of the likelihoods of
the experiments specified in the input parameter file.

This function returns data.boundary_loglkie, defined in the module data if i) the cur-
rent point in the parameter space has hit a prior edge, or ii) the cosmological module failed to
compute the model. This value is chosen to be extremly small (large negative value), so that the
step will always be rejected.

sampler.get_covariance_matrix(cosmo, data, command_line)
Compute the covariance matrix, from an input file or from an existing matrix.

Reordering of the names and scaling take place here, in a serie of potentially hard to read methods. For the sake
of clarity, and to avoid confusions, the code will, by default, print out a succession of 4 covariance matrices at
the beginning of the run, if starting from an existing one. This way, you can control that the paramters are set
properly.

Note: The set of parameters from the run need not to be the exact same set of parameters from the existing
covariance matrix (not even the ordering). Missing parameter from the existing covariance matrix will use the
sigma given as an input.

sampler.read_args_from_bestfit(data, bestfit)
Deduce the starting point either from the input file, or from a best fit file.

Parameters bestfit (str) – Name of the bestfit file from the command line.

7.7. Sampler module 41

Monte Python Documentation, Release 2.2.0

sampler.read_args_from_chain(data, chain)
Pick up the last accepted values from an input chain as a starting point

Function used only when the restart flag is set. It will simply read the last line of an input chain, using the tail
command from the extended io_mp.File class.

Warning: That method was not tested since the adding of derived parameters. The method
read_args_from_bestfit() is the prefered one.

Warning: This method works because of the particular presentation of the chain, and the use of tabbings
(not spaces). Please keep this in mind if you are having difficulties

Parameters chain (str) – Name of the input chain provided with the command line.

sampler.run(cosmo, data, command_line)
Depending on the choice of sampler, dispatch the appropriate information

The mcmc module is used as previously, except the call to mcmc.chain(), or nested_sampling.run()
is now within this function, instead of from within MontePython.

In the long term, this function should contain any potential hybrid scheme.

7.8 Mcmc module

This module defines one key function, chain(), that handles the Markov chain. So far, the code uses only one chain,
as no parallelization is done.

The following routine is also defined in this module, which is called at every step:

• get_new_position() returns a new point in the parameter space, depending on the proposal density.

The chain() in turn calls several helper routines, defined in sampler. These are called just once:

• compute_lkl() is called at every step in the Markov chain, returning the likelihood at the current point in
the parameter space.

• get_covariance_matrix()

• read_args_from_chain()

• read_args_from_bestfit()

• accept_step()

Their usage is described in sampler. On the contrary, the following routines are called at every step:

The arguments of these functions will often contain data and/or cosmo. They are both initialized instances of respec-
tively data and the cosmological class. They will thus not be described for every function.

mcmc.chain(cosmo, data, command_line)
Run a Markov chain of fixed length with a Metropolis Hastings algorithm.

Main function of this module, this is the actual Markov chain procedure. After having selected a starting point
in parameter space defining the first last accepted one, it will, for a given amount of steps :

•choose randomnly a new point following the proposal density,

•compute the cosmological observables through the cosmological module,

•compute the value of the likelihoods of the desired experiments at this point,

•accept/reject this point given its likelihood compared to the one of the last accepted one.

42 Chapter 7. Documentation

Monte Python Documentation, Release 2.2.0

Every time the code accepts data.write_step number of points (quantity defined in the input parameter
file), it will write the result to disk (flushing the buffer by forcing to exit the output file, and reopen it again.

Note: to use the code to set a fiducial file for certain fixed parameters, you can use two solutions. The first one
is to put all input 1-sigma proposal density to zero (this method still works, but is not recommended anymore).
The second one consist in using the flag “-f 0”, to force a step of zero amplitude.

mcmc.get_new_position(data, eigv, U, k, Cholesky, Rotation)
Obtain a new position in the parameter space from the eigen values of the inverse covariance matrix, or from the
Cholesky decomposition (original idea by Anthony Lewis, in Efficient sampling of fast and slow cosmological
parameters)

The three different jumping options, decided when starting a run with the flag -j are global, sequential and fast
(by default) (see parser_mp for reference).

Warning: For running Planck data, the option fast is highly recommended, as it speeds up the convergence.
Note that when using this option, the list of your likelihoods in your parameter file must match the ordering
of your nuisance parameters (as always, they must come after the cosmological parameters, but they also
must be ordered between likelihood, with, preferentially, the slowest likelihood to compute coming first).

•global: varies all the parameters at the same time. Depending on the input covariance matrix, some
degeneracy direction will be followed, otherwise every parameter will jump independently of each other.

•sequential: varies every parameter sequentially. Works best when having no clue about the covariance
matrix, or to understand which estimated sigma is wrong and slowing down the whole process.

•fast: privileged method when running the Planck likelihood. Described in the aforementioned article, it
separates slow (cosmological) and fast (nuisance) parameters.

Parameters

• eigv (numpy array) – Eigenvalues previously computed

• U (numpy_array) – Covariance matrix.

• k (int) – Number of points so far in the chain, is used to rotate through parameters

• Cholesky (numpy array) – Cholesky decomposition of the covariance matrix, and its inverse

• Rotation (numpy_array) – Not used yet

7.9 Nested Sampling module

7.10 Cosmo Hammer module

7.11 Analyze module

Collection of functions needed to analyze the Markov chains.

This module defines as well a class Information, that stores useful quantities, and shortens the argument passing
between the functions.

Note: Some of the methods used in this module are directly adapted from the CosmoPmc code from Kilbinger et. al.

7.9. Nested Sampling module 43

http://arxiv.org/abs/1304.4473
http://arxiv.org/abs/1304.4473
http://www.cosmopmc.info

Monte Python Documentation, Release 2.2.0

analyze.analyze(command_line)
Main function, does the entire analysis.

It calls in turn all the other routines from this module. To limit the arguments of each function to a reasonnable
size, a Information instance is used. This instance is initialized in this function, then appended by the other
routines.

analyze.prepare(files, info)
Scan the whole input folder, and include all chains in it.

Since you can decide to analyze some file(s), or a complete folder, this function first needs to separate between
the two cases.

Warning: If someday you change the way the chains are named, remember to change here too, because
this routine assumes the chains have a double underscore in their names.

Note: Only files ending with .txt will be selected, to keep compatibility with CosmoMC format

Note: New in version 2.0.0: if you ask to analyze a Nested Sampling sub-folder (i.e. something that ends in NS
with capital letters), the analyze module will translate the output from Nested Sampling to standard chains for
Monte Python, and stops. You can then run the – info flag on the whole folder. This procedure is not necessary
if the run was complete, but only if the Nested Sampling run was killed before completion.

Parameters

• files (list) – list of potentially only one element, containing the files to analyze. This can be
only one file, or the encompassing folder, files

• info (Information instance) – Used to store the result

analyze.convergence(info)
Compute convergence for the desired chains, using Gelman-Rubin diagnostic

Chains have been stored in the info instance of Information. Note that the G-R diagnostic can be computed
for a single chain, albeit it will most probably give absurd results. To do so, it separates the chain into three
subchains.

analyze.compute_posterior(information_instances)
computes the marginalized posterior distributions, and optionnally plots them

Parameters information_instances (list) – list of information objects, initialised on the given fold-
ers, or list of file, in input. For each of these instance, plot the 1d and 2d posterior distribution,
depending on the flags stored in the instances, comming from command line arguments or read
from a file.

analyze.ctr_level(histogram2d, lvl, infinite=False)
Extract the contours for the 2d plots (Karim Benabed)

analyze.minimum_credible_intervals(info)
Extract minimum credible intervals (method from Jan Haman) FIXME

analyze.write_h(info_file, indices, name, string, quantity, modifiers=None)
Write one horizontal line of output

analyze.cubic_interpolation(info, hist, bincenters)
Small routine to accomodate the absence of the interpolate module

analyze.write_histogram(hist_file_name, x_centers, hist)
Store the posterior distribution to a file

44 Chapter 7. Documentation

Monte Python Documentation, Release 2.2.0

analyze.read_histogram(histogram_path)
Recover a stored 1d posterior

analyze.write_histogram_2d(hist_file_name, x_centers, y_centers, extent, hist)
Store the histogram information to a file, to plot it later

analyze.read_histogram_2d(histogram_path)
Read the histogram information that was stored in a file.

To use it, call something like this:

x_centers, y_centers, extent, hist = read_histogram_2d_from_file(path)
fig, ax = plt.subplots()
ax.contourf(

y_centers, x_centers, hist, extent=extent,
levels=ctr_level(hist, [0.68, 0.95]),
zorder=5, cma=plt.cm.autumn_r)

plt.show()

analyze.clean_conversion(module_name, tag, folder)
Execute the methods “convert” from the different sampling algorithms

Returns True if something was made, False otherwise

analyze.separate_files(files)
Separate the input files in folder

Given all input arguments to the command line files entry, separate them in a list of lists, grouping them by
folders. The number of identified folders will determine the number of information instances to create

analyze.recover_folder_and_files(files)
Distinguish the cases when analyze is called with files or folder

Note that this takes place chronologically after the function separate_files

analyze.extract_array(line)

Return the array on the RHS of the line

>>> extract_array("toto = ['one', 'two']

”) [’one’, ‘two’] >>> extract_array(‘toto = [”one”, 0.2]

‘) [’one’, 0.2]

analyze.extract_dict(line)
Return the key and value of the dictionary element contained in line

>>> extract_dict("something['toto'] = [0, 1, 2, -2, 'cosmo']")
'toto', [0, 1, 2, -2, 'cosmo']

analyze.extract_parameter_names(info)
Reading the log.param, store in the Information instance the names

analyze.find_maximum_of_likelihood(info)
Finding the global maximum of likelihood

min_minus_lkl will be appended with all the maximum likelihoods of files, then will be replaced by its own
maximum. This way, the global maximum likelihood will be used as a reference, and not each chain’s maximum.

analyze.remove_bad_points(info)
Create an array with all the points from the chains, after removing non-markovian, burn-in and fixed fraction

7.11. Analyze module 45

Monte Python Documentation, Release 2.2.0

analyze.compute_mean(mean, spam, total)

analyze.compute_variance(var, mean, spam, total)

analyze.compute_covariance_matrix(info)

analyze.adjust_ticks(param, information_instances)

analyze.store_contour_coordinates(info, name1, name2, contours)
docstring

analyze.iscomment(s)
Define what we call a comment in MontePython chain files

class analyze.Information(command_line, other=None)
Bases: object

Hold all information for analyzing runs

The following initialization creates the three tables that can be customized in an extra plot_file (see
parser_mp).

Parameters command_line (Namespace) – it contains the initialised command line arguments

has_interpolate_module = False

cm = [(0.0, 0.0, 0.0, 1.0), (0.30235, 0.15039, 0.74804, 1.0), (0.99843, 0.25392, 0.14765, 1.0), (0.9, 0.75353, 0.10941, 1.0)]

cmaps = [<Mock id=‘139873176374928’>, <Mock id=‘139873176375120’>, <Mock id=‘139873176465488’>, <Mock id=‘139873176465680’>]

alphas = [1.0, 0.8, 0.6, 0.4]

to_change = None
Dictionary whose keys are the old parameter names, and values are the new ones. For instance
{’beta_plus_lambda’:’beta+lambda’}

to_plot = None
Array of names of parameters to plot. If left empty, all will be plotted.

Warning: If you changed a parameter name with to_change, you need to give the new name to
this array

new_scales = None
Dictionary that redefines some scales. The keys will be the parameter name, and the value its scale.

remap_parameters(spam)
Perform substitutions of parameters for analyzing

Note: for arbitrary combinations of parameters, the prior will not necessarily be flat.

define_ticks()

write_information_files()

write_h_info()

write_v_info()
Write vertical info file

write_tex()
Write a tex table containing the main results

46 Chapter 7. Documentation

Monte Python Documentation, Release 2.2.0

7.12 Io module

Input-Output handling

Handles all the input/output of the code (at least most of it). If something is printed that does not satisfy you (number
of decimals, for instance, in the output files), you only have to find the called function and change a number.

Whenever the arguments of the functions are command_line or data, no mention of them will be done - as it is
now clear. On the contrary, if there are more arguments, they will be detailled.

This module also defines a new class File, that extends file, which provides a tail function. It is used in
sampler.read_args_from_chain().

Finally, the way the error messages are displayed is set there, along with ascii-art for the exclamation mark sign.

io_mp.log_parameters(data, command_line)
Write the first lines of the log.param

Writes the beginning of log.param, starting with the header with the cosmological code version and potential git
hash and branch name, and then recopies entirely the input parameter file.

io_mp.log_likelihood_parameters(likelihood, command_line)
Write down the interpreted .data file of the input likelihood to log.param

Warning: Since version 2.0.2, the lines are not copied verbatim, they are first interpreted, then copied. This
allows for overriding of parameters from the input.param file.

io_mp.log_cosmo_arguments(data, command_line)
Write down the cosmo_arguments used to log.param

Third function called when writing log.param. It is understood here that all the other parameters for the cosmo-
logical modules are set to their default value directly in the program.

It is written as an update for the dictionary cosmo_arguments (i.e. as dict.update() and not as dict =)
in order not to erase previously initialized data.

io_mp.log_default_configuration(data, command_line)
Log the .conf file to log.param

Fourth and last function called when writing log.param. Only useful if you have several versions of your
cosmological code installed in different locations, or different versions of Clik. But, as you never know what
might go wrong, it is logged everytime !

TODO: should the root be still logged? (@packaging)

io_mp.print_parameters(out, data)
Will print the parameter names. In the code, out is simply the standard output, as this information will not be
printed on the output file.

Indeed, you will be able to recover these information from the log.param.

Warning: Please pay attention to the fact that, once launched, the order of the parameters in log.param is
crucial, as is it the only place where it is stored.

io_mp.print_vector(out, N, loglkl, data)
Print the last accepted values to out

Parameters

7.12. Io module 47

Monte Python Documentation, Release 2.2.0

• out (list) – Array containing both standard output and the output file.

This way, if you run in interactive mode, you will be able to monitor the progress of the
chain.

• N (int) – Multiplicity of the point, i.e. number of times the code stayed at this particular
place.

• loglkl (float) – Value of the (- log likelihood) at this point

• .. note (:) –

It is the last_accepted point that is printed, and not the current one (obviously, as one does
not know yet the multiplicity of the current one !)

io_mp.refresh_file(data)
Closes and reopen the output file to write any buffered quantities

io_mp.create_output_files(command_line, data)
Automatically create a new name for the chain.

This routine takes care of organising the folder for you. It will automatically generate names for the new chains
according to the date, number of points chosen.

Warning: The way these names are generated (with the proper number of _, __, -, and their placement) is
exploited in the rest of the code in various places. Please keep that in mind if ever you are in the mood of
changing things here.

io_mp.get_tex_name(name, number=1)
Simplistic tex name transformer.

Essentially tries to add a backslash in front of known possible greek letters, and insert curly brackets { } around
statement following an _ or a ^. It will also try to include the scale into the name in a nice way.

Note: This might easily fail on simple names, like beta_plus_lambda. In this case, please use an extra plot file
with the command line option -extra plot_file, or come up with a better function !

Note: This function returns immediatly with the unmodified name if it already contains the LaTeX symbol for
math, $.

Parameters name (str) – Input name

Keyword Arguments number (float) – Scale

io_mp.write_covariance_matrix(covariance_matrix, names, path)
Store the covariance matrix to a file

io_mp.write_bestfit_file(bestfit, names, path)
Store the bestfit parameters to a file

io_mp.pretty_print(string, status, return_string=False)
Return the string formatted according to its status

The input is a potentially long message, describing the problem. According to the severity of its status (so far,
‘error’ will exit the program, whereas ‘warning’ and ‘info’ will go through anyway).

Standard length has been defined globally, as well as the ascii-art dictionary of arrays START_LINE.

io_mp.safe_exec(string)
Attempt at executing a string from file in a secure way

48 Chapter 7. Documentation

Monte Python Documentation, Release 2.2.0

class io_mp.File
Bases: file

New class of file, to provide an equivalent of the tail command (on linux).

It will be used when starting from an existing chain, and avoids circling through an immense file.

tail(lines_2find=1)
Imitates the classic tail command

exception io_mp.LockError
Bases: exceptions.Exception

Warning: in the process of being tested

LOCK_FAILED = 1

io_mp.lock(file, flags)
Lock a given file to prevent other instances of the code to write to the same file.

Warning: in the process of being tested

io_mp.unlock(file)
Unlock a previously locked file.

Warning: in the process of being tested

io_mp.warning_message(message, *args)
Custom implementation of showwarning from warnings

exception io_mp.MyError(message)
Bases: exceptions.Exception

Base class defining the general presentation of error messages

Reformat the name of the class for easier reading

__str__()
Define the behaviour under the print statement

exception io_mp.CosmologicalModuleError(message)
Bases: io_mp.MyError

For all problems linked to the cosmological module

Reformat the name of the class for easier reading

exception io_mp.ConfigurationError(message)
Bases: io_mp.MyError

Missing files, libraries, etc...

Reformat the name of the class for easier reading

exception io_mp.MissingLibraryError(message)
Bases: io_mp.MyError

Missing Cosmo module, Planck, ...

Reformat the name of the class for easier reading

7.12. Io module 49

Monte Python Documentation, Release 2.2.0

exception io_mp.LikelihoodError(message)
Bases: io_mp.MyError

Problems when computing likelihood, missing nuisance, etc...

Reformat the name of the class for easier reading

exception io_mp.FiducialModelWritten(message)
Bases: io_mp.MyError

Used to exit the code in case of writing a fiducial file

Reformat the name of the class for easier reading

exception io_mp.AnalyzeError(message)
Bases: io_mp.MyError

Used when encountering a fatal mistake in analyzing chains

Reformat the name of the class for easier reading

50 Chapter 7. Documentation

CHAPTER 8

Indices and tables

• genindex

• modindex

• search

51

Monte Python Documentation, Release 2.2.0

52 Chapter 8. Indices and tables

Python Module Index

a
analyze, 43

d
data, 33

i
initialise, 28
io_mp, 47

l
likelihood_class, 38

m
mcmc, 42

p
parser_mp, 28
prior, 38

r
run, 27
run_mp, 27

s
sampler, 41

53

Monte Python Documentation, Release 2.2.0

54 Python Module Index

Index

Symbols
__call__() (data.Data method), 37
__cmp__() (data.Data method), 36
__str__() (io_mp.MyError method), 49

A
accept_step() (in module sampler), 41
add_common_knowledge() (likeli-

hood_class.Likelihood_mpk method), 40
add_contamination_spectra() (likeli-

hood_class.Likelihood method), 38
add_covariance_matrix() (in module run), 27
add_nuisance_prior() (likelihood_class.Likelihood

method), 39
add_subparser() (in module parser_mp), 29
adjust_ticks() (in module analyze), 46
alphas (analyze.Information attribute), 46
analyze (module), 43
analyze() (in module analyze), 43
AnalyzeError, 50
assign_over_sampling_indices() (data.Data method), 36

B
boundary_loglike (data.Data attribute), 34

C
chain() (in module mcmc), 42
check_flat_bound_priors() (in module sampler), 41
check_for_slow_step() (data.Data method), 36
clean_conversion() (in module analyze), 45
cm (analyze.Information attribute), 46
cmaps (analyze.Information attribute), 46
compute_covariance_matrix() (in module analyze), 46
compute_fisher() (in module sampler), 41
compute_fisher_element() (in module sampler), 41
compute_lkl() (in module sampler), 41
compute_lkl() (likelihood_class.Likelihood_mock_cmb

method), 39
compute_lkl() (likelihood_class.Likelihood_newdat

method), 40

compute_mean() (in module analyze), 45
compute_posterior() (in module analyze), 44
compute_variance() (in module analyze), 46
computeLikelihood() (likelihood_class.Likelihood

method), 39
ConfigurationError, 49
convergence() (in module analyze), 44
cosmo_arguments (data.Data attribute), 34
CosmologicalModuleError, 49
create_output_files() (in module io_mp), 48
create_parser() (in module parser_mp), 29
ctr_level() (in module analyze), 44
cubic_interpolation() (in module analyze), 44
custom_help() (in module parser_mp), 31

D
Data (class in data), 33
data (module), 33
define_ticks() (analyze.Information method), 46
draw_from_prior() (prior.Prior method), 38

E
error() (parser_mp.MpArgumentParser method), 28
existing_file() (in module parser_mp), 32
extract_array() (in module analyze), 45
extract_dict() (in module analyze), 45
extract_parameter_names() (in module analyze), 45

F
FiducialModelWritten, 50
File (class in io_mp), 48
fill_mcmc_parameters() (data.Data method), 35
find_maximum_of_likelihood() (in module analyze), 45
folder_is_initialised() (data.Data static method), 36
from_run_to_info() (in module run), 27

G
get_cl() (likelihood_class.Likelihood method), 39
get_covariance_matrix() (in module sampler), 41
get_dict_from_docstring() (in module parser_mp), 32

55

Monte Python Documentation, Release 2.2.0

get_mcmc_parameters() (data.Data method), 36
get_new_position() (in module mcmc), 43
get_tex_name() (in module io_mp), 48
group_parameters_in_blocks() (data.Data method), 35

H
has_interpolate_module (analyze.Information attribute),

46

I
Information (class in analyze), 46
initialise (module), 28
initialise() (in module initialise), 28
initialise_likelihoods() (data.Data method), 35
initialise_parser() (in module parser_mp), 32
io_mp (module), 47
is_bound() (prior.Prior method), 38
iscomment() (in module analyze), 46

L
Likelihood (class in likelihood_class), 38
likelihood_class (module), 38
Likelihood_clik (class in likelihood_class), 39
Likelihood_clocks (class in likelihood_class), 39
Likelihood_mock_cmb (class in likelihood_class), 39
Likelihood_mpk (class in likelihood_class), 40
Likelihood_newdat (class in likelihood_class), 40
Likelihood_prior (class in likelihood_class), 40
Likelihood_sn (class in likelihood_class), 40
LikelihoodError, 49
lock() (in module io_mp), 49
LOCK_FAILED (io_mp.LockError attribute), 49
LockError, 49
log_cosmo_arguments() (in module io_mp), 47
log_default_configuration() (in module io_mp), 47
log_flag (data.Data attribute), 34
log_likelihood_parameters() (in module io_mp), 47
log_parameters() (in module io_mp), 47
loglkl() (likelihood_class.Likelihood method), 39
loglkl() (likelihood_class.Likelihood_clik method), 39
loglkl() (likelihood_class.Likelihood_clocks method), 39
loglkl() (likelihood_class.Likelihood_mock_cmb

method), 39
loglkl() (likelihood_class.Likelihood_mpk method), 40
loglkl() (likelihood_class.Likelihood_newdat method), 40
loglkl() (likelihood_class.Likelihood_prior method), 40

M
map_from_unit_interval() (prior.Prior method), 38
mcmc (module), 42
mcmc_parameters (data.Data attribute), 34
minimum_credible_intervals() (in module analyze), 44
MissingLibraryError, 49
mock_update_run() (in module run), 27

MpArgumentParser (class in parser_mp), 28
mpi_run() (in module run), 27
MyError, 49

N
need_cosmo_arguments() (likelihood_class.Likelihood

method), 39
need_cosmo_update (data.Data attribute), 34
new_scales (analyze.Information attribute), 46
NS_arguments (data.Data attribute), 34

O
over_sampling (data.Data attribute), 34

P
Parameter (class in data), 37
parse() (in module parser_mp), 32
parse_docstring() (in module parser_mp), 32
parser_mp (module), 28
positive_int() (in module parser_mp), 33
prepare() (in module analyze), 44
pretty_print() (in module io_mp), 48
print_parameters() (in module io_mp), 47
print_vector() (in module io_mp), 47
Prior (class in prior), 38
prior (module), 38

R
read_args_from_bestfit() (in module sampler), 41
read_args_from_chain() (in module sampler), 41
read_configuration_file() (likeli-

hood_class.Likelihood_sn method), 40
read_contamination_spectra() (likeli-

hood_class.Likelihood method), 39
read_file() (data.Data method), 35
read_from_file() (likelihood_class.Likelihood method),

39
read_histogram() (in module analyze), 44
read_histogram_2d() (in module analyze), 45
read_light_curve_parameters() (likeli-

hood_class.Likelihood_sn method), 40
read_matrix() (likelihood_class.Likelihood_sn method),

40
read_version() (data.Data method), 36
recover_cosmological_module() (in module initialise), 28
recover_folder_and_files() (in module analyze), 45
recover_local_path() (in module initialise), 28
refresh_file() (in module io_mp), 48
remap_parameters() (analyze.Information method), 46
remove_bad_points() (in module analyze), 45
run (module), 27
run() (in module run), 27
run() (in module sampler), 42

56 Index

Monte Python Documentation, Release 2.2.0

run_mp (module), 27

S
safe_exec() (in module io_mp), 48
safe_initialisation() (in module run), 27
safe_parse_args() (parser_mp.MpArgumentParser

method), 28
sampler (module), 41
separate_files() (in module analyze), 45
set_default_subparser() (parser_mp.MpArgumentParser

method), 28
store_contour_coordinates() (in module analyze), 46

T
tail() (io_mp.File method), 49
to_change (analyze.Information attribute), 46
to_plot (analyze.Information attribute), 46

U
unlock() (in module io_mp), 49
update_cosmo_arguments() (data.Data method), 36

V
value_within_prior_range() (prior.Prior method), 38

W
warning_message() (in module io_mp), 49
write_bestfit_file() (in module io_mp), 48
write_covariance_matrix() (in module io_mp), 48
write_h() (in module analyze), 44
write_h_info() (analyze.Information method), 46
write_histogram() (in module analyze), 44
write_histogram_2d() (in module analyze), 45
write_information_files() (analyze.Information method),

46
write_tex() (analyze.Information method), 46
write_v_info() (analyze.Information method), 46

Index 57

	Installation Guide
	Prerequisites
	Installation

	Getting Started
	Foreword
	Input parameter file
	Output directory
	Analyzing chains and plotting
	Global running strategy

	Example of a complete work session
	Using MultiNest with Monte Python
	Installation
	Basic usage and parameters
	References

	Using the Cosmo Hammer with Monte Python
	Using with Monte Python

	Existing likelihoods, and how to create new ones
	One likelihood is one directory, one .py and one .data file
	Existing likelihoods
	Mock data likelihoods
	Creating new likelihoods belonging to pre-defined category
	Creating new likelihoods from scratch

	Documentation
	run Module
	Initialise Module
	Parser module
	Data module
	Prior module
	Likelihood class module
	Sampler module
	Mcmc module
	Nested Sampling module
	Cosmo Hammer module
	Analyze module
	Io module

	Indices and tables
	Python Module Index

