

ModelE Control

ModelE Control makes it simple to setup, build and run the GISS ModelE
climate model. It offers the following feature:

	ModelE run directories are decoupled from the ModelE software
distribution, and may be placed anywhere convenient to the user.
They will often reside together in “experiment” directories that
might contains runs from more than one ModelE source download, as
well as additional scripts to post-process experimental output.

	The ModelE software directory is not modified. This allows, for
example, easy rsync of ModelE between computers.

	ModelE binaries are decoupled from source and build directories, and
are only deleted when no longer used by any run. Re-building ModelE
can never accidentally “mess up” an existing in-progress ModelE run.

Contents:

	Introduction
	Design Requirements

	Advantages

	Getting Started
	Quick Start: NCCS Discover

	Installation

	Build and Run ModelE
	Setup the ModelE Root

	Download ModelE Source

	Setup ModelE Source

	Create a Run

	Start the Run

	View the Log

	Manage the Run

	Stop the Run

	Post-Mortem

	Advanced Usage
	Elevation Classes

	Continuing a Run

	Restarting from fort.X.nc or an .rsf file

	Restarting by Date

	Keepalive

	Create a Rundeck

	One Root per User

Elevation Classes

Indices and tables

	Index

	Module Index

	Search Page

Introduction

ModelE-Control is a new way to build and run ModelE. The original
impetus of the system was to improve ModelE’s ability to build with
large numbers of external dependencies, in service to coupling with
dynamic ice models. However, existing ways of running ModelE were not
particularly easy or intuitive; the author would frequently forget how
to do common tasks, or would make mistakes in submitting jobs.

Design Requirements

This experience led to a number of design goals:

	There should be simple, high-level commands that do what users need
with ModelE, without bothering them with the details. The list of
required commands can be determined by looking at existing FAQs.
For example:

	How do I create a rundeck?

	How do I prepare a run directory?

	How do I run ModelE?

	How do I stop ModelE?

	How do I pause a ModelE run?

	How do I restart a ModelE run somewhere other than it just left off?

	ModelE runs last a long time. Changes a user might make to ModelE
source code or its dependencies should not affect existing
in-progress runs.

	Users have diverse sets of needs on how ModelE is to be built and
run; and they should all be supported. For example, some users run
a single ModelE source code on dozens of rundecks. Some users run
multiple versions of a ModelE on the same rundeck. Some users run
specific rundecks on multiple compilers. Some users want to change
a run in the middle, others run only versions with git hashes

All these use cases should be supported equally, without making
specific assumptions on how users wish to work.

	ModelE runs should be reproducible. Enough information should be
collected in a run so it can be reproduced.

	A stacktrace should be provided whenever a ModelE run terminates
prematurely, for whatever reason. This can save countless hours of
debugging effort.

	Users update rundecks, and upstream changes to ModelE also update
rundecks. These multiple sources of changes should be accommodated
and merged gracefully, without forcing the user to manually merge
them (except in case of conflict).

	Modern software ecosystems demand an ever-increasing number of
dependencies be installed for a project to build and run; avoiding
dependencies is no longer a viable way to make sofware easy to
install. It should be easy to install ModelE dependencies, and
developers should not be inhibited from using valuable third-party
libraries simply because they add a dependency.

	Software dependencies of ModelE change from time to time — for
example, NetCDF. Upgrading these dependencies should be easy and
non-disruptive, and should not affect existing in-progress ModelE
runs.

	ModelE binaries should be useful for more than just running a
climate simulations. For example, unit tests, single-system runs
or single-column models should be possible, without having to
change the core ModelE main() program.

ModelE-Control addresses these design goals by re-thinking the process
of building and running ModelE. It is an evolution of existing
practice and scripts. The result is a single ectl command, like
git, with sub-commands for all ModelE operations.

Advantages

Before we dive into using ModelE Control, this section explains a few
of the main concepts and advantages offered by the system.

Directories

In running ModelE, ModelE-Control distinguishes between five different
directories:

	root: An umbrella directory containing multiple run
directories.

	run: The ModelE run directory; that is, the directory in
which ModelE output and other data files are written.

	src: The location of the ModelE source code, as downloaded
from Git. ModelE-Control does not modify the src directory.

	build: The location where ModelE source code is built, which
always happens out-of-source with ModelE-Control.

	package: The location for ModelE binaries.

The run directory is central to modele-control, commands all
operate on a run directory. Within the run directory are symbolic
links to the source (src), build (build) and package (pkg)
directories currently associated with that run. This use of symbolic
links to associate directories with each other has many advantages:

	Users have flexibility to place related runs together, whether or
not they were built from the same source.

	Different runs using the same source but different rundecks will
build in different build directories, limiting the need for large
rebuilds.

	Packages are guaranteed to last at least as long as the run that
needs them, no matter what the user does to the associated source
or build directory in the meantime.

Rundeck Management

Users typically start with a rundeck supplied in the ModleE
repository, and then modify it as needed. This works, until ModelE is
updated, and the rundeck templates with it. At that point, the user
is left with a new rundeck that works but without modifications; and
an old rundeck than no longer works. The user is forced to manually
re-apply the edits made to the old rundeck, to the new rundeck.

ModelE Control mostly eliminates the need to manually merge rundecks.
When a source directory is updated, ModelE Control will use Git to
apply the user’s rundeck modifications to the new rundeck. In case a
rundeck changes in the middle of a run, this also allows the user to
reconstruct when that change happened.

I File Management

Somtimes, users need to change rundeck parameters in the middle of a
run. In the past, that was done by modifying the I file. This was
not user friendly becuase the I file is not the same as the original
rundeck. With ModelE Control, the user can edit the rundeck directly
when making parameter changes.

Getting Started

A number of pieces of software must be installed to run ModelE
successfully — not just ModelE and ModelE-Control, but also ModelE
dependencies, as well as key post-processing tools. These tools have
already been installed on some systems, allowing users to get started
immediately simply by making changes to .bashrc.

Check below to see if the ModelE environment has been installed on
your favorite computer. If not, head to the
full Installation instructions below.

Quick Start: NCCS Discover

The ModelE environment has already been installed on NCCS Discover,
allowing users to get started quickly with ModelE. To use this
environment:

	Remove all module load commands from your .bashrc file.

	Add the following to your .bashrc file:

.. code-block:: console

source /home/rpfische/env/modele-ksx-gcc

Use the following instead for Intel compilers (not yet implemented):

.. code-block:: console

 source /home/rpfische/env/modele-ksx-intel

	Set MODELE_FILE_PATH in your .bashrc, modifying depending
on where you wish to keep user-generated input files. For example:

export MODELE_FILE_PATH=/discover/nobackup/projects/giss/prod_input_files:$HOME/modele_input/local

That’s it, you are now ready to use ModelE, along with all the latest
tools, NetCDF, etc.

Installation

ModelE and ModelE-Control have a number of dependencies, which are
automatically handled by Spack [http://github.com/llnl/spack]. The following instructions may be
used to install ModelE, modele-control and Spack startin from a
clean machine:

Install Spack

If you are not using discover, then here is how to build a
ModelE environment on your machine.

	Download:

cd ~
git clone git@github.com:citibeth/spack.git -b efischer/develop
git clone https://github.com/citibeth/spack.git -b efischer/develop

	Add to your .bashrc file:

export SPACK_ROOT=$HOME/spack
. $SPACK_ROOT/share/spack/setup-env.sh

	Remove non-system stuff from your PATH, LD_LIBRARY_PATH and
other environment variables, which can cause strange errors when
building with Spack.

Setup Spack

See Spack docs for more info on setting up compilers, bootstrapping, etc.

Actuallyxx… give instructions here on Intel, etc. compilers

Setup Packages

Copy the following to your ~/.spack/packages.yaml file:

packages:
 python:
 # Lie about the version in the system, so it's new enough for Spack to recognize.
 paths:
 python@2.7.8: / # Spack can't install Python2, I don't know why
 version: [3.5.2,2.7.8]

 py-cython:
 version: [0.23.5]
 py-proj:
 version: [1.9.5.1.1] # Normal released version 1.9.5.1 is buggy
 py-matplotlib:
 variants: +gui +ipython
 py-numpy:
 variants: +blas +lapack

 ibmisc:
 version: [develop]
 variants: +python +netcdf
 icebin:
 version: [develop]
 variants: +gridgen +python ~coupler ~pism

 # Running without dynamic ice
 modele:
 version: [landice]

Running with dynamic ice
modele:
version: [glint2]
variants: [+couler +pism]

 pism:
 version: [glint2]
 glint2:
 version: [glint2]
 variants: +coupler +pism

 everytrace:
 version: [develop]
 eigen:
 variants: ~suitesparse
 netcdf:
 variants: +mpi

 # Recommended for security reasons
 # Do not install OpenSSL as non-root user.
 openssl:
 paths:
 openssl@system: /usr
 version: [system]
 buildable: False

 # Recommended, unless your system doesn't provide Qt4
 qt:
 paths:
 qt@system: /usr
 version: [system]
 buildable: False

 all:
 compiler: [gcc@4.9.3]
 providers:
 mpi: [openmpi]
 blas: [openblas]
 lapack: [openblas]

Install ModelE Environment

This installs all the prerequisites needed to run ModelE, along with basic tools to analyze its output.

spack install modele-utils
spack install --dependencies-only modele
spack install ncview
spack install nco
spack install modele-control

Generate the Module Loads

Run the following script, to generate the file ~/env/modele. This
will load the modules you just created:

#!/bin/sh
#
Generate commands to load the Spack environment

SPACKENV=$HOME/env/modele
FIND='spack module loads'

echo '#!/bin/sh -f' >$SPACKENV
echo '# ---- Machine generated; do not edit!' >>$SPACKENV
#echo 'module purge' >>$SPACKENV

--- ModelE Stuff
$FIND ncview >>$SPACKENV
$FIND nco >>$SPACKENV
$FIND modele-control >>$SPACKENV
$FIND modele-utils >>$SPACKENV

NOTES:

1. Remember to include any bootstrapping modules you might need as
well: for example, pre-existing compilers sometimes must be loaded to
run anything built with them.

	Depending on how your system’s environment modules are configured, you might need to add --prefix to the spack module loads command. See spack module loads --help.

Update .bashrc

Add the following to your .bashrc file, modifying accordingly:

export SPACK_ROOT=$HOME/spack
. $SPACK_ROOT/share/spack/setup-env.sh
export MODULEPATH=$SPACK_ROOT/share/spack/modules:$MODULEPATH
export PATH=$PATH:$HOME/spack/bin
alias spack='nice spack'
export SPACK_DIRTY=
export LESS='-R'
source $HOME/env/modele

Build and Run ModelE

Now that the ModelE environment has been installed, it is possible to
begin downloading and running climate models. This section serves as a tutorial, not reference manual. Definitive usage for any ModelE-Control command may be obtained via ectl <cmd> --help. For example:

$ ectl setup help
usage: ectl setup [-h] [--ectl ECTL] [--rundeck RUNDECK] [--src SRC]
 [--pkgbuild] [--rebuild] [--jobs JOBS]
 run

positional arguments:
 run Directory of run to setup

optional arguments:
 -h, --help show this help message and exit
 --ectl ECTL Root of ectl tree: ectl/runs, ectl/builds, ectl/pkgs
 --rundeck RUNDECK, -rd RUNDECK
 Rundeck to use in setup
 --src SRC, -s SRC Top-level directory of ModelE source
 --pkgbuild Name package dir after build dir.
 --rebuild Rebuild the package, even if it seems to be fine.
 --jobs JOBS, -j JOBS Number of cores to use when building.

Setup the ModelE Root

Begin by setting up a ModelE root directory; this must be an ancestor of
all your run directories. It is marked as a root directory by the
presence of a file named ectl.conf. For example:

$ mkdir ~/exp # The root directory
$ echo >~/exp/ectl.conf

Notes:

	Run directories need to be held within the root directory, but not
necessarily as direct children. For example, the following
directory structure is common:

exp/ # Root directory
 experiment1/
 run1/ # Run 1 of experiment 1
 run2/ # Run 2 of experiment 1
 experiment2/
 run1/ # Run 1 of experiment 2
 run2/ # Run 2 of experiment 2

	There are no restrictions on what can go inside the root in
addition to ModelE runs. Typically, they may contain
pre-processing and post-processing code, graphs, ModelE source
directories — anything needed by the user while building an
experiment.

	The user may have more than one root; although there is rarely a
need to do so.

	Any existing directory may be turned into a root. For example:

$ echo >~/ectl.conf # Turn ~ into a root

Download ModelE Source

Once a root has been set up, the user must find or download a ModelE
source directory. This directory can be anywhere on the filesystem,
it does not have to live within a root. Source directories may be
shared by mutliple run directories. ModelE source is typically
obtained by downloading from Simplex, or some other Git repository:

$ cd ~/exp # Root directory
$ git clone simplex.giss.nasa.gov:/giss/gitrepo/modelE.git -b <branch>

Notes:

	<branch> is the ModelE branch you wish to use: master,
develop, landice, cmake, etc.

	The cmake build must be enabled on the branch you choose.
You can tell if it is on your branch by looking for a file
CMakeLists.txt or modele-control.pyar at the top level. So
far, CMake is enabled on the branches master, landice and
efischer/ec2.

If CMake is not enabled for your branch, copy the
modele-control.pyar file from the master branch, and check
it into your branch. Or merge from master.

Setup ModelE Source

From the ModelE download directory, type the following:

$ cd ~/exp/modelE
$ spack uninstall -ay modele@local;spack setup modele@local

This finds all of ModelE’s dependencies and creates a file
spconfig.py, which is used in the build process to configure
ModelE’s dependencies for your system. Alternately, you can copy
spconfig.py from another working ModelE source directory.

Quick Setup: NCCS Discover

If you are running on NCCS Discover, you do not need to run Spack.
Simplified instructions are:

$ cd ~/exp/modelE
$ ln -s $EHOME/env/modele-spconfig.py spconfig.py

Create a Run

It is now possible to create a ModelE run directory. ModelE-Control
needs to know which source directory and rundeck you wish to use for
this run, as well as the name of the run directory you are creating.
For example, suppose you wish to create a run directory called
myrun:

$ cd ~/exp
$ ectl setup myrun --src ~/exp/modelE --rundeck ~/exp/modelE/templates/E4F40.R

This will do the following:

	Create your run directory. Run directories may be created anywhere
that is a sub-directory of the ModelE-Control root.

	Link input files into the run directory, downloading any missing
input files.

	Record your choices of source directory and run directory; these
will be saved as symbolic links calld src and upstream.R
inside your run directory. For example:

$ ls myrun
src -> ../../../../../home/rpfische/f15/modelE
upstream.R -> ../e4f40.R

	Create a build directory, where the source code for ModelE will be
built. It will be created in a subdirectory
builds of the ModelE-Control. In this case:

build -> ../builds/768603dc2b58f45a96b72c5839d79dbd

Note that the build directory is named by a random-looking hash.
This hash is generated based on the ModelE source directory and the
contents of your chosen rundeck; more on this later.

	Use CMake to generate a build, linked up to the proper
dependencies. This is done by running the spconfig.py script
generated above by Spack:

-- CMAKE_INSTALL_RPATH /gpfsm/dnb53/rpfische/exp/pkgs/1e35f5f359ecbb675e04a1c75f9ee260/lib
-- Found MPI_C: /usr/local/other/SLES11.3/openmpi/1.10.1/gcc-5.3/lib/libmpi.so
...
-- **
-- ********** PROJECT: ModelE **********
-- Architecture: x86_64
-- System: Linux
-- MODELERC:
-- COMPILER: GNU 5.3.0
-- RUNSRC:
-- RUN: /gpfsm/dnb53/rpfische/exp/e4f40.R
-- MPI: YES
-- WITH_PFUNIT:
-- **
-- Configuring done
-- Generating done
-- Build files have been written to: ~/exp/builds/9b3ea947a57318e1e33018503c16b82d

	Use make to build ModelE with the CMake-generated build:

[0%] Generating landice/ExportConstants.F90
[1%] Generating shared/RunTimeControls_mod.F90
[2%] Generating shared/Attributes.F90
[2%] Generating Ent/ent_mod.f
[3%] Generating shared/AttributeHashMap.F90, shared/AbstractTimeStamp.F90, shared/CalendarDate.F90
[3%] Generating shared/AttributeDictionary.F90
Writing .../landice/ExportConstants.F90
Reading /home/rpfische/f15/modelE/model/shared/Constants_mod.F90
Reading /home/rpfische/f15/modelE/model/SEAICE.f
Scanning dependencies of target modele
[4%] Building Fortran object model/CMakeFiles/modele.dir/landice/DebugType.F90.o
...
[96%] Building Fortran object model/CMakeFiles/modele.dir/SURFACE.f.o
[97%] Building Fortran object model/CMakeFiles/modele.dir/STRAT_DIAG.f.o
[98%] Building Fortran object model/CMakeFiles/modele.dir/RAD_DRV.f.o
[98%] Linking Fortran shared library libmodele.so
[98%] Built target modele
Scanning dependencies of target modelexe
[99%] Building Fortran object model/CMakeFiles/modelexe.dir/main.F90.o
[100%] Linking Fortran executable modelexe
[100%] Built target modelexe

	Create a package directory, where the executable for this run will
live. It will be created in a subdirectory pkgs of the
ModelE-Control. In this case:

pkg -> ../pkgs/1e35f5f359ecbb675e04a1c75f9ee260

	Install the built ModelE binaries into the package directory:

Install the project...
-- Install configuration: "Release"
-- Installing: .../lib/libmodele.so
-- Set runtime path of ".../libmodele.so" to ...
-- Installing: .../bin/modelexe
-- Set runtime path of ".../bin/modelexe" to ...

Start the Run

To start a run, for example, to run with two processors:

$ ectl run ~/exp/test -np 2

Note that this command works from any directory. You could just as
well have typed:

$ cd ~/exp
$ ectl run test

or even:

$ cd ~/exptest
$ ectl run

Before launching ModelE, this command will generate the ModelE I
file based on your run’s rundeck.R file. This ensure that any
parameter changes made to rundeck.R will be reflected in I. The
user should never have to edit the I file directly.

This will start the run in the background and return to your shell
prompt. The run will continue until it ends by itself or is stopped;
logging out will NOT stop the run. After starting the run,
ModelE-Control shows run status:

$ mpirun -timestamp-output -output-filename /gpfsm/dnb53/rpfische/exp/test/log/q -np 2 --report-pid /gpfsm/dnb53/rpfische/exp/test/modele.pid /gpfsm/dnb53/rpfische/exp/test/pkg/bin/modelexe -cold-restart -i I
nohup: ignoring input and appending output to `nohup.out'
============================ test
status: RUNNING
run: /gpfsm/dnb53/rpfische/exp/test
rundeck: /gpfsm/dnb53/rpfische/exp/e4f40.R
src: /gpfsm/dnb53/rpfische/f15/modelE
build: /gpfsm/dnb53/rpfische/exp/builds/768603dc2b58f45a96b72c5839d79dbd
pkg: /gpfsm/dnb53/rpfische/exp/pkgs/1e35f5f359ecbb675e04a1c75f9ee260
launcher = mpi
pidfile = /gpfsm/dnb53/rpfische/exp/test/modele.pid
mpi_cmd = mpirun -timestamp-output -output-filename /gpfsm/dnb53/rpfische/exp/test/log/q -np 2 --report-pid /gpfsm/dnb53/rpfische/exp/test/modele.pid
modele_cmd = /gpfsm/dnb53/rpfische/exp/test/pkg/bin/modelexe -cold-restart -i I
cwd = /gpfsm/dnb53/rpfische/exp/test
USER PID %CPU %MEM VSZ RSS TTY STAT START TIME COMMAND
rpfische 436 7.9 0.0 4280812 4124 pts/9 Sl+ 17:31 0:00 mpirun -timestamp-output -output-filename /gpfsm/dnb53/rpfische/exp/test/log/q -np 2 --report-pid /gpfsm/dnb53/rpfische/exp/test/modele.pid /gpfsm/dnb53/rpfische/exp/test/pkg/bin/modelexe -cold-restart -i I
rpfische 443 86.8 0.1 13635064 245040 pts/9 Dl 17:31 0:00 /gpfsm/dnb53/rpfische/exp/test/pkg/bin/modelexe -cold-restart -i I
rpfische 445 92.2 0.1 13624436 242348 pts/9 Rl 17:31 0:00 /gpfsm/dnb53/rpfische/exp/test/pkg/bin/modelexe -cold-restart -i I

View the Log

The ModelE STDOUT/STDERR log file(s) are written into the directory
myrun/log, and are named by MPI rank:

$ ls -l log
total 960
-rw-r----- 1 rpfische s1001 599042 Aug 28 17:32 q.1.0
-rw-r----- 1 rpfische s1001 329834 Aug 28 17:32 q.1.1

Output is separated by MPI rank to enhance scalability, and to avoid
the occasional garbled output when two MPI ranks write output at the
same time. Timestamps in the per-rank log files allow them to be
combined into one file if desired.

While ModelE is running, a log file may be watched via:

$ ectl tail -f myrun

Manage the Run

After a run has been started, you can inspect the status of the run;
for example:

$ ectl ps myrun

If you have many runs going at once, you can also inspect the status
of them all together. For example:

$ ectl ps myrun1 myrun2

or to get the status of all the runs in your ModelE-Control root:

$ cd ~/exp
$ ectl ps

In any case, the status will tell the current model date/time, and
whether the simulation is currently running. For example, after a
simulation has terminated, ectl ps looks like:

============================ test
status: STOPPED
itime = 16033 timestamp = 1949-12-01T00:00
fort.1.nc: 1949-12-01 00:00:00
fort.2.nc: 1949-12-01 01:00:00
run: /gpfsm/dnb53/rpfische/exp/test
rundeck: /gpfsm/dnb53/rpfische/exp/e4f40.R
src: /gpfsm/dnb53/rpfische/f15/modelE
build: /gpfsm/dnb53/rpfische/exp/builds/768603dc2b58f45a96b72c5839d79dbd
pkg: /gpfsm/dnb53/rpfische/exp/pkgs/1e35f5f359ecbb675e04a1c75f9ee260
launcher = mpi
pidfile = /gpfsm/dnb53/rpfische/exp/test/modele.pid
mpi_cmd = mpirun -timestamp-output -output-filename /gpfsm/dnb53/rpfische/exp/test/log/q -np 2 --report-pid /gpfsm/dnb53/rpfische/exp/test/modele.pid
modele_cmd = /gpfsm/dnb53/rpfische/exp/test/pkg/bin/modelexe -cold-restart -i I
cwd = /gpfsm/dnb53/rpfische/exp/test
<No Running Processes>

Stop the Run

In order to stop a run:

$ ectl stop myrun

This will do a “soft stop” by requesting ModelE to terminate. It is
also possible to do a “hard stop” that kills the ModelE process as
expediently as possible:

$ ectl stop -f myrun

Once the stop process is complete, ectl ps output should
reflect that.

Post-Mortem

Once a ModelE run has stopped, it is possible to determine how it
stopped, using Everytrace:

$ ectl trace myrun

======== Resolving Everytrace-enabled binaries:
 /gpfsm/dnb53/rpfische/exp/pkgs/1e35f5f359ecbb675e04a1c75f9ee260/lib/libmodele.so
ref_addr_lib 495072 /gpfsm/dnb53/rpfische/exp/pkgs/1e35f5f359ecbb675e04a1c75f9ee260/lib/libmodele.so
=============== q.1.0
Exiting with return code: 13
 0x7FFEFB7804C7
 0x7FFEFBA860D6
 0x7FFEFBA8612D
 /home/rpfische/f15/modelE/model/MODELE.f:448
 /home/rpfische/f15/modelE/model/MODELE_DRV.f:28
 0x400A57
 0x7FFEFAD35C35
=============== q.1.1
Exiting with return code: 13
 0x7FFEFB7804C7
 0x7FFEFBA860D6
 0x7FFEFBA8612D
 /home/rpfische/f15/modelE/model/MODELE.f:448
 /home/rpfische/f15/modelE/model/MODELE_DRV.f:28
 0x400A57
 0x7FFEFAD35C35

Everytrace provides a stacktrace, with filenames and line numbers, of how ModelE stopped on each MPI rank. In this case, ModelE terminated on line 448 of MODELE.f, which is normal termination:

CALL stop_model('Terminated normally (reached maximum time)',13)

In this case, normal termination can also be confirmed by inspecting the log files.

Note

The Everytrace feature is currently enabled only on the landice branch.

Advanced Usage

Elevation Classes

ModelE can run with elevation classes for land ice. In this mode,
the ice surface model is run at multiple fixed elevations for each
atmosphere gridcell, also known as the elevation grid.

In order to run with elevation classes, ModelE needs appropriate
matrices to regrid from the elevation grid to atmosphere grid (going
the other way is assumed to be trivial). These are computed using the
IceBin regridding / coupler library; although when not running
coupled, only the regridding portions are used. The following changes
are required to ModelE input files:

	The NetCDF variable fhc(nhc,jm,im) in the TOPO file, where nhc
is the number of elevation classes. fhc(ihc,j,i) is extracted
from the EvI sparse matrix generated by IceBin: fhc(ihc,j,i)
must be set to the value of AvE at with coordinates ((j,i),
(ihc,j,i)); in other words, the contribution of elevation grid cell
(ihc,j,i) to atmosphere grid cell (j,i).

	The NetCDF variable elevE(nhc,jm,im) in the TOPO file must
provide the elevation for each elevation class. Typically, these
will be set at fixed elevations (eg. every 100 meters) and be the
same for all atmosphere gridcells. The need to be whatever
elevations were used in IceBin.

	If using the classic 3m snow/firn model:

	The variables snowli and tlandi in the GIC file must be
extended with a new nhc dimension, and set appropriately. If
you don’t know how to set them, just set all elevation classes the
same for spinup.

double snowli(nhc, jm, im) ;
double tlandi(nhc, jm, im, d2) ;

	If using the Stieglitz snow/firn model, Stieglitz-appropriate variables are required:
.. code-block:: console

double dz(nhc, jm, im, nlice) ;
double wsn(nhc, jm, im, nlice) ;
double hsn(nhc, jm, im, nlice) ;
double tsn(nhc, jm, im, nlice) ;

Continuing a Run

If a run directory has stopped running, it may be restarted where it
left off with ectl run. For example:

$ ectl run myrun --time 12:00:00 -np 28

Note

Command-line parameters related to HOW to run this job must be
repeated, since they might be different from the last run:
--launcher, --ntasks, --time.

The above command rewrites the I file from your edited
rundeck.R. This makes it easy to change rundeck parameters and
restart arun. However, any command-line modifications to start/end
time will be lost. If this behavior is not desired, you can either:

	Specify the end time again on the command-line. For example to end in 1960:

$ ectl run myrun --timespan ,1960-01-01 --time 12:00:00 -np 28

	Put the end time in your rundeck.R ,eliminating the need to
specify it on the command line.

	Continue the run with the --resume option. This will use the
I file from the last run, rather than the rundeck. Using this
option, it is not possible to change rundeck parameters:

$ ectl run myrun --resume --time 12:00:00 -np 28

Restarting from fort.X.nc or an .rsf file

You can restart a run from the fort.1.nc, fort.2.nc or a
restart (.rsf) file using the --restart-file option. Examples
include:

$ ectl run myrun --restart-file myrun/fort.1.nc --time 12:00:00 -np 28
$ ectl run myrun --restart-file myrun/1MAR1957.rsfmyrun.R.nc --time 12:00:00 -np 28

The fort.X.nc files will be overwritten. If you want to restart
from one of them while ensuring your restart file is not overwritten,
copy fort.X.nc to a different name. For example:

$ cd myrun
$ cp fort.1.nc myrestart.nc
$ ectl run . --restart-file myrestart.nc --time 12:00:00 -np 28

Restarting by Date

It is also possible to restart from an .rsf file by specifying a date. For example:

$ ectl run myrun --restart-date 1957-03-01 --time 12:00:00 -np 28

This command will find the restart file for March 1957 and restart
from it. If there is no restart file for the date you choose,
ModelE-Control will restart from the most recent ``.rsf` file less
than the date. For example, the following will produce the same
result when used with monthly restart files:

$ ectl run myrun --restart-date 1957-03-17 --time 12:00:00 -np 28

Keepalive

When you start a run, ModelE lists it in a ectl/keepalive.txt file
inside your ModelE-Control root. The command ectl keepalive will
read that file and continue any runs that have stopped because they
have reached their SLURM time limit. To use it:

$ ectl keepalive <ectl-root> --time 12:00:00 -np 28

Note

	<ectl-root> could be the ModelE-Control root, or any
subdirectory thereof.

	As with ectl run, you need to re-specify the arguments
--launcher, --ntasks and --time.

	This command is intended to run periodically — say, every 5
minutes, from a cron job.

	ectl keepalive will not restart jobs that have terminated on
their own, or crashed, or were forcibly evicted from your cluster.

Create a Rundeck

Although ModelE-Control can work directly out of the templates
directory, it can also also assemble rundecks for further manual
editing. This is done with ectl flatten. Rundecks may be created
in any directory on the filesystem:

$ cd ~/exp
$ ectl flatten modelE/templates/E4F40.R e4f40.R

One Root per User

Alternately, users may choose to have only one root, presumably in the
user’s home directory. ModelE-Control then manges only one builds
and pkgs directories for the entire user. This simplifies
management in some ways, but it slows down certain ectl operations
(ps, purge).

Index

 nav.xhtml

 Table of Contents

 		
 ModelE Control

 		
 Introduction

 		
 Design Requirements

 		
 Advantages

 		
 Directories

 		
 Rundeck Management

 		
 Getting Started

 		
 Quick Start: NCCS Discover

 		
 Installation

 		
 Install Spack

 		
 Setup Spack

 		
 Setup Packages

 		
 Install ModelE Environment

 		
 Generate the Module Loads

 		
 Update .bashrc

 		
 Build and Run ModelE

 		
 Setup the ModelE Root

 		
 Download ModelE Source

 		
 Setup ModelE Source

 		
 Quick Setup: NCCS Discover

 		
 Create a Run

 		
 Start the Run

 		
 View the Log

 		
 Manage the Run

 		
 Stop the Run

 		
 Post-Mortem

 		
 Advanced Usage

 		
 Elevation Classes

 		
 Continuing a Run

 		
 Restarting from fort.X.nc or an .rsf file

 		
 Restarting by Date

 		
 Keepalive

 		
 Create a Rundeck

 		
 One Root per User

_static/down.png

_static/comment.png

_static/down-pressed.png

_static/plus.png

_static/file.png

_static/minus.png

_static/up-pressed.png

_static/up.png

_static/comment-bright.png

_static/ajax-loader.gif

_static/comment-close.png

