

Welcome to MLConjug’s documentation!

Contents:

	mlconjug
	Supported Languages

	Features

	Credits

	Installation
	Stable release

	From sources

	Usage

	Package Api Documentation for mlconjug
	API Reference for the classes in mlconjug.mlconjug.py

	API Reference for the classes in mlconjug.PyVerbiste.py

	Contributing
	Types of Contributions

	Get Started!

	Pull Request Guidelines

	Tips

	Credits
	Development Lead

	Contributors

	History
	3.4 (2019-29-04)

	3.3.2 (2019-06-04)

	3.3.1 (2019-02-04)

	3.3 (2019-04-03)

	3.2.3 (2019-26-02)

	3.2.2 (2018-18-11)

	3.2.0 (2018-04-11)

	3.1.3 (2018-07-10)

	3.1.2 (2018-06-27)

	3.1.1 (2018-06-26)

	3.1.0 (2018-06-24)

	3.0.1 (2018-06-22)

	2.1.11 (2018-06-21)

	2.1.9 (2018-06-21)

	2.1.5 (2018-06-15)

	2.1.2 (2018-06-15)

	2.1.0 (2018-06-15)

	2.0.0 (2018-06-14)

	1.2.0 (2018-06-12)

	1.1.0 (2018-06-11)

	1.0.0 (2018-06-10)

Indices and tables

	Index

	Module Index

	Search Page

 [image: mlconjug PyPi Home Page]
 [https://pypi.python.org/pypi/mlconjug]
mlconjug

[image: Pypi Python Package Index Status]
 [https://pypi.python.org/pypi/mlconjug][image: Linux Continuous Integration Status]
 [https://travis-ci.org/SekouD/mlconjug][image: Windows Continuous Integration Status]
 [https://ci.appveyor.com/project/SekouD/mlconjug][image: Documentation Status]
 [https://mlconjug.readthedocs.io/en/latest][image: Depedencies Update Status]
 [https://pyup.io/repos/github/SekouD/mlconjug/][image: Code Coverage Status]
 [https://codecov.io/gh/SekouD/mlconjug][image: Code Vulnerability Status]
 [https://snyk.io/test/github/SekouD/mlconjug?targetFile=requirements.txt]
A Python library to conjugate verbs in French, English, Spanish, Italian, Portuguese and Romanian (more soon)
using Machine Learning techniques.

Any verb in one of the supported language can be conjugated, as the module contains a Machine Learning model of how the verbs behave.

Even completely new or made-up verbs can be successfully conjugated in this manner.

The supplied pre-trained models are composed of:

	a binary feature extractor,

	a feature selector using Linear Support Vector Classification,

	a classifier using Stochastic Gradient Descent.

MLConjug uses scikit-learn to implement the Machine Learning algorithms.

Users of the library can use any compatible classifiers from scikit-learn to modify and retrain the models.

The training data for the french model is based on Verbiste https://perso.b2b2c.ca/~sarrazip/dev/verbiste.html .

The training data for English, Spanish, Italian, Portuguese and Romanian was generated using unsupervised learning techniques
using the French model as a model to query during the training.

	Free software: MIT license

	Documentation: https://mlconjug.readthedocs.io.

Supported Languages

	French

	English

	Spanish

	Italian

	Portuguese

	Romanian

Features

	Easy to use API.

	Includes pre-trained models with 99% + accuracy in predicting conjugation class of unknown verbs.

	Easily train new models or add new languages.

	Easily integrate MLConjug in your own projects.

	Can be used as a command line tool.

Credits

This package was created with the help of Verbiste [https://perso.b2b2c.ca/~sarrazip/dev/verbiste.html] and scikit-learn [http://scikit-learn.org/stable/index.html].

The logo was designed by Zuur [https://github.com/zuuritaly].

Installation

Stable release

To install MLConjug, run this command in your terminal:

$ pip install mlconjug

This is the preferred method to install MLConjug, as it will always install the most recent stable release.

If you don’t have pip [https://pip.pypa.io] installed, this Python installation guide [http://docs.python-guide.org/en/latest/starting/installation/] can guide
you through the process.

From sources

The sources for MLConjug can be downloaded from the Github repo [https://github.com/SekouD/mlconjug].

You can either clone the public repository:

$ git clone git://github.com/SekouD/mlconjug

Or download the tarball [https://github.com/SekouD/mlconjug/tarball/master]:

$ curl -OL https://github.com/SekouD/mlconjug/tarball/master

Once you have a copy of the source, you can install it with:

$ python setup.py install

Usage

Note

The default language is French.
When called without specifying a language, the library will try to conjugate the verb in French.

To use MLConjug in a project with the provided pre-trained conjugation models:

import mlconjug

To use mlconjug with the default parameters and a pre-trained conjugation model.
default_conjugator = mlconjug.Conjugator(language='fr')

Verify that the model works
test1 = default_conjugator.conjugate("manger").conjug_info['Indicatif']['Passé Simple']['1p']
test2 = default_conjugator.conjugate("partir").conjug_info['Indicatif']['Passé Simple']['1p']
test3 = default_conjugator.conjugate("facebooker").conjug_info['Indicatif']['Passé Simple']['1p']
test4 = default_conjugator.conjugate("astigratir").conjug_info['Indicatif']['Passé Simple']['1p']
test5 = default_conjugator.conjugate("mythoner").conjug_info['Indicatif']['Passé Simple']['1p']
print(test1)
print(test2)
print(test3)
print(test4)
print(test5)

You can now iterate over all conjugated forms of a verb by using the newly added Verb.iterate() method.
default_conjugator = mlconjug.Conjugator(language='en')
test_verb = default_conjugator.conjugate("be")
all_conjugated_forms = test_verb.iterate()
print(all_conjugated_forms)

To use MLConjug in a project and train a new model:

Set a language to train the Conjugator on
lang = 'fr'

Set a ngram range sliding window for the vectorizer
ngrange = (2,7)

Transforms dataset with CountVectorizer. We pass the function extract_verb_features to the CountVectorizer.
vectorizer = mlconjug.CountVectorizer(analyzer=partial(mlconjug.extract_verb_features, lang=lang, ngram_range=ngrange),
 binary=True)

Feature reduction
feature_reductor = mlconjug.SelectFromModel(mlconjug.LinearSVC(penalty="l1", max_iter=12000, dual=False, verbose=0))

Prediction Classifier
classifier = mlconjug.SGDClassifier(loss="log", penalty='elasticnet', l1_ratio=0.15, max_iter=4000, alpha=1e-5, random_state=42, verbose=0)

Initialize Data Set
dataset = mlconjug.DataSet(mlconjug.Verbiste(language=lang).verbs)
dataset.construct_dict_conjug()
dataset.split_data(proportion=0.9)

Initialize Conjugator
model = mlconjug.Model(vectorizer, feature_reductor, classifier)
conjugator = mlconjug.Conjugator(lang, model)

#Training and prediction
conjugator.model.train(dataset.train_input, dataset.train_labels)
predicted = conjugator.model.predict(dataset.test_input)

Assess the performance of the model's predictions
score = len([a == b for a, b in zip(predicted, dataset.test_labels) if a == b]) / len(predicted)
print('The score of the model is {0}'.format(score))

Verify that the model works
test1 = conjugator.conjugate("manger").conjug_info['Indicatif']['Passé Simple']['1p']
test2 = conjugator.conjugate("partir").conjug_info['Indicatif']['Passé Simple']['1p']
test3 = conjugator.conjugate("facebooker").conjug_info['Indicatif']['Passé Simple']['1p']
test4 = conjugator.conjugate("astigratir").conjug_info['Indicatif']['Passé Simple']['1p']
test5 = conjugator.conjugate("mythoner").conjug_info['Indicatif']['Passé Simple']['1p']
print(test1)
print(test2)
print(test3)
print(test4)
print(test5)

Save trained model
with open('path/to/save/data/trained_model-fr.pickle', 'wb') as file:
 pickle.dump(conjugator.model, file)

To use MLConjug from the command line:

$ mlconjug manger

$ mlconjug bring -l en

$ mlconjug gallofar --language es

Package Api Documentation for mlconjug

API Reference for the classes in mlconjug.mlconjug.py

MLConjug Main module.

This module declares the main classes the user interacts with.

The module defines the classes needed to interface with Machine Learning models.

	
mlconjug.mlconjug.extract_verb_features(verb, lang, ngram_range)

	
Custom Vectorizer optimized for extracting verbs features.

The Vectorizer subclasses sklearn.feature_extraction.text.CountVectorizer .

As in Indo-European languages verbs are inflected by adding a morphological suffix,
the vectorizer extracts verb endings and produces a vector representation of the verb with binary features.

To enhance the results of the feature extration, several other features have been included:

The features are the verb’s ending n-grams, starting n-grams, length of the verb, number of vowels,
number of consonants and the ratio of vowels over consonants.

	Parameters

	
	verb – string.
Verb to vectorize.

	lang – string.
Language to analyze.

	ngram_range – tuple.
The range of the ngram sliding window.

	Returns

	list.
List of the most salient features of the verb for the task of finding it’s conjugation’s class.

	
class mlconjug.mlconjug.Conjugator(language='fr', model=None)

	
This is the main class of the project.

The class manages the Verbiste data set and provides an interface with the scikit-learn pipeline.

If no parameters are provided, the default language is set to french and the pre-trained french conjugation pipeline is used.

The class defines the method conjugate(verb, language) which is the main method of the module.

	Parameters

	
	language – string.
Language of the conjugator. The default language is ‘fr’ for french.

	model – mlconjug.Model or scikit-learn Pipeline or Classifier implementing the fit() and predict() methods.
A user provided pipeline if the user has trained his own pipeline.

	
conjugate(verb, subject='abbrev')

	
This is the main method of this class.

It first checks to see if the verb is in Verbiste.

If it is not, and a pre-trained scikit-learn pipeline has been supplied, the method then calls the pipeline
to predict the conjugation class of the provided verb.

Returns a Verb object or None.

	Parameters

	
	verb – string.
Verb to conjugate.

	subject – string.
Toggles abbreviated or full pronouns.
The default value is ‘abbrev’.
Select ‘pronoun’ for full pronouns.

	Returns

	Verb object or None.

	
set_model(model)

	Assigns the provided pre-trained scikit-learn pipeline to be able to conjugate unknown verbs.

	Parameters

	model – scikit-learn Classifier or Pipeline.

	
class mlconjug.mlconjug.DataSet(verbs_dict)

	
This class holds and manages the data set.

Defines helper methodss for managing Machine Learning tasks like constructing a training and testing set.

	Parameters

	verbs_dict – A dictionary of verbs and their corresponding conjugation class.

	
construct_dict_conjug()

	
Populates the dictionary containing the conjugation templates.

Populates the lists containing the verbs and their templates.

	
split_data(threshold=8, proportion=0.5)

	Splits the data into a training and a testing set.

	Parameters

	
	threshold – int.
Minimum size of conjugation class to be split.

	proportion – float.
Proportion of samples in the training set.
Must be between 0 and 1.

	
class mlconjug.mlconjug.Model(vectorizer=None, feature_selector=None, classifier=None, language=None)

	Bases: object

This class manages the scikit-learn pipeline.

The Pipeline includes a feature vectorizer, a feature selector and a classifier.

If any of the vectorizer, feature selector or classifier is not supplied at instance declaration,
the __init__ method will provide good default values that get more than 92% prediction accuracy.

	Parameters

	
	vectorizer – scikit-learn Vectorizer.

	feature_selector – scikit-learn Classifier with a fit_transform() method

	classifier – scikit-learn Classifier with a predict() method

	language – language of the corpus of verbs to be analyzed.

	
train(samples, labels)

	Trains the pipeline on the supplied samples and labels.

	Parameters

	
	samples – list.
List of verbs.

	labels – list.
List of verb templates.

	
predict(verbs)

	Predicts the conjugation class of the provided list of verbs.

	Parameters

	verbs – list.
List of verbs.

	Returns

	list.
List of predicted conjugation groups.

API Reference for the classes in mlconjug.PyVerbiste.py

PyVerbiste.

A Python library for conjugating verbs in French, English, Spanish, Italian, Portuguese and Romanian (more soon).

It contains conjugation data generated by machine learning models using the python library mlconjug.

More information about mlconjug at https://pypi.org/project/mlconjug/

The conjugation data conforms to the XML schema defined by Verbiste.

More information on Verbiste at https://perso.b2b2c.ca/~sarrazip/dev/conjug_manager.html

	
class mlconjug.PyVerbiste.ConjugManager(language='default')

	This is the class handling the mlconjug json files.

	Parameters

	language – string.
| The language of the conjugator. The default value is fr for French.
| The allowed values are: fr, en, es, it, pt, ro.

	
_load_verbs(verbs_file)

	Load and parses the verbs from the json file.

	Parameters

	verbs_file – string or path object.
Path to the verbs json file.

	
_load_conjugations(conjugations_file)

	Load and parses the conjugations from the xml file.

	Parameters

	conjugations_file – string or path object.
Path to the conjugation xml file.

	
_detect_allowed_endings()

	
Detects the allowed endings for verbs in the supported languages.

All the supported languages except for English restrict the form a verb can take.

As English is much more productive and varied in the morphology of its verbs, any word is allowed as a verb.

	Returns

	set.
A set containing the allowed endings of verbs in the target language.

	
is_valid_verb(verb)

	
Checks if the verb is a valid verb in the given language.

English words are always treated as possible verbs.

Verbs in other languages are filtered by their endings.

	Parameters

	verb – string.
The verb to conjugate.

	Returns

	bool.
True if the verb is a valid verb in the language. False otherwise.

	
get_verb_info(verb)

	Gets verb information and returns a VerbInfo instance.

	Parameters

	verb – string.
Verb to conjugate.

	Returns

	VerbInfo object or None.

	
get_conjug_info(template)

	Gets conjugation information corresponding to the given template.

	Parameters

	template – string.
Name of the verb ending pattern.

	Returns

	OrderedDict or None.
OrderedDict containing the conjugated suffixes of the template.

	
class mlconjug.PyVerbiste.Verbiste(language='default')

	Bases: mlconjug.PyVerbiste.ConjugManager

This is the class handling the Verbiste xml files.

	Parameters

	language – string.
| The language of the conjugator. The default value is fr for French.
| The allowed values are: fr, en, es, it, pt, ro.

	
_load_verbs(verbs_file)

	Load and parses the verbs from the xml file.

	Parameters

	verbs_file – string or path object.
Path to the verbs xml file.

	
_parse_verbs(file)

	Parses the XML file.

	Parameters

	file – FileObject.
XML file containing the verbs.

	Returns

	OrderedDict.
An OrderedDict containing the verb and its template for all verbs in the file.

	
_load_conjugations(conjugations_file)

	Load and parses the conjugations from the xml file.

	Parameters

	conjugations_file – string or path object.
Path to the conjugation xml file.

	
_parse_conjugations(file)

	Parses the XML file.

	Parameters

	file – FileObject.
XML file containing the conjugation templates.

	Returns

	OrderedDict.
An OrderedDict containing all the conjugation templates in the file.

	
_load_tense(tense)

	Load and parses the inflected forms of the tense from xml file.

	Parameters

	tense – list of xml tags containing inflected forms.
The list of inflected forms for the current tense being processed.

	Returns

	list.
List of inflected forms.

	
_detect_allowed_endings()

	
Detects the allowed endings for verbs in the supported languages.

All the supported languages except for English restrict the form a verb can take.

As English is much more productive and varied in the morphology of its verbs, any word is allowed as a verb.

	Returns

	set.
A set containing the allowed endings of verbs in the target language.

	
get_conjug_info(template)

	Gets conjugation information corresponding to the given template.

	Parameters

	template – string.
Name of the verb ending pattern.

	Returns

	OrderedDict or None.
OrderedDict containing the conjugated suffixes of the template.

	
get_verb_info(verb)

	Gets verb information and returns a VerbInfo instance.

	Parameters

	verb – string.
Verb to conjugate.

	Returns

	VerbInfo object or None.

	
is_valid_verb(verb)

	
Checks if the verb is a valid verb in the given language.

English words are always treated as possible verbs.

Verbs in other languages are filtered by their endings.

	Parameters

	verb – string.
The verb to conjugate.

	Returns

	bool.
True if the verb is a valid verb in the language. False otherwise.

	
class mlconjug.PyVerbiste.VerbInfo(infinitive, root, template)

	This class defines the Verbiste verb information structure.

	Parameters

	
	infinitive – string.
Infinitive form of the verb.

	root – string.
Lexical root of the verb.

	template – string.
Name of the verb ending pattern.

	
class mlconjug.PyVerbiste.Verb(verb_info, conjug_info, subject='abbrev', predicted=False)

	This class defines the Verb Object.
TODO: Make the conjugated forms iterable by implementing the iterator protocol.

	Parameters

	
	verb_info – VerbInfo Object.

	conjug_info – OrderedDict.

	subject – string.
Toggles abbreviated or full pronouns.
The default value is ‘abbrev’.
Select ‘pronoun’ for full pronouns.

	predicted – bool.
Indicates if the conjugation information was predicted by the model or retrieved from the dataset.

	
iterate()

	Iterates over all conjugated forms and returns a list of tuples of those conjugated forms.
:return:

	
_load_conjug()

	
Populates the inflected forms of the verb.

This is the generic version of this method.

It does not add personal pronouns to the conjugated forms.

This method can handle any new language if the conjugation structure conforms to the Verbiste XML Schema.

	
class mlconjug.PyVerbiste.VerbFr(verb_info, conjug_info, subject='abbrev', predicted=False)

	Bases: mlconjug.PyVerbiste.Verb

This class defines the French Verb Object.

	
_load_conjug()

	
Populates the inflected forms of the verb.

Adds personal pronouns to the inflected verbs.

	
iterate()

	Iterates over all conjugated forms and returns a list of tuples of those conjugated forms.
:return:

	
class mlconjug.PyVerbiste.VerbEn(verb_info, conjug_info, subject='abbrev', predicted=False)

	Bases: mlconjug.PyVerbiste.Verb

This class defines the English Verb Object.

	
_load_conjug()

	
Populates the inflected forms of the verb.

Adds personal pronouns to the inflected verbs.

	
iterate()

	Iterates over all conjugated forms and returns a list of tuples of those conjugated forms.
:return:

	
class mlconjug.PyVerbiste.VerbEs(verb_info, conjug_info, subject='abbrev', predicted=False)

	Bases: mlconjug.PyVerbiste.Verb

This class defines the Spanish Verb Object.

	
_load_conjug()

	
Populates the inflected forms of the verb.

Adds personal pronouns to the inflected verbs.

	
iterate()

	Iterates over all conjugated forms and returns a list of tuples of those conjugated forms.
:return:

	
class mlconjug.PyVerbiste.VerbIt(verb_info, conjug_info, subject='abbrev', predicted=False)

	Bases: mlconjug.PyVerbiste.Verb

This class defines the Italian Verb Object.

	
_load_conjug()

	
Populates the inflected forms of the verb.

Adds personal pronouns to the inflected verbs.

	
iterate()

	Iterates over all conjugated forms and returns a list of tuples of those conjugated forms.
:return:

	
class mlconjug.PyVerbiste.VerbPt(verb_info, conjug_info, subject='abbrev', predicted=False)

	Bases: mlconjug.PyVerbiste.Verb

This class defines the Portuguese Verb Object.

	
_load_conjug()

	
Populates the inflected forms of the verb.

Adds personal pronouns to the inflected verbs.

	
iterate()

	Iterates over all conjugated forms and returns a list of tuples of those conjugated forms.
:return:

	
class mlconjug.PyVerbiste.VerbRo(verb_info, conjug_info, subject='abbrev', predicted=False)

	Bases: mlconjug.PyVerbiste.Verb

This class defines the Romanian Verb Object.

	
iterate()

	Iterates over all conjugated forms and returns a list of tuples of those conjugated forms.
:return:

	
_load_conjug()

	
Populates the inflected forms of the verb.

Adds personal pronouns to the inflected verbs.

Contributing

Contributions are welcome, and they are greatly appreciated! Every
little bit helps, and credit will always be given.

You can contribute in many ways:

Types of Contributions

Report Bugs

Report bugs at https://github.com/SekouD/mlconjug/issues.

If you are reporting a bug, please include:

	Your operating system name and version.

	Any details about your local setup that might be helpful in troubleshooting.

	Detailed steps to reproduce the bug.

Fix Bugs

Look through the GitHub issues for bugs. Anything tagged with “bug”
and “help wanted” is open to whoever wants to implement it.

Implement Features

Look through the GitHub issues for features. Anything tagged with “enhancement”
and “help wanted” is open to whoever wants to implement it.

Write Documentation

MLConjug could always use more documentation, whether as part of the
official MLConjug docs, in docstrings, or even on the web in blog posts,
articles, and such.

Submit Feedback

The best way to send feedback is to file an issue at https://github.com/SekouD/mlconjug/issues.

If you are proposing a feature:

	Explain in detail how it would work.

	Keep the scope as narrow as possible, to make it easier to implement.

	Remember that this is a volunteer-driven project, and that contributions
are welcome :)

Get Started!

Ready to contribute? Here’s how to set up mlconjug for local development.

	Fork the mlconjug repo on GitHub.

	Clone your fork locally:

$ git clone git@github.com:your_name_here/mlconjug.git

	Install your local copy into a virtualenv. Assuming you have virtualenvwrapper installed, this is how you set up your fork for local development:

$ mkvirtualenv mlconjug
$ cd mlconjug/
$ python setup.py develop

	Create a branch for local development:

$ git checkout -b name-of-your-bugfix-or-feature

Now you can make your changes locally.

	When you’re done making changes, check that your changes pass flake8 and the tests, including testing other Python versions with tox:

$ flake8 mlconjug tests
$ python setup.py test or py.test
$ tox

To get flake8 and tox, just pip install them into your virtualenv.

	Commit your changes and push your branch to GitHub:

$ git add .
$ git commit -m "Your detailed description of your changes."
$ git push origin name-of-your-bugfix-or-feature

	Submit a pull request through the GitHub website.

Pull Request Guidelines

Before you submit a pull request, check that it meets these guidelines:

	The pull request should include tests.

	If the pull request adds functionality, the docs should be updated. Put
your new functionality into a function with a docstring, and add the
feature to the list in README.rst.

	The pull request should work for Python 3.3, 3.4, 3.5 and 3.6. Check
https://travis-ci.org/SekouD/mlconjug/pull_requests
and make sure that the tests pass for all supported Python versions.

Tips

To run a subset of tests:

$ py.test tests.test_mlconjug

Credits

Development Lead

	SekouD <sekoud.python@gmail.com> GPG key ID: B51D1046EF63C50B

Contributors

	The logo was designed by Zuur [https://github.com/zuuritaly].

History

3.4 (2019-29-04)

	Fixed bug when verbs with no common roots with their conjugated form get their root inserted as a prefix.

	Added the method iterate() to the Verb Class as per @poolebu’s feature request.

	Updated Dependencies.

3.3.2 (2019-06-04)

	Corrected bug with regular english verbs not being properly regulated. Thanks to @vectomon

	Updated Dependencies.

3.3.1 (2019-02-04)

	Corrected bug when updating dependencies to use scikit-learn v 0.20.2 and higher.

	Updated Dependencies.

3.3 (2019-04-03)

	Updated Dependencies to use scikit-learn v 0.20.2 and higher.

	Updated the pre-trained models to use scikit-learn v 0.20.2 and higher.

3.2.3 (2019-26-02)

	Updated Dependencies.

	Fixed bug which prevented the installation of the pre-trained models.

3.2.2 (2018-18-11)

	Updated Dependencies.

3.2.0 (2018-04-11)

	Updated Dependencies.

3.1.3 (2018-07-10)

	Updated Documentation.

	Added support for pipenv.

	Included tests and documentation in the package distribution.

3.1.2 (2018-06-27)

	Updated Type annotations [https://github.com/python/typeshed] to the whole library for PEP-561 compliance.

3.1.1 (2018-06-26)

	Minor Api enhancement (see API documentation [https://mlconjug.readthedocs.io/en/latest/modules.html])

3.1.0 (2018-06-24)

	Updated the conjugation models for Spanish and Portuguese.

	Internal changes to the format of the verbiste data from xml to json for better handling of unicode characters.

	New class ConjugManager to more easily add new languages to mlconjug.

	Minor Api enhancement (see API documentation [https://mlconjug.readthedocs.io/en/latest/modules.html])

3.0.1 (2018-06-22)

	
	Updated all provided pre-trained prediction models:

	
	Implemented a new vectrorizer extracting more meaningful features.

	As a result the performance of the models has gone through the roof in all languages.

	Recall and Precision are intesimally close to 100 %. English being the anly to achieve a perfect score at both Recall and Precision.

	
	Major API changes:

	
	I removed the class EndingCustomVectorizer and refactored it’s functionnality in a top level function called extract_verb_features()

	The provided new improved model are now being zip compressed before release because the feature space has so much grown that their size made them impractical to distribute with the package.

	Renamed “Model.model” to “Model.pipeline”

	Renamed “DataSet.liste_verbes” and “DataSet.liste_templates” to “DataSet.verbs_list” and “DataSet.templates_list” respectively. (Pardon my french ;-))

	Added the attributes “predicted” and “confidence_score” to the class Verb.

	The whole package have been typed check. I will soon add mlconjug’s type stubs to typeshed.

2.1.11 (2018-06-21)

	
	Updated all provided pre-trained prediction models

	
	The French Conjugator has accuracy of about 99.94% in predicting the correct conjugation class of a French verb. This is the baseline as i have been working on it for some time now.

	The English Conjugator has accuracy of about 99.78% in predicting the correct conjugation class of an English verb. This is one of the biggest improvement since version 2.0.0

	The Spanish Conjugator has accuracy of about 99.65% in predicting the correct conjugation class of a Spanish verb. It has also seen a sizable improvement since version 2.0.0

	The Romanian Conjugator has accuracy of about 99.06% in predicting the correct conjugation class of a Romanian verb.This is by far the bigger gain. I modified the vectorizer to better take into account the morphological features or romanian verbs. (the previous score was about 86%, so it wil be nice for our romanian friends to have a trusted conjugator)

	The Portuguese Conjugator has accuracy of about 96.73% in predicting the correct conjugation class of a Portuguese verb.

	The Italian Conjugator has accuracy of about 94.05% in predicting the correct conjugation class of a Italian verb.

2.1.9 (2018-06-21)

	
	Now the Conjugator adds additional information to the Verb object returned.

	
	If the verb under consideration is already in Verbiste, the conjugation for the verb is retrieved directly from memory.

	If the verb under consideration is unknown in Verbiste, the Conjugator class now sets the boolean attribute ‘predicted’ and the float attribute confidence score to the instance of the Verb object the Conjugator.conjugate(verb) returns.

	Added Type annotations [https://github.com/python/typeshed] to the whole library for robustness and ease of scaling-out.

	The performance of the Engish and Romanian Models have improved significantly lately. I guess in a few more iteration they will be on par with the French Model which is the best performing at the moment as i have been tuning its parameters for a caouple of year now. Not so much with the other languages, but if you update regularly you will see nice improvents in the 2.2 release.

	Enhanced the localization of the program.

	Now the user interface of mlconjug is avalaible in French, Spanish, Italian, Portuguese and Romanian, in addition to English.

	All the documentation of the project [https://mlconjug.readthedocs.io/en/latest/] have been translated in the supported languages.

2.1.5 (2018-06-15)

	Added localization.

	Now the user interface of mlconjug is avalaible in French, Spanish, Italian, Portuguese and Romanian, in addition to English.

2.1.2 (2018-06-15)

	Added invalid verb detection.

2.1.0 (2018-06-15)

	Updated all language models for compatibility with scikit-learn 0.19.1.

2.0.0 (2018-06-14)

	Includes English conjugation model.

	Includes Spanish conjugation model.

	Includes Italian conjugation model.

	Includes Portuguese conjugation model.

	Includes Romanian conjugation model.

1.2.0 (2018-06-12)

	Refactored the API. Now a Single class Conjugator is needed to interface with the module.

	Includes improved french conjugation model.

	Added support for multiple languages.

1.1.0 (2018-06-11)

	Refactored the API. Now a Single class Conjugator is needed to interface with the module.

	Includes improved french conjugation model.

1.0.0 (2018-06-10)

	First release on PyPI.

 Python Module Index

 m

 		 	

 		
 m	

 	[image: -]
 	
 mlconjug	

 	
 	
 mlconjug.mlconjug	

 	
 	
 mlconjug.PyVerbiste	

Index

 _
 | C
 | D
 | E
 | G
 | I
 | M
 | P
 | S
 | T
 | V

_

 	
 	_detect_allowed_endings() (mlconjug.PyVerbiste.ConjugManager method)

 	(mlconjug.PyVerbiste.Verbiste method)

 	_load_conjug() (mlconjug.PyVerbiste.Verb method)

 	(mlconjug.PyVerbiste.VerbEn method)

 	(mlconjug.PyVerbiste.VerbEs method)

 	(mlconjug.PyVerbiste.VerbFr method)

 	(mlconjug.PyVerbiste.VerbIt method)

 	(mlconjug.PyVerbiste.VerbPt method)

 	(mlconjug.PyVerbiste.VerbRo method)

 	
 	_load_conjugations() (mlconjug.PyVerbiste.ConjugManager method)

 	(mlconjug.PyVerbiste.Verbiste method)

 	_load_tense() (mlconjug.PyVerbiste.Verbiste method)

 	_load_verbs() (mlconjug.PyVerbiste.ConjugManager method)

 	(mlconjug.PyVerbiste.Verbiste method)

 	_parse_conjugations() (mlconjug.PyVerbiste.Verbiste method)

 	_parse_verbs() (mlconjug.PyVerbiste.Verbiste method)

C

 	
 	conjugate() (mlconjug.mlconjug.Conjugator method)

 	Conjugator (class in mlconjug.mlconjug)

 	
 	ConjugManager (class in mlconjug.PyVerbiste)

 	construct_dict_conjug() (mlconjug.mlconjug.DataSet method)

D

 	
 	DataSet (class in mlconjug.mlconjug)

E

 	
 	extract_verb_features() (in module mlconjug.mlconjug)

G

 	
 	get_conjug_info() (mlconjug.PyVerbiste.ConjugManager method)

 	(mlconjug.PyVerbiste.Verbiste method)

 	
 	get_verb_info() (mlconjug.PyVerbiste.ConjugManager method)

 	(mlconjug.PyVerbiste.Verbiste method)

I

 	
 	is_valid_verb() (mlconjug.PyVerbiste.ConjugManager method)

 	(mlconjug.PyVerbiste.Verbiste method)

 	iterate() (mlconjug.PyVerbiste.Verb method)

 	(mlconjug.PyVerbiste.VerbEn method)

 	(mlconjug.PyVerbiste.VerbEs method)

 	(mlconjug.PyVerbiste.VerbFr method)

 	(mlconjug.PyVerbiste.VerbIt method)

 	(mlconjug.PyVerbiste.VerbPt method)

 	(mlconjug.PyVerbiste.VerbRo method)

M

 	
 	mlconjug.mlconjug (module)

 	
 	mlconjug.PyVerbiste (module)

 	Model (class in mlconjug.mlconjug)

P

 	
 	predict() (mlconjug.mlconjug.Model method)

S

 	
 	set_model() (mlconjug.mlconjug.Conjugator method)

 	
 	split_data() (mlconjug.mlconjug.DataSet method)

T

 	
 	train() (mlconjug.mlconjug.Model method)

V

 	
 	Verb (class in mlconjug.PyVerbiste)

 	VerbEn (class in mlconjug.PyVerbiste)

 	VerbEs (class in mlconjug.PyVerbiste)

 	VerbFr (class in mlconjug.PyVerbiste)

 	
 	VerbInfo (class in mlconjug.PyVerbiste)

 	Verbiste (class in mlconjug.PyVerbiste)

 	VerbIt (class in mlconjug.PyVerbiste)

 	VerbPt (class in mlconjug.PyVerbiste)

 	VerbRo (class in mlconjug.PyVerbiste)

 _static/up.png

_static/ajax-loader.gif

_static/comment-bright.png

_static/comment-close.png

nav.xhtml

 Table of Contents

 		
 Welcome to MLConjug’s documentation!

 		
 mlconjug

 		
 Supported Languages

 		
 Features

 		
 Credits

 		
 Installation

 		
 Stable release

 		
 From sources

 		
 Usage

 		
 Package Api Documentation for mlconjug

 		
 API Reference for the classes in mlconjug.mlconjug.py

 		
 API Reference for the classes in mlconjug.PyVerbiste.py

 		
 Contributing

 		
 Types of Contributions

 		
 Report Bugs

 		
 Fix Bugs

 		
 Implement Features

 		
 Write Documentation

 		
 Submit Feedback

 		
 Get Started!

 		
 Pull Request Guidelines

 		
 Tips

 		
 Credits

 		
 Development Lead

 		
 Contributors

 		
 History

 		
 3.4 (2019-29-04)

 		
 3.3.2 (2019-06-04)

 		
 3.3.1 (2019-02-04)

 		
 3.3 (2019-04-03)

 		
 3.2.3 (2019-26-02)

 		
 3.2.2 (2018-18-11)

 		
 3.2.0 (2018-04-11)

 		
 3.1.3 (2018-07-10)

 		
 3.1.2 (2018-06-27)

 		
 3.1.1 (2018-06-26)

 		
 3.1.0 (2018-06-24)

 		
 3.0.1 (2018-06-22)

 		
 2.1.11 (2018-06-21)

 		
 2.1.9 (2018-06-21)

 		
 2.1.5 (2018-06-15)

 		
 2.1.2 (2018-06-15)

 		
 2.1.0 (2018-06-15)

 		
 2.0.0 (2018-06-14)

 		
 1.2.0 (2018-06-12)

 		
 1.1.0 (2018-06-11)

 		
 1.0.0 (2018-06-10)

_static/down.png

_static/comment.png

_static/down-pressed.png

_static/plus.png

_static/file.png

_static/minus.png

_static/up-pressed.png

