

 Navigation

 	
 index

 	mongomotor 0.1 documentation

MongoMotor: An asynchronous document-object mapper for MongoDB

[image: Async object document mapper for tornado]

MongoMotor is a tiny integration of
MongoEngine [http://docs.mongoengine.org/en/latest/index.html], a
document-object mapper for python and mongodb, with
Motor [http://motor.readthedocs.org/en/stable/], an asynchronous driver
for mongodb built on top of tornado’s mainloop

Using MongoMotor you can define your documents as you already do with
MongoEngine, use all query niceties you already know and do all db operations
asynchronously using Motor.

Installation

Straight-forward installation, using pip:

$ pip install mongomotor

And that’s it!

MongoMotor usage

To use MongoMotor is very similar to use of MongoEngine. To define your
documents there’s no difference, except on import. This is why we’ll use
the same example used on mongoengine’s tutorial. We’ll create a simple
thumblelog.

Defining documents

To begin, lets define the following documents:

In the imports here we change ``mongoengine`` to ``mongomotor``.
from mongomotor import connect, Document, EmbeddedDocument
from mongomotor.fields import (StringField, ReferenceField, ListField,
 EmbeddedDocumentField)

First creating the conection with database
connect('mongomotor-test')

Here the documents are the same used in mongoengine's tutorial
class User(Document):
 email = StringField(required=True)
 first_name = StringField(max_length=50)
 last_name = StringField(max_length=50)

class Comment(EmbeddedDocument):
 content = StringField()
 name = StringField(max_length=120)

class Post(Document):
 title = StringField(max_length=120, required=True)
 author = ReferenceField(User)
 tags = ListField(StringField(max_length=30))
 comments = ListField(EmbeddedDocumentField(Comment))

 meta = {'allow_inheritance': True}

class TextPost(Post):
 content = StringField()

class ImagePost(Post):
 image_path = StringField()

class LinkPost(Post):
 link_url = StringField()

Now, the usage is practically the same of mongoengine. Lets see:

Adding data

To add a new document to database, we’ll do everything as with mongoengine,
but with the difference that when we use the save() method, we use the
keyword yield

author = User(email='niceguy@example.com', first_name='Nice', last_name='Guy')
yield author.save()

post1 = TextPost(title='Fun with MongoMotor', author=author)
post1.content = 'Took a look at MongoEngine today, looks pretty cool.'
post1.tags = ['mongodb', 'motor', 'mongoengine', 'mongomotor']
yield post1.save()

post2 = LinkPost(title='MongoMotor Documentation', author=author)
post2.link_url = 'http://mongomotor-ptbr.readthedocs.org/pt/latest/'
post2.tags = ['mongomotor']
yield post2.save()

Accessing data

Now we already have some posts we can access them. Again, it’s like with
mongoengine, except we use yield when accessing database:

Here listing all posts that inherited from Post
for post_future in Post.objects:
 post = yield post_future
 print(post.title)

Here only TextPost from ``author``
for post_future in TextPost.objects.filter(author=author):
 post = yield post_future
 print(post.content)

And here filtering by tags
for post_future in TextPost.objects(tags='mongomotor'):
 post = yield post_future
 print(post.content)

We could use the method ``to_list()`` to transform a queryset
into a list.
posts = yield TextPost.objects.filter(tags='mongomotor')[:10].to_list()
for post in posts:
 print(post.title)

Note

While it appears that each document is retrieved individually, in fact this
is the
same behavior [http://motor.readthedocs.org/en/stable/api/motor_cursor.html#motor.MotorCursor.fetch_next]
of motor’s fetch_index, which, by its instance, retrieve the documents
in
large batches [http://docs.mongodb.org/manual/core/cursors/#cursor-batches].
Apeser de parecer que cada documento é recuperado individualmente (por causa
deste monte de yield), na verdade é o

When we use get() we also need to use yield, like this:

post = yield TextPost.objects.get(title='Fun with MongoMotor')

The same to access a ReferenceField

author = yield post.author

to use the method first() which (obviously) returns the first result of the query

post = yield Post.objects.order_by('-title').first()

or when we delete some document from database:

yield post.delete()

We can use the aggregation methods too, like
sum(), count(), average()...

total_posts = yield Post.objects.count()
tags_frequencies = yield Post.objects.item_frequencies('tags')

Licence

MongoMotor is free software, licensed under the GPL version 3 or latter.

Contributing

MongoMotor’s code is hosted on
gitlab [https://gitlab.com/mongomotor/mongomotor] and there is the
issue tracker [https://gitlab.com/mongomotor/mongomotor/issues], too.
Feel free to create a fork of the project, open issues, do merge requests...

Documentation translations

Documentação do MongoMotor em português [http://mongomotor.poraodojuca.net/ptbr/]

Well, that’s it!
Thank you!

 Copyright 2014, Juca Crispim.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	mongomotor 0.1 documentation

Index

 Copyright 2014, Juca Crispim.
 Created using Sphinx 1.2.3.

 tutorial.html

 Navigation

 		
 index

 		mongomotor 0.1 documentation »

Mongomotor usage

Use mongomotor is very similar to use mongoengine. Here let’s do the same
tutorial used in mongoengine docs, we will create a simple Tumblelog
application.

 © Copyright 2014, Juca Crispim.
 Created using Sphinx 1.2.3.

_static/ajax-loader.gif

_static/up.png

_images/mongomotor.jpg

_static/plus.png

_static/mongomotor.jpg

search.html

 Navigation

 		
 index

 		mongomotor 0.1 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2014, Juca Crispim.
 Created using Sphinx 1.2.3.

_static/comment-close.png

_static/file.png

_static/up-pressed.png

_static/comment-bright.png

_static/down-pressed.png

_static/down.png

_static/minus.png

_static/comment.png

