

Multilayer Modularity Belief Propagation (modbp)

A belief propagation solution to multilay modularity community detection.

[image: _images/modbp_illustration.png]

We have implemented a belief propagation solution for multilayer modularity in both C++ and Python. Our implementation allows for both weighted and unweighted single layer networksas well as a variety of multilayer topologies. The C++ backend provides significant performance increaseand allows for running the algorithm at larger scale networks. Our method extends the approach of Pan Zhang and Christopher Moore [1] and provides a convenient interface with the standard networks analysis library, igraph.

Contents:

	Multilayer Modularity Belief Propagation (modbp)

	Background
	Introduction: Belief Propagation

	Modularity

	Multilayer Modularity

	Multilayer Graph Class
	Multilayer Graph

	Random Graph Classes

	ModularityBP Object
	Storing Graphs on ModularityBP Object

	Running Multilayer Modularity Belief Propagation

	Accessing partitions and marginals

	Assessing Results Across Many Different Runs

	References

Download and Installation:

The modbp module is hosted on PyPi [https://pypi.python.org/pypi/modbp]. The easiest way to install is via the pip command:

pip install modbp

For installation from source, the latest version of modbp can be downloaded from GitHub:

Multimodbp Github [https://github.com/bwalker1/ModularityBP_Cpp]

For basic installation:

python setup.py install

Dependencies

To make our code run as quickly as possible, the underlying belief propagation algorithm has been written in C++. Wrapping and interfacing this code with the Python tools requires swig [http://www.swig.org/index.php], a tool for creating Python classes from C++ objects.

The python dependencies for modbp are fairly standard tools for data analysis in Python:

	NumPy [https://www.scipy.org/scipylib/download.html] : Python numerical analysis library.

	sklearn [http://scikit-learn.org/stable/install.html] :Machine learning tools for python.

	python-igraph [http://igraph.org/python/#downloads] :igraph python version for manipulation of networks.

	matplotlib [https://matplotlib.org/users/installing.html] :Python data visualization library.

	pandas [https://pandas.pydata.org/pandas-docs/stable/install.html] :data structures and data analysis tools for python.

These should all be handled automatically if using pip to install.

We are also working on creating a conda recipe for easy installation through conda forge.

Citation

	1

	Pan Zhang and Cristopher Moore. Scalable detection of statistically significant communities and hierarchies, using message passing for modularity. Proceedings of the National Academy of Sciences, 111(51):18144–18149, 2014.

bibtex

For more details and results see our manuscript [http://]

	Index

	Search Page

Acknowledgements

Background

We present multimodbp, a belief propagation implementation of multilayer modularity for communtiy detectionOur tool is a C++ based implentation of the belief propagation algorithm (also called the sum-product or message passing algorithm) wrapped in Python for convenient access and execution.

Introduction: Belief Propagation

Modularity

Multilayer Modularity

One of the strengths of modularity is that it has been extended in a principled way into a variety of network topologies in particular the multilayer context. The multilayer formulation [1] for modularity incorporates the interlayer connectivity of the network in the form of a second adjacency matrix \(C_{ij}\)

\begin{equation}
Q(\gamma)=\frac{1}{2m}\sum_{i,j}{\left(A_{ij}-\gamma \frac{k_ik_j}{2m} \
+\omega C_{ij}\right)\delta(c_i,c_j)}
\end{equation}
Communities in this context group nodes within the layers and across the layers. The inclusion of the \(C_ij\) boost the modularity for communites that include alot interlayer links. There is an additional parameter, \(\omega\) that tunes how much weight these interlink ties contribute to the modularity.

References

	1

	Peter J Mucha, Thomas Richardson, Kevin Macon, Mason A Porter, and Jukka-Pekka Onnela. Community structure in time-dependent, multiscale, and multiplex networks. Science, 328(5980):876–878, May 2010.

	Index

	Search Page

Multilayer Graph Class

We have created a Python class to store the graph information used by the multilayer belief propagation.the same class can be used for both the single layer and the multilayer case. In addition we have created a class for generating realization of the Dynamic Stochastic Block Model.

Multilayer Graph

	
class modbp.MultilayerGraph(intralayer_edges, layer_vec, interlayer_edges=None, comm_vec=None, directed=False)

	Wrapper class for storing a ‘multilayer graph’ that can be used to call the modularity belief propagation A graph here is represented by a collection of igraphs (each one representing a “layer”) as well as a set of edges between the layers. In this formulation, each node can only be present in a single layer

	
__init__(intralayer_edges, layer_vec, interlayer_edges=None, comm_vec=None, directed=False)

	
	Parameters

	
	intralayer_edges – list of intralayer edges between the nodes. If intralayer_edges.shape[1] > 2 intralayer_edges[:,2] is assumed to represent the weights of the edges. Default weight is 1.

	layer_vec – vector denoting layer membership for each edge. Size of network is taken to be len(layer_vec)

	interlayer_edges – list of edges across layers. If interlayer_edges.shape[1] > 2 interlayer_edges[:,2] is assumed to represent the weights of the edges. Default weight is 1.

	comm_vec – Underlying known communitiies of the network. Default is None

	directed – Are intralayer and interlayer edges directed. #TODO: allow one or the other to be directed.

	
__weakref__

	list of weak references to the object (if defined)

	
get_AMI_layer_avg_with_communities(labels)

	Calculate AMI of each layer with corresponding community in labels. Return average AMI weighted by number of nodes in each layer.
:param labels: commmunity to assess agreement with. Len(labels) must equal self.N
:return:

	
get_AMI_with_communities(labels)

	Calculate adjusted mutual information of labels with underlying community of network.
:param labels: commmunity to assess agreement with. Len(labels) must equal self.N
:return:

	
get_accuracy_with_communities(labels, permute=True)

	Calculate accuracy between supplied labels and the known communities of the networks.

	Parameters

	
	labels – commmunity to assess agreement with. Len(labels) must equal self.N

	permute – Should maximum accurracy across label permuations be identified?

	Returns

	

	
get_layer_edgecounts()

	m for each layer

	
plot_communities(comvec=None, layers=None, ax=None, cmap=None)

	Plot communities as an nlayers by nodes/layer heatmap. Note this only works
for the multiplex case where the number of nodes is fixed throughout each layer.

	Parameters

	
	comvec – community label for each nodes. If none, used stored ground truth for the network.

	layers – Subset of the layers to plot. If None, plots all layers.

	ax – matplotlib.Axes to draw on

	cmap – color map to label communities with. Defaults to cube_helix.

	Returns

	

	
reorder_nodes()

	Resort all objects in the MultilayerGraph object by their community label
:return:

	
to_scipy_csr()

	Create sparse matrix representations of the multilayer network.

	Returns

	(A_sparse,C_sparse) = interlayer adjacency , interlayer adjacency

Random Graph Classes

	
class modbp.MultilayerSBM(n, comm_prob_mat, layers=2, transition_prob=0.1, block_sizes0=None, use_gcc=False)

	Subclass of MultilayerGraph to create the dynamic stochastic block model from Ghasemian et al. 2016.

	
__init__(n, comm_prob_mat, layers=2, transition_prob=0.1, block_sizes0=None, use_gcc=False)

	
	Parameters

	
	n – number of nodes in each layer

	comm_prob_mat – probability of block connections in SBM(this is fixed across all layers)

	layers – number of layers

	transition_prob – probability of each node changing communities from one layer to next. if transistion_prob=0 then community structure is constant across all layers.

	block_sizes0 – Initial size of the blocks. Default is to use even block sizes starting out. block sizes at subsequent layers are determined by number of nodes that randomly transition between communities

	use_gcc – use only giant connected component of starting SBM (option for single layer only)

	
get_all_layers_block()

	returns a single vector with block id for each node across all of the layers
:return:

	
get_interlayer_adj()

	Singer interlayer adjencency matrix created by connecting each node to it’s equivalent node in the next layer. This is a temporal multiplex topology.
:return: np.array of interlayer adjacency representation

	
get_interlayer_edgelist()

	Single list of edges giving the multilayer connections. For this model nodes are multiplex an connected to their neighboring slice identities.

	Returns

	np.array

	
get_intralayer_adj()

	Single adjacency matrix representing all layers.
:return: np.array of intralayer adjacency representation

	
get_intralayer_edgelist()

	Single list of edges treating the group of single layer SBM’s as a surpra-adjacency format

	Returns

	np.array

	
get_node_layer_vec()

	
	Returns

	np.array denoting which layer each node is in

	Index

	Search Page

ModularityBP Object

We have created a single Python object, modbp.ModularityBP

	Store graphs on ModularityBP Object

	Run modularity belief propagation

	Access discovered partitions and marginals

	Compile results across many different runs

Storing Graphs on ModularityBP Object

A representation of a network must be supplied at the instantiation of the modbp.ModularityBP object. Each instance can only be associated with one network. A network can be supplied in several different formats:

	A igraph.Graph object is supplied. In this case network will be treated as single layer. This is pass in through the mlgraph parameter:

rand_g=igraph.Graph.ErdosRenyi(n=100,p=.05)
modbp_obj=modbp.ModularityBP(mlgraph=rand_g)

	A modbp.MultilayerGraph object can be supplied, also through the mlgraph parameter. See Multilayer Graph for more details.

	Finally, one can pass in an array for intralayer_edges, interlayer_edges, and layer_vec, from which modbp.ModularityBP will internally construct a modbp.MultilayerGraph:

intra_edges=np.array([[0,1],[0,2],[3,4]])
inter_edges=np.array([[2,3]])
layer_vec=[0,0,0,1,1]
modbp_obj=modbp.ModularityBP(intra_edges=intra_edges,
 inter_edges=inter_edges,
 layer_vec=layer_vec)

The graph is stored internally each modbp.ModularityBP as a modbp.MultilayerGraph and is accessible through modbp.ModularityBP.graph variable.

Running Multilayer Modularity Belief Propagation

	
ModularityBP.run_modbp(beta, q, niter=100, resgamma=1.0, omega=1.0, reset=False)

	
	Parameters

	
	beta – The inverse tempature parameter at which to run the modularity belief propagation algorithm. Must be specified each time BP is run.

	q – The number of mariginals used for the run of modbp. Note that if self.use_effective is true, The final number of reported communities could be lower.

	niter – Maximum number of iterations allowed. If self._align_communities_across_layers is true, the actual number of runs could be higher than this upper bound though at most 2*niter

	resgamma – The resolution parameter at which to run modbp. Default is resgamma=1.0

	omega – The coupling strength used in running multimodbp. This represent how strongly the algorithm tries to assign nodes connected by an interlayer connection to the same community.

	reset – If true, the marginals will be rerandomized when this method is called. Otherwise the state will be maintained from previous runs if existing (assuming q hasn’t changed).

	Returns

	None

Accessing partitions and marginals

Assessing Results Across Many Different Runs

	Index

	Search Page

References

bibtex

	Index

	Search Page

Index

 _
 | G
 | M
 | P
 | R
 | T

_

 	
 	__init__() (modbp.MultilayerGraph method)

 	(modbp.MultilayerSBM method)

 	
 	__weakref__ (modbp.MultilayerGraph attribute)

G

 	
 	get_accuracy_with_communities() (modbp.MultilayerGraph method)

 	get_all_layers_block() (modbp.MultilayerSBM method)

 	get_AMI_layer_avg_with_communities() (modbp.MultilayerGraph method)

 	get_AMI_with_communities() (modbp.MultilayerGraph method)

 	get_interlayer_adj() (modbp.MultilayerSBM method)

 	
 	get_interlayer_edgelist() (modbp.MultilayerSBM method)

 	get_intralayer_adj() (modbp.MultilayerSBM method)

 	get_intralayer_edgelist() (modbp.MultilayerSBM method)

 	get_layer_edgecounts() (modbp.MultilayerGraph method)

 	get_node_layer_vec() (modbp.MultilayerSBM method)

M

 	
 	MultilayerGraph (class in modbp)

 	
 	MultilayerSBM (class in modbp)

P

 	
 	plot_communities() (modbp.MultilayerGraph method)

R

 	
 	reorder_nodes() (modbp.MultilayerGraph method)

 	
 	run_modbp() (modbp.ModularityBP method)

T

 	
 	to_scipy_csr() (modbp.MultilayerGraph method)

 nav.xhtml

 Table of Contents

 		
 Multilayer Modularity Belief Propagation (modbp)

 		
 Background

 		
 Introduction: Belief Propagation

 		
 Modularity

 		
 Multilayer Modularity

 		
 References

 		
 Multilayer Graph Class

 		
 Multilayer Graph

 		
 Random Graph Classes

 		
 ModularityBP Object

 		
 Storing Graphs on ModularityBP Object

 		
 Running Multilayer Modularity Belief Propagation

 		
 Accessing partitions and marginals

 		
 Assessing Results Across Many Different Runs

 		
 References

_static/ajax-loader.gif

_static/minus.png

_static/plus.png

_images/modbp_illustration.png
= m =

sme mma gy
‘-|- 'l.'
- .,

L4
hhh
hi.
L)
....

L TTTTT)

_static/file.png

_static/up.png

_static/up-pressed.png

_static/comment.png

_static/down-pressed.png

_static/comment-bright.png

_static/comment-close.png

_static/down.png

