
dojot Documentation
Release 0.0.0

Matheus Magalhaes

Feb 21, 2018

Contents:

1 Architecture 3
1.1 Components . 4
1.2 Infrastructure . 8
1.3 Communications . 8
1.4 Deployment strategies . 8
1.5 Comparative analysis . 8

2 Operations Guide 9
2.1 Deployment . 9
2.2 Device Management . 9
2.3 User Management . 10
2.4 Resources Management . 10
2.5 System Dashboard . 10

3 User Guide 11
3.1 Who should read this . 11
3.2 Getting Started . 12
3.3 dojot basics . 12
3.4 Integrating physical devices . 18
3.5 Flow Management . 18

4 Components and APIs 19
4.1 Components . 19
4.2 Exposed APIs . 20

5 Installation Guide - Docker compose 21
5.1 Dependencies . 21
5.2 Installation . 22
5.3 Configuration . 23
5.4 Usage . 23

6 Installation Guide - Google Cloud Platform 25
6.1 Creating a Project . 25
6.2 Creating a Cluster . 26
6.3 Getting the credentials . 26

7 Installation Guide - Kubernetes 27

i

7.1 Dependencies . 27
7.2 Deployment . 28

8 Running dojot on VirtualBox 31

9 Frequently Asked Questions 39
9.1 General . 40
9.2 Usage . 41
9.3 Devices . 42
9.4 Data Flows . 44
9.5 Applications . 46

10 Mutual Authentication 47
10.1 Using Mutual Authentication . 48
10.2 Application Registration . 48
10.3 Authentication . 48
10.4 Accessing dojot APIs . 50

11 Crypto Service 51
11.1 REST APIs . 51
11.2 Usage Examples . 52

12 MQTT-TLS Tutorial 55
12.1 tl;dr . 56
12.2 Components . 56
12.3 Mosquitto configuration files . 58
12.4 Certificate retriever . 58
12.5 Important Notes . 59

ii

dojot Documentation, Release 0.0.0

This is the high-level documentation for dojot IoT platform developed by CPqD. This platform is largely based on
[FIWARE](fiware.org), and aims to provide the application and device developers with a more concise and integrated
interaction, while benefiting for the highly customizable and efficient infrastructure provided by FIWARE.

While based on FIWARE, this platform actually has a large set of components of its own, and interaction between
components was modified to allow better packaging and performance for the solution as a whole.

While this does provide an overall glimpse of the platform, this documentation is not suited for middleware developers
that might want to better understand the components that compose the solution themselves. For that, please check the
component’s own documentation repositories and ReadTheDocs pages.

Contents: 1

dojot Documentation, Release 0.0.0

2 Contents:

CHAPTER 1

Architecture

This document describes the current architecture that guides the platform implementation, detailing the components
that comprise the solution, as well as their functionalities and how each of them contribute to the platform as a whole.

While a brief explanation of each component is provided, this high level description does not explain (or aims to
explain) the minutia of each component’s implementation. For that, please refer to each component’s own documen-
tation.

Table of Contents

• Components

– Kafka + Subscription Manager + NGSI

– Device Manager

– Iot-agent

– User Authorization Service

– Service Orchestrator

– Fiware Perseo

– History (Logstash)

– Logging and Auditing Service

– Kong API Gateway

– Management Application

– Elastic Service Controller

• Infrastructure

• Communications

• Deployment strategies

3

dojot Documentation, Release 0.0.0

• Comparative analysis

1.1 Components

With the idea of utilizing open-source and consolidated components, as a starting point for the dojot IoT middleware
we adopted the european project Fiware (FIWARE, 2016). The solutions developed from this framework followed a
micro-services architecture, having as the main component a context broker that is responsible for redistributing events
among services that are part of the middleware.

The first architecture proposal took into account a basic group of Fiware services together with new services, developed
in the scope of this project, having as the main purpose, increasing the usability of the dojot platform. This initial
architecture can be seen on Fig. 1.1.

Fig. 1.1: Initial Architecture

In this proposal we utilize the following components from Fiware:

• Orion: a context broker used as the communication bus for all the internal services of the middleware

• STH: the history service used for storing IoT devices data in a MongoDB database

• Perseo CEP: the service that is responsible for treating events in real time

• Iot-agent: service used as an abstraction layer for integrating MQTT and HTTP devices

To this services we added the Kong API Gateway to act as a centralized point-of-access removing the need of direct
communication with each one of the services, an orchestration service to abstract the middleware configuration, an
authentication service to validate user access credentials and also an user application with graphical interface with the
purpose of managing the middleware (users, devices and data flows management).

4 Chapter 1. Architecture

dojot Documentation, Release 0.0.0

Considering this architecture the basic utilization flow is as follows: The user configures IoT devices through the GUI
or directly using the REST APIs provided by the API Gateway, he also configures processing flows to deal with the
data generated by the configured devices. As an example we can generate notifications when the data of a device
has one of its values reaching a threshold or we can add an entry to a database when a device enters or leaves an
specific geographic location. This user operations on the API result in configurations across the internal services of
the middleware (Broker, CEP and iot-agent), being partially abstracted by the orchestration service.

The user contexts are isolated and there is no data sharing, the access credentials are validated by the authorization
service for each and every operation (API Request). Once the devices and the flows are configured, the iot-agent is
capable of mapping the data received from devices, encapsulated on MQTT for example, and send then to the context
broker for internal distribution, reaching, for instance, the history service so it can persist the data on a database and
the CEP for processing it based on rules. If certain conditions are matched when rules are being processed, a new
event is generated and sent to the broker service to be redistributed to the interested services.

This architecture made possible the validation of ideas and limitations and possible improvements were identified,
converging to a reviewed architectural proposition as described on Fig. 1.2. This new proposal is under development
and should become part of the solution.

Fig. 1.2: Revised Architecture

More detailed and updated information can be found on the dojot Github repository.

Each one of the components that are part of the architecture are briefly described on the sub-sections below.

1.1. Components 5

https://github.com/dojot

dojot Documentation, Release 0.0.0

1.1.1 Kafka + Subscription Manager + NGSI

Apache Kafka is a distributed messaging platform that can be used by applications which need to stream data or
consume/produce data pipelines. In contrast to what Orion is, Kafka seems to be more appropriate to fulfil dojot’s
architectural requirements (responsibility isolation, simplicity, and so on). And using it with a subscription manager
and a NGSI interface translator, we can compose an entity which is very close to the features offered by Orion, in
addition to improved speed and easier scalability.

In Kafka, a specialized topics structure is used to insure isolation between different users and applications data, en-
abling a multi-tenant infrastructure.

The subscription manager service makes use of an in-memory database for efficiency. It adds context to Apache Kafka,
making it possible that internal or even external services are able to subscribe or query data based on context. The
subscription manager is also a distributed service to avoid it being a single point of failure or even a bottleneck for the
architecture.

To keep a certain level of compatibility with Fiware services, meaning, for using Fiware services and components in
the dojot platform with the minimal amount of adaptations, we added a NGSI interface translation service.

1.1.2 Device Manager

The IoT Device manager is a core entity, responsible for maintaining the devices data models and its abstractions, it
is also responsible for propagating this models to services that are interested in this kind of information, for example,
the iot-agent.

This service is stateless, having its data persisted to a database, with data isolation for users and applications, making
possible a multi-tenant architecture for the middleware.

1.1.3 Iot-agent

The iot-agent is an adaptation service between the data model of the context broker and the devices data models. The
dojot platform can have multiple iot-agents, each one of them being specialized in a specific protocol like, for instance,
MQTT/JSON, CoAP/LWM2M and HTTP/JSON.

Security measures like the management of the secure channel used for the communication of the platform with the
device is also treated by this service.

1.1.4 User Authorization Service

This service is responsible for managing user profiles and access control. Basically any API call that reaches the
platform via the API Gateway is validated by this service.

To be able to deal with a high volume of authorization calls, it uses caching, it is stateless and it is scalable horizontally.
Its data is stored on a database.

1.1.5 Service Orchestrator

This service provides a high level API for configuring the dojot with the objective of reducing the need of knowing
how to handle each one of the services that are part of the platform. More specifically, it is responsible for model-
ing different services, exposing a simplified configuration interface and propagating this configuration to the various
services when requested. It acts as a centralized configuration manager for multiple services.

6 Chapter 1. Architecture

dojot Documentation, Release 0.0.0

1.1.6 Fiware Perseo

The CEP service is responsible for analysing in real time the data processing flows for selected events and triggering
actions when specific conditions or thresholds are reached. This component is used for creating notification events
from the pure data that is incoming from the IoT devices. It is integrated with the platform through the context broker
and its configuration is abstracted by the service orchestrator.

1.1.7 History (Logstash)

The Logstash connects to the context broker and works as a pipeline for data and events that must be persisted on a
database. The data is converted into an storage structure and is sent to the corresponding database.

For internal storage, the MongoDB non-relational database is being used, it allows a Sharded Cluster configuration
that may be required according to the use case.

The data may also be directed to databases that are external do the dojot platform, requiring only a proper configuration
of Logstash and the data model to be used.

1.1.8 Logging and Auditing Service

All the services that are part of the dojot platform generate usage metrics of its resources and make then available to
the logging and auditing service, which process this registers and summarize then based on users and applications.

The consolidated data is presented back to the services, allowing then, for example, to expose this data to the user via
a graphical interface, to limit the usage of the system based on resource consumption and quotas associated with users
or even to be used by billing services to charge users for the utilization of the platform.

1.1.9 Kong API Gateway

The Kong API Gateways is used as the entry point for applications and external services to reach the services that are
internal to the dojot platform, resulting in multiple advantages like, for instance, single access point and ease when
applying rules over the API calls like traffic rate limitation and access control.

1.1.10 Management Application

Web Application responsible for providing responsive interfaces to manage the dojot platform, including functionali-
ties like:

• User Profile Management: define profiles and the API permission associated to those profiles

• User Management: Creation, Visualization, Edition and Deletion Operations

• Applications Management: Creation, Visualization, Edition and Deletion Operations

• Device Models Management: Creation, Visualization, Edition and Deletion Operations

• Devices Management: Creation, Visualization (real time data), Edition and Deletion Operations

• Processing Flows Management: Creation, Visualization, Edition and Deletion Operations

1.1. Components 7

dojot Documentation, Release 0.0.0

1.1.11 Elastic Service Controller

This is a service specialized for cloud environments, that is capable of monitoring the utilization of the platform, being
able to increase or decrease its storage and processing capacity in an dynamic and automatic fashion to adapt to the
variability on the demand.

This controller depends that the dojot platform services are horizontally scalable, as well as the databases must be
clusterizable, which match with the adopted architecture.

1.2 Infrastructure

TODO: This section should describe the components that are used as ready-made pieces of working software that
compose the solution, but have no implementation specific to the project. Relevant topics that might be discussed here
are:

• The API gateway

• Storage components (mongo, redis, HDFS, CEPH, etc.)

• Processing libraries and environments (Spark, Flink, Storm, kafka-streaming, map-reduce, etc.)

• Broker components (rabbitMQ, mosquitto, kafka, verneMQ, emqtt, etc.)

1.3 Communications

TODO: This section should provide the reader with the communication strategy used to bind together the components
that comprise the solution, as well as the interfaces (protocols, serialization formats) available to the applications and
devices developers.

1.4 Deployment strategies

TODO: This section should list the deployment requirements and implementation decisions made to satisfy those
requirements. “Why orchestrator platform ‘x’?”, “How can this be deployed on commercial cloud environments?”,
“How can this be deployed on stand-alone environments?” are all questions that should be answered here.

1.5 Comparative analysis

TODO: This section should detail the features that differenciate the platform from a “stock” deployment of fiware, as
well as a feature summary comparing the proposed solution with a reduced set of third-party implementations of IoT
platforms available.

8 Chapter 1. Architecture

CHAPTER 2

Operations Guide

This document provides information on how to properly deploy and manage an instance of dojot. For documentation
regarding the usage of the platform from the perspective of either an application, or device developer please refer to
the [user guide]().

Table of Contents

• Deployment

• Device Management

• User Management

• Resources Management

• System Dashboard

2.1 Deployment

TODO: This section should describe the steps required to deploy the solution on all “homologated” environments
(e.g. standalone, aws, google cloud, bluemix, etc.). For each environment, there’ll also be a link pointing to the
environment-specific section of the Resources Management sub-section that describes how cloud resources are man-
aged (allocated, released and pertinent configuration).

2.2 Device Management

TODO: This section should describe the steps required to configure a new device on the platform. While this infor-
mation will also be presented on the user guide, here the idea is to give more focus to the specific infrastructure that
has to be managed in order to guarantee the device’s authenticity and communication.

9

dojot Documentation, Release 0.0.0

2.3 User Management

TODO: This section should describe the steps required to configure user roles and role permissions for the platform
itself, as well as handle application authentication features.

2.4 Resources Management

TODO: For each “homologated” deployment scenario, this section should describe how the deployment is done, as
well as which parameters are available for each of them.

2.5 System Dashboard

TODO: This should be a brief description of the system dashboard that is made available for the system administrator
to check the system’s overall status and alerts.

10 Chapter 2. Operations Guide

CHAPTER 3

User Guide

This document provides information on how to use dojot. On that regard, this should describe the steps required to
install and operate the platform from a device developer or application developer point of view. For documentation
regarding the operation of the platform itself, please refer to the Operations Guide.

Table of Contents

• Who should read this

• Getting Started

• dojot basics

– User authentication

– Devices and templates

– Flows

– Step-by-step device management

* Getting access token

* Device creation

* Sending messages

* Checking historical data

• Integrating physical devices

• Flow Management

3.1 Who should read this

• Users that want a deeper look at how dojot works;

11

dojot Documentation, Release 0.0.0

• Application developers.

3.2 Getting Started

To start, please follow dojot’s installation guide in Installation Guide - Docker compose. There you should find how
to properly download a working copy of the components, how to minimally configure them, how to start them up and
how to check whether they are working.

3.3 dojot basics

Before using dojot, you should be familiar with some basic operations and concepts. They are very simple to under-
stand and use, but without them, all operations might become obscure and senseless. It is advisable to checkout our
Architecture to get acquainted with all internal components.

First of all, you should check out how to acccess dojot through its APIs, which is detailed in the next section. After
that, there’s an explanation of a few basic entities in dojot: devices, templates and flows (including a simple tutorial
on how to create and use them).

All these instructions considers only API access. For a guided tour on how to use the web interface, check dojot’s
YouTube channel.

3.3.1 User authentication

All HTTP requests supported by dojot are sent to the API gateway. In order to control which user should access which
endpoints and resources, dojot makes uses of JSON Web Token (a useful tool is jwt.io) which encodes things like (not
limited to these):

• User identity

• Validation data

• Timestamp

The component responsible for user authentication is auth. You can find a tutorial of how to authenticate a user and
how to get an access token in auth documentation.

3.3.2 Devices and templates

In dojot, a device is a digital representation of an actual device or gateway with one or more sensors or of a virtual one
with sensors/attributes inferred from other devices. Throughout the documentation, this kind of device will be called
simply as ‘device’. If the actual device must be referenced, we’ll be calling it as ‘physical device’.

Consider, for instance, a physical device with temperature and humidity sensors; it can be represented in dojot as a
device with two attributes (one for each sensor). We call this kind of device as regular device or by its communication
protocol, for instance, MQTT device or CoAP device.

We can also create devices which don’t directly correspond to their physical counterparts, for instance, we can create
one with higher level of information of temperature (is becoming hotter or is becoming colder) whose values are
inferred from temperature sensors of other devices. This kind of device is called virtual device.

All devices are created based on a template, which can be thought as a model of a device. As “model” we could think
of part numbers or product models - one prototype from which devices are created. Templates in dojot have one label
(any alphanumeric sequence), a list of attributes which will hold all the device emitted information, and optionally a

12 Chapter 3. User Guide

https://www.youtube.com/channel/UCK1iQ-d-K-O2mOLahPOoe6w
https://tools.ietf.org/html/rfc7519
https://jwt.io/
https://github.com/dojot/auth
http://dojotdocs.readthedocs.io/projects/auth/

dojot Documentation, Release 0.0.0

few special attributes which will indicate how the device communicates, including transmission methods (protocol,
ports, etc.) and message formats.

In fact, templates can represent not only “device models”, but it can also abstract a “class of devices”. For instance,
we could have one template to represent all thermometers that will be used in dojot. This template would have only
one attribute called, let’s say, “temperature”. While creating the device, the user would select its “physical template”,
let’s say TexasInstr882, and the ‘thermometer’ template. The user would have also to add translation instructions in
order to map the temperature reading that will be sent from the device to a “temperature” attribute.

In order to create a device, a user selects which templates are going to compose this new device. All their attributes
are merged together and associated to it - they are tightly linked to the original template so that any template update
will reflect all associated devices.

The component responsible for managing devices (both real and virtual) and templates is DeviceManager. DeviceM-
anager documentation explains in more depth all the available operations.

3.3.3 Flows

This section will explain what a flow is and how to use it. It will be filled as soon as mashup documentation is ready.

3.3.4 Step-by-step device management

This section provides a complete step-by-step tutorial of how to create, update, send messages to and check historical
data of a device. We will create a simple device with only one attribute, send a few messages emulating the physical
device and check the historical data for the only attribute this device has.

Also, this tutorial assumes that you are using docker-compose, which has all the necessary components to properly
run dojot (so all API requests will be sent to localhost:8000).

Getting access token

As said in User authentication, all requests must contain a valid access token. You can generate a new token by
sending the following request:

curl -X POST http://localhost:8000/auth \
-H 'Content-Type:application/json' \
-d '{"username": "admin", "passwd" : "admin"}'

{"jwt": "eyJ0eXAiOiJKV1QiL..."}

If you want to generate a token for other user, just change the username and password in the request payload. The
token (“eyJ0eXAiOiJKV1QiL. . . ”) should be used in every HTTP request sent to dojot in a special header. Such
request would look like:

curl -X GET http://localhost:8000/device \
-H "Authorization: Bearer eyJ0eXAiOiJKV1QiL..."

Remember that the token must be set in the request header as a whole, not parts of it. In the example only the first
characters are shown for the sake of simplicity. All further requests will use a bash variable called bash ${JWT},
which contains the token got from auth component.

3.3. dojot basics 13

https://github.com/dojot/device-manager
http://dojotdocs.readthedocs.io/projects/DeviceManager/
http://dojotdocs.readthedocs.io/projects/DeviceManager/
https://github.com/dojot/mashup
https://github.com/dojot/docker-compose

dojot Documentation, Release 0.0.0

Device creation

In order to properly configure a physical device in dojot, you must first create its representation in the platform. The
example presented here is just a small part of what is offered by DeviceManager. For more information, check the
DeviceManager how-to for more detailed instructions.

First of all, let’s create a template for the device - all devices are based off of a template, remember.

curl -X POST http://localhost:8000/template \
-H "Authorization: Bearer ${JWT}" \
-H 'Content-Type:application/json' \
-d ' {

"label": "Thermometer Template",
"attrs": [
{

"label": "temperature",
"type": "dynamic",
"value_type": "float"

}
]

}'

This request should give back this message:

1 {
2 "result": "ok",
3 "template": {
4 "created": "2018-01-25T12:30:42.164695+00:00",
5 "data_attrs": [
6 {
7 "template_id": "1",
8 "created": "2018-01-25T12:30:42.167126+00:00",
9 "label": "temperature",

10 "value_type": "float",
11 "type": "dynamic",
12 "id": 1
13 }
14],
15 "label": "Thermometer Template",
16 "config_attrs": [],
17 "attrs": [
18 {
19 "template_id": "1",
20 "created": "2018-01-25T12:30:42.167126+00:00",
21 "label": "temperature",
22 "value_type": "float",
23 "type": "dynamic",
24 "id": 1
25 }
26],
27 "id": 1
28 }
29 }

Note that the template ID is 1 (line 27).

To create a template based on it, send the following request to dojot:

14 Chapter 3. User Guide

http://dojotdocs.readthedocs.io/projects/DeviceManager/en/latest/using-device-manager.html#using-devicemanager

dojot Documentation, Release 0.0.0

1 curl -X POST http://localhost:8000/device \
2 -H "Authorization: Bearer ${JWT}" \
3 -H 'Content-Type:application/json' \
4 -d ' {
5 "templates": [
6 "1"
7],
8 "label": "device"
9 }'

The template ID list on line 6 contains the only template ID configured so far. To check out the configured device, just
send a GET request to /device:

curl -X GET http://localhost:8000/device -H "Authorization: Bearer ${JWT}"

Which should give back:

{
"pagination": {
"has_next": false,
"next_page": null,
"total": 1,
"page": 1

},
"devices": [
{

"templates": [
1

],
"created": "2018-01-25T12:36:29.353958+00:00",
"attrs": {

"1": [
{

"template_id": "1",
"created": "2018-01-25T12:30:42.167126+00:00",
"label": "temperature",
"value_type": "float",
"type": "dynamic",
"id": 1

}
]

},
"id": "0998",
"label": "device_0"

}
]

}

Sending messages

So far we got an access token and created a template and a device based on it. In an actual deployment, the physical
device would send messages to dojot with all its attributes and their current values. For this tutorial we will send
MQTT messages by hand to the platform, emulating such physical device. For that, we will use mosquitto_pub from
Mosquitto project.

3.3. dojot basics 15

dojot Documentation, Release 0.0.0

Attention: Some Linux distributions, Ubuntu in particular, have two packages for mosquitto - one containing
tools to access it (i.e. mosquitto_pub and mosquitto_sub for publishing messages and subscribing to topics) and
another one containing the MQTT broker. In this tutorial, only the tools are going to be used. Please check if
MQTT broker is not running before starting dojot (by running commands like ps aux | grep mosquitto).

The dojot compatible format for messages sent by devices is a simple key-value JSON, such as:

{
"temperature" : 10.6

}

Let’s send this message to dojot:

mosquitto_pub -t /admin/0998/attrs -m '{"temperature": 10.6}'

If there is no output, the message was sent to MQTT broker. The topic is build from the following information:

• admin: user tenant. This is retrieved from “service” attribute from user configuration.

• 0998: device ID. This is retrieved from the device itself. It is returned when the device is created or read from
/device endpoint.

To check if it was correctly processed by dojot, send the following request:

curl -X POST http://localhost:8000/metric/v2/entities/0998 \
-H "Authorization: Bearer ${JWT}" \
-H "Fiware-Service: admin" \
-H "Fiware-ServicePath:/"

This would result in the following message:

{
"id": "0998",
"type": "template_1",
"temperature": {
"type": "Number",
"value": 10.6,
"metadata": {}

}
}

Note: The device type is a string formed by “template_” concatenated with all template IDs that form it.

For more information on how dojot deals with data sent from devices, check the Integrating physical devices section.

Checking historical data

In order to check all values that were sent from a device for a particular attribute, you could use the history APIs. Let’s
first send a few other values to dojot so we can get a few more interesting results:

mosquitto_pub -t /admin/0998/attrs -m '{"temperature": 10.6}'
mosquitto_pub -t /admin/0998/attrs -m '{"temperature": 15.6}'
mosquitto_pub -t /admin/0998/attrs -m '{"temperature": 36.5}'

To retrieve all values sent for temperature attribute of this device:

16 Chapter 3. User Guide

https://projects.eclipse.org/projects/technology.mosquitto
https://github.com/telefonicaid/fiware-sth-comet

dojot Documentation, Release 0.0.0

curl -X GET http://localhost:8000/history/STH/v1/contextEntities/type/template_1/id/
→˓0998/attributes/temperature?lastN=3 \
-H "Authorization: Bearer ${JWT}" \
-H "Fiware-Service:admin"\
-H "Fiware-ServicePath:/"

The history endpoint is built from these values:

• .../type/template_1/id/0998/...: the device type is template_1 - this is retrieved from the
type attribute from the device. Same for the ID (0998)

• .../attributes/temperature?lastN=3: the requested attribute is temperature and it should get the
last 3 values. More operators are available in STH data retrieval

The request should result in the following message:

{
"contextResponses": [
{

"contextElement": {
"attributes": [
{
"name": "temperature",
"values": [
{
"recvTime": "2018-01-25T14:57:21.027Z",
"attrType": "Number",
"attrValue": 10.6

},
{
"recvTime": "2018-01-25T14:57:21.063Z",
"attrType": "Number",
"attrValue": 15.6

},
{
"recvTime": "2018-01-25T14:57:21.701Z",
"attrType": "Number",
"attrValue": 36.5

}
]

}
],
"id": "0998",
"isPattern": false,
"type": "template_1"

},
"statusCode": {
"code": "200",
"reasonPhrase": "OK"

}
}

]
}

This message contains all previously sent values. More information about what can be done with historical data can
be found in STH documentation.

3.3. dojot basics 17

https://github.com/telefonicaid/fiware-sth-comet/blob/master/doc/manuals/raw-data-retrieval.md
https://github.com/telefonicaid/fiware-sth-comet#api-walkthrough

dojot Documentation, Release 0.0.0

3.4 Integrating physical devices

This section should detail how to integrate a new device with the system. That should encompass the both the com-
munication requirements imposed on the device in order to allow its usage with the platform, as well as the steps (if
any, depending on the protocol used) to configure this new device within the platform.

This could also explain (if indeed implemented) the device management functionalities made available by the platform
to the device developer.

Regarding the requirements imposed on the devices, it is forseen that, for each communication scheme (proto-
col/serialization format) offically supported by the platform, a step by step guide on how to “develop” a device is
supplied. Such guide can, if applicable, make use of a platform-provided library or SDK.

3.5 Flow Management

Moving to the perspective of an aplication developer, this section should list and explain the usage of the information
flow configuration process within the platform - how to use the provided gui, high level description of the APIs that
can be used to configure such flows, available actions to be used when building the flows, so on and so forth.

18 Chapter 3. User Guide

CHAPTER 4

Components and APIs

4.1 Components

Table 4.1: Components
Component GitHub repository Documentation
History (STH) GitHub - STH readthedocs - STH
mongodb mongodb documentation
Mosquitto (MQTT broker) Mosquitto documentation
GUI GitHub - GUI
iotagent-json GitHub - iotagent-json readthedocs - iotagent-json
Orion GitHub - Orion readthedocs - Orion
DeviceManager GitHub - DeviceManager readthedocs - DeviceManager
auth GitHub - auth
postgres postgres documentation
Kong API gateway Kong documentation
Perseo Core GitHub - perseo-core Docs - perseo-core
Perseo Front-End GitHub - perseo-fe Docs - perseo-fe
Orchestrator/Mashup GitHub - mashup
redis Redis documentation
zookeeper Zookeeper documentation
Kafka Kafka documentation
EJBCA-REST GitHub - EJBCA-REST

19

https://github.com/telefonicaid/fiware-sth-comet
http://fiware-sth-comet.readthedocs.io/en/latest/
https://docs.mongodb.com/manual/
https://www.eclipse.org/mosquitto/man/
https://github.com/dojot/gui
https://github.com/dojot/iotagent-json
http://dojotdocs.readthedocs.io/projects/iotagent-json/en/latest/
https://github.com/dojot/fiware-orion
http://fiware-orion.readthedocs.io/en/latest/
https://github.com/dojot/device-manager
http://dojotdocs.readthedocs.io/projects/DeviceManager/en/latest/
https://github.com/dojot/auth
https://www.postgresql.org/docs/
https://getkong.org/docs/
https://github.com/telefonicaid/perseo-core
https://github.com/telefonicaid/perseo-core/tree/master/documentation
https://github.com/dojot/perseo-fe
https://github.com/dojot/perseo-fe/tree/cpqd_master/documentation
https://github.com/dojot/mashup
https://redis.io/documentation
https://zookeeper.apache.org/documentation.html
http://kafka.apache.org/documentation/
http://dojotdocs.readthedocs.io/projects/EJBCA-REST/en/latest/

dojot Documentation, Release 0.0.0

4.2 Exposed APIs

Table 4.2: APIs
Endpoint Purpose Component API Repository
/device Device management API - DeviceManager GitHub - DeviceManager
/template Template management API - DeviceManager GitHub - DeviceManager
/flows Flow management GitHub - mashup
/auth User authentication API - auth GitHub - auth
/auth/revoke User authentication API - auth GitHub - auth
/auth/user User authentication API - auth GitHub - auth
/history Device historical data API - STH GitHub - STH
/metric Context broker Orion v1, Orion v2 GitHub - Orion
/gui Graphical User Interface GitHub - GUI
/sign Public key signing API - EJBCA-REST GitHub - EJBCA-REST
/ca Certification-Auth. functions API - EJBCA-REST GitHub - EJBCA-REST

The API gateway used in dojot reroutes some of these endpoints so that they become uniform: all of them are accessible
through the same port (default is TCP port 8000) and have the same naming scheme. Each component, though, might
have something different in its configuration and API documentation. The following table shows which endpoint
exposed by the API gateway is mapped to which component endpoint.

Table 4.3: Original endpoints
Service Original endpoint Endpoint
DeviceManager host:5000/device host:8000/device
DeviceManager host:5000/template host:8000/template
mashup host:3000/ host:8000/flows
auth host:5000/ host:8000/auth
auth host:5000/auth/revoke host:8000/auth/revoke
auth host:5000/user host:8000/auth/user
STH host:8666/ host:8000/history
Orion v1 or Orion v2 host:1026/ host:8000/metric
GUI host/ host:8000/gui
ejbca host:5583/sign host:8000/sign
ejbca host:5583/ca host:8000/ca

20 Chapter 4. Components and APIs

http://dojotdocs.readthedocs.io/projects/DeviceManager/en/latest/api.html
https://github.com/dojot/device-manager
http://dojotdocs.readthedocs.io/projects/DeviceManager/en/latest/api.html
https://github.com/dojot/device-manager
https://github.com/dojot/mashup
https://dojot.github.io/auth/apis.html
https://github.com/dojot/auth
https://dojot.github.io/auth/apis.html
https://github.com/dojot/auth
https://dojot.github.io/auth/apis.html
https://github.com/dojot/auth
https://github.com/telefonicaid/fiware-sth-comet#api-walkthrough
https://github.com/telefonicaid/fiware-sth-comet
http://telefonicaid.github.io/fiware-orion/api/v1/
http://telefonicaid.github.io/fiware-orion/api/v2/stable/
https://github.com/dojot/fiware-orion
https://github.com/dojot/gui
http://dojotdocs.readthedocs.io/projects/EJBCA-REST/en/latest/api.html
http://dojotdocs.readthedocs.io/projects/EJBCA-REST/en/latest/
http://dojotdocs.readthedocs.io/projects/EJBCA-REST/en/latest/api.html
http://dojotdocs.readthedocs.io/projects/EJBCA-REST/en/latest/
http://telefonicaid.github.io/fiware-orion/api/v1/
http://telefonicaid.github.io/fiware-orion/api/v2/stable/

CHAPTER 5

Installation Guide - Docker compose

This document provides instructions on how to create a trivial deployment environment on single host for dojot, using
docker-compose as the processes orchestration platform.

While very simple, this deployment option is best suited to development and assessment of the platform and should
not be used for production environments.

This guide has been checked on an Ubuntu 16.04 LTS environment.

Table of Contents

• Dependencies

– Docker engine

– Docker Compose

• Installation

• Configuration

– API gateway configurarion

– User creation

• Usage

5.1 Dependencies

This setup has two software requirements docker engine and docker-compose.

5.1.1 Docker engine

Up to date information and installation procedures for the docker engine can be found at the project’s documentation:

21

dojot Documentation, Release 0.0.0

https://docs.docker.com/engine/installation/

Note: An optional step on the installation and configuration process of docker on any given machine is the setting of
who is eligible for creating/spawning docker instances.

Should the post-installation steps (more specifically the “Manage docker as non-root user”) have not been run, all
docker and docker-compose commands should be run by the super user (root), or as sudo.

https://docs.docker.com/engine/installation/linux/linux-postinstall/

5.1.2 Docker Compose

Up to date information and installation procedures for the docker-compose can be found at the project’s documentation:

https://docs.docker.com/compose/install/

5.2 Installation

To setup the environment, merely clone the deployment repository and run the commands below.

The docker-compose enabled deployment scripts and configuration repository can be found at:

https://github.com/dojot/docker-compose

or as git clone command::

git clone git@github.com:dojot/docker-compose.git

Once the repository is properly cloned, select the version to be used by checking out the appropriate tag (do notice
that the tagname has to be replaced):

Must be run from within the deployment repo
git checkout [tag name]

That done, the environment can be brought up by:

Must be run from the root of the deployment repo.
May need sudo to work: sudo docker-compose up -d
docker-compose up -d

To check individual container status, docker’s commands may be used, for instance:

Shows the list of currently running containers, along with individual info
docker ps

Shows the list of all configured containers, along with individual info
docker ps -a

Note: All docker, docker-compose commands may need sudo to work.

To allow non-root users to manage docker, please check docker’s documentation:

https://docs.docker.com/engine/installation/linux/linux-postinstall/

22 Chapter 5. Installation Guide - Docker compose

https://docs.docker.com/engine/installation/
https://docs.docker.com/engine/installation/linux/linux-postinstall/
https://docs.docker.com/compose/install/
https://github.com/dojot/docker-compose
https://docs.docker.com/engine/installation/linux/linux-postinstall/

dojot Documentation, Release 0.0.0

5.3 Configuration

Once the environment is up, a few configuration steps are required to make it operational.

5.3.1 API gateway configurarion

In order to guarantee the proper mapping of API into processing services, the API gateway must be configured. To do
so, please run kong_config.sh, present at the root of the repository.

./kong.config.sh

5.3.2 User creation

To be able to use the system’s web front-end and make API calls, a user must be created. To create a first admin user,
the following script can be run on the host machine of the platform (that is, the machine where docker-compose was
run). The script is located at the root of the repository.

./create.user.sh

5.4 Usage

The web interface is available at http://localhost:8000. The user is admin and the password is admin.
You also can interact with platform using the REST API.

Read the User Guide for more information about how to interact with the platform.

5.3. Configuration 23

dojot Documentation, Release 0.0.0

24 Chapter 5. Installation Guide - Docker compose

CHAPTER 6

Installation Guide - Google Cloud Platform

This document provides instructions on how to prepare a Google Cloud environment for a dojot deployment using
Kubernetes as the orchestrator.

This document will provide steps for creating a test and assessment environment for those who want to learn and
experiment with the dojot platform but prefer to run it on a cloud environment.

The steps as presented here can be evolved to real world deployments with proper changes to fulfill your deployment
use case

Table of Contents

• Creating a Project

• Creating a Cluster

• Getting the credentials

6.1 Creating a Project

To prepare an environment to deploy dojot on the Google Cloud Platform, the first thing that must be done is to create
a project for the deployment.

To create a project, go to the page https://console.cloud.google.com/projectcreate and define the new project’s name.

Wait until the project creation is complete. Then, go to the page https://console.cloud.google.com/projectselector/
home/dashboard, click on the select button and choose the recently created project.

25

https://console.cloud.google.com/projectcreate
https://console.cloud.google.com/projectselector/home/dashboard
https://console.cloud.google.com/projectselector/home/dashboard

dojot Documentation, Release 0.0.0

6.2 Creating a Cluster

Having the desired project selected, got to the kubernetes page of the GCP at the link https://console.cloud.google.
com/kubernetes/.

Wait for the Kubernetes Engine to be ready and click on the create cluster button.

In the cluster creation page, define a name for your cluster and select an appropriate region for your deployment. To
create an evaluation and testing environment for dojot a cluster with 3 machines with 1 vCPU is enough for the sake
of experimenting with the kubernetes deployment. With the options properly set, click on the create button and wait
for the cluster to be created.

6.3 Getting the credentials

With the kubernetes cluster created, the next step is obtaining the cluster access credentials so your machine is able to
access the cluster and proceed with the deployment.

On the kubernetes page, on the list of created clusters, locate the cluster you just created, on the right side of it click
on the “Connect” button. Copy the first command that is provided and run this on a terminal on your machine, this
command will install the credentials. To run this command it is required that the gcloud client is installed and properly
configured on your machine. To install this client follow the instructions provided by the google documentation at:
https://cloud.google.com/sdk/docs/quickstarts

With the credential configured, proceed to the Kubernetes Deployment Guide

26 Chapter 6. Installation Guide - Google Cloud Platform

https://console.cloud.google.com/kubernetes/
https://console.cloud.google.com/kubernetes/
https://cloud.google.com/sdk/docs/quickstarts

CHAPTER 7

Installation Guide - Kubernetes

This document provides instructions on how to create a simple dojot deployment environment on a multi-node envi-
ronment, using kubernetes as the orchestration platform.

This deployment option as presented in this document is best suited to tests and assessment of the platform, but with
the appropriate changes might be evolved for production environments.

This guide has been checked on a Kubernetes cluster with Ceph as the underlying storage infrastructure and it has also
been tested on a Kubernetes cluster over the Google Cloud Platform

Table of Contents

• Dependencies

– Kubernetes Cluster

– Persistent Storage

– Kubernetes Client

• Deployment

– Google Cloud Platform

– Cluster with Ceph

7.1 Dependencies

This setup has as the first requirement a Kubernetes cluster that is properly configured and running.

The second requirement is a Kubernetes client correctly installed on the machine that will start the deployment process

27

dojot Documentation, Release 0.0.0

7.1.1 Kubernetes Cluster

For this guide it is advised that you already have a functioning cluster.

If you desire to prepare a Kubernetes cluster from scratch, up to date information and installation procedures can be
found at the project’s documentation:

https://kubernetes.io/docs/setup/

7.1.2 Persistent Storage

To make sure that all the data from the containers running databases is persisted when containers fail or are moved to
different nodes of the Kubernetes environment it is necessary to attach persistent storage to the database pods.

Kubernetes requires that an infrastructure for persistent storage already exists on the cluster. As an example for
how to configure your persistent storage we provide files for two different kind of deployments, the first is for a
local deployment where a Ceph Cluster is used as storage backend, more information on Ceph may be found at:
http://ceph.com/. The second example is based on a Google Cloud deployment and use the existing persistent storage
services that are provided by Google Cloud. If you’re deploying dojot using Kubernetes to a different cloud provider,
some adjustments to fit the different deployments might be necessary.

Information about the currently supported persistent storage for Kubernetes can be found at: https://kubernetes.io/
docs/concepts/storage/persistent-volumes/#types-of-persistent-volumes

7.1.3 Kubernetes Client

To install the Kubernetes client on your machine before proceeding with this guide, follow the proper instructions as
presented on the Kubernetes documentation:

https://kubernetes.io/docs/tasks/tools/install-kubectl/

Also, verify that your client is capable of connecting to the cluster.

For providing access for a local cluster, follow the documentation below:

https://kubernetes.io/docs/tasks/access-application-cluster/access-cluster/

If the Kubernetes cluster is running on a specific cloud platform like Google Cloud, follow the steps as presented by
your cloud provider.

7.2 Deployment

To deploy dojot to a Kubernetes environment, we provide sample scripts and templates for two kinds of clusters. The
examples are for an environment comprised by Kubernetes with Ceph for storage, the second is a deployment to a
Kubernetes environment running on Google Cloud Platform.

For both environment it is necessary to download the scripts and templates before performing the deployment.

To download the required files using git, run the following command:

git clone https://github.com/dojot/kubernetes.git

or, to download a compressed zip file containing the data, use the following link: https://github.com/dojot/kubernetes/
archive/master.zip

Enter the downloaded folder and follow the instructions in the section that corresponds to your specific environment.

28 Chapter 7. Installation Guide - Kubernetes

https://kubernetes.io/docs/setup/
http://ceph.com/
https://kubernetes.io/docs/concepts/storage/persistent-volumes/#types-of-persistent-volumes
https://kubernetes.io/docs/concepts/storage/persistent-volumes/#types-of-persistent-volumes
https://kubernetes.io/docs/tasks/tools/install-kubectl/
https://kubernetes.io/docs/tasks/access-application-cluster/access-cluster/
https://github.com/dojot/kubernetes/archive/master.zip
https://github.com/dojot/kubernetes/archive/master.zip

dojot Documentation, Release 0.0.0

All the instructions provided in the following sections assume that the commands are being run on a linux terminal.

7.2.1 Google Cloud Platform

To deploy dojot to a Kubernetes cluster running over Google Cloud the only requirements are that you have your
cluster configured on Google Cloud and your local Kubernetes client is properly configured to access that cloud.

To execute the script to deploy to Google Cloud just run the following command on the terminal:

./deploy.sh GCP LB

The selected parameters set the type of storage to be used as GCP persistent storage and also set the external access to
use the load balancers as provided by the Google Cloud Platform.

Just wait until the script finishes running and then check for when all the pods have finished starting, to check if all the
pods are running correctly, run the command below and verify that all pods have reached a “Running” state, this may
take a while and retries for some pods.

kubectl get pods -n dojot

After all the pods are running, run the following command in order to obtain the public ip address that is being used
by the load balancer

kubectl -n dojot get services external

The command will return the external ip used by the load balancer, with this IP you can access that ip using any
browser at http://EXTERNAL_IP

The initial user and password are admin and admin.

7.2.2 Cluster with Ceph

To deploy dojot to a Kubernetes Cluster where you have as persistent storage infrastructure a Ceph Cluster you will
need the configuration file for accessing Ceph.

Also you will need to set some information regarding your Ceph cluster on the manifest files.

Edit the file “manifests/STORAGE/CEPH/rbd-provisioner.yaml” and change the values of the pool and the userId to
match those of your specific environment. Also it is necessary to get the key for the admin user and the client user.
With this keys at hand, convert then to base 64, this may be done at your terminal running the command:

echo "KEY" | base64

The value that is returned must be added to the “manifests/STORAGE/CEPH/ceph-secret-admin.yaml” and
“manifests/STORAGE/CEPH/ceph-secret-user.yaml” respectively at the field key.

Also you may choose to deploy with a load balancer if your infrastructure provide one, otherwise you may deploy
selecting a public ip of one of the kubernetes cluster nodes as the point of access for the environment.

To execute the script and deploy with Ceph and a public ip just run the following command on the terminal:

./deploy.sh CEPH PUBLIC_IP

Wait while the script starts the deployment, you will be prompted for two parameters during the deployment, the path
for the ceph configuration file and the desired public ip. Enter this parameters and type enter when prompted.

7.2. Deployment 29

http://EXTERNAL_IP

dojot Documentation, Release 0.0.0

Just wait until the script finishes running and then check for when all the pods have finished starting, to check if all the
pods are running correctly, run the command below and verify that all pods have reached a “Running” state, this may
take a while and retries for some pods.

kubectl get pods -n dojot

After all the pods are runninf, you can access your dojot deployment using the public ip that was defined http://
PUBLIC_IP

The initial user and password are admin and admin.

30 Chapter 7. Installation Guide - Kubernetes

http://PUBLIC_IP
http://PUBLIC_IP

CHAPTER 8

Running dojot on VirtualBox

This guide provides instructions to run dojot platform on VirtualBox.

You should only run dojot this way if you don’t have any familiarity with docker and just want to learn how to use
dojot. We don’t recommend it for development and much less for experimental or real deployments.

The steps described here were checked on Windows 7, but you shouldn’t have problems to run them in different
operational systems.

First of all, if you don’t have VirtualBox you’ll need to install it. Up to date information and installation procedures
can be found at the project’s documentation:

https://www.virtualbox.org/

Then, you need to download a virtual machine image with dojot, which is available at:

http://dojot-iso.s3.amazonaws.com/imagem/dojot.0.1.0-dojot.vdi

The next step is to create a virtual machine on VirtualBox. Click on the New button, then set the name as you
wish, type to Linux and version to Debian (64-bit).

31

https://www.virtualbox.org/
http://dojot-iso.s3.amazonaws.com/imagem/dojot.0.1.0-dojot.vdi

dojot Documentation, Release 0.0.0

Click on Next, and set the memory size. We recommend at least 2048 MB.

32 Chapter 8. Running dojot on VirtualBox

dojot Documentation, Release 0.0.0

Click on Next, and set the hard disk to use an existing virtual hard disk file and choose the downloaded image.

33

dojot Documentation, Release 0.0.0

Click on Create.

Next, click on Settings/Network and check whether the network adapter is enabled and set it to Host-only. This
will allow host and guest to communicate to each other. Write down the MAC Address, you will need it later.

34 Chapter 8. Running dojot on VirtualBox

dojot Documentation, Release 0.0.0

Click on OK and start the virtual machine.

Login in the virtual machine (login/password are dojot/dojot) to set the network interface. Firstly, get the interface
name:

$ sudo ip address | grep -B1 -i "<YOUR MAC ADDRESS>" | head -1 | cut -d':' -f2

35

dojot Documentation, Release 0.0.0

Edit the file /etc/network/interfaces, adding

The primary network interface
auto <YOUR INTERFACE NAME>
allow-hotplug <YOUR INTERFACE NAME>
iface <YOUR INTERFACE NAME> inet dhcp

36 Chapter 8. Running dojot on VirtualBox

dojot Documentation, Release 0.0.0

Restart the networking service:

$ systemctl restart networking.service

Get the ip address assigned to the interface:

ip address show dev <YOUR INTERFACE NAME>

37

dojot Documentation, Release 0.0.0

In the host machine, open a browser and type <YOUR IP ADDRESS>:8000.

38 Chapter 8. Running dojot on VirtualBox

CHAPTER 9

Frequently Asked Questions

Here are some answers to frequently-asked questions from dojot platform.

Got a question that isn’t answered here? Please, open an issue on dojot’s Github repository.

Table of Contents

• General

– What is dojot? Why should I use it? Why open source it?

– Where can I get it?

– Which repository is the main one?

– So, I found this pesky bug. How can I inform you about it?

• Usage

– How do I start it? Is it CLI-based or it has a graphical user interface?

– Ok, I started it and I logged in. Now what?

– How can I update my deploy to dojot’s latest version?

• Devices

– What are devices for dojot?

– What is the relationship between this device and my actual device?

– What are virtual devices? How are they different from the other one?

– How can I send MQTT data to dojot so that it appears on the dashboard?

– On the dashboard some attributes are shown as tables and others as charts. How are they chosen/set?

– I’m interested in integrating my super cool device with dojot. How can I do it?

– Is there any restrictions about the message my device will send to dojot? Format, size, frequency?

39

http://github.com/dojot/dojot

dojot Documentation, Release 0.0.0

– How can I send some commands to my device through dojot?

– I didn’t find the protocol supported by my device in the type list, is there anything I can do?

– I saved an attribute, but it disappeared from the device. Is it a bug?

– How can I retrieve historical data for a particular device?

• Data Flows

– What is data flow?

– The data flow UI. . . really looks like node-RED. Are they related in some way?

– Why should I use it?

– What can it do, exactly?

– So, how can I use it?

– Can I apply the same flow to multiple devices?

– Can I correlate data from different devices in the same flow?

– I want to send an email, what should I do?

– What about a HTTP POST request, how can I send it?

– I want to rename the attributes of a device, what should I do?

– I want to aggregate the attributes of multiple devices, what should I do?

– It would be cool a WhatsApp node, is it in roadmap?

• Applications

– What APIs are available for applications?

– How can I use them?

– I’m interested in integrate my application with dojot. How can I do it?

9.1 General

9.1.1 What is dojot? Why should I use it? Why open source it?

It’s a brazilian IoT platform launched as open source software with aims to ease the development of solutions and the
IoT ecosystem with local resources geared towards brazilians needs. It takes a role as an enabler platform with:

• Open APIs which makes the access to the platform resources easy.

• Capacity to store large volumes of data in different formats.

• Connectors to different types of devices.

• Graphical user interface with flow builder to prototype IoT solutions very quickly.

• Real time event processing with customizable rules.

dojot is based on Fiware, also an open source project, compromised to build an open and sustainable ecosystem
grounded on open standards with the aim of easing the application development in different segments.

40 Chapter 9. Frequently Asked Questions

dojot Documentation, Release 0.0.0

9.1.2 Where can I get it?

All components are available in dojot’s GitHub repositories: https://github.com/dojot.

9.1.3 Which repository is the main one?

There are two main ones:

• https://github.com/dojot/dojot: this is where we keep track of all the things related to this project as a whole,
such as architectural enhancements.

• https://github.com/dojot/docker-compose: repository for Docker compose files and configurations. This is what
we would recommend to use to start with.

9.1.4 So, I found this pesky bug. How can I inform you about it?

We ask you to open an issue in dojot’s Github repository. If you know exactly which component is failing, you could
open the issue in its repository (it will work the same way).

If you are able to analyze and fix this bug, please do so. Create a pull-request with a quick description of what you’ve
done.

9.2 Usage

9.2.1 How do I start it? Is it CLI-based or it has a graphical user interface?

dojot can be accessed by a nice web-based interface and by REST APIs. Considering that you installed docker and
docker-compose and cloned the docker-compose repository, there are a few steps to start it up:

$ docker-compose up -d
$./kong.config.sh
$./create-user.sh

And that’s it.

The web interface is available at http://localhost:8000. The user is admin, password admin.

REST APIs are explained in the Applications section.

9.2.2 Ok, I started it and I logged in. Now what?

Nice! Now you can add your first devices, described in Devices, build some flows and subscribing to device events,
both described in Data Flows.

9.2.3 How can I update my deploy to dojot’s latest version?

You need to follow some steps:

1. Update the docker-compose repository to the latest version.

$ cd <path-to-your-clone-of-docker-compose>
$ git checkout master && git pull

9.2. Usage 41

https://github.com/dojot
https://github.com/dojot/dojot
https://github.com/dojot/docker-compose
http://github.com/dojot/dojot

dojot Documentation, Release 0.0.0

2. Deploy the latest docker images.

$ docker-compose pull && docker-compose up -d --build

This procedure also applies to the available virtual machines once they do use docker-compose.

9.3 Devices

9.3.1 What are devices for dojot?

In dojot, a device is a digital representation of an actual device or gateway with one or more sensors or of a virtual one
with sensors/attributes inferred from other devices.

Consider, for instance, an actual device with temperature and humidity sensors; it can be represented into dojot as a
device with two attributes (one for each sensor). We call this kind of device as regular device or by its communication
protocol, for instance, MQTT device or CoAP device.

We can also create devices which don’t directly correspond to their actual ones, for instance, we can create one with
higher level of information of temperature (is becoming hotter or is becoming colder) whose values are inferred from
temperature sensors of other devices. This kind of device is called virtual device.

9.3.2 What is the relationship between this device and my actual device?

It is simple as it seems: the regular device for dojot is a mirror (digital twin) of your actual device. You can choose
which attributes are available for applications and other components by adding each one of them at the device creation
interface. If you don’t want some attributes to be available to applications or other elements, just don’t add them in
dojot.

9.3.3 What are virtual devices? How are they different from the other one?

Regular devices are created to serve as a mirror (digital twin) for the actual devices and sensors. A virtual device is an
abstraction that models things that are not feasible in the real world. For instance, let’s say that a user has few smoke
detectors in a laboratory, each one with different attributes. Wouldn’t it be nice if we had one device called Laboratory
that has one attribute isOnFire? So, the applications could rely only on this attribute to take an action.

Another difference is how virtual devices are populated. Regular ones will be filled with information sent by devices
or gateways to the platform and virtual ones will be filled by flows or by applications (they won’t accept messages
addressed to them via MQTT, for example).

9.3.4 How can I send MQTT data to dojot so that it appears on the dashboard?

First of all, you create a digital representation for your actual device. Then, you configure it to send data to dojot so
that it matches its digital representation.

Let’s take as example a weather station which measures temperature and humidity, and publishes them periodically
through MQTT. First, you create a device of type MQTT with two attributes (temperature and humidity). Then you
set your actual device to push the data to dojot. Here, you need to follow some rules:

• MQTT topic must follow the pattern /<service-id>/<device-id>/attrs, where <service-id>
is an identifier associated with the user account and the <device-id> is a unique identifier assigned by dojot.
For example, topic /admin/882d/attrs must be used for user admin and device ID 882d.

• MQTT payload must be a JSON with each key being an attribute of the dojot device, such as:

42 Chapter 9. Frequently Asked Questions

dojot Documentation, Release 0.0.0

{ "temperature" : 10.5,"pressure" : 770 }

It’s worth to point out that we are relaxing these rules so that you’ll have more flexibility to configure both topic and
payload. This feature will be available in the next official release.

9.3.5 On the dashboard some attributes are shown as tables and others as charts.
How are they chosen/set?

The type of an attribute determines how the data is shown on the dashboard as follows:

• Geo: geo map.

• Boolean and Text: table.

• Integer and Float: line chart.

9.3.6 I’m interested in integrating my super cool device with dojot. How can I do it?

If your device is able to send messages using MQTT (with JSON payload), CoAP or HTTP, there is a good chance
that your device can be integrated with minor or no modifications whatsoever. The requirements for such integration
is described in the question How can I send MQTT data to dojot so that it appears on the dashboard?.

9.3.7 Is there any restrictions about the message my device will send to dojot?
Format, size, frequency?

None but format, which is described in the question How can I send MQTT data to dojot so that it appears on the
dashboard?.

9.3.8 How can I send some commands to my device through dojot?

This feature is not supported right now, but it is in roadmap and will be available in the next official release. If you are
craving for this feature, please help us to develop it.

9.3.9 I didn’t find the protocol supported by my device in the type list, is there
anything I can do?

There are some possibilities. The first one is to develop a proxy to translate your protocol to one supported by dojot.
The second one is to develop a connector similar to the existing ones for MQTT, CoAP and HTTP.

9.3.10 I saved an attribute, but it disappeared from the device. Is it a bug?

You might have saved the attribute, but not the device. If you don’t click on the save button for the device, the added
attributes will be discarded. We’re improving the system messages to caveat the users and remember them to save
their configurations.

9.3. Devices 43

dojot Documentation, Release 0.0.0

9.3.11 How can I retrieve historical data for a particular device?

You can do this by sending a request to /history endpoint, such as:

curl -X GET \
-H 'Authorization: Bearer eyJhbGciOiJIUzI1NiIsIn...' \
-H 'Fiware-Service:admin' \
-H 'Fiware-ServicePath:/' \
http://localhost:8000/history/STH/v1/contextEntities/type/device/id/3ba9/

→˓attributes/temperature?lastN=10

which will retrieve the last 10 entries of temperature attribute from the device 3ba9. There are more operators that
could be used to filter entries. Check STH documentation to check out all possible operators.

9.4 Data Flows

9.4.1 What is data flow?

It’s a processing flow for income messages/data of a device. With a flow you can dynamically analyse each new
message in order to apply validations, infer information, and trigger actions or notifications.

9.4.2 The data flow UI. . . really looks like node-RED. Are they related in some way?

It’s based on the Node-RED frontend, but uses its own engine to process the messages. If you’re familiar with Node-
Red, you won’t have any difficult to use it.

9.4.3 Why should I use it?

It allows one of the coolest things of IoT in an easy and intuitive way, which is to analyse data for extracting informa-
tion, then take actions.

9.4.4 What can it do, exactly?

You can do things such as:

• Create virtual viewers of a device (rename attributes, aggregate attributes, change values, etc).

• Infer information based on switch rules.

• Infer information based on edge-detection rules.

• Infer information based on geo-fence rules.

• Notify through email.

• Notify through HTTP.

The data flows component is in constantly development with new features being added every new release.

9.4.5 So, how can I use it?

It follows the basic usage flow as node-RED. You can check its documentation for more details about this.

44 Chapter 9. Frequently Asked Questions

https://github.com/telefonicaid/fiware-sth-comet/blob/master/doc/manuals/raw-data-retrieval.md
https://nodered.org

dojot Documentation, Release 0.0.0

9.4.6 Can I apply the same flow to multiple devices?

Multiple devices can be used both as input and output of data flows. It’s worth to point out that the flow is processed
individually for each new input message, i.e. for each input device.

9.4.7 Can I correlate data from different devices in the same flow?

As the data flow is processed individually for each message, you need to create a virtual device to aggregate all
attributes, then use this virtual device as the input of the flow.

9.4.8 I want to send an email, what should I do?

Basically, you need to add an email node and configure it. This node is pre-configured to use the Gmail server
gmail-smtp-in.l.google.com, but you’re free to choose your own. For writing an email body, you can use a
template before the email.

It is important to point out that dojot contains no e-mail server. It will generate SMTP commands and send them to
the specified e-mail server.

9.4.9 What about a HTTP POST request, how can I send it?

It is almost the same process as sending an e-mail.

One important note: make sure that dojot can access your server.

9.4.10 I want to rename the attributes of a device, what should I do?

First of all, you need to create a virtual device with the new attributes, then you build a data flow to rename them. This
can be done connecting a ‘change’ node after the input device to map the input attributes to the corresponding ones
into an output, and finally connecting the ‘change’ to the virtual device and assigning to it the output.

9.4.11 I want to aggregate the attributes of multiple devices, what should I do?

First of all, you need to create a virtual device to aggregate all attributes, then you build a data flow to map the attributes
of each device to the virtual one. This can be done connecting a ‘change’ node after each input device to put the input
values into an output, and finally connecting all changes to the virtual device and assigning to it the output.

9.4.12 It would be cool a WhatsApp node, is it in roadmap?

It’s under analysis. We intend to support other notifications systems besides email, including WhatsApp, Twitter and
Telegram. If you also have interest, please help us to develop them.

9.4. Data Flows 45

dojot Documentation, Release 0.0.0

9.5 Applications

9.5.1 What APIs are available for applications?

You can check all available APIs in the API Listing page

9.5.2 How can I use them?

First, you will need an access token, which can be retrieved sending a HTTP POST request to /auth endpoint with
the following JSON content:

{ "username" : <>, "passwd" : <> }

Obviously the values of each attribute should be correctly filled in. An example of such request using curl would be:

$ curl -X POST http://localhost:8000/auth -H 'Content-Type:application/json' \
$ -d '{"username" : "admin", "passwd" : "admin"}'

which gives us back:

{"jwt": "eyJhbGciOiJIUzI1..."}

This token (which is a lengthy alpha-numeric string) should be used in every request that is sent to dojot (excluding,
of course this request). Each call for this API will generate a different token.

This token should be placed in a Authorization HTTP header, such as:

$ curl -X GET http://localhost:8000/device -H 'Authorization: Bearer eyJhbGciOiJIUzI1.
→˓..'

A few endpoints requires two more headers, the Fiware-Service and Fiware-ServicePath. They are: /
metrics/, /iot/ and /history/

Fiware-Service header should contain the service name associated to the user. In general, it should be the
username. Fiware-ServicePath is always a forward slash (/). An example:

curl -X GET http://localhost:8000/metric/v2/entities -H 'Authorization: Bearer
→˓eyJhbGciOiJIUzI1...' \
-H 'Fiware-Service:admin' -H 'Fiware-ServicePath:/'

9.5.3 I’m interested in integrate my application with dojot. How can I do it?

This should be pretty straightforward. There are two ways that your application could be integrated with dojot:

• Retrieving historical data: you might want to periodically read all historical data related to a device. This
can be done by using this API (one side-note: all endpoints described in this apiary should be preceded by
/history/).

• Subscribing to events related to devices: if your application is able to listen to events, you might rather use
subscriptions, which can be created using this API (also, all endpoints should be preceded by /metrics/).

• Using mashup to pre-process data: if you want to do something more, you could use flows. They can help
process and transform data so that they can be properly sent to your application via HTTP request, by e-mail or
stored in a virtual device (which can be used to generate notifications as previously described).

All these endpoints should bear an access token, which is retrieved as described in the question How can I use them?.

46 Chapter 9. Frequently Asked Questions

../apis.html

CHAPTER 10

Mutual Authentication

A security role is to ensure that only legitimate users have access to the resources and information they need to perform
their duties. Authentication is part of this access control, when validating entities identity. At the same time, another
security role is to ensure that an entity accesses legitimate resources and information, thereby avoiding situations such
as sending information to fraudulent servers, for example.

Mutual authentication is the process in which two entities authenticate each other. In a client-server communication,
the client must prove its identity to the server and the server must prove its identity to the client. Thus, each entity can
ensure that they are communicating with a legitimate interlocutor.

Mutual authentication protects access to data the application accesses from dojot and therefore protects access to
data of that application’s user. It is done by ensuring that only registered applications can access platform data and
functionality. In addition, it ensures that the platform the application is accessing is legitimate, meaning that no
attacker can pass themselves by the platform and get user or application data.

Dojot offers a mutual authentication service through a Docker image. This service runs inside the platform and can be
accessed using its interfaces.

Table of Contents

• Using Mutual Authentication

• Application Registration

• Authentication

– Library Initialization

– Callback Registration

– Call mutual authentication function

• Accessing dojot APIs

47

dojot Documentation, Release 0.0.0

10.1 Using Mutual Authentication

Applications can access dojot functionality to interact with its components and connected devices. For an applica-
tion to ensure that it is communicating with a legitimate platform (and vice versa), it must make use of the mutual
authentication functionality dojot provides. This is a simple process and its use requires only three steps to follow:

• Application Registration. When an application is registered in dojot, it receives an identifier and a key that must
be kept secret. This key is used to authenticate the application on the platform.

• Authentication. At the beginning of the communication between application and dojot, the application initiates
a handshake in which the two entities will exchange information to ensure they are legitimate.

• Using the platform. When accessing dojot interfaces, the platform informs a session identifier that is obtained at
the time of authentication. Thus, the platform can verify that the mutual authentication process was performed
by the application.

10.2 Application Registration

An application that is registered with dojot will receive an identifier and a key that must be kept secret. The registration
indicates that an application will communicate and use platform features.

Currently, the method used to register an application is the use of a REST interface. After making the request for the
registration, the application will receive a unique identifier and a key. The API is described below

REGISTER COMPONENT - Register new application

POST /kerberos/registerComponent

Response 200

Headers
Content-Type: application/json

Body
{

"AppId": "0001020304050607",
"AppKey": "000102030405060708090a0b0c0d0e0f000102030405060708090a0b0c0d0e0f"

}

Received identifier and key will be used at the moment the application authenticates with dojot. In order to do this,
a client library is provided to perform the authentication process (available in github.com/dojot/ma-client-libs) and
therefore, the library should have knowledge about the values of the identifier and the key. The file https://github.com/
dojot/ma-client-libs/kerberos/src/protocol/unique.h is used to store these values and will be used by the library at the
moment of authentication.

10.3 Authentication

When communicating with dojot, the application must perform mutual authentication. This process is done through
the library provided in github.com/dojot/ma-client-libs. By using the library, three steps should be followed:

1. Initialize the library with server addresses

2. Register the callback function

3. Call mutual authentication function

48 Chapter 10. Mutual Authentication

https://github.com/dojot/ma-client-libs/kerberos/src/protocol/unique.h
https://github.com/dojot/ma-client-libs/kerberos/src/protocol/unique.h

dojot Documentation, Release 0.0.0

10.3.1 Library Initialization

Initialization tells the library which URLs will be used to perform mutual authentication. The function to be used is
described below:

Initialize Kerberos

errno_t initializeKerberos(uint8_t* host, uint8_t hostLength, uint8_t* uriRequestAS,
→˓uint8_t requestASLength, uint8_t* uriRequestAP, uint8_t requestAPLength)

The arguments used in the function are described below.

• host - Platform main URL

• hostLength - Host string size

• uriRequestAS - requestAS endpoint

• requestASLength - requestAS string size

• uriRequestAP - requestAP endpoint

• requestAPLength - requestAP string Size

The following code snippet shows an example of how the function can be used.

char* host = "http://localhost:8000/"; // dojot URL
char* reqAS = "kerberos/requestAS";
char* reqAP = "kerberos/requestAP";

errno_t ret = initializeKerberos(host, strlen(host), reqAS, strlen(reqAS), reqAP,
→˓strlen(reqAP));

10.3.2 Callback Registration

On the mutual authentication process, the library communicates with the server and checks received data. If an error
occurs during this process, the library will call a callback function.

This callback function is implemented by the library user and must be registered before the authentication process.
The callback function can include code for error handling and logging, for example.

Set Callback

errno_t setCallback(void (*callback)(int))

The following code shows an example of how the callback function can be created and registered.

void errorCallback(int err){
// Error handling and logging code

}

errno_t ret = setCallback(&errorCallback);

10.3.3 Call mutual authentication function

After initializing the library with platform URL and registering the callback function, the library is ready to perform
the mutual authentication process. The function that is used to perform the process is shown below.

10.3. Authentication 49

dojot Documentation, Release 0.0.0

errno_t executeKerberosHandshake()

The code below shows an example of how the function may be used.

errno_t ret = executeKerberosHandshake();

10.4 Accessing dojot APIs

After the mutual authentication process completes, the application may send additional data in the calls to the platform
interfaces. This data is the mutual authentication session identifier and is sent through an HTTP header.

The following is an example of a call to a dojot API where mutual authentication session identifier is also sent.

GET /device HTTP/1.1
Host: localhost:8000
ma-session-id: a4cdad05441940c5c07ee9f55b8fafbdc0eba14afce449c9c9ec052bb20f50f4

50 Chapter 10. Mutual Authentication

CHAPTER 11

Crypto Service

Crypto Service provides data encryption and decryption functions to other dojot components. It is used only by internal
services so they can protect data communication (both internally and externally) and data storage.

Available as a Docker image, Crypto Service can be instantiated easily and integrated in a short time. Encrypt and
decrypt data functionalities are accessed through REST APIs.

Table of Contents

• REST APIs

• Usage Examples

11.1 REST APIs

Encrypt and decrypt data APIs are described below.

Decrypt

POST /crypto/decrypt

Request

Headers

Content-Type: application/json

Body

{
"data": "Clear or cipher data",
"tagSize": 16,
"key": "2034F6E32958647FDFF75D265B455EBF40C80E6D597092B3A802B3E5863F878C",

(continues on next page)

51

dojot Documentation, Release 0.0.0

(continued from previous page)

"iv": "AD0ACC568C88C116D57B273D98FB92C0"
}

Response 200

Headers

Content-Type: application/json

Body

{
"data": "Cipher or clear data",
"result": "SUCCESS"

}

Encrypt

POST /crypto/encrypt

Request

Headers

Content-Type: application/json

Body

{
"data": "Clear or cipher data",
"tagSize": 16,
"key": "2034F6E32958647FDFF75D265B455EBF40C80E6D597092B3A802B3E5863F878C",
"iv": "AD0ACC568C88C116D57B273D98FB92C0"

}

Response 200

Headers

Content-Type: application/json

Body

{
"data": "Cipher or clear data",
"result": "SUCCESS"

}

11.2 Usage Examples

In order to use cryptographic functions provided by Crypto Service, one must access the available REST APIs through
a HTTP request.

Examples of how those requests can be made are showed bellow using the command line tool curl.

Encrypt

52 Chapter 11. Crypto Service

dojot Documentation, Release 0.0.0

curl -X POST \
http://localhost:8080/cryptointegration/rest/crypto/encrypt \
-H 'content-type: application/json' \
-d '{
"data": "000102030405060708090A0B0C0D0F",
"tagSize": 16,
"key": "2034F6E32958647FDFF75D265B455EBF40C80E6D597092B3A802B3E5863F878C",
"iv": "AD0ACC568C88C116D57B273D98FB92C0"

}'

Decrypt

curl -X POST \
http://localhost:8080/cryptointegration/rest/crypto/decrypt \
-H 'content-type: application/json' \
-d '{
"data": "C0FBC8DB5F72AD8DC04ECA2E32DA793F86D59D6",
"tagSize": 16,
"key": "2034F6E32958647FDFF75D265B455EBF40C80E6D597092B3A802B3E5863F878C",
"iv": "AD0ACC568C88C116D57B273D98FB92C0"

}'

11.2. Usage Examples 53

dojot Documentation, Release 0.0.0

54 Chapter 11. Crypto Service

CHAPTER 12

MQTT-TLS Tutorial

This document describes how to configure dojot to use MQTT over TLS.

Table of Contents

• tl;dr

• Components

– EJBCA-REST

* What is a certificate?

* I have a CSR. How can I ask EJBCA to sign it for me?

* So, how does EJBCA work in dojot?

– MQTT Manager

• Mosquitto configuration files

• Certificate retriever

• Important Notes

– CRL (Certification Revocation List)

– Debugging

* How to read a certificate

* Errors in secure connection handshake between device and Mosquitto

* Handshake is OK, but no published data reaches iotagent

55

dojot Documentation, Release 0.0.0

12.1 tl;dr

For a device to connect using TLS with Mosquitto, it must possess:

• A key pair (.key file);

• A certificate signed by a Certificate Authority (CA) trusted by Mosquitto (.crt file);

• The certificate of this CA (.crt file);

• An entry on Mosquitto Access Control List (ACL), allowing the device to publish on a specific topic;

• (optional) A Certificate Revocation List (CRL).

When a device is created, DeviceManager will automatically notify the following components:

• IoTAgent: will register the new device on its internal cache.

• MQTT-Manager: will create an entry on the ACL, allowing the device to publish on a specific topic.

• EJBCA: will create an end entity so a certificate can be created on the future.

By default, dojot uses clear MQTT. To activate TLS, docker-compose.yml must be changed:

• The image for service ‘mqtt’ must be changed from ‘ansi/mosquitto’ to ‘dojot/mqtt-manager’;

• The public port for ‘mqtt’ service must be changed from ‘1883:1883’ to ‘8883:8883’;

• The MQTT_TLS variable of ‘iotagent’ service must be set to true (lowercase).

On the configuration file ‘iotagent/config.json’:

• The flag ‘secure’ should be changed to true

12.2 Components

12.2.1 EJBCA-REST

EJBCA is a complete Private Key Infrastructure (PKI) capable to manage CAs, cryptography keys and certificates.
EJBCA provides a SOAP, web and a command line interface. EJBCA-REST is an wrapper on top of EJBCA that
provides modern interfaces, like REST and Kafka.

EJBCA provides SOAP, web and command line interfaces. EJBCA-REST is a wrapper on top of EJBCA that comple-
ments those, allowing the CA to be configured using REST. When used within dojot, it also listens to Kafka events,
allowing its automatic configuration.

What is a certificate?

A certificate contains the public key for an entity (a user, device, website), along with information about this entity,
about the CA which signs the certificate, the allowed certificate usage and a checksum. When a entity wants a cer-
tificate to be signed, the entity should create a CSR file and send it to the desired CA. The CSR file is an ‘intention
of certification’. The file contains the information required from the entity and some information about the certificate
use, hostnames and IPs where the certificate will reside, alternative names for the entity, etc. EJBCA can decide, using
its configured policies, what information to keep, to discard and to overwrite of the received CSR. EJBCA can refuse
to sign a CSR if it concludes that it is not safe enough according to its policies.

These configurable policies are called ‘Certificate Profiles’. One Certificate profile named CFREE, specialized for
MQTT TLS, is provided out of the box.

In short, CFREE have the following configurations (and many more):

56 Chapter 12. MQTT-TLS Tutorial

https://www.ejbca.org

dojot Documentation, Release 0.0.0

• Cryptography keys must have between 2048 and 8192 bits;

• Certificate expires in 730 days;

• Entities can define hostnames and IPs;

• Key usage is marked as not critical (for now);

• The hash algorithm is SHA256. The sign algorithm is RSA.

I have a CSR. How can I ask EJBCA to sign it for me?

Calm down! EJBCA will not allow strangers to ask for certification. You need to authenticate yourself. EJBCA use a
username+password authentication system. The term ‘end entity’ will be used to refer to EJBCA users to follow the
terms on EJBCA documentation and to avoid ambiguities between EJBCA users and dojot users. An administrator
should create the end entity. An entity that was just created has the state ‘New’ an can generate a certificate. After
signing a certificate for an entity, the end entity’s state changes to ‘Generated’ and will no longer accept this username
and password. EJBCA ‘End entities’ can create only one certificate.

So, how does EJBCA work in dojot?

When creating a new device, an associated end entity is created in EJBCA. Its name will be the device’s ID (like
‘8fa3’) and its password will be always ‘dojot’.

A certificate can be signed by sending a HTTP POST request to host:1234/sign/<cname>/pkcs10. CName is the end
entity’s name (or device). The payload sent with this request should be a JSON containing the end entity password
and a CSR file (certificate intention) in base64 format.

Note that the URL is ‘routed’ by the API gateway. As in other APIs in dojot, a JWT is needed. You can find how to
generate and how to use such token in User Guide.

In order to create the CSR file and ask for a certificate signature, a user can use a helper script called ‘Certificate
Retriever’, which is detailed in Certificate retriever section.

12.2.2 MQTT Manager

MQTT-Manager is a helper service used to configure Mosquitto MQTT broker in a simple and ‘on-the-fly’ way. It
can be configured using REST interfaces and Kakfa. Thus, HTTP requests or Kafka messages can be used to create
and remove devices, as well as update CRL file (certification revocation list). This service is distributed as a docker
container for easy deploy and its source code repository can be accessed in MQTT Manager repository.

Mosquitto by itself doesn’t generate nor revoke certificates, it only relies on a CA and implements TLS protocol. The
‘creation’ of a particular device consists only in adding a new rule to ACL file in Mosquitto. Such file looks like:

user iotagent
topic read /#
user 24f6
topic write /admin/24f6/attrs

Each rule is composed by two lines: the first one specifies the user (device) and the second one defines which action
(write or read) is allowed to which topic. In the example above, the user iotagent can read all topics (# is a wildcard).
Also, the device with ID 24f6 can write to topic /admin/24f6/attrs. The device ID is retrieved in ‘Common name’
certificate field.

If a device sends data to a topic which it has no write permissions, then all data is discarded. Mosquitto won’t log any
errors related to this.

12.2. Components 57

http://dojotdocs.readthedocs.io/en/latest/user_guide.html#first-steps
https://github.com/dojot/mqtt-manager

dojot Documentation, Release 0.0.0

When the ACL is changes, Mosquitto must be restarted (or a SIGDUP signal can be sent to its process). MQTT-
Manager does this automatically when creating or removing devices.

A script is executed when firing the container up. This script will generate a pair of keys to Mosquitto, retrieves the cer-
tificate and CRL from a CA and asks it to sign its public key. ALl generated files are placed in /usr/local/src/mosquitto-
1.4.13/certs (inside the container).

Mosquitto will only accept device connections that have certificate signed by its trusty CA.

Also note that MQTT-Manager is used only in case when a TLS-enabled broker is needed. If this is not the case, then
the vanilla Mosquitto docker image can be used.

12.3 Mosquitto configuration files

Checkout this commented Mosquitto configuration file:

network port on which Mosquitto will accept new connections
port 8883

Trusted CA certificate
cafile /usr/local/src/mosquitto-1.4.13/certs/ca.crt

Mosquitto certificate
certfile /usr/local/src/mosquitto-1.4.13/certs/mosquitto.crt

Mosquitto key par
keyfile /usr/local/src/mosquitto-1.4.13/certs/mosquitto.key

tls_version tlsv1.2

If false, a device will check Mosquitto certificate, but Mosquitto won't check
the device counterparts.
If true, both checks are performed (2-way TLS)
require_certificate true

Certificate Common Name field will be used as username.
Thus, a device with 'CN=abc1' will have a 'user abc1' entry in Mosquitto's ACL
use_identity_as_username true

Permission list file
acl_file /usr/local/src/mosquitto-1.4.13/certs/access.acl

CA CRL.
crlfile /usr/local/src/mosquitto-1.4.13/certs/ca.crl

Note that for all configuration updates, it is mandatory to restart Mosquitto or to send a SIGDUP signal to its process.

12.4 Certificate retriever

This component is a helper script for device certificates creation. It is available at Certificate Retriever GitHub reposi-
tory and it coded using Python 3.

A user can use it by executing:

58 Chapter 12. MQTT-TLS Tutorial

https://hub.docker.com/r/ansi/mosquitto
https://github.com/dojot/certificate-retriever
https://github.com/dojot/certificate-retriever

dojot Documentation, Release 0.0.0

./certificate-retriever.py HOST DEVICE-NAME CA [OPTIONS]

The mandatory parameters are:

• HOST: where dojot is. Example: http://localhost:8000

• DEVICE-NAME: device name that will get a new certificate. Example: ac32

• CA: CA which will sign the certificate. Example: IOTmidCA (this is the CA name used in dojot)

Other options are:

• -u or –username USERNAME: dojot’s username. If this parameter is not specified here, it will be asked itera-
tively.

• -w or –overwrite: overwrites any certificate files or criptographic keys if already existent.

• -k or –key KEYLENGTH: size of the criptographic key being generated (in bits).

• -d or –dns: Hostname where the certificate owner can be reached out. Note that this has no relation with DNS
(Domain Name System) servers - this name was kept because x509 certificates have an attribute that is called
DNS.

• -i or –ip: same as -d, buto to specify IP address.

• –skip-https-check: if dojot accepts HTTPS connections but it has no valid certificate, then this option will allow
the connection to be made.

Note that authentication is performed in dojot. The script will ask for user credentials and will invoke user authentica-
tion automatically. The user needs permission for certificate signing to be able to use this script.

An end entity must exist in EJBCA in ‘New’ state before asking for a new certificate signature. When a new device is
created, an end entity is automatically created in EJBCA by DeviceManager. This new end entity’s name is the device
ID itself. Its password is ‘dojot’.

The script authenticates users with given username and password, retrieves CA certificate, generates a key pair as well
as a CSR file and asks for certificate signature, in this order. Any error in any step will halt its execution.

After successfully executed, all certificates can be found in ‘./certs’ folder.

12.5 Important Notes

These are a few but important notes related to device security and associated subjects.

12.5.1 CRL (Certification Revocation List)

A CRL is a list which contains all revoked certificates. It is used to indicate which certificates are no longer valid
(administratively set to invalid) as a normal certificate can be used for 1 to 5 years. This list is signed by CA and
also has an expiration date - 1 day by default. In TLS protocol, if CRL is expired then the recommended action to be
taken is to refuse all incoming connections, as there is no way to check if the certificates used in those connections are
invalid or not. This procedure is implemented in Mosquitto.

Therefore, CA must generate a new list periodically. All components that use it must be updated.

12.5. Important Notes 59

http://localhost:8000

dojot Documentation, Release 0.0.0

12.5.2 Debugging

TLS errors might be not so verbose as other problems. If an error occurrs, the user might not know what went wrong
because no component indicates any problem. In this section there are some tips, frequent problems and debugging
tools to find out what’s happening.

How to read a certificate

A certificate file can be in two formats: PEM (base64 text) or DER (binary). OpenSSL offers tools to read such
formats:

openssl x509 -noout -text -in certFile.crt

To read a CRL:

openssl crl -inform PEM -text -noout -in crlFile.crl

Errors in secure connection handshake between device and Mosquitto

If any errors occur during connection handshake, something like the following error might appear in Mosquitto’s logs:

1514550332: New connection from 172.20.0.1 on port 8883.
1514550332: OpenSSL Error: error:140940E5:SSL routines:ssl3_read_bytes:ssl handshake
→˓failure

If this happens, try to establish connection using ‘openssl client’, as it is more verbose in error description.

openssl s_client -connect localhost:8883 -CAfile ca.crt -cert device.crt -key device.
→˓key

Common errors are shown by openssl_client (and _server as well):

• SSL alert number 45: this error indicates that a certificate expired. Keep in mind that CRL also expires.

• SSL alert number 48: received a valid certificate chain or partial chain, but the certificate was not accepted
because the CA certificate could not be located or could not be matched with a known, trusted CA. This message
is always fatal.

• Alert unknown CA: check whether sent CA certificate is correct. If it is a sub-CA, check if all of its certificate
chain was sent. This error also occurs if the CA certificate data (specially common name attribute) is the same
as those from client certificate.

Handshake is OK, but no published data reaches iotagent

You can check whether the device could connect to MQTT broker by checking Mosquitto’s log:

1514482004: New client connected from 172.20.0.10 as mqttjs_c011c22d (c1, k10, u
→˓'deviceName')

If that line shows up, it means that the TLS handshake worked and the device successfully connected to Mosquitto.
Check if the device has an ACL entry in Mosquitto to allow it to publish data in the specified topic. Keep in mind
that if a device publishes something in another topic (which it has no permission to publish) all data is discarded by
Mosquitto with no warnings.

60 Chapter 12. MQTT-TLS Tutorial

	Architecture
	Components
	Infrastructure
	Communications
	Deployment strategies
	Comparative analysis

	Operations Guide
	Deployment
	Device Management
	User Management
	Resources Management
	System Dashboard

	User Guide
	Who should read this
	Getting Started
	dojot basics
	Integrating physical devices
	Flow Management

	Components and APIs
	Components
	Exposed APIs

	Installation Guide - Docker compose
	Dependencies
	Installation
	Configuration
	Usage

	Installation Guide - Google Cloud Platform
	Creating a Project
	Creating a Cluster
	Getting the credentials

	Installation Guide - Kubernetes
	Dependencies
	Deployment

	Running dojot on VirtualBox
	Frequently Asked Questions
	General
	Usage
	Devices
	Data Flows
	Applications

	Mutual Authentication
	Using Mutual Authentication
	Application Registration
	Authentication
	Accessing dojot APIs

	Crypto Service
	REST APIs
	Usage Examples

	MQTT-TLS Tutorial
	tl;dr
	Components
	Mosquitto configuration files
	Certificate retriever
	Important Notes

