
Monk Documentation
Release 0.14.0-dev

Andrey Mikhaylenko

April 30, 2015

Contents

1 Installation 3

2 Dependencies 5

3 Documentation 7

4 Examples 9
4.1 Modeling . 9
4.2 Validation . 10
4.3 Manipulation . 11

5 Object-Document Mapping 13

6 Links 15

7 Author 17

8 Licensing 19

9 Details 21
9.1 API reference . 21
9.2 Glossary . 28
9.3 Frequently Asked Questions . 28
9.4 Similar Projects . 32

10 Indices and tables 39

Python Module Index 41

i

ii

Monk Documentation, Release 0.14.0-dev

An unobtrusive data modeling, manipulation and validation library.

Supports MongoDB out of the box. Can be used for any other DB (or even without one).

Contents 1

Monk Documentation, Release 0.14.0-dev

2 Contents

CHAPTER 1

Installation

$ pip install monk

3

Monk Documentation, Release 0.14.0-dev

4 Chapter 1. Installation

CHAPTER 2

Dependencies

Monk is tested against the following versions of Python:

• CPython 2.6, 2.7, 3.2, 3.4

• PyPy 2.0

Optional dependencies:

• The MongoDB extension requires pymongo.

5

Monk Documentation, Release 0.14.0-dev

6 Chapter 2. Dependencies

CHAPTER 3

Documentation

See the complete documentation for details.

7

http://monk.readthedocs.org

Monk Documentation, Release 0.14.0-dev

8 Chapter 3. Documentation

CHAPTER 4

Examples

4.1 Modeling

The schema is defined as a template using native Python data types:

we will reuse this structure in examples below

spec = {
’title’: ’Untitled’,
’comments’: [

{
’author’: str,
’date’: datetime.datetime.utcnow,
’text’: str

}
],

}

You are free to design as complex a document as you need. The manipulation and validation functions (described
below) support arbitrary nested structures.

When this “natural” pythonic approach is not sufficient, you can mix it with a more verbose notation, e.g.:

title_spec = IsA(str, default=’Untitled’) | Equals(None)

There are also neat shortcuts:

spec = {
’url’: nullable(str),
’status’: one_of([’new’, ’in progress’, ’closed’]),
’comments’: [str],
’blob’: None,

}

This could be written a bit more verbosely:

spec = {
’url’: IsA(str) | Equals(None),
’status’: Equals(’new’) | Equals(’in progress’) | Equals(’closed’),
’comments’: ListOf(IsA(str)),
’blob’: Anything(),

}

It is even possible to define schemata for dictionary keys:

9

Monk Documentation, Release 0.14.0-dev

CATEGORIES = [’books’, ’films’, ’toys’]
spec = {

’title’: str,
opt_key(’price’): float, # key is optional; value is mandatory
’similar_items’: {

one_of(CATEGORIES): [# suggestions grouped by category
{’url’: str, ’title’: str}

],
}

}

(what if the categories should be populated dynamically?
well, the schema is plain Python data, just copy/update on the fly.)

And, yes, you can mix notations. See FAQ.

This very short intro shows that Monk requires almost zero learning to start and then provides very powerful tools
when you need them; you won’t have to rewrite the “intuitive” code, only augment complexity exactly in places
where it’s inevitable.

4.2 Validation

The schema can be used to ensure that the document has correct structure and the values are of correct types.

from monk.validation import validate

correct data: staying silent

>>> validate(spec, data)

a key is missing

>>> validate(spec, {’title’: ’Hello’})
Traceback (most recent call last):

...
MissingKeys: must have keys: ’comments’

a key is missing in a dictionary in a nested list

>>> validate(spec, {’comments’: [{’author’: ’john’}]}
Traceback (most recent call last):

...
DictValueError: ’comments’ value item #0: must have keys: ’text’, ’date’

type check; also works with functions and methods (by return value)

>>> validate(spec, {’title’: 123, ’comments’: []})
Traceback (most recent call last):

...
DictValueError: ’title’ value must be str

Custom validators can be used. Behaviour can be fine-tuned.

The validate() function translates the “natural” notation to a validator object under the hood. To improve performance
you can “compile” the validator once (using translate() function or by creating a validator instance in place) and use
it multiple times to validate different values:

10 Chapter 4. Examples

Monk Documentation, Release 0.14.0-dev

>>> from monk import *
>>> translate(str) == IsA(str)
True
>>> validator = IsA(str) | IsA(int)
>>> validator(’hello’)
>>> validator(123)
>>> validator(5.5)
Traceback (most recent call last):

...
AllFailed: must be str or must be int

4.3 Manipulation

The same schema can be used to create full documents from incomplete data.

from monk import merge_defaults

default values are set for missing keys

>>> merge_defaults(spec, {})
{

’title’: ’Untitled’,
’comments’: [],

}

it’s easy to override the defaults

>>> merge_defaults(spec, {’title’: ’Hello’})
{

’title’: ’Hello’,
’comments’: [],

}

nested lists of dictionaries can be auto-filled, too.
by the way, note the date.

>>> merge_defaults(spec, {’comments’: [{’author’: ’john’}]})
{

’title’: ’Untitled’,
’comments’: [

{
’author’: ’john’,
’date’: datetime.datetime(2013, 3, 3, 1, 8, 4, 152113),
’text’: None,

}
]

}

4.3. Manipulation 11

Monk Documentation, Release 0.14.0-dev

12 Chapter 4. Examples

CHAPTER 5

Object-Document Mapping

The library can be also viewed as a framework for building ODMs (object-document mappers). See the MongoDB
extension and note how it reuses mixins provided by DB-agnostic modules.

Here’s an example of the MongoDB ODM bundled with Monk:

from monk.mongo import Document

class Item(Document):
structure = {

’text’: unicode,
’slug’: unicode,

}
indexes = {

’text’: None,
’slug’: {’unique’: True},

}

this involves manipulation (inserting missing fields)
item = Item(text=u’foo’, slug=u’bar’)

this involves validation
item.save(db)

13

Monk Documentation, Release 0.14.0-dev

14 Chapter 5. Object-Document Mapping

CHAPTER 6

Links

• Project home page (Github)

• Documentation (Read the Docs)

• Package distribution (PyPI)

• Questions, requests, bug reports, etc.:

– Issue tracker

– Direct e-mail (neithere at gmail com)

15

http://github.com/neithere/monk/
http://monk.readthedocs.org
http://pypi.python.org/pypi/monk
http://github.com/neithere/monk/issues/

Monk Documentation, Release 0.14.0-dev

16 Chapter 6. Links

CHAPTER 7

Author

Originally written by Andrey Mikhaylenko since 2011.

Please feel free to submit patches, report bugs or request features:

http://github.com/neithere/monk/issues/

17

http://github.com/neithere/monk/issues/

Monk Documentation, Release 0.14.0-dev

18 Chapter 7. Author

CHAPTER 8

Licensing

Monk is free software: you can redistribute it and/or modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later
version.

Monk is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied
warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General
Public License for more details.

You should have received a copy of the GNU Lesser General Public License along with Monk. If not, see
<http://gnu.org/licenses/>.

19

http://gnu.org/licenses/

Monk Documentation, Release 0.14.0-dev

20 Chapter 8. Licensing

CHAPTER 9

Details

9.1 API reference

9.1.1 Validators

class monk.validators.All(specs, default=None, first_is_default=False)
Requires that the value passes all nested validators.

error_class
alias of AtLeastOneFailed

class monk.validators.Any(specs, default=None, first_is_default=False)
Requires that the value passes at least one of nested validators.

error_class
alias of AllFailed

class monk.validators.Anything
Any values passes validation.

class monk.validators.Exists(default=None)
Requires that the value exists. Obviously this only makes sense in special cases like dictionary keys; otherwise
there’s simply nothing to validate. Note that this is not a check against None or False.

class monk.validators.IsA(expected_type, default=None)
Requires that the value is an instance of given type.

class monk.validators.HasAttr(attr_name)
Requires that the value has given attribute.

class monk.validators.Equals(expected_value)
Requires that the value equals given expected value.

class monk.validators.Contains(expected_value)
Requires that the value contains given expected value.

class monk.validators.InRange(min=None, max=None, default=NotImplemented)
Requires that the numeric value is in given boundaries.

class monk.validators.Length(min=None, max=None, default=NotImplemented)
Requires that the value length is in given boundaries.

monk.validators.ListOf
alias of ListOfAll

21

Monk Documentation, Release 0.14.0-dev

class monk.validators.ListOfAll(validator, default=None)
Requires that the value is a list which items match given validator. Usage:

>>> v = ListOfAll(IsA(int) | IsA(str))

>>> v([123, ’hello’])

>>> v([123, ’hello’, 5.5])
Traceback (most recent call last):
...
ValidationError: item #2: must be int or must be str

error_class
alias of AtLeastOneFailed

class monk.validators.ListOfAny(validator, default=None)
Same as ListOfAll but tolerates invalid items as long as there is at least one valid among them.

error_class
alias of AllFailed

class monk.validators.DictOf(pairs)
Requires that the value is a dict which items match given patterns. Usage:

>>> v = DictOf([
... # key "name" must exist; its value must be a ‘str‘
... (Equals(’name’), IsA(str)),
... # key "age" may not exist; its value must be an ‘int‘
... (Equals(’age’) | ~Exists(), IsA(int)),
... # there may be other ‘str‘ keys with ‘str‘ or ‘int‘ values
... (IsA(str), IsA(str) | IsA(int)),
...])

>>> v({’name’: ’John’})

>>> v({’name’: ’John’, ’age’: 25})

>>> v({’name’: ’John’, ’age’: 25.5})
Traceback (most recent call last):
...
DictValueError: ’age’ value must be int

>>> v({’name’: ’John’, ’age’: 25, ’note’: ’custom field’})

>>> v({’name’: ’John’, ’age’: 25, ’note’: 5.5})
Traceback (most recent call last):
...
DictValueError: ’note’ value must be str or must be int

Note that this validator supports Exists to mark keys that can be missing.

monk.validators.translate(value)
Translates given schema from “pythonic” syntax to a validator.

Usage:

>>> translate(str)
IsA(str)

>>> translate(’hello’)
IsA(str, default=’hello’)

22 Chapter 9. Details

Monk Documentation, Release 0.14.0-dev

class monk.validators.MISSING
Stub for Exists validator to pass if the value is missing (e.g. for dictionary keys).

9.1.2 Shortcuts

monk.shortcuts.nullable(spec)
Returns a validator which allows the value to be None.

>>> nullable(str) == IsA(str) | Equals(None)
True

monk.shortcuts.optional(spec)
Returns a validator which allows the value to be missing.

>>> optional(str) == IsA(str) | ~Exists()
True
>>> optional(’foo’) == IsA(str, default=’foo’) | ~Exists()
True

Note that you should normally opt_key() to mark dictionary keys as optional.

monk.shortcuts.opt_key(spec)
Returns a validator which allows the value to be missing. Similar to optional() but wraps a string in
Equals instead of IsA. Intended for dictionary keys.

>>> opt_key(str) == IsA(str) | ~Exists()
True
>>> opt_key(’foo’) == Equals(’foo’) | ~Exists()
True

monk.shortcuts.one_of(choices, first_is_default=False, as_rules=False)
A wrapper for Any.

Parameters as_rules – bool. If False (by default), each element of choices is wrapped in the
Equals validator so they are interpreted as literals.

Deprecated since version 0.13: Use Any instead.

9.1.3 Helpers

monk.helpers.validate(spec, value)
Validates given value against given specification. Raises an exception if the value is invalid. Always returns
None.

In fact, it’s just a very thin wrapper around the validators. These three expressions are equal:

IsA(str)(’foo’)
translate(str)(’foo’)
validate(str, ’foo’)

Spec a validator instance or any value digestible by translate().

Value any value including complex structures.

Can raise:

MissingKey if a dictionary key is in the spec but not in the value. This applies to root and nested dictionaries.

InvalidKey if a dictionary key is the value but not not in the spec.

9.1. API reference 23

Monk Documentation, Release 0.14.0-dev

StructureSpecificationError if errors were found in spec.

monk.helpers.walk_dict(data)
Generates pairs (keys, value) for each item in given dictionary, including nested dictionaries. Each pair
contains:

keys a tuple of 1..n keys, e.g. (’foo’,) for a key on root level or (’foo’, ’bar’) for a key in a nested
dictionary.

value the value of given key or None if it is a nested dictionary and therefore can be further unwrapped.

9.1.4 Data manipulation

monk.manipulation.merge_defaults(spec, value)
Returns a copy of value recursively updated to match the spec:

•New values are added whenever possible (including nested ones).

•Existing values are never changed or removed.

–Exception: container values (lists, dictionaries) may be populated; see respective merger functions for
details.

The result may not pass validation against the spec in the following cases:

1.a required value is missing and the spec does not provide defaults;

2.an existing value is invalid.

The business logic is as follows:

•if value is empty, use default value from spec;

•if value is present or spec has no default value:

–if spec datatype is present as a key in mergers, use the respective merger function to obtain the value;

–if no merger is assigned to the datatype, use fallback function.

See documentation on concrete merger functions for further details.

Spec A “natural” or “verbose” spec.

Value The value to merge into the spec.

Examples:

>>> merge_defaults(’foo’, None)
’foo’
>>> merge_defaults(’foo’, ’bar’)
’bar’
>>> merge_defaults({’a’: ’foo’}, {})
{’a’: ’foo’}
>>> merge_defaults({’a’: [{’b’: 123}]},
... {’a’: [{’b’: None},
... {’x’: 0}]})
{’a’: [{’b’: 123}, {’b’: 123, ’x’: 0}]}

monk.manipulation.normalize_to_list(value)
Converts given value to a list as follows:

•[x]→ [x]

•x→ [x]

24 Chapter 9. Details

Monk Documentation, Release 0.14.0-dev

monk.manipulation.normalize_list_of_dicts(value, default_key, default_value=<class
monk.manipulation.UNDEFINED at
0x7f65c0764460>)

Converts given value to a list of dictionaries as follows:

•[{...}]→ [{...}]

•{...}→ [{...}]

•’xyz’→ [{default_key: ’xyz’}]

•None→ [{default_key: default_value}] (if specified)

•None→ []

Parameters default_value – only Unicode, i.e. str in Python 3.x and only unicode in Python 2.x

9.1.5 Modeling

DB-agnostic helpers to build powerful ODMs.

class monk.modeling.DotExpandedDictMixin
Makes the dictionary dot-expandable by exposing dictionary members via __getattr__ and __setattr__
in addition to __getitem__ and __setitem__. For example, this is the default API:

data = {’foo’: {’bar’: 0 } }
print data[’foo’][’bar’]
data[’foo’][’bar’] = 123

This mixin adds the following API:

print data.foo.bar
data.foo.bar = 123

Nested dictionaries are converted to dot-expanded ones on adding.

class monk.modeling.TypedDictReprMixin
Makes repr(self) depend on unicode(self).

class monk.modeling.StructuredDictMixin
A dictionary with structure specification and validation.

structure
The document structure specification. For details see monk.shortcuts.validate().

9.1.6 Exceptions

exception monk.errors.AllFailed
Raised when at least one validator was expected to pass but none did.

exception monk.errors.AtLeastOneFailed
Raised when all validators were expected to pas but at least one didn’t.

exception monk.errors.CombinedValidationError
Raised when a combination of specs has failed validation.

exception monk.errors.DictValueError
Raised when dictionary value fails validation. Used to detect nested errors in order to format the human-readable
messages unambiguously.

9.1. API reference 25

Monk Documentation, Release 0.14.0-dev

exception monk.errors.InvalidKeys
Raised whan the value dictionary contains an unexpected key.

exception monk.errors.MissingKeys
Raised when a required dictionary key is missing from the value dict.

exception monk.errors.NoDefaultValue
Raised when the validator could not produce a default value.

exception monk.errors.StructureSpecificationError
Raised when malformed document structure is detected.

exception monk.errors.ValidationError
Raised when a document or its part cannot pass validation.

9.1.7 MongoDB integration

This module combines Monk’s modeling and validation capabilities with MongoDB.

Declaring indexes

Let’s declare a model with indexes:

from monk.mongo import Document

class Item(Document):
structure = dict(text=unicode, slug=unicode)
indexes = dict(text=None, slug=dict(unique=True))

Now create a model instance:

item = Item(text=u’foo’, slug=u’bar’)

Save it and make sure the indexes are created:

item.save(db)

The last line is roughly equivalent to:

collection = db[item.collection]
collection.ensure_index(’text’)
collection.ensure_index(’slug’, unique=True)
collection.save(dict(item)) # also validation, transformation, etc.

class monk.mongo.Document(*args, **kwargs)
A structured dictionary that is bound to MongoDB and supports dot notation for access to items.

Inherits features from:

•dict (builtin),

•TypedDictReprMixin,

•DotExpandedDictMixin,

•StructuredDictMixin and

•MongoBoundDictMixin.

class monk.mongo.MongoBoundDictMixin
Adds MongoDB-specific features to the dictionary.

26 Chapter 9. Details

Monk Documentation, Release 0.14.0-dev

collection
Collection name.

indexes
(TODO)

classmethod find(db, *args, **kwargs)
Returns a MongoResultSet object.

Example:

items = Item.find(db, {’title’: u’Hello’})

Note: The arguments are those of pymongo collection’s find method. A frequent error is to pass query
key/value pairs as keyword arguments. This is wrong. In most cases you will want to pass a dictionary
(“query spec”) as the first positional argument.

get_id()
Returns object id or None.

classmethod get_one(db, *args, **kwargs)
Returns an object that corresponds to given query or None.

Example:

item = Item.get_one(db, {’title’: u’Hello’})

get_ref()
Returns a DBRef for this object or None.

id
Returns object id or None.

remove(db)
Removes the object from given database. Usage:

item = Item.get_one(db)
item.remove(db)

Collection name is taken from MongoBoundDictMixin.collection.

save(db)
Saves the object to given database. Usage:

item = Item(title=u’Hello’)
item.save(db)

Collection name is taken from MongoBoundDictMixin.collection.

class monk.mongo.MongoResultSet(cursor, wrapper)
A wrapper for pymongo cursor that wraps each item using given function or class.

Warning: This class does not introduce caching. Iterating over results exhausts the cursor.

ids()
Returns a generator with identifiers of objects in set. These expressions are equivalent:

ids = (item.id for item in result_set)

ids = result_set.ids()

9.1. API reference 27

Monk Documentation, Release 0.14.0-dev

Warning: This method exhausts the cursor, so an attempt to iterate over results after calling this
method will fail. The results are not cached.

9.2 Glossary

natural spec Readable and DRY representation of document specification. Must be converted to detailed spec before
validation.

detailed spec Rule-based verbose representation of document specification.

9.3 Frequently Asked Questions

9.3.1 What are the primary use cases of Monk?

• Entity schema for schema-less data storages (NoSQL, JSON, YAML, CSV, whatever)

• Publish/get data via RESTful API

• Safely implement ETL

• Process user input

• ODMs (object-document wrappers) as syntax sugar upon Monk

9.3.2 Why would I want to use Monk?

Monk allows to quickly prototype schemata using plain Python structures. It is very powerful, flexible, transparent
and unobtrusive; all the power is accessible through a few functions and the rule class (which you may not even notice
unless your use cases are demanding enough). It is possible to write a simple script, build a large project or a library
upon Monk.

If in doubt, I encourage you to use Monk. If it’s not enough, read the docs and make sure you squeeze the maximum
from the rules.

When not to use Monk? Easy: when the case is particularly complex, major additions should be done but a dedicated
tool already exists. For instance, it is possible to build an alternative to WTForms upon Monk but why? Well, who
knows.

9.3.3 What problems does Monk solve?

• Validation of arbitrary data

• Populating incomplete documents with regard to a schema

• Defining schemata in a universal way for different backends

• Keeping it simple

28 Chapter 9. Details

Monk Documentation, Release 0.14.0-dev

9.3.4 How does Monk solve these problems?

1. defines two mutually complementary schema conventions:

• natural spec (simple and pythonic)

• detailed spec (more verbose and powerful)

2. validates data against specs;

3. manipulates data with regard to specs;

4. provides an optional ODM for MongoDB based on the above-mentioned features.

9.3.5 Is Monk a standalone tool or a building block for ODMs?

Both.

Monk ships with an integrated MongoDB ODM. It’s usable and can serve as an example of how ODMs can be built
upon Monk.

In many cases ODM is not needed at all; the validation and manipulation features of Monk are enough even for
complex applications.

9.3.6 Is Monk validation usable only for documents?

No. It is possible to validate any value, be it a string, a number, a custom class instance or a full-blown document with
multiple nested dictionaries.

9.3.7 Why are there two ways of schema declaration?

The “natural” way is intuitive and requires very little knowledge about how Monk works. It’s about using plain Python
data types to design a template for the value. The resulting declaration is clear and readable.

The “verbose” way is less readable, involves more boilerplate code and requires additional knowledge. However, this
approach enables fine-tuning and inline customization that the “natural” way cannot achieve.

To sum up: a quick start with complexity evolving along with the needs.

9.3.8 Can I mix the “natural” and “verbose” declarations?

Yes. The validate() function will convert the “natural” declarations into rules; if it finds a ready-made rule, it just
accepts it.

For example:

spec = {
’name’: str,
’age’: IsA(int, default=18) | Equals(None),
’attrs’: [IsA(str) | IsA(int) | NotExists()]

}

validate(spec, { ... your data goes here ... })

The validators can be combined with other validators or with non-validators; in the latter case the right-hand value is
first translated to a validator:

9.3. Frequently Asked Questions 29

Monk Documentation, Release 0.14.0-dev

>>> full = (InRange(0,9) & IsA(int)) | IsA(str, default=’unknown’)
>>> brief = InRange(0,9) & int | ’unknown’
>>> full == brief
True

Of course the technique only works if the left-hand value is a validator.

9.3.9 Which notation should I prefer?

The one that’s more readable in given use case.

Consider these alternative notations:

IsA(str, default=’foo’)

’foo’

The second one is definitely more readable. But if the schema is mostly written in verbose notation, adding bits in the
natural one may increase confusion:

(IsA(int) | IsA(float)) & InRange(0,5) | IsA(str)

(IsA(int) | float) & InRange(0,5) | str

the last one is cleaner and shorter but the mind fails to correctly
group the items using visual clues

When in doubt, stick to the Zen of Python!

It’s also worth noting that natural specs are anyway translated to verbose specs, so if you happen to generate the specs
a lot, skip the additional layer. Or, even better, build the schema once (including translation) and only call the resulting
validator for every value.

9.3.10 How “Natural” Declarations Map To “Verbose” Style?

In most cases the “natural” style implies providing a class or instance.

A type or class means that the value must be an instance of such:

natural verbose
int IsA(int)
str IsA(str)
list IsA(list)
dict IsA(dict)
MyClass IsA(MyClass)

An instance means that the value must be of the same type (or an instance of the same class) and the spec is the default
value:

natural verbose
5 IsA(int, default=5)
’hello’ IsA(str, default=’hello’)
[] ListOf([])
{} DictOf([])
MyClass(’x’) IsA(MyClass, default=MyClass(’x’))

Note that the dict, list and MyClass specs describe containers. It is possible to nest other specs inside of these. Not all
containers are handled by Monk as such: only dict and list are supported at the moment. However, it all depends on

30 Chapter 9. Details

Monk Documentation, Release 0.14.0-dev

validators and it’s possible to write a validator and drop it into any place in the spec. Such validators are the building
blocks for complex multi-level schemata. If the “natural” spec is a non-empty container, the translate() function
wraps it in a relevant validator using its special requirements:

natural verbose
[str] ListOf(IsA(str))
{str: int} DictOf([(IsA(str), IsA(int)])

Note: On defaults as dictionary keys

WARNING: THIS SECTION APPLIES TO v0.12 BUT IS OUT OF DATE AS OF v0.13

TODO: UPDATE

Normally default values are only used in manipulation. In dictionaries they are also important for validation. Consider
this:

spec_a = {str: int}
spec_b = {’a’: int}

The spec spec_a defines a dictionary which may contain any number of keys that must be of type type(’a’)→ str.

The spec spec_b requires that the dictionary contains a single key ’a’ and nothing else. So, a in this case is not a
default value but rather a precise requirement.

The keys may be marked as optional and be multiple:

spec_c = {’a’: int, optional(’b’): float}

It’s also possible to allow arbitrary keys of different types:

spec_d = {str: int, tuple: float}

Of course the key datatype must be hashable.

Note: On optional dictionary keys vs. values

WARNING: THIS SECTION APPLIES TO v0.12 BUT IS OUT OF DATE AS OF v0.13

TODO: UPDATE

Consider this spec:

spec_a = {
’a’: int,
’b’: optional(int),
optional(’c’): int,
optional(’d’): optional(int),

}

It should not be surprising that the inner specs are interpreted thusly:

a key must be present; value must be of int type

b key must be present; value must be of int type or may be None

c key may exist or not; if yes, the value must be of int type

d key may exist or not; value must be of int type or may be None

9.3. Frequently Asked Questions 31

Monk Documentation, Release 0.14.0-dev

9.3.11 Do I need MongoDB to use Monk?

No. Monk comes with a MongoDB extension but since v.0.6 the dependency is optional.

9.3.12 Does Monk support DBRefs and other MongoDB features?

Yes. However, there’s room for improvement. Feel free to submit your use cases.

9.3.13 Is Monk stable enough?

It depends on requirements. Feel free to use Monk in personal apps and prototypes. Avoid using it in production until
v1.0 is out (or expect minor changes in the API and therefore ensure good coverage of your code).

quality More than 90% of code is covered by tests. The key modules are fully covered.

stability The API is still evolving but the core was considered stable since v0.7. Even serious changes
under the hood barely affect the public interface.

Even after v0.13 featured a complete rewrite, the top-level API (the “natural” notation) was almost
intact.

speed There are real-life projects where declarative Monk-powered code processes large volumes of data
with roughly the same speed as the previous purely imperative version of rather good quality. Monk
makes it easy to prepare various operations as validator objects and simply apply them to the value
so the overall overhead is minimal; in some cases Monk-based logic performs even better than
“classic” implementation. This is mostly related to tasks where you need to make decisions based
on rules, tables, etc. being unable to hard-code all the logic once and forever. Of course the speed
rather depends on design: one could arrange the “classic” code better and cache a mixture of data
and functions to save on lookups, but here you have that mixture with a nice and clean API, “Monk”
it is called.

9.3.14 What are the alternatives?

See Similar Projects.

9.4 Similar Projects

Below is a list of projects that share one or more major goals with Monk.

The descriptions may be a bit too critical, but that’s only because of the inevitable competition between Monk and
these projects; Monk aims to be better and the list shows how it is better. I mean, what’s the point of creating a project
if not to make a solution that would incorporate the strong points and address the weaknesses of its predecessors? Oh
well.

Note: Spotted an error?

Please excuse me for possible false assumptions about the projects being described; if you find an error, please don’t
hesitate to poke me via e-mail or the issue tracker (as this would be a proper documentation issue).

32 Chapter 9. Details

Monk Documentation, Release 0.14.0-dev

9.4.1 Schema Definition

Monk See monk.schema.

MongoKit Simple and pythonic, very similar to Monk (actually, Monk’s “natural” DSL was inspired by that of
MongoKit). However, everything is tightly bound to MongoDB (not to mention the lacking possibility to work
with plain data without ODMs); the required flag, default values and custom validators are defined on the root
level, duplicating the structure in each case.

MongoKit example:

class Spec(Document):
structure = {

’foo’: int,
’bar’: str,
’baz’: {

’quux’: str
}

}
default_values = {

’foo’: 5,
’quux’: ’flux’

}
required = [’foo’, ’baz.quux’]

Spec(**data).validate()

Semantically equivalent schema in Monk (without classes):

spec = {
’foo’: 5,
’bar’: nullable(str),
’baz’: {

’quux’: ’flux’
}

}

validate(spec, data)

Very similar support (and notation) for nested lists and dicts; also supports nested tuples.

MongoEngine Very verbose Django-like syntax, traditional for ORMs.

MongoEngine example:

class User(Document):
name = StringField(required=True)

class Comment(EmbeddedDocument):
author = ReferenceField(User, required=True)
content = StringField(required=True, max_length=30)
added = DateTimeField(required=True, default=datetime.datetime.utcnow)

class Post(Document):
title = StringField(required=True)
author = ReferenceField(User)
tags = ListField(StringField())
comments = ListField(EmbeddedDocumentField(Comment))

Semantically equivalent schema in Monk (without classes):

9.4. Similar Projects 33

http://namlook.github.io/mongokit/
https://mongoengine-odm.readthedocs.org

Monk Documentation, Release 0.14.0-dev

user_schema = {’name’: str}

comment_schema = {
’author’: ObjectId, # see monk.modeling; still needs work
’content’: IsA(str) & Length(max=30),
’added’: datetime.datetime.utcnow,

}

post_schema = {
’title’: str,
’author’: ObjectId,
’tag’: [optional(str)],
’comments’: [optional(comment_schema)]

}

The FooField layer can be added on top of the normal Monk syntax if needed.

MongoEngine is tightly bound to MongoDB and provides many database-specific features which are not present
in Monk (e.g. defining deletion policy of referred documents).

Colander Declarative and imperative schema declaration (for “static” and dynamically generated data models).
Very verbose, class-based. Similar to traditional ORMs but more flexible and generalized: there are tu-
ple/mapping/sequence schemata with nested “schema nodes” and/or other schemata. Supports inheritance.

Colander example (from tutorial):

import colander

class Friend(colander.TupleSchema):
rank = colander.SchemaNode(colander.Int(),

validator=colander.Range(0, 9999))
name = colander.SchemaNode(colander.String())

class Phone(colander.MappingSchema):
location = colander.SchemaNode(colander.String(),

validator=colander.OneOf([’home’, ’work’]))
number = colander.SchemaNode(colander.String())

class Friends(colander.SequenceSchema):
friend = Friend()

class Phones(colander.SequenceSchema):
phone = Phone()

class Person(colander.MappingSchema):
name = colander.SchemaNode(colander.String())
age = colander.SchemaNode(colander.Int(),

validator=colander.Range(0, 200))
friends = Friends()
phones = Phones()

Semantically equivalent schema in Monk (without classes):

from monk import Rule
from monk import validators

friend_schema = {
’rank’: IsA(int) & InRange(0, 9999),
’name’: str

}

34 Chapter 9. Details

http://docs.pylonsproject.org/projects/colander/en/latest/basics.html

Monk Documentation, Release 0.14.0-dev

phone_schema = {
’location’: IsA(str) & one_of([’home’, ’work’]),
’number’: str,

}
person_schema = {

’name’: str,
’age’: IsA(int) & InRange(0, 200),
’friends’: [friend_schema],
’phones’: [phone_schema],

}

Note: Tuples

Monk does not support fixed-size tuples with named arguments out of the box. However, it’s easy to write a
validator for this specific use case.

9.4.2 Validation

Monk See monk.validators.

MongoKit Type validation (extensible with custom types). All validators beyond types belong in a separate dictionary
which mostly duplicates the schema dictionary. The list of required fields (with names in a MongoDB-ish dot
notation, i.e. foo.$unicode.bar) must be defined in yet another place. This approach implies noticeable
redundancy for relatively complex documents.

The Document class also has an overloadable validate()method which makes sense for simultaneous multi-
field validation. In Monk you would simply call the normal and a custom validation functions one after another
(or overload the method in a similar way if using modeling).

MongoEngine Validation is integrated into FooField classes and triggered on save. Only very basic validators (re-
quired, unique, choices) are tunable. Custom validation implies custom field classes. For each field. Ouch.

Colander A SchemaNode instance validates a value by a) the SchemaType bound to its class, and b) by an optional
validator passed to the constructor (a selection of common validators is bundled in the colander module).

It takes time to even grasp the terminology, not to mention the code (which is very clean and well-documented
but presented as a 2K+ LOC module that handles all flavours of schema declaration + validation + serialization).

9.4.3 Manipulation

Monk See monk.manipulation.

MongoKit Data manipulation mostly embraces conversion between Python types and MongoDB internal representa-
tion (via PyMongo). This can be tuned with “Custom Types” that handle both manipulation and validation.

It is unknown whether the list of default values supports callables.

MongoEngine Mostly embraces conversion between Python types and MongoDB. This is always implemented by
FooField classes that handle both manipulation and validation.

Supports callable defaults.

Colander Focused on (de)serialization (which is closer to normalization):

>>> class MySchema(colander.MappingSchema):
... age = colander.SchemaNode(colander.Int())
...
>>> schema = MySchema()

9.4. Similar Projects 35

http://namlook.github.io/mongokit/
https://mongoengine-odm.readthedocs.org
http://docs.pylonsproject.org/projects/colander/en/latest/basics.html
http://namlook.github.io/mongokit/
https://mongoengine-odm.readthedocs.org
http://docs.pylonsproject.org/projects/colander/en/latest/basics.html

Monk Documentation, Release 0.14.0-dev

>>> schema.deserialize({’age’: ’20’})
{’age’: 20}

Supports optional preparer functions per node to prepare deserialized data for validation (e.g. strip whitespace,
etc.).

In general, this functionality is very useful (and not bound to a concrete storage backend). Not sure if Monk
should embrace it, though.

SchemaNode also contains utility functions to manipulate an appstruct or a cstruct:

• (un)flattening a data structure:

>>> schema.flatten({’a’: [{’b’: 123}]})
{’a.0.b’: 123}

• accessing and mutating nodes in a data structure:

rank = schema.get_value(appstruct, ’friends.2.rank’)
schema.set_value(appstruct, ’friends.2.rank’, rank + 5000)

(which resembles the MongoDB document updating API)

9.4.4 Modeling

Monk See monk.modeling.

lightweight schema Yes. The schema is not bound to any kind of storage or form. It can be — just
add another layer on top.

reusable parts Yes. The Document class can be used right away, subclassed or be built anew from
the components that were designed to be reusable.

This makes Monk a good building block for custom ODMs.

dot-expanded dictionary behaviour Yes.

polymorphism (document inheritance) Not yet.

MongoKit

lightweight schema No. The Document class is bound to a MongoDB collection.

reusable parts No. The underlying functions are not intended to be used separately.

dot-expanded dictionary behaviour Yes.

polymorphism (document inheritance) Yes.

MongoEngine

lightweight schema No. The Document class is bound to a MongoDB collection.

reusable parts No. The underlying functions are not intended to be used separately.

dot-expanded object behaviour Yes.

polymorphism (document inheritance) Yes.

Colander No modeling as such.

36 Chapter 9. Details

http://docs.pylonsproject.org/projects/colander/en/latest/basics.html#preparing-deserialized-data-for-validation
http://docs.pylonsproject.org/projects/colander/en/latest/manipulation.html
http://namlook.github.io/mongokit/
https://mongoengine-odm.readthedocs.org
http://docs.pylonsproject.org/projects/colander/en/latest/basics.html

Monk Documentation, Release 0.14.0-dev

9.4.5 MongoDB extension

Monk See monk.mongo.

MongoKit Tightly bound to MongoDB on all levels. The document class is bound to a collection (which I found
problematic in the past but generally this may be good design). Very good integration. PyMongo is accessible
when needed (like in Monk). Keeps the data clean from tool-specific metadata (like Monk). In general, Mon-
goDB support is superior compared to that of Monk but both use PyMongo so the basic functionality is exactly
the same. The choice depends on given project’s use cases.

MongoEngine Seems to be on par with MongoKit.

9.4. Similar Projects 37

http://namlook.github.io/mongokit/
https://mongoengine-odm.readthedocs.org

Monk Documentation, Release 0.14.0-dev

38 Chapter 9. Details

CHAPTER 10

Indices and tables

• genindex

• modindex

• search

39

Monk Documentation, Release 0.14.0-dev

40 Chapter 10. Indices and tables

Python Module Index

m
monk.errors, 25
monk.helpers, 23
monk.manipulation, 24
monk.modeling, 25
monk.mongo, 26
monk.shortcuts, 23
monk.validators, 21

41

Monk Documentation, Release 0.14.0-dev

42 Python Module Index

Index

A
All (class in monk.validators), 21
AllFailed, 25
Any (class in monk.validators), 21
Anything (class in monk.validators), 21
AtLeastOneFailed, 25

C
collection (monk.mongo.MongoBoundDictMixin at-

tribute), 26
CombinedValidationError, 25
Contains (class in monk.validators), 21

D
detailed spec, 28
DictOf (class in monk.validators), 22
DictValueError, 25
Document (class in monk.mongo), 26
DotExpandedDictMixin (class in monk.modeling), 25

E
Equals (class in monk.validators), 21
error_class (monk.validators.All attribute), 21
error_class (monk.validators.Any attribute), 21
error_class (monk.validators.ListOfAll attribute), 22
error_class (monk.validators.ListOfAny attribute), 22
Exists (class in monk.validators), 21

F
find() (monk.mongo.MongoBoundDictMixin class

method), 27

G
get_id() (monk.mongo.MongoBoundDictMixin method),

27
get_one() (monk.mongo.MongoBoundDictMixin class

method), 27
get_ref() (monk.mongo.MongoBoundDictMixin

method), 27

H
HasAttr (class in monk.validators), 21

I
id (monk.mongo.MongoBoundDictMixin attribute), 27
ids() (monk.mongo.MongoResultSet method), 27
indexes (monk.mongo.MongoBoundDictMixin attribute),

27
InRange (class in monk.validators), 21
InvalidKeys, 25
IsA (class in monk.validators), 21

L
Length (class in monk.validators), 21
ListOf (in module monk.validators), 21
ListOfAll (class in monk.validators), 21
ListOfAny (class in monk.validators), 22

M
merge_defaults() (in module monk.manipulation), 24
MISSING (class in monk.validators), 22
MissingKeys, 26
MongoBoundDictMixin (class in monk.mongo), 26
MongoResultSet (class in monk.mongo), 27
monk.errors (module), 25
monk.helpers (module), 23
monk.manipulation (module), 24
monk.modeling (module), 25
monk.mongo (module), 26
monk.shortcuts (module), 23
monk.validators (module), 21

N
natural spec, 28
NoDefaultValue, 26
normalize_list_of_dicts() (in module

monk.manipulation), 24
normalize_to_list() (in module monk.manipulation), 24
nullable() (in module monk.shortcuts), 23

43

Monk Documentation, Release 0.14.0-dev

O
one_of() (in module monk.shortcuts), 23
opt_key() (in module monk.shortcuts), 23
optional() (in module monk.shortcuts), 23

R
remove() (monk.mongo.MongoBoundDictMixin

method), 27

S
save() (monk.mongo.MongoBoundDictMixin method),

27
structure (monk.modeling.StructuredDictMixin at-

tribute), 25
StructuredDictMixin (class in monk.modeling), 25
StructureSpecificationError, 26

T
translate() (in module monk.validators), 22
TypedDictReprMixin (class in monk.modeling), 25

V
validate() (in module monk.helpers), 23
ValidationError, 26

W
walk_dict() (in module monk.helpers), 24

44 Index

	Installation
	Dependencies
	Documentation
	Examples
	Modeling
	Validation
	Manipulation

	Object-Document Mapping
	Links
	Author
	Licensing
	Details
	API reference
	Glossary
	Frequently Asked Questions
	Similar Projects

	Indices and tables
	Python Module Index

