

Welcome to Read the Docs

This is an autogenerated index file.

Please create an index.rst or README.rst file with your own content
under the root (or /docs) directory in your repository.

If you want to use another markup, choose a different builder in your settings.
Check out our Getting Started Guide [https://docs.readthedocs.io/en/latest/getting_started.html] to become more
familiar with Read the Docs.

Index

Contributing to MkDocs

An introduction to contributing to the MkDocs project.

The MkDocs project welcomes, and depends, on contributions from developers and
users in the open source community. Contributions can be made in a number of
ways, a few examples are:

	Code patches via pull requests

	Documentation improvements

	Bug reports and patch reviews

Code of Conduct

Everyone interacting in the MkDocs project’s codebases, issue trackers, chat
rooms, and mailing lists is expected to follow the PyPA Code of Conduct [https://www.pypa.io/en/latest/code-of-conduct/].

Reporting an Issue

Please include as much detail as you can. Let us know your platform and MkDocs
version. If the problem is visual (for example a theme or design issue) please
add a screenshot and if you get an error please include the full error and
traceback.

Testing the Development Version

If you want to just install and try out the latest development version of
MkDocs you can do so with the following command. This can be useful if you
want to provide feedback for a new feature or want to confirm if a bug you
have encountered is fixed in the git master. It is strongly recommended
that you do this within a virtualenv [https://virtualenv.pypa.io/en/latest/userguide.html].

pip install https://github.com/mkdocs/mkdocs/archive/master.tar.gz

Installing for Development

First you’ll need to fork and clone the repository. Once you have a local
copy, run the following command. It is strongly recommended that you do
this within a virtualenv [https://virtualenv.pypa.io/en/latest/userguide.html].

pip install --editable .

This will install MkDocs in development mode which binds the mkdocs command
to the git repository.

Running the tests

To run the tests, it is recommended that you use Tox [https://tox.readthedocs.io/en/latest/]. This just needs
to be pip installed and then the test suite can be ran for MkDocs but running
the command tox in the root of your MkDocs repository.

It will attempt to run the tests against all of the Python versions we
support. So don’t be concerned if you are missing some and they fail. The rest
will be verified by Travis [https://travis-ci.org/repositories] when you submit a pull request.

Submitting Pull Requests

Once you are happy with your changes or you are ready for some feedback, push
it to your fork and send a pull request. For a change to be accepted it will
most likely need to have tests and documentation if it is a new feature.

License

The legal stuff.

Included projects

Themes used under license from the ReadTheDocs projects.

	ReadTheDocs theme - View license [https://github.com/snide/sphinx_rtd_theme/blob/master/LICENSE].

Many thanks to the authors and contributors of those wonderful projects.

MkDocs License (BSD)

Copyright © 2014, Tom Christie. All rights reserved.

Redistribution and use in source and binary forms, with or without modification,
are permitted provided that the following conditions are met:

Redistributions of source code must retain the above copyright notice, this list
of conditions and the following disclaimer. Redistributions in binary form must
reproduce the above copyright notice, this list of conditions and the following
disclaimer in the documentation and/or other materials provided with the
distribution.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS “AS IS” AND
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR
ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Release Notes

Upgrading

To upgrade MkDocs to the latest version, use pip:

pip install -U mkdocs

You can determine your currently installed version using mkdocs --version:

$ mkdocs --version
mkdocs, version 1.0 from /path/to/mkdocs (Python 3.6)

Maintenance team

The current and past members of the MkDocs team.

	@tomchristie [https://github.com/tomchristie/]

	@d0ugal [https://github.com/d0ugal/]

	@waylan [https://github.com/waylan/]

Version 1.0.4 (2018-09-07)

	Bugfix: Ignore absolute links in Markdown (#1621).

Version 1.0.3 (2018-08-29)

	Bugfix: Warn on relative paths in navigation (#1604).

	Bugfix: Handle empty theme_config.yml files correctly (#1602).

Version 1.0.2 (2018-08-22)

	Bugfix: Provide absolute base_url to error templates (#1598).

Version 1.0.1 (2018-08-13)

	Bugfix: Prevent page reload when [Enter] is pressed in search box (#1589).

	Bugfix: Avoid calling search until all assets are ready (#1584).

	Bugfix: Exclude README.md if index.md is present (#1580).

	Bugfix: Fix readthedocs theme navigation bug with homepage (#1576).

Version 1.0 (2018-08-03)

Major Additions to Version 1.0

Internal Refactor of Pages, Files, and Navigation

Internal handling of pages, files and navigation has been completely refactored.
The changes included in the refactor are summarized below.

	Support for hidden pages. All Markdown pages are now included in the build
regardless of whether they are included in the navigation configuration
(#699).

	The navigation can now include links to external sites (#989 #1373 & #1406).

	Page data (including titles) is properly determined for all pages before any
page is rendered (#1347).

	Automatically populated navigation now sorts index pages to the top. In other
words, The index page will be listed as the first child of a directory, while
all other documents are sorted alphanumerically by file name after the index
page (#73 & #1042).

	A README.md file is now treated as an index file within a directory and
will be rendered to index.html (#608).

	The URLs for all files are computed once and stored in a files collection.
This ensures all internal links are always computed correctly regardless of
the configuration. This also allows all internal links to be validated, not
just links to other Markdown pages. (#842 & #872).

	A new url template filter smartly ensures all URLs are relative to the
current page (#1526).

	An on_files plugin event has been added, which could be used to include
files not in the docs_dir, exclude files, redefine page URLs (i.e.
implement extensionless URLs), or to manipulate files in various other ways.

Backward Incompatible Changes

As part of the internal refactor, a number of backward incompatible changes have
been introduced, which are summarized below.

URLS have changed when use_directory_urls is False

Previously, all Markdown pages would be have their filenames altered to be index
pages regardless of how the use_directory_urls setting was configured.
However, the path munging is only needed when use_directory_urls is set to
True (the default). The path mungling no longer happens when
use_directory_urls is set to False, which will result in different URLs for
all pages that were not already index files. As this behavior only effects a
non-default configuration, and the most common user-case for setting the option
to False is for local file system (file://) browsing, its not likely to
effect most users. However, if you have use_directory_urls set to False
for a MkDocs site hosted on a web server, most of your URLs will now be broken.
As you can see below, the new URLs are much more sensible.

Markdown file	Old URL	New URL
—————	——————–	————–
index.md	index.html	index.html
foo.md	foo/index.html	foo.html
foo/bar.md	foo/bar/index.html	foo/bar.html

Note that there has been no change to URLs or file paths when
use_directory_urls is set to True (the default), except that MkDocs more
consistently includes an ending slash on all internally generated URLs.

The pages configuration setting has been renamed to nav

The pages configuration setting is deprecated and will issue a warning if set
in the configuration file. The setting has been renamed nav. To update your
configuration, simply rename the setting to nav. In other words, if your
configuration looked like this:

pages:
 - Home: index.md
 - User Guide: user-guide.md

Simply edit the configuration as follows:

nav:
 - Home: index.md
 - User Guide: user-guide.md

In the current release, any configuration which includes a pages setting, but
no nav setting, the pages configuration will be copied to nav and a
warning will be issued. However, in a future release, that may no longer happen.
If both pages and nav are defined, the pages setting will be ignored.

Template variables and base_url

In previous versions of MkDocs some URLs expected the base_url template
variable to be prepended to the URL and others did not. That inconsistency has
been removed in that no URLs are modified before being added to the template
context.

For example, a theme template might have previously included a link to
the site_name as:

{{ config.site_name }}

And MkDocs would magically return a URL for the homepage which was relative to
the current page. That “magic” has been removed and the url template filter
should be used:

{{ config.site_name }}

This change applies to any navigation items and pages, as well as the
page.next_page and page.previous_page attributes. For the time being, the
extra_javascript and extra_css variables continue to work as previously
(without the url template filter), but they have been deprecated and the
corresponding configuration values (config.extra_javascript and
config.extra_css respectively) should be used with the filter instead.

{% for path in config['extra_css'] %}
 <link href="{{ path|url }}" rel="stylesheet">
{% endfor %}

Note that navigation can now include links to external sites. Obviously, the
base_url should not be prepended to these items. However, the url template
filter is smart enough to recognize the URL is absolute and does not alter it.
Therefore, all navigation items can be passed to the filter and only those that
need to will be altered.

{% for nav_item in nav %}
 {{ nav_item.title }}
{% endfor %}

Path Based Settings are Relative to Configuration File (#543)

Previously any relative paths in the various configuration options were
resolved relative to the current working directory. They are now resolved
relative to the configuration file. As the documentation has always encouraged
running the various MkDocs commands from the directory that contains the
configuration file (project root), this change will not affect most users.
However, it will make it much easier to implement automated builds or otherwise
run commands from a location other than the project root.

Simply use the -f/--config-file option and point it at the configuration file:

mkdocs build --config-file /path/to/my/config/file.yml

As previously, if no file is specified, MkDocs looks for a file named
mkdocs.yml in the current working directory.

Added support for YAML Meta-Data (#1542)

Previously, MkDocs only supported MultiMarkdown style meta-data, which does not
recognize different data types and is rather limited. MkDocs now also supports
YAML style meta-data in Markdown documents. MkDocs relies on the the presence or
absence of the deliminators (--- or ...) to determine whether YAML style
meta-data or MultiMarkdown style meta-data is being used.

Previously MkDocs would recognize MultiMarkdown style meta-data between the
deliminators. Now, if the deliminators are detected, but the content between the
deliminators is not valid YAML meta-data, MkDocs does not attempt to parse the
content as MultiMarkdown style meta-data. Therefore, MultiMarkdowns style
meta-data must not include the deliminators. See the MultiMarkdown style
meta-data documentation for details.

Prior to version 0.17, MkDocs returned all meta-data values as a list of strings
(even a single line would return a list of one string). In version 0.17, that
behavior was changed to return each value as a single string (multiple lines
were joined), which some users found limiting (see #1471). That behavior
continues for MultiMarkdown style meta-data in the current version. However,
YAML style meta-data supports the full range of “safe” YAML data types.
Therefore, it is recommended that any complex meta-data make use of the YAML
style (see the YAML style meta-data documentation for details). In fact, a
future version of MkDocs may deprecate support for MultiMarkdown style
meta-data.

Refactor Search Plugin

The search plugin has been completely refactored to include support for the
following features:

	Use a web worker in the browser with a fallback (#1396).

	Optionally pre-build search index locally (#859 & #1061).

	Upgrade to lunr.js 2.x (#1319).

	Support search in languages other than English (#826).

	Allow the user to define the word separators (#867).

	Only run searches for queries of length > 2 (#1127).

	Remove dependency on require.js (#1218).

	Compress the search index (#1128).

Users can review the configuration options available and theme
authors should review how search and themes interact.

theme_dir Configuration Option fully Deprecated

As of version 0.17, the custom_dir option replaced the deprecated theme_dir
option. If users had set the theme_dir option, MkDocs version 0.17 copied the
value to the theme.custom_dir option and a warning was issued. As of version
1.0, the value is no longer copied and an error is raised.

Other Changes and Additions to Version 1.0

	Keyboard shortcuts changed to not conflict with commonly used accessibility
shortcuts (#1502.)

	User friendly YAML parse errors (#1543).

	Officially support Python 3.7.

	A missing theme configuration file now raises an error.

	Empty extra_css and extra_javascript settings no longer raise a warning.

	Add highlight.js configuration settings to built-in themes (#1284).

	Close search modal when result is selected (#1527).

	Add a level attribute to AnchorLinks (#1272).

	Add MkDocs version check to gh-deploy script (#640).

	Improve Markdown extension error messages. (#782).

	Drop official support for Python 3.3 and set tornado>=5.0 (#1427).

	Add support for GitLab edit links (#1435).

	Link to GitHub issues from release notes (#644).

	Expand {sha} and {version} in gh-deploy commit message (#1410).

	Compress sitemap.xml (#1130).

	Defer loading JS scripts (#1380).

	Add a title attribute to the search input (#1379).

	Update RespondJS to latest version (#1398).

	Always load Google Analytics over HTTPS (#1397).

	Improve scrolling frame rate (#1394).

	Provide more version info. (#1393).

	Refactor writing-your-docs.md (#1392).

	Workaround Safari bug when zooming to <

 100% (#1389).

	Remove addition of clicky class to body and animations. (#1387).

	Prevent search plugin from reinjecting extra_javascript files (#1388).

	Refactor copy_media_files util function for more flexibility (#1370).

	Remove PyPI Deployment Docs (#1360).

	Update links to Python-Markdown library (#1360).

	Document how to generate manpages for MkDocs commands (#686).

Version 0.17.5 (2018-07-06)

	Bugfix: Fix Python 3.7 and PEP 479 incompatibility (#1518).

Version 0.17.4 (2018-06-08)

	Bugfix: Add multi-level nesting support to sitemap.xml (#1482).

Version 0.17.3 (2018-03-07)

	Bugfix: Set dependency tornado>=4.1,<5.0 due to changes in 5.0 (#1428).

Version 0.17.2 (2017-11-15)

	Bugfix: Correct extra_* config setting regressions (#1335 & #1336).

Version 0.17.1 (2017-10-30)

	Bugfix: Support repo_url with missing ending slash. (#1321).

	Bugfix: Add length support to mkdocs.toc.TableOfContext (#1325).

	Bugfix: Add some theme specific settings to the search plugin for third party
themes (#1316).

	Bugfix: Override site_url with dev_addr on local server (#1317).

Version 0.17.0 (2017-10-19)

Major Additions to Version 0.17.0

Plugin API. (#206)

A new Plugin API has been added to MkDocs which allows users to define their
own custom behaviors. See the included documentation for a full explanation of
the API.

The previously built-in search functionality has been removed and wrapped in a
plugin (named “search”) with no changes in behavior. When MkDocs builds, the
search index is now written to search/search_index.json instead of
mkdocs/search_index.json. If no plugins setting is defined in the config,
then the search plugin will be included by default. See the
configuration documentation for information on overriding the
default.

Theme Customization. (#1164)

Support had been added to provide theme specific customizations. Theme authors
can define default options as documented in Theme Configuration. A theme can
now inherit from another theme, define various static templates to be rendered,
and define arbitrary default variables to control behavior in the templates.
The theme configuration is defined in a configuration file named
mkdocs_theme.yml which should be placed at the root of your template files. A
warning will be raised if no configuration file is found and an error will be
raised in a future release.

Users can override those defaults under the theme configuration option of
their mkdocs.yml configuration file, which now accepts nested options. One
such nested option is the custom_dir option, which replaces the now deprecated
theme_dir option. If users had previously set the theme_dir option, a
warning will be issued, with an error expected in a future release.

If a configuration previously defined a theme_dir like this:

theme: mkdocs
theme_dir: custom

Then the configuration should be adjusted as follows:

theme:
 name: mkdocs
 custom_dir: custom

See the theme configuration option documentation for details.

Previously deprecated Template variables removed. (#1168)

Page Template

The primary entry point for page templates has been changed from base.html to
main.html. This allows base.html to continue to exist while allowing users
to override main.html and extend base.html. For version 0.16, base.html
continued to work if no main.html template existed, but it raised a
deprecation warning. In version 1.0, a build will fail if no main.html
template exists.

Context Variables

Page specific variable names in the template context have been refactored as
defined in Custom Themes. The
old variable names issued a warning in version 0.16, but have been removed in
version 1.0.

Any of the following old page variables should be updated to the new ones in
user created and third-party templates:

Old Variable Name	New Variable Name
—————–	——————-
current_page	page
page_title	page.title
content	page.content
toc	page.toc
meta	page.meta
canonical_url	page.canonical_url
previous_page	page.previous_page
next_page	page.next_page

Additionally, a number of global variables have been altered and/or removed
and user created and third-party templates should be updated as outlined below:

Old Variable Name	New Variable Name or Expression
—————–	————————————–
current_page	page
include_nav	nav

length>

1 |
include_next_prev	(page.next_page or page.previous_page)
site_name	config.site_name
site_author	config.site_author
page_description	config.site_description
repo_url	config.repo_url
repo_name	config.repo_name
site_url	config.site_url
copyright	config.copyright
google_analytics	config.google_analytics
homepage_url	nav.homepage.url
favicon	{{ base_url }}/img/favicon.ico

Auto-Populated extra_css and extra_javascript Fully Deprecated. (#986)

In previous versions of MkDocs, if the extra_css or extra_javascript config
settings were empty, MkDocs would scan the docs_dir and auto-populate each
setting with all of the CSS and JavaScript files found. On version 0.16 this
behavior was deprecated and a warning was issued. In 0.17 any unlisted CSS and
JavaScript files will not be included in the HTML templates, however, a warning
will be issued. In other words, they will still be copied to the site-dir, but
they will not have any effect on the theme if they are not explicitly listed.

All CSS and javaScript files in the docs_dir should be explicitly listed in
the extra_css or extra_javascript config settings going forward.

Other Changes and Additions to Version 0.17.0

	Add “edit Link” support to MkDocs theme (#1129)

	Open files with utf-8-sig to account for BOM (#1186)

	Symbolic links are now followed consistently (#1134)

	Support for keyboard navigation shortcuts added to included themes (#1095)

	Some refactoring and improvements to config_options (#1296)

	Officially added support for Python 3.6 (#1296)

	404 Error page added to readthedocs theme (#1296))

	Internal refactor of Markdown processing (#713)

	Removed special error message for mkdocs-bootstrap and mkdocs-bootswatch
themes (#1168)

	The legacy pages config is no longer supported (#1168)

	The deprecated json command has been removed (#481)

	Support for Python 2.6 has been dropped (#165)

	File permissions are no longer copied during build (#1292)

	Support query and fragment strings in edit_uri (#1224 & #1273)

Version 0.16.3 (2017-04-04)

	Fix error raised by autoscrolling in the readthedocs theme (#1177)

	Fix a few documentation typos (#1181 & #1185)

	Fix a regression to livereload server introduced in 0.16.2 (#1174)

Version 0.16.2 (2017-03-13)

	System root (/) is not a valid path for site_dir or docs_dir (#1161)

	Refactor readthedocs theme navigation (#1155 & #1156)

	Add support to dev server to serve custom error pages (#1040)

	Ensure nav.homepage.url is not blank on error pages (#1131)

	Increase livereload dependency to 2.5.1 (#1106)

Version 0.16.1 (2016-12-22)

	Ensure scrollspy behavior does not affect nav bar (#1094)

	Only “load” a theme when it is explicitly requested by the user (#1105)

Version 0.16 (2016-11-04)

Major Additions to Version 0.16.0

Template variables refactored. (#874)

Page Context

Page specific variable names in the template context have been refactored as
defined in Custom Themes. The
old variable names will issue a warning but continue to work for version 0.16,
but may be removed in a future version.

Any of the following old page variables should be updated to the new ones in
user created and third-party templates:

Old Variable Name	New Variable Name
—————–	——————-
current_page	page
page_title	page.title
content	page.content
toc	page.toc
meta	page.meta
canonical_url	page.canonical_url
previous_page	page.previous_page
next_page	page.next_page

Global Context

Additionally, a number of global variables have been altered and/or deprecated
and user created and third-party templates should be updated as outlined below:

Previously, the global variable include_nav was altered programmatically based
on the number of pages in the nav. The variable will issue a warning but
continue to work for version 0.16, but may be removed in a future version. Use
{% if nav|length>1 %} instead.

Previously, the global variable include_next_prev was altered programmatically
based on the number of pages in the nav. The variable will issue a warning but
continue to work for version 0.16, but may be removed in a future version. Use
{% if page.next_page or page.previous_page %} instead.

Previously the global variable page_description was altered programmatically
based on whether the current page was the homepage. Now it simply maps to
config['site_description']. Use {% if page.is_homepage %} in the template to
conditionally change the description.

The global variable homepage_url maps directly to nav.homepage.url and is
being deprecated. The variable will issue a warning but continue to work for
version 0.16, but may be removed in a future version. Use nav.homepage.url
instead.

The global variable favicon maps to the configuration setting site_favicon.
Both the template variable and the configuration setting are being deprecated
and will issue a warning but continue to work for version 0.16, and may be
removed in a future version. Use {{ base_url }}/img/favicon.ico in your
template instead. Users can simply save a copy of their custom favicon icon to
img/favicon.ico in either their docs_dir or theme_dir.

A number of variables map directly to similarly named variables in the config.
Those variables are being deprecated and will issue a warning but continue to
work for version 0.16, but may be removed in a future version. Use
config.var_name instead, where var_name is the name of one of the
configuration variables.

Below is a summary of all of the changes made to the global context:

Old Variable Name	New Variable Name or Expression
—————–	————————————–
current_page	page
include_nav	nav

length>

1 |
include_next_prev	(page.next_page or page.previous_page)
site_name	config.site_name
site_author	config.site_author
page_description	config.site_description
repo_url	config.repo_url
repo_name	config.repo_name
site_url	config.site_url
copyright	config.copyright
google_analytics	config.google_analytics
homepage_url	nav.homepage.url
favicon	{{ base_url }}/img/favicon.ico

Increased Template Customization. (#607)

The built-in themes have been updated by having each of their many parts wrapped
in template blocks which allow each individual block to be easily overridden
using the theme_dir config setting. Without any new settings, you can use a
different analytics service, replace the default search function, or alter the
behavior of the navigation, among other things. See the relevant
documentation for more details.

To enable this feature, the primary entry point for page templates has been
changed from base.html to main.html. This allows base.html to continue to
exist while allowing users to override main.html and extend base.html. For
version 0.16, base.html will continue to work if no main.html template
exists, but it is deprecated and will raise a warning. In version 1.0, a build
will fail if no main.html template exists. Any custom and third party
templates should be updated accordingly.

The easiest way for a third party theme to be updated would be to simply add a
main.html file which only contains the following line:

{% extends "base.html" %}

That way, the theme contains the main.html entry point, and also supports
overriding blocks in the same manner as the built-in themes. Third party themes
are encouraged to wrap the various pieces of their templates in blocks in order
to support such customization.

Auto-Populated extra_css and extra_javascript Deprecated. (#986)

In previous versions of MkDocs, if the extra_css or extra_javascript config
settings were empty, MkDocs would scan the docs_dir and auto-populate each
setting with all of the CSS and JavaScript files found. This behavior is
deprecated and a warning will be issued. In the next release, the auto-populate
feature will stop working and any unlisted CSS and JavaScript files will not be
included in the HTML templates. In other words, they will still be copied to the
site-dir, but they will not have any effect on the theme if they are not
explicitly listed.

All CSS and javaScript files in the docs_dir should be explicitly listed in
the extra_css or extra_javascript config settings going forward.

Support for dirty builds. (#990)

For large sites the build time required to create the pages can become problematic,
thus a “dirty” build mode was created. This mode simply compares the modified time
of the generated HTML and source markdown. If the markdown has changed since the
HTML then the page is re-constructed. Otherwise, the page remains as is. This mode
may be invoked in both the mkdocs serve and mkdocs build commands:

mkdocs serve --dirtyreload

mkdocs build --dirty

It is important to note that this method for building the pages is for development
of content only, since the navigation and other links do not get updated on other
pages.

Stricter Directory Validation

Previously, a warning was issued if the site_dir was a child directory of the
docs_dir. This now raises an error. Additionally, an error is now raised if
the docs_dir is set to the directory which contains your config file rather
than a child directory. You will need to rearrange you directory structure to
better conform with the documented layout.

Other Changes and Additions to Version 0.16.0

	Bugfix: Support gh-deploy command on Windows with Python 3 (#722)

	Bugfix: Include .woff2 font files in Python package build (#894)

	Various updates and improvements to Documentation Home Page/Tutorial (#870)

	Bugfix: Support livereload for config file changes (#735)

	Bugfix: Non-media template files are no longer copied with media files (#807)

	Add a flag (-e/–theme-dir) to specify theme directory with the commands
mkdocs build and mkdocs serve (#832)

	Fixed issues with Unicode file names under Windows and Python 2. (#833)

	Improved the styling of in-line code in the MkDocs theme. (#718)

	Bugfix: convert variables to JSON when being passed to JavaScript (#850)

	Updated the ReadTheDocs theme to match the upstream font sizes and colors
more closely. (#857)

	Fixes an issue with permalink markers showing when the mouse was far above
them (#843)

	Bugfix: Handle periods in directory name when automatically creating the
pages config. (#728)

	Update searching to Lunr 0.7, which comes with some performance enhancements
for larger documents (#859)

	Bugfix: Support SOURCE_DATE_EPOCH environment variable for “reproducible”
builds (#938)

	Follow links when copying media files (#869).

	Change “Edit on…” links to point directly to the file in the source
repository, rather than to the root of the repository (#975), configurable
via the new edit_uri setting.

	Bugfix: Don’t override config value for strict mode if not specified on CLI
(#738).

	Add a --force flag to the gh-deploy command to force the push to the
repository (#973).

	Improve alignment for current selected menu item in readthedocs theme (#888).

	http://user.github.io/repo => https://user.github.io/repo/ (#1029).

	Improve installation instructions (#1028).

	Account for wide tables and consistently wrap inline code spans (#834).

	Bugfix: Use absolute URLs in nav & media links from error templates (#77).

Version 0.15.3 (2016-02-18)

	Improve the error message the given theme can’t be found.

	Fix an issue with relative symlinks (#639)

Version 0.15.2 (2016-02-08)

	Fix an incorrect warning that states external themes will be removed from
MkDocs.

Version 0.15.1 (2016-01-30)

	Lower the minimum supported Click version to 3.3 for package maintainers.
(#763)

Version 0.15.0 (2016-01-21)

Major Additions to Version 0.15.0

Add support for installable themes

MkDocs now supports themes that are distributed via Python packages. With this
addition, the Bootstrap and Bootswatch themes have been moved to external git
repositories and python packages. See their individual documentation for more
details about these specific themes.

	MkDocs Bootstrap [https://mkdocs.github.io/mkdocs-bootstrap/]

	MkDocs Bootswatch [https://mkdocs.github.io/mkdocs-bootswatch/]

They will be included with MkDocs by default until a future release. After that
they will be installable with pip: pip install mkdocs-bootstrap and pip install mkdocs-bootswatch

See the documentation for Styling your docs for more information about using
and customizing themes and Custom themes for creating and distributing new
themes

Other Changes and Additions to Version 0.15.0

	Fix issues when using absolute links to Markdown files. (#628)

	Deprecate support of Python 2.6, pending removal in 1.0.0. (#165)

	Add official support for Python version 3.5.

	Add support for site_description and site_author to the ReadTheDocs
theme. (#631)

	Update FontAwesome to 4.5.0. (#789)

	Increase IE support with X-UA-Compatible. (#785)

	Added support for Python’s -m flag. (#706)

	Bugfix: Ensure consistent ordering of auto-populated pages. (#638)

	Bugfix: Scroll the tables of contents on the MkDocs theme if it is too long
for the page. (#204)

	Bugfix: Add all ancestors to the page attribute ancestors rather than just
the initial one. (#693)

	Bugfix: Include HTML in the build output again. (#691)

	Bugfix: Provide filename to Read the Docs. (#721 and RTD#1480)

	Bugfix: Silence Click’s unicode_literals warning. (#708)

Version 0.14.0 (2015-06-09)

	Improve Unicode handling by ensuring that all config strings are loaded as
Unicode. (#592)

	Remove dependency on the six library. (#583)

	Remove dependency on the ghp-import library. (#547)

	Add --quiet and --verbose options to all sub-commands. (#579)

	Add short options (-a) to most command line options. (#579)

	Add copyright footer for readthedocs theme. (#568)

	If the requested port in mkdocs serve is already in use, don’t show the
user a full stack trace. (#596)

	Bugfix: Fix a JavaScript encoding problem when searching with spaces. (#586)

	Bugfix: gh-deploy now works if the mkdocs.yml is not in the git repo root.
(#578)

	Bugfix: Handle (pass-through instead of dropping) HTML entities while
parsing TOC. (#612)

	Bugfix: Default extra_templates to an empty list, don’t automatically
discover them. (#616)

Version 0.13.3 (2015-06-02)

	Bugfix: Reduce validation error to a warning if the site_dir is within
the docs_dir as this shouldn’t cause any problems with building but will
inconvenience users building multiple times. (#580)

Version 0.13.2 (2015-05-30)

	Bugfix: Ensure all errors and warnings are logged before exiting. (#536)

	Bugfix: Fix compatibility issues with ReadTheDocs. (#554)

Version 0.13.1 (2015-05-27)

	Bugfix: Fix a problem with minimal configurations which only contain a list
of paths in the pages config. (#562)

Version 0.13.0 (2015-05-26)

Deprecations to Version 0.13.0

Deprecate the JSON command

In this release the mkdocs json command has been marked as deprecated and
when used a deprecation warning will be shown. It will be removed in a future
release [https://github.com/mkdocs/mkdocs/pull/481] of MkDocs, version 1.0 at the latest. The mkdocs json command
provided a convenient way for users to output the documentation contents as
JSON files but with the additions of search to MkDocs this functionality is
duplicated.

A new index with all the contents from a MkDocs build is created in the
site_dir, so with the default value for the site_dir It can be found in
site/mkdocs/search_index.json.

This new file is created on every MkDocs build (with mkdocs build) and
no configuration is needed to enable it.

Change the pages configuration

Provide a new way to define pages, and specifically nested pages, in the
mkdocs.yml file and deprecate the existing approach, support will be removed
with MkDocs 1.0.

Warn users about the removal of builtin themes

All themes other than mkdocs and readthedocs will be moved into external
packages in a future release of MkDocs. This will enable them to be more easily
supported and updates outside MkDocs releases.

Major Additions to Version 0.13.0

Search

Support for search has now been added to MkDocs. This is based on the
JavaScript library lunr.js [https://lunrjs.com/]. It has been added to both the mkdocs and
readthedocs themes. See the custom theme documentation on supporting search
for adding it to your own themes.

New Command Line Interface

The command line interface for MkDocs has been re-written with the Python
library Click [http://click.pocoo.org/4/]. This means that MkDocs now has an easier to use interface
with better help output.

This change is partially backwards incompatible as while undocumented it was
possible to pass any configuration option to the different commands. Now only
a small subset of the configuration options can be passed to the commands. To
see in full commands and available arguments use mkdocs --help and
mkdocs build --help to have them displayed.

Support Extra HTML and XML files

Like the extra_javascript and extra_css configuration options, a new
option named extra_templates has been added. This will automatically be
populated with any .html or .xml files in the project docs directory.

Users can place static HTML and XML files and they will be copied over, or they
can also use Jinja2 syntax and take advantage of the global variables.

By default MkDocs will use this approach to create a sitemap for the
documentation.

Other Changes and Additions to Version 0.13.0

	Add support for Markdown extension configuration options. (#435)

	MkDocs now ships Python wheels [http://pythonwheels.com/]. (#486)

	Only include the build date and MkDocs version on the homepage. (#490)

	Generate sitemaps for documentation builds. (#436)

	Add a clearer way to define nested pages in the configuration. (#482)

	Add an extra config option for passing arbitrary variables to the template. (#510)

	Add --no-livereload to mkdocs serve for a simpler development server. (#511)

	Add copyright display support to all themes (#549)

	Add support for custom commit messages in a mkdocs gh-deploy (#516)

	Bugfix: Fix linking to media within the same directory as a markdown file
called index.md (#535)

	Bugfix: Fix errors with Unicode filenames (#542).

Version 0.12.2 (2015-04-22)

	Bugfix: Fix a regression where there would be an error if some child titles
were missing but others were provided in the pages config. (#464)

Version 0.12.1 (2015-04-14)

	Bugfix: Fixed a CSS bug in the table of contents on some browsers where the
bottom item was not clickable.

Version 0.12.0 (2015-04-14)

	Display the current MkDocs version in the CLI output. (#258)

	Check for CNAME file when using gh-deploy. (#285)

	Add the homepage back to the navigation on all themes. (#271)

	Add a strict more for local link checking. (#279)

	Add Google analytics support to all themes. (#333)

	Add build date and MkDocs version to the ReadTheDocs and MkDocs theme
outputs. (#382)

	Standardize highlighting across all themes and add missing languages. (#387)

	Add a verbose flag. (-v) to show more details about what the build. (#147)

	Add the option to specify a remote branch when deploying to GitHub. This
enables deploying to GitHub pages on personal and repo sites. (#354)

	Add favicon support to the ReadTheDocs theme HTML. (#422)

	Automatically refresh the browser when files are edited. (#163)

	Bugfix: Never re-write URLs in code blocks. (#240)

	Bugfix: Don’t copy ditfiles when copying media from the docs_dir. (#254)

	Bugfix: Fix the rendering of tables in the ReadTheDocs theme. (#106)

	Bugfix: Add padding to the bottom of all bootstrap themes. (#255)

	Bugfix: Fix issues with nested Markdown pages and the automatic pages
configuration. (#276)

	Bugfix: Fix a URL parsing error with GitHub enterprise. (#284)

	Bugfix: Don’t error if the mkdocs.yml is completely empty. (#288)

	Bugfix: Fix a number of problems with relative URLs and Markdown files. (#292)

	Bugfix: Don’t stop the build if a page can’t be found, continue with other
pages. (#150)

	Bugfix: Remove the site_name from the page title, this needs to be added
manually. (#299)

	Bugfix: Fix an issue with table of contents cutting off Markdown. (#294)

	Bugfix: Fix hostname for BitBucket. (#339)

	Bugfix: Ensure all links end with a slash. (#344)

	Bugfix: Fix repo links in the readthedocs theme. (#365)

	Bugfix: Include jQuery locally to avoid problems using MkDocs offline. (#143)

	Bugfix: Don’t allow the docs_dir to be in the site_dir or vice versa. (#384)

	Bugfix: Remove inline CSS in the ReadTheDocs theme. (#393)

	Bugfix: Fix problems with the child titles due to the order the pages config
was processed. (#395)

	Bugfix: Don’t error during live reload when the theme doesn’t exist. (#373)

	Bugfix: Fix problems with the Meta extension when it may not exist. (#398)

	Bugfix: Wrap long inline code otherwise they will run off the screen. (#313)

	Bugfix: Remove HTML parsing regular expressions and parse with HTMLParser to
fix problems with titles containing code. (#367)

	Bugfix: Fix an issue with the scroll to anchor causing the title to be hidden
under the navigation. (#7)

	Bugfix: Add nicer CSS classes to the HTML tables in bootswatch themes. (#295)

	Bugfix: Fix an error when passing in a specific config file with
mkdocs serve. (#341)

	Bugfix: Don’t overwrite index.md files with the mkdocs new command. (#412)

	Bugfix: Remove bold and italic from code in the ReadTheDocs theme. (#411)

	Bugfix: Display images inline in the MkDocs theme. (#415)

	Bugfix: Fix problems with no-highlight in the ReadTheDocs theme. (#319)

	Bugfix: Don’t delete hidden files when using mkdocs build --clean. (#346)

	Bugfix: Don’t block newer versions of Python-markdown on Python >= 2.7. (#376)

	Bugfix: Fix encoding issues when opening files across platforms. (#428)

Version 0.11.1 (2014-11-20)

	Bugfix: Fix a CSS wrapping issue with code highlighting in the ReadTheDocs
theme. (#233)

Version 0.11.0 (2014-11-18)

	Render 404.html files if they exist for the current theme. (#194)

	Bugfix: Fix long nav bars, table rendering and code highlighting in MkDocs
and ReadTheDocs themes. (#225)

	Bugfix: Fix an issue with the google_analytics code. (#219)

	Bugfix: Remove __pycache__ from the package tar. (#196)

	Bugfix: Fix markdown links that go to an anchor on the current page. (#197)

	Bugfix: Don’t add prettyprint well CSS classes to all HTML, only add it in
the MkDocs theme. (#183)

	Bugfix: Display section titles in the ReadTheDocs theme. (#175)

	Bugfix: Use the polling observer in watchdog so rebuilding works on
filesystems without inotify. (#184)

	Bugfix: Improve error output for common configuration related errors. (#176)

Version 0.10.0 (2014-10-29)

	Added support for Python 3.3 and 3.4. (#103)

	Configurable Python-Markdown extensions with the config setting
markdown_extensions. (#74)

	Added mkdocs json command to output your rendered
documentation as json files. (#128)

	Added --clean switch to build, json and gh-deploy commands to
remove stale files from the output directory. (#157)

	Support multiple theme directories to allow replacement of
individual templates rather than copying the full theme. (#129)

	Bugfix: Fix rendering in readthedocs theme. (#171)

	Bugfix: Improve the readthedocs theme on smaller displays. (#168)

	Bugfix: Relaxed required python package versions to avoid clashes. (#104)

	Bugfix: Fix issue rendering the table of contents with some configs. (#146)

	Bugfix: Fix path for embedded images in sub pages. (#138)

	Bugfix: Fix use_directory_urls config behavior. (#63)

	Bugfix: Support extra_javascript and extra_css in all themes. (#90)

	Bugfix: Fix path-handling under Windows. (#121)

	Bugfix: Fix the menu generation in the readthedocs theme. (#110)

	Bugfix: Fix the mkdocs command creation under Windows. (#122)

	Bugfix: Correctly handle external extra_javascript and extra_css. (#92)

	Bugfix: Fixed favicon support. (#87)

Configuration

Guide to all available configuration settings.

Introduction

Project settings are always configured by using a YAML configuration file in the
project directory named mkdocs.yml.

As a minimum this configuration file must contain the site_name setting. All
other settings are optional.

Project information

site_name

This is a required setting, and should be a string that is used as the main
title for the project documentation. For example:

site_name: Marshmallow Generator

When rendering the theme this setting will be passed as the site_name context
variable.

site_url

Set the canonical URL of the site. This will add a link tag with the canonical
URL to the generated HTML header.

default: null

repo_url

When set, provides a link to your repository (GitHub, Bitbucket, GitLab, …)
on each page.

repo_url: https://github.com/example/repository/

default: null

repo_name

When set, provides the name for the link to your repository on each page.

default: 'GitHub', 'Bitbucket' or 'GitLab' if the repo_url matches
those domains, otherwise the hostname from the repo_url.

edit_uri

Path from the base repo_url to the docs directory when directly viewing a
page, accounting for specifics of the repository host (e.g. GitHub, Bitbucket,
etc), the branch, and the docs directory itself. MkDocs concatenates repo_url
and edit_uri, and appends the input path of the page.

When set, and if your theme supports it, provides a link directly to the page in
your source repository. This makes it easier to find and edit the source for the
page. If repo_url is not set, this option is ignored. On some themes, setting
this option may cause an edit link to be used in place of a repository link.
Other themes may show both links.

The edit_uri supports query (‘?’) and fragment (‘#’) characters. For
repository hosts that use a query or a fragment to access the files, the
edit_uri might be set as follows. (Note the ? and # in the URI…)

Query string example
edit_uri: '?query=root/path/docs/'

Hash fragment example
edit_uri: '#root/path/docs/'

For other repository hosts, simply specify the relative path to the docs
directory.

Query string example
edit_uri: root/path/docs/

!!! note
On a few known hosts (specifically GitHub, Bitbucket and GitLab), the
edit_uri is derived from the ‘repo_url’ and does not need to be set
manually. Simply defining a repo_url will automatically populate the
edit_uri configs setting.

For example, for a GitHub- or GitLab-hosted repository, the `edit_uri`
would be automatically set as `edit/master/docs/` (Note the `edit` path
and `master` branch).

For a Bitbucket-hosted repository, the equivalent `edit_uri` would be
automatically set as `src/default/docs/` (note the `src` path and `default`
branch).

To use a different URI than the default (for example a different branch),
simply set the `edit_uri` to your desired string. If you do not want any
"edit URL link" displayed on your pages, then set `edit_uri` to an empty
string to disable the automatic setting.

!!! warning
On GitHub and GitLab, the default “edit” path (edit/master/docs/) opens
the page in the online editor. This functionality requires that the user
have and be logged in to a GitHub/GitLab account. Otherwise, the user will
be redirected to a login/signup page. Alternatively, use the “blob” path
(blob/master/docs/) to open a read-only view, which supports anonymous
access.

default: edit/master/docs/ for GitHub and GitLab repos or
src/default/docs/ for a Bitbucket repo, if repo_url matches those domains,
otherwise null

site_description

Set the site description. This will add a meta tag to the generated HTML header.

default: null

site_author

Set the name of the author. This will add a meta tag to the generated HTML
header.

default: null

copyright

Set the copyright information to be included in the documentation by the theme.

default: null

google_analytics

Set the Google analytics tracking configuration.

google_analytics: ['UA-36723568-3', 'mkdocs.org']

default: null

remote_branch

Set the remote branch to commit to when using gh-deploy to deploy to Github
Pages. This option can be overridden by a command line option in gh-deploy.

default: gh-pages

remote_name

Set the remote name to push to when using gh-deploy to deploy to Github Pages.
This option can be overridden by a command line option in gh-deploy.

default: origin

Documentation layout

nav

This setting is used to determine the format and layout of the global navigation
for the site. For example, the following would create “Introduction”, “User
Guide” and “About” navigation items.

nav:
 - 'Introduction': 'index.md'
 - 'User Guide': 'user-guide.md'
 - 'About': 'about.md'

All paths must be relative to the mkdocs.yml configuration file. See the
section on configuring pages and navigation for a more detailed breakdown,
including how to create sub-sections.

Navigation items may also include links to external sites. While titles are
optional for internal links, they are required for external links. An external
link may be a full URL or a relative URL. Any path which is not found in the
files is assumed to be an external link.

nav:
 - Home: index.md
 - User Guide: user-guide.md
 - Bug Tracker: https://example.com/

In the above example, the first two items point to local files while the third
points to an external site.

However, sometimes the MkDocs site is hosted in a subdirectory of a project’s
site and you may want to link to other parts of the same site without including
the full domain. In that case, you may use and appropriate relative URL.

site_url: https://example.com/foo/

nav:
 - Home: ../
 - User Guide: user-guide.md
 - Bug Tracker: /bugs/

In the above example, two different styles of external links are used. First
note that the site_url indicates that the MkDocs site is hosted in the /foo/
subdirectory of the domain. Therefore, the Home navigation item is a relative
link which steps up one level to the server root and effectively points to
https://example.com/. The Bug Tracker item uses an absolute path from the
server root and effectively points to https://example.com/bugs/. Of course, the
User Guide points to a local MkDocs page.

default: By default nav will contain an alphanumerically sorted, nested
list of all the Markdown files found within the docs_dir and its
sub-directories. If none are found it will be [] (an empty list).

Build directories

theme

Sets the theme and theme specific configuration of your documentation site.
May be either a string or a set of key/value pairs.

If a string, it must be the string name of a known installed theme. For a list
of available themes visit styling your docs.

An example set of key/value pairs might look something like this:

theme:
 name: mkdocs
 custom_dir: my_theme_customizations/
 static_templates:
 - sitemap.html
 include_sidebar: false

If a set of key/value pairs, the following nested keys can be defined:

!!! block “”

name:

The string name of a known installed theme. For a list of available themes
visit [styling your docs].

custom_dir:

A directory containing a custom theme. This can either be a relative
directory, in which case it is resolved relative to the directory containing
your configuration file, or it can be an absolute directory path from the
root of your local file system.

See [styling your docs][theme_dir] for details if you would like to tweak an
existing theme.

See [custom themes] if you would like to build your own theme from the
ground up.

static_templates:

A list of templates to render as static pages. The templates must be located
in either the theme's template directory or in the `custom_dir` defined in
the theme configuration.

(theme specific keywords)

Any additional keywords supported by the theme can also be defined. See the
documentation for the theme you are using for details.

default: 'mkdocs'

docs_dir

The directory containing the documentation source markdown files. This can
either be a relative directory, in which case it is resolved relative to the
directory containing your configuration file, or it can be an absolute directory
path from the root of your local file system.

default: 'docs'

site_dir

The directory where the output HTML and other files are created. This can either
be a relative directory, in which case it is resolved relative to the directory
containing your configuration file, or it can be an absolute directory path from
the root of your local file system.

default: 'site'

!!! note “Note:”
If you are using source code control you will normally want to ensure that
your build output files are not committed into the repository, and only
keep the source files under version control. For example, if using git
you might add the following line to your .gitignore file:

 site/

If you're using another source code control tool, you'll want to check its
documentation on how to ignore specific directories.

extra_css

Set a list of CSS files in your docs_dir to be included by the theme. For
example, the following example will include the extra.css file within the
css subdirectory in your docs_dir.

extra_css:
 - css/extra.css
 - css/second_extra.css

default: [] (an empty list).

extra_javascript

Set a list of JavaScript files in your docs_dir to be included by the theme.
See the example in extra_css for usage.

default: [] (an empty list).

extra_templates

Set a list of templates in your docs_dir to be built by MkDocs. To see more
about writing templates for MkDocs read the documentation about custom themes
and specifically the section about the variables that are available to
templates. See the example in extra_css for usage.

default: [] (an empty list).

extra

A set of key value pairs, where the values can be any valid YAML construct, that
will be passed to the template. This allows for great flexibility when creating
custom themes.

For example, if you are using a theme that supports displaying the project
version, you can pass it to the theme like this:

extra:
 version: 1.0

default: By default extra will be an empty key value mapping.

Preview controls

use_directory_urls

This setting controls the style used for linking to pages within the
documentation.

The following table demonstrates how the URLs used on the site differ when
setting use_directory_urls to true or false.

Source file | use_directory_urls: true | use_directory_urls: false
—————- | ————————- | ————————-
index.md | / | /index.html
api-guide.md | /api-guide/ | /api-guide.html
about/license.md | /about/license/ | /about/license.html

The default style of use_directory_urls: true creates more user friendly URLs,
and is usually what you’ll want to use.

The alternate style can occasionally be useful if you want your documentation to
remain properly linked when opening pages directly from the file system, because
it creates links that point directly to the target file rather than the target
directory.

default: true

strict

Determines how warnings are handled. Set to true to halt processing when a
warning is raised. Set to false to print a warning and continue processing.

default: false

dev_addr

Determines the address used when running mkdocs serve. Must be of the format
IP:PORT.

Allows a custom default to be set without the need to pass it through the
--dev_addr option every time the mkdocs serve command is called.

default: '127.0.0.1:8000'

Formatting options

markdown_extensions

MkDocs uses the Python Markdown [https://python-markdown.github.io/] library to translate Markdown files
into HTML. Python Markdown supports a variety of extensions [https://python-markdown.github.io/extensions/]
that customize how pages are formatted. This setting lets you enable a list of
extensions beyond the ones that MkDocs uses by default (meta, toc, tables,
and fenced_code).

For example, to enable the SmartyPants typography extension [https://python-markdown.github.io/extensions/smarty/], use:

markdown_extensions:
 - smarty

Some extensions provide configuration options of their own. If you would like to
set any configuration options, then you can nest a key/value mapping
(option_name: option value) of any options that a given extension supports.
See the documentation for the extension you are using to determine what options
they support.

For example, to enable permalinks in the (included) toc extension, use:

markdown_extensions:
 - toc:
 permalink: True

Note that a colon (:) must follow the extension name (toc) and then on a new
line the option name and value must be indented and separated by a colon. If you
would like to define multiple options for a single extension, each option must be
defined on a separate line:

markdown_extensions:
 - toc:
 permalink: True
 separator: "_"

Add an additional item to the list for each extension. If you have no
configuration options to set for a specific extension, then simply omit options
for that extension:

markdown_extensions:
 - smarty
 - toc:
 permalink: True
 - sane_lists

!!! note “See Also:”
The Python-Markdown documentation provides a list of extensions [https://python-markdown.github.io/extensions/]
which are available out-of-the-box. For a list of configuration options
available for a given extension, see the documentation for that extension.

You may also install and use various [third party extensions][3rd]. Consult
the documentation provided by those extensions for installation instructions
and available configuration options.

default: [] (an empty list).

plugins

A list of plugins (with optional configuration settings) to use when building
the site . See the Plugins documentation for full details.

If the plugins config setting is defined in the mkdocs.yml config file, then
any defaults (such as search) are ignored and you need to explicitly re-enable
the defaults if you would like to continue using them:

plugins:
 - search
 - your_other_plugin

To completely disable all plugins, including any defaults, set the plugins
setting to an empty list:

plugins: []

default: ['search'] (the “search” plugin included with MkDocs).

Search

A search plugin is provided by default with MkDocs which uses lunr.js [https://lunrjs.com/] as a
search engine. The following config options are available to alter the behavior
of the search plugin:

separator

A regular expression which matches the characters used as word separators when
building the index. By default whitespace and the hyphen (-) are used. To add
the dot (.) as a word separator you might do this:

plugins:
 - search:
 separator: '[\s\-\.]+'

default: '[\s\-]+'

lang

A list of languages to use when building the search index as identified by their
ISO 639-1 [https://en.wikipedia.org/wiki/List_of_ISO_639-1_codes] language codes. With Lunr Languages [https://github.com/MihaiValentin/lunr-languages#lunr-languages-----], the following languages are
supported:

	da: Danish

	du: Dutch

	en: English

	fi: Finnish

	fr: French

	de: German

	hu: Hungarian

	it: Italian

	jp: Japanese

	no: Norwegian

	pt: Portuguese

	ro: Romanian

	ru: Russian

	es: Spanish

	sv: Swedish

	th: Thai

	tr: Turkish

You may contribute additional languages [https://github.com/MihaiValentin/lunr-languages/blob/master/CONTRIBUTING.md].

!!! Warning

While search does support using multiple languages together, it is best not
to add additional languages unless you really need them. Each additional
language adds significant bandwidth requirements and uses more browser
resources. Generally it is best to keep each instance of MkDocs to a single
language.

!!! Note

Lunr Languages does not currently include support for Chinese or other Asian
languages. However, some users have reported decent results using Japanese.

default: ['en']

prebuild_index

Optionally generates a pre-built index of all pages, which provides some
performance improvements for larger sites. Before enabling, check that the
theme you are using explicitly supports using a prebuilt index (the builtin
themes do). The pre-build script requires that Node.js [https://nodejs.org/] be installed and the
command node be on the system path. If this feature is enabled and fails for
any reason, a warning is issued. You may use the --strict flag when building
to cause such a failure to raise an error instead.

!!! Note

On smaller sites, using a pre-built index is not recommended as it creates a
significant increase is bandwidth requirements with little to no noticeable
improvement to your users. However, for larger sites (hundreds of pages),
the bandwidth increase is relatively small and your users will notice a
significant improvement in search performance.

default: False

Custom themes

A guide to creating and distributing custom themes.

!!! Note

If you are looking for third party themes, they are listed in the MkDocs
[community wiki](https://github.com/mkdocs/mkdocs/wiki/MkDocs-Themes). If
you want to share a theme you create, you should list it on the Wiki.

When creating a new theme, you can either follow the steps in this guide to
create one from scratch or you can download the mkdocs-basic-theme as a
basic, yet complete, theme with all the boilerplate required. You can find
this base theme on GitHub [https://github.com/mkdocs/mkdocs-basic-theme].
It contains detailed comments in the code to describe the different features
and their usage.

Creating a custom theme

The bare minimum required for a custom theme is a main.html Jinja2 template [http://jinja.pocoo.org/docs/dev/]
file which is placed in a directory that is not a child of the docs_dir.
Within mkdocs.yml, set the theme.custom_dir option to the path of the
directory containing main.html. The path should be relative to the
configuration file. For example, given this example project layout:

mkdocs.yml
docs/
 index.md
 about.md
custom_theme/
 main.html
 ...

… you would include the following settings in mkdocs.yml to use the custom theme
directory:

theme:
 name: null
 custom_dir: 'custom_theme/'

!!! Note

Generally, when building your own custom theme, the theme.[name]
configuration setting would be set to `null`. However, if the
theme.[custom_dir] configuration value is used in combination with an
existing theme, the theme.[custom_dir] can be used to replace only specific
parts of a built-in theme. For example, with the above layout and if you set
`name: "mkdocs"` then the `main.html` file in the theme.[custom_dir] would
replace the file of the same name in the `mkdocs` theme but otherwise the
`mkdocs` theme would remain unchanged. This is useful if you want to make
small adjustments to an existing theme.

For more specific information, see [styling your docs].

Basic theme

The simplest main.html file is the following:

<!DOCTYPE html>
<html>
 <head>
 <title>{% if page.title %}{{ page.title }} - {% endif %}{{ config.site_name }}</title>
 </head>
 <body>
 {{ page.content }}
 </body>
</html>

The body content from each page specified in mkdocs.yml is inserted using the
{{ page.content }} tag. Style-sheets and scripts can be brought into this
theme as with a normal HTML file. Navbars and tables of contents can also be
generated and included automatically, through the nav and toc objects,
respectively. If you wish to write your own theme, it is recommended to start
with one of the built-in themes [https://github.com/mkdocs/mkdocs/tree/master/mkdocs/themes] and modify it accordingly.

!!! Note

As MkDocs uses [Jinja] as its template engine, you have access to all the
power of Jinja, including [template inheritance]. You may notice that the
themes included with MkDocs make extensive use of template inheritance and
blocks, allowing users to easily override small bits and pieces of the
templates from the theme [custom_dir]. Therefore, the built-in themes are
implemented in a `base.html` file, which `main.html` extends. Although not
required, third party template authors are encouraged to follow a similar
pattern and may want to define the same [blocks] as are used in the built-in
themes for consistency.

Template Variables

Each template in a theme is built with a template context. These are the
variables that are available to themes. The context varies depending on the
template that is being built. At the moment templates are either built with
the global context or with a page specific context. The global context is used
for HTML pages that don’t represent an individual Markdown document, for
example a 404.html page or search.html.

Global Context

The following variables are available globally on any template.

config

The config variable is an instance of MkDocs’ config object generated from the
mkdocs.yml config file. While you can use any config option, some commonly
used options include:

	config.site_name

	config.site_url

	config.site_author

	config.site_description

	config.extra_javascript

	config.extra_css

	config.repo_url

	config.repo_name

	config.copyright

	config.google_analytics

nav

The nav variable is used to create the navigation for the documentation. The
nav object is an iterable of navigation objects as
defined by the nav configuration setting.

In addition to the iterable of navigation objects, the
nav object contains the following attributes:

nav.homepage

The page object for the homepage of the site.

nav.pages

A flat list of all page objects contained in the navigation. This list
is not necessarily a complete list of all site pages as it does not contain
pages which are not included in the navigation. This list does match the list
and order of pages used for all “next page” and “previous page” links. For a
list of all pages, use the pages template variable.

Nav Example

Following is a basic usage example which outputs the first and second level
navigation as a nested list.

{% if nav|length>1 %}

 {% for nav_item in nav %}
 {% if nav_item.children %}
 {{ nav_item.title }}

 {% for nav_item in nav_item.children %}
 <li class="{% if nav_item.active%}current{% endif %}">
 {{ nav_item.title }}

 {% endfor %}

 {% else %}
 <li class="{% if nav_item.active%}current{% endif %}">
 {{ nav_item.title }}

 {% endif %}
 {% endfor %}

{% endif %}

base_url

The base_url provides a relative path to the root of the MkDocs project. While
this can be used directly by prepending it to a local relative URL, it is best
to use the url template filter, which is smarter about how it applies
base_url.

mkdocs_version

Contains the current MkDocs version.

build_date_utc

A Python datetime object that represents the date and time the documentation
was built in UTC. This is useful for showing how recently the documentation
was updated.

pages

A list of page objects including all pages in the project. The list
is a flat list with all pages sorted alphanumerically by directory and file
name. Note that index pages sort to the top within a directory. This list can
contain pages not included in the global navigation and may not match
the order of pages within that navigation.

page

In templates which are not rendered from a Markdown source file, the page
variable is None. In templates which are rendered from a Markdown source file,
the page variable contains a page object. The same page objects are used
as page navigation objects in the global
navigation and in the pages template variable.

All page objects contain the following attributes:

page.title

Contains the Title for the current page.

page.content

The rendered Markdown as HTML, this is the contents of the documentation.

page.toc

An iterable object representing the Table of contents for a page. Each item in
the toc is an AnchorLink which contains the following attributes:

	AnchorLink.title: The text of the item.

	AnchorLink.url: The hash fragment of a URL pointing to the item.

	AnchorLink.level: The zero-based level of the item.

	AnchorLink.children: An iterable of any child items.

The following example would display the top two levels of the Table of Contents
for a page.

{% for toc_item in page.toc %}
 {{ toc_item.title }}
 {% for toc_item in toc_item.children %}
 {{ toc_item.title }}
 {% endfor %}
{% endfor %}

page.meta

A mapping of the metadata included at the top of the markdown page. In this
example we define a source property above the page title.

source: generics.py
 mixins.py

Page title

Content...

A template can access this metadata for the page with the meta.source
variable. This could then be used to link to source files related to the
documentation page.

{% for filename in page.meta.source %}

 {{ filename }}

{% endfor %}

page.url

The URL of the page relative to the MkDocs site_dir. It is expected that this
be used with the url filter to ensure the URL is relative to the current
page.

{{ page.title }}

page.abs_url

The absolute URL of the page from the server root as determined by the value
assigned to the site_url configuration setting. The value includes any
subdirectory included in the site_url, but not the domain. base_url should
not be used with this variable.

For example, if site_url: https://example.com/, then the value of
page.abs_url for the page foo.md would be /foo/. However, if
site_url: https://example.com/bar/, then the value of page.abs_url for the
page foo.md would be /bar/foo/.

page.canonical_url

The full, canonical URL to the current page as determined by the value assigned
to the site_url configuration setting. The value includes the domain and any
subdirectory included in the site_url. base_url should not be used with this
variable.

page.edit_url

The full URL to the source page in the source repository. Typically used to
provide a link to edit the source page. base_url should not be used with this
variable.

page.is_homepage

Evaluates to True for the homepage of the site and False for all other
pages. This can be used in conjunction with other attributes of the page
object to alter the behavior. For example, to display a different title
on the homepage:

{% if not page.is_homepage %}{{ page.title }} - {% endif %}{{ site_name }}

page.previous_page

The page object for the previous page or None. The value will be None if the
current page is the first item in the site navigation or if the current page is
not included in the navigation at all. When the value is a page object, the
usage is the same as for page.

page.next_page

The page object for the next page or None. The value will be None if the
current page is the last item in the site navigation or if the current page is
not included in the navigation at all. When the value is a page object, the
usage is the same as for page.

page.parent

The immediate parent of the page in the site navigation. None if the
page is at the top level.

page.children

Pages do not contain children and the attribute is always None.

page.active

When True, indicates that this page is the currently viewed page. Defaults
to False.

page.is_section

Indicates that the navigation object is a “section” object. Always False for
page objects.

page.is_page

Indicates that the navigation object is a “page” object. Always True for
page objects.

page.is_link

Indicates that the navigation object is a “link” object. Always False for
page objects.

Navigation Objects

Navigation objects contained in the nav template variable may be one of
section objects, page objects, and link objects.
While section objects may contain nested navigation objects, pages and links do
not.

Page objects are the full page object as used for the current page with
all of the same attributes available. Section and Link objects contain a subset
of those attributes as defined below:

Section

A section navigation object defines a named section in the navigation and
contains a list of child navigation objects. Note that sections do not contain
URLs and are not links of any kind. However, by default, MkDocs sorts index
pages to the top and the first child might be used as the URL for a section if a
theme choses to do so.

The following attributes are available on section objects:

section.title

The title of the section.

section.parent

The immediate parent of the section or None if the section is at the top
level.

section.children

An iterable of all child navigation objects. Children may include nested
sections, pages and links.

section.active

When True, indicates that a child page of this section is the current page and
can be used to highlight the section as the currently viewed section. Defaults
to False.

section.is_section

Indicates that the navigation object is a “section” object. Always True for
section objects.

section.is_page

Indicates that the navigation object is a “page” object. Always False for
section objects.

section.is_link

Indicates that the navigation object is a “link” object. Always False for
section objects.

Link

A link navigation object contains a link which does not point to an internal
MkDocs page. The following attributes are available on link objects:

link.title

The title of the link. This would generally be used as the label of the link.

link.url

The URL that the link points to. The URL should always be an absolute URLs and
should not need to have base_url prepened.

link.parent

The immediate parent of the link. None if the link is at the top level.

link.children

Links do not contain children and the attribute is always None.

link.active

External links cannot be “active” and the attribute is always False.

link.is_section

Indicates that the navigation object is a “section” object. Always False for
link objects.

link.is_page

Indicates that the navigation object is a “page” object. Always False for
link objects.

link.is_link

Indicates that the navigation object is a “link” object. Always True for
link objects.

Extra Context

Additional variables can be passed to the template with the
extra configuration option. This is a
set of key value pairs that can make custom templates far more flexible.

For example, this could be used to include the project version of all pages
and a list of links related to the project. This can be achieved with the
following extra configuration:

extra:
 version: 0.13.0
 links:
 - https://github.com/mkdocs
 - https://docs.readthedocs.org/en/latest/builds.html#mkdocs
 - https://www.mkdocs.org/

And then displayed with this HTML in the custom theme.

{{ config.extra.version }}

{% if config.extra.links %}

 {% for link in config.extra.links %}
 {{ link }}
 {% endfor %}

{% endif %}

Template Filters

In addition to Jinja’s default filters, the following custom filters are
available to use in MkDocs templates:

url

Normalizes a URL. Absolute URLs are passed through unaltered. If the URL is
relative and the template context includes a page object, then the URL is
returned relative to the page object. Otherwise, the URL is returned with
base_url prepended.

{{ page.title }}

tojson

Safety convert a Python object to a value in a JavaScript script.

<script>
 var mkdocs_page_name = {{ page.title|tojson|safe }};
</script>

Search and themes

As of MkDocs version 0.17 client side search support has been added to MkDocs
via the search plugin. A theme needs to provide a few things for the plugin to
work with the theme.

While the search plugin is activated by default, users can disable the plugin
and themes should account for this. It is recommended that theme templates wrap
search specific markup with a check for the plugin:

{% if 'search' in config['plugins'] %}
 search stuff here...
{% endif %}

At its most basic functionality, the search plugin will simply provide an index
file which is no more than a JSON file containing the content of all pages.
The theme would need to implement its own search functionality client-side.
However, with a few settings and the necessary templates, the plugin can provide
a complete functioning client-side search tool based on lunr.js [https://lunrjs.com/].

The following HTML needs to be added to the theme so that the provided
JavaScript is able to properly load the search scripts and make relative links
to the search results from the current page.

<script>var base_url = '{{ base_url }}';</script>

With properly configured settings, the following HTML in a template will add a
full search implementation to your theme.

<h1 id="search">Search Results</h1>

<form action="search.html">
 <input name="q" id="mkdocs-search-query" type="text" >
</form>

<div id="mkdocs-search-results">
 Sorry, page not found.
</div>

The JavaScript in the plugin works by looking for the specific ID’s used in the
above HTML. The form input for the user to type the search query must be
identified with id="mkdocs-search-query" and the div where the results will be
placed must be identified with id="mkdocs-search-results".

The plugin supports the following options being set in the theme’s
configuration file, mkdocs_theme.yml:

include_search_page

Determines whether the search plugin expects the theme to provide a dedicated
search page via a template located at search/search.html.

When include_search_page is set to true, the search template will be built
and available at search/search.html. This method is used by the readthedocs
theme.

When include_search_page is set to false or not defined, it is expected that
the theme provide some other mechanisms for displaying search results. For
example, the mkdocs theme displays results on any page via a modal.

search_index_only

Determines whether the search plugin should only generate a search index or a
complete search solution.

When search_index_only is set to false, then the search plugin modifies the
Jinja environment by adding its own templates directory (with a lower
precedence than the theme) and adds its scripts to the extra_javascript config
setting.

When search_index_only is set to true or not defined, the search plugin
makes no modifications to the Jinja environment. A complete solution using the
provided index file is the responsibility of the theme.

The search index is written to a JSON file at search/search_index.json in the
site_dir. The JSON object contained within the file may contain up to three
objects.

{
 config: {...},
 data: [...],
 index: {...}
}

If present, the config object contains the key/value pairs of config options
defined for the plugin in the user’s mkdocs.yml config file under
plugings.search. The config object was new in MkDocs version 1.0.

The data object contains a list of document objects. Each document object is
made up of a location (URL), a title, and text which can be used to create
a search index and/or display search results.

If present, the index object contains a pre-built index which offers
performance improvements for larger sites. Note that the pre-built index is only
created if the user explicitly enables the prebuild_index config option.
Themes should expect the index to not be present, but can choose to use the
index when it is available. The index object was new in MkDocs version 1.0.

Packaging Themes

MkDocs makes use of Python packaging [https://packaging.python.org/en/latest/] to distribute themes. This comes with a
few requirements.

To see an example of a package containing one theme, see the MkDocs Bootstrap
theme [https://mkdocs.github.io/mkdocs-bootstrap/] and to see a package that contains many themes, see the MkDocs
Bootswatch theme [https://mkdocs.github.io/mkdocs-bootswatch/].

!!! Note

It is not strictly necessary to package a theme, as the entire theme
can be contained in the `custom_dir`. If you have created a "one-off theme,"
that should be sufficient. However, if you intend to distribute your theme
for others to use, packaging the theme has some advantages. By packaging
your theme, your users can more easily install it and they can then take
advantage of the [custom_dir] to make tweaks to your theme to better suit
their needs.

Package Layout

The following layout is recommended for themes. Two files at the top level
directory called MANIFEST.in and setup.py beside the theme directory which
contains an empty __init__.py file, a theme configuration file
(mkdocs-theme.yml), and your template and media files.

.
|-- MANIFEST.in
|-- theme_name
| |-- __init__.py
| |-- mkdocs-theme.yml
| |-- main.html
| |-- styles.css
`-- setup.py

The MANIFEST.in file should contain the following contents but with
theme_name updated and any extra file extensions added to the include.

recursive-include theme_name *.ico *.js *.css *.png *.html *.eot *.svg *.ttf *.woff
recursive-exclude * __pycache__
recursive-exclude * *.py[co]

The setup.py should include the following text with the modifications
described below.

from setuptools import setup, find_packages

VERSION = '0.0.1'

setup(
 name="mkdocs-themename",
 version=VERSION,
 url='',
 license='',
 description='',
 author='',
 author_email='',
 packages=find_packages(),
 include_package_data=True,
 entry_points={
 'mkdocs.themes': [
 'themename = theme_name',
]
 },
 zip_safe=False
)

Fill in the URL, license, description, author and author email address.

The name should follow the convention mkdocs-themename (like mkdocs- bootstrap and mkdocs-bootswatch), starting with MkDocs, using hyphens to
separate words and including the name of your theme.

Most of the rest of the file can be left unedited. The last section we need to
change is the entry_points. This is how MkDocs finds the theme(s) you are
including in the package. The name on the left is the one that users will use
in their mkdocs.yml and the one on the right is the directory containing your
theme files.

The directory you created at the start of this section with the main.html file
should contain all of the other theme files. The minimum requirement is that
it includes a main.html for the theme. It must also include a
__init__.py file which should be empty, this file tells Python that the
directory is a package.

Theme Configuration

A packaged theme is required to include a configuration file named
mkdocs_theme.yml which is placed in the root of your template files. The file
should contain default configuration options for the theme. However, if the
theme offers no configuration options, the file is still required and can be
left blank.

The theme author is free to define any arbitrary options deemed necessary and
those options will be made available in the templates to control behavior.
For example, a theme might want to make a sidebar optional and include the
following in the mkdocs_theme.yml file:

show_sidebar: true

Then in a template, that config option could be referenced:

{% if config.theme.show_sidebar %}
<div id="sidebar">...</div>
{% endif %}

And the user could override the default in their project’s mkdocs.yml config
file:

theme:
 name: themename
 show_sidebar: false

In addition to arbitrary options defined by the theme, MkDocs defines a few
special options which alters its behavior:

!!! block “”

static_templates

This option mirrors the [theme] config option of the same name and allows
some defaults to be set by the theme. Note that while the user can add
templates to this list, the user cannot remove templates included in the
theme's config.

extends

Defines a parent theme that this theme inherits from. The value should be
the string name of the parent theme. Normal Jinja inheritance rules apply.

Plugins may also define some options which allow the theme to inform a plugin
about which set of plugin options it expects. See the documentation for any
plugins you may wish to support in your theme.

Distributing Themes

With the above changes, your theme should now be ready to install. This can be
done with pip, using pip install . if you are still in the same directory as
the setup.py.

Most Python packages, including MkDocs, are distributed on PyPI. To do this,
you should run the following command.

python setup.py register

If you don’t have an account setup, you should be prompted to create one.

For a much more detailed guide, see the official Python packaging
documentation for Packaging and Distributing Projects [https://packaging.python.org/en/latest/distributing/].

Deploying your docs

A basic guide to deploying your docs to various hosting providers

GitHub Pages

If you host the source code for a project on GitHub [https://github.com/], you can easily use
GitHub Pages [https://pages.github.com/] to host the documentation for your project. There are two basic
types of GitHub Pages sites: Project Pages [https://help.github.com/articles/user-organization-and-project-pages/#project-pages-sites] sites, and User and Organization
Pages [https://help.github.com/articles/user-organization-and-project-pages/#user-and-organization-pages-sites] sites. They are nearly identical but have some important differences,
which require a different work flow when deploying.

Project Pages

Project Pages sites are simpler as the site files get deployed to a branch
within the project repository (gh-pages by default). After you checkout the
primary working branch (usually master) of the git repository where you
maintain the source documentation for your project, run the following command:

mkdocs gh-deploy

That’s it! Behind the scenes, MkDocs will build your docs and use the
ghp-import [https://github.com/davisp/ghp-import] tool to commit them to the gh-pages branch and push the
gh-pages branch to GitHub.

Use mkdocs gh-deploy --help to get a full list of options available for the
gh-deploy command.

Be aware that you will not be able to review the built site before it is pushed
to GitHub. Therefore, you may want to verify any changes you make to the docs
beforehand by using the build or serve commands and reviewing the built
files locally.

!!! warning

You should never edit files in your pages repository by hand if you're using
the `gh-deploy` command because you will lose your work the next time you
run the command.

Organization and User Pages

User and Organization Pages sites are not tied to a specific project, and the
site files are deployed to the master branch in a dedicated repository named
with the GitHub account name. Therefore, you need working copies of two
repositories on our local system. For example, consider the following file
structure:

my-project/
 mkdocs.yml
 docs/
orgname.github.io/

After making and verifying updates to your project you need to change
directories to the orgname.github.io repository and call the
mkdocs gh-deploy command from there:

cd ../orgname.github.io/
mkdocs gh-deploy --config-file ../my-project/mkdocs.yml --remote-branch master

Note that you need to explicitly point to the mkdocs.yml configuration file as
it is no longer in the current working directory. You also need to inform the
deploy script to commit to the master branch. You may override the default
with the remote_branch configuration setting, but if you forget to change
directories before running the deploy script, it will commit to the master
branch of your project, which you probably don’t want.

Be aware that you will not be able to review the built site before it is pushed
to GitHub. Therefore, you may want to verify any changes you make to the docs
beforehand by using the build or serve commands and reviewing the built
files locally.

!!! warning

You should never edit files in your pages repository by hand if you're using
the `gh-deploy` command because you will lose your work the next time you
run the command.

Custom Domains

GitHub Pages includes support for using a Custom Domain [https://help.github.com/articles/adding-or-removing-a-custom-domain-for-your-github-pages-site] for your site. In
addition to the steps documented by GitHub, you need to take one additional step
so that MkDocs will work with your custom domain. You need to add a CNAME file
to the root of your docs_dir. The file must contain a single bare domain or
subdomain on a single line (see MkDocs’ own CNAME file [https://github.com/mkdocs/mkdocs/blob/master/docs/CNAME] as an example). You may
create the file manually, or use GitHub’s web interface to set up the custom
domain (under Settings / Custom Domain). If you use the web interface, GitHub
will create the CNAME file for you and save it to the root of your “pages”
branch. So that the file does not get removed the next time you deploy, you need
to copy the file to your docs_dir. With the file properly included in your
docs_dir, MkDocs will include the file in your built site and push it to your
“pages” branch each time you run the gh-deploy command.

If you are having problems getting a custom domain to work, see GitHub’s
documentation on Troubleshooting custom domains [https://help.github.com/articles/troubleshooting-custom-domains/].

Read the Docs

Read the Docs [https://readthedocs.org/] offers free documentation hosting. You can import your docs
using any major version control system, including Mercurial, Git, Subversion,
and Bazaar. Read the Docs supports MkDocs out-of-the-box. Follow the
instructions [https://read-the-docs.readthedocs.io/en/latest/getting_started.html#in-markdown] on their site to arrange the files in your repository properly,
create an account and point it at your publicly hosted repository. If properly
configured, your documentation will update each time you push commits to your
public repository.

!!! note

To benefit from all of the [features] offered by Read the Docs, you will need
to use the [Read the Docs theme][theme] which ships with MkDocs. The various
themes which may be referenced in Read the Docs' documentation are Sphinx
specific themes and will not work with MkDocs.

Other Providers

Any hosting provider which can serve static files can be used to serve
documentation generated by MkDocs. While it would be impossible to document how
to upload the docs to every hosting provider out there, the following guidelines
should provide some general assistance.

When you build your site (using the mkdocs build command), all of the files
are written to the directory assigned to the site_dir configuration option
(defaults to "site") in your mkdocs.yaml config file. Generally, you will
simply need to copy the contents of that directory to the root directory of your
hosting provider’s server. Depending on your hosting provider’s setup, you may
need to use a graphical or command line ftp [https://en.wikipedia.org/wiki/File_Transfer_Protocol], ssh [https://en.wikipedia.org/wiki/Secure_Shell] or scp [https://en.wikipedia.org/wiki/Secure_copy] client to transfer
the files.

For example, a typical set of commands from the command line might look
something like this:

mkdocs build
scp -r ./site user@host:/path/to/server/root

Of course, you will need to replace user with the username you have with your
hosting provider and host with the appropriate domain name. Additionally, you
will need to adjust the /path/to/server/root to match the configuration of
your hosts’ file system.

See your host’s documentation for specifics. You will likely want to search
their documentation for “ftp” or “uploading site”.

404 Pages

When MkDocs builds the documentation it will include a 404.html file in the
build directory. This file will be automatically used when
deploying to GitHub but only on a custom domain. Other web
servers may be configured to use it but the feature won’t always be available.
See the documentation for your server of choice for more information.

MkDocs Plugins

A Guide to installing, using and creating MkDocs Plugins

Installing Plugins

Before a plugin can be used, it must be installed on the system. If you are
using a plugin which comes with MkDocs, then it was installed when you installed
MkDocs. However, to install third party plugins, you need to determine the
appropriate package name and install it using pip:

pip install mkdocs-foo-plugin

Once a plugin has been successfully installed, it is ready to use. It just needs
to be enabled in the configuration file.

Using Plugins

The plugins configuration option should contain a list of plugins to
use when building the site. Each “plugin” must be a string name assigned to the
plugin (see the documentation for a given plugin to determine its “name”). A
plugin listed here must already be installed.

plugins:
 - search

Some plugins may provide configuration options of their own. If you would like
to set any configuration options, then you can nest a key/value mapping
(option_name: option value) of any options that a given plugin supports. Note
that a colon (:) must follow the plugin name and then on a new line the option
name and value must be indented and separated by a colon. If you would like to
define multiple options for a single plugin, each option must be defined on a
separate line.

plugins:
 - search:
 lang: en
 foo: bar

For information regarding the configuration options available for a given plugin,
see that plugin’s documentation.

For a list of default plugins and how to override them, see the
configuration documentation.

Developing Plugins

Like MkDocs, plugins must be written in Python. It is generally expected that
each plugin would be distributed as a separate Python module, although it is
possible to define multiple plugins in the same module. At a minimum, a MkDocs
Plugin must consist of a BasePlugin subclass and an entry point which
points to it.

BasePlugin

A subclass of mkdocs.plugins.BasePlugin should define the behavior of the plugin.
The class generally consists of actions to perform on specific events in the build
process as well as a configuration scheme for the plugin.

All BasePlugin subclasses contain the following attributes:

config_scheme

: A tuple of configuration validation instances. Each item must consist of a
two item tuple in which the first item is the string name of the
configuration option and the second item is an instance of
mkdocs.config.config_options.BaseConfigOption or any of its subclasses.

For example, the following `config_scheme` defines three configuration options: `foo`, which accepts a string; `bar`, which accepts an integer; and `baz`, which accepts a boolean value.

 class MyPlugin(mkdocs.plugins.BasePlugin):
 config_scheme = (
 ('foo', mkdocs.config.config_options.Type(mkdocs.utils.string_types, default='a default value')),
 ('bar', mkdocs.config.config_options.Type(int, default=0)),
 ('baz', mkdocs.config.config_options.Type(bool, default=True))
)

When the user's configuration is loaded, the above scheme will be used to
validate the configuration and fill in any defaults for settings not
provided by the user. The validation classes may be any of the classes
provided in `mkdocs.config.config_options` or a third party subclass defined
in the plugin.

Any settings provided by the user which fail validation or are not defined
in the `config_scheme` will raise a `mkdocs.config.base.ValidationError`.

config

: A dictionary of configuration options for the plugin, which is populated by
the load_config method after configuration validation has completed. Use
this attribute to access options provided by the user.

 def on_pre_build(self, config):
 if self.config['bool_option']:
 # implement "bool_option" functionality here...

All BasePlugin subclasses contain the following method(s):

load_config(options)

: Loads configuration from a dictionary of options. Returns a tuple of
(errors, warnings). This method is called by MkDocs during configuration
validation and should not need to be called by the plugin.

on_<event_name>

()

: Optional methods which define the behavior for specific events. The plugin
should define its behavior within these methods. Replace <event_name> with
the actual name of the event. For example, the pre_build event would be
defined in the on_pre_build method.

Most events accept one positional argument and various keyword arguments. It
is generally expected that the positional argument would be modified (or
replaced) by the plugin and returned. If nothing is returned (the method
returns `None`), then the original, unmodified object is used. The keyword
arguments are simply provided to give context and/or supply data which may
be used to determine how the positional argument should be modified. It is
good practice to accept keyword arguments as `**kwargs`. In the event that
additional keywords are provided to an event in a future version of MkDocs,
there will be no need to alter your plugin.

For example, the following event would add an additional static_template to
the theme config:

 class MyPlugin(BasePlugin):
 def on_config(self, config, **kwargs):
 config['theme'].static_templates.add('my_template.html')
 return config

Events

There are three kinds of events: Global Events, Page Events and
Template Events.

Global Events

Global events are called once per build at either the beginning or end of the
build process. Any changes made in these events will have a global effect on the
entire site.

on_serve

: The serve event is only called when the serve command is used during
development. It is passed the Server instance which can be modified before
it is activated. For example, additional files or directories could be added
to the list of “watched” files for auto-reloading.

Parameters:
: __server:__ `livereload.Server` instance
: __config:__ global configuration object

Returns:
: `livereload.Server` instance

on_config

: The config event is the first event called on build and is run immediately
after the user configuration is loaded and validated. Any alterations to the
config should be made here.

Parameters:
: __config:__ global configuration object

Returns:
: global configuration object

on_pre_build

: The pre_build event does not alter any variables. Use this event to call
pre-build scripts.

Parameters:
: __config:__ global configuration object

on_files

: The files event is called after the files collection is populated from the
docs_dir. Use this event to add, remove, or alter files in the
collection. Note that Page objects have not yet been associated with the
file objects in the collection. Use Page Events to manipulate page
specific data.

Parameters:
: __files:__ global files collection
: __config:__ global configuration object

Returns:
: global files collection

on_nav

: The nav event is called after the site navigation is created and can
be used to alter the site navigation.

Parameters:
: __nav:__ global navigation object
: __config:__ global configuration object
: __files:__ global files collection

Returns:
: global navigation object

on_env

: The env event is called after the Jinja template environment is created
and can be used to alter the Jinja environment.

Parameters:
: __env:__ global Jinja environment
: __config:__ global configuration object
: __site_navigation:__ global navigation object

Returns:
: global Jinja Environment

on_post_build

: The post_build event does not alter any variables. Use this event to call
post-build scripts.

Parameters:
: __config:__ global configuration object

Template Events

Template events are called once for each non-page template. Each template event
will be called for each template defined in the extra_templates config setting
as well as any static_templates defined in the theme. All template events are
called after the env event and before any page events.

on_pre_template

: The pre_template event is called immediately after the subject template is
loaded and can be used to alter the content of the template.

Parameters:
: __template__: the template contents as string
: __template_name__: string filename of template
: __config:__ global configuration object

Returns:
: template contents as string

on_template_context

: The template_context event is called immediately after the context is created
for the subject template and can be used to alter the context for that specific
template only.

Parameters:
: __context__: dict of template context variables
: __template_name__: string filename of template
: __config:__ global configuration object

Returns:
: dict of template context variables

on_post_template

: The post_template event is called after the template is rendered, but before
it is written to disc and can be used to alter the output of the template.
If an empty string is returned, the template is skipped and nothing is is
written to disc.

Parameters:
: __output_content__: output of rendered template as string
: __template_name__: string filename of template
: __config:__ global configuration object

Returns:
: output of rendered template as string

Page Events

Page events are called once for each Markdown page included in the site. All
page events are called after the post_template event and before the
post_build event.

on_pre_page

: The pre_page event is called before any actions are taken on the subject
page and can be used to alter the Page instance.

Parameters:
: __page:__ `mkdocs.nav.Page` instance
: __config:__ global configuration object
: __site_navigation:__ global navigation object

Returns:
: `mkdocs.nav.Page` instance

on_page_read_source

: The on_page_read_source event can replace the default mechanism to read
the contents of a page’s source from the filesystem.

Parameters:
: __page:__ `mkdocs.nav.Page` instance
: __config:__ global configuration object

Returns:
: The raw source for a page as unicode string. If `None` is returned, the
 default loading from a file will be performed.

on_page_markdown

: The page_markdown event is called after the page’s markdown is loaded
from file and can be used to alter the Markdown source text. The meta-
data has been stripped off and is available as page.meta at this point.

Parameters:
: __markdown:__ Markdown source text of page as string
: __page:__ `mkdocs.nav.Page` instance
: __config:__ global configuration object
: __site_navigation:__ global navigation object

Returns:
: Markdown source text of page as string

on_page_content

: The page_content event is called after the Markdown text is rendered to
HTML (but before being passed to a template) and can be used to alter the
HTML body of the page.

Parameters:
: __html:__ HTML rendered from Markdown source as string
: __page:__ `mkdocs.nav.Page` instance
: __config:__ global configuration object
: __site_navigation:__ global navigation object

Returns:
: HTML rendered from Markdown source as string

on_page_context

: The page_context event is called after the context for a page is created
and can be used to alter the context for that specific page only.

Parameters:
: __context__: dict of template context variables
: __page:__ `mkdocs.nav.Page` instance
: __config:__ global configuration object
: __site_navigation:__ global navigation object

Returns:
: dict of template context variables

on_post_page

: The post_template event is called after the template is rendered, but
before it is written to disc and can be used to alter the output of the
page. If an empty string is returned, the page is skipped and nothing is
written to disc.

Parameters:
: __output_content:__ output of rendered template as string
: __page:__ `mkdocs.nav.Page` instance
: __config:__ global configuration object
: __site_navigation:__ global navigation object

Returns:
: output of rendered template as string

Entry Point

Plugins need to be packaged as Python libraries (distributed on PyPI separate
from MkDocs) and each must register as a Plugin via a setuptools entry_point.
Add the following to your setup.py script:

entry_points={
 'mkdocs.plugins': [
 'pluginname = path.to.some_plugin:SomePluginClass',
]
}

The pluginname would be the name used by users (in the config file) and
path.to.some_plugin:SomePluginClass would be the importable plugin itself
(from path.to.some_plugin import SomePluginClass) where SomePluginClass is a
subclass of BasePlugin which defines the plugin behavior. Naturally, multiple
Plugin classes could exist in the same module. Simply define each as a separate
entry_point.

entry_points={
 'mkdocs.plugins': [
 'featureA = path.to.my_plugins:PluginA',
 'featureB = path.to.my_plugins:PluginB'
]
}

Note that registering a plugin does not activate it. The user still needs to
tell MkDocs to use if via the config.

Styling your docs

How to style and theme your documentation.

MkDocs includes a couple built-in themes as well as various third party
themes, all of which can easily be customized with extra CSS or
JavaScript or overridden from the theme’s custom_dir. You can also
create your own custom theme from the ground up for your documentation.

To use a theme that is included in MkDocs, simply add this to your
mkdocs.yml config file.

theme: readthedocs

Replace readthedocs with any of the built-in themes listed below.

To create a new custom theme see the Custom Themes page, or to
more heavily customize an existing theme, see
the Customizing a Theme section below.

Built-in themes

mkdocs

The default theme, which was built as a custom Bootstrap [https://getbootstrap.com/] theme, supports most
every feature of MkDocs. It only officially supports two levels in the
navigation (see #1107).

[image: mkdocs]

In addition to the default theme configuration options, the mkdocs theme
supports the following options:

	highlightjs: Enables highlighting of source code in code blocks using
the highlight.js [https://highlightjs.org/] JavaScript library. Default: True.

	hljs_style: The highlight.js library provides 79 different styles [https://highlightjs.org/static/demo/]
(color variations) for highlighting source code in code blocks. Set this to
the name of the desired style. Default: github.

	hljs_languages: By default, highlight.js only supports 23 common
languages. List additional languages here to include support for them.

 theme:
 name: mkdocs
 highlightjs: true
 hljs_languages:
 - yaml
 - rust

	shortcuts: Defines keyboard shortcut keys.

 theme:
 name: mkdocs
 shortcuts:
 help: 191 # ?
 next: 78 # n
 previous: 80 # p
 search: 83 # s

All values much be numeric key codes. It is best to use keys which are
available on all keyboards. You may use http://keycode.info/ to determine
the key code for a given key.

	help: Display a help modal which lists the keyboard shortcuts.
Default: 191 (?

)

	next: Navigate to the “next” page. Default: 78 (n)

	previous: Navigate to the “previous” page. Default: 80 (p)

	search: Display the search modal. Default: 83 (s)

readthedocs

A clone of the default theme used by the Read the Docs [https://readthedocs.org/] service, which offers
the same restricted feature-set as its parent theme. Like its parent theme, only
two levels of navigation are supported.

[image: ReadTheDocs]

In addition to the default theme configuration options, the readthedocs
theme supports the following options:

	highlightjs: Enables highlighting of source code in code blocks using
the highlight.js [https://highlightjs.org/] JavaScript library. Default: True.

	hljs_languages: By default, highlight.js only supports 23 common
languages. List additional languages here to include support for them.

 theme:
 name: readthedocs
 highlightjs: true
 hljs_languages:
 - yaml
 - rust

Third Party Themes

A list of third party themes can be found in the MkDocs community wiki [https://github.com/mkdocs/mkdocs/wiki/MkDocs-Themes]. If you
have created your own, please feel free to add it to the list.

Customizing a Theme

If you would like to make a few tweaks to an existing theme, there is no need to
create your own theme from scratch. For minor tweaks which only require some CSS
and/or JavaScript, you can use the docs_dir. However, for more complex
customizations, including overriding templates, you will need to use the theme
custom_dir setting.

Using the docs_dir

The extra_css and extra_javascript configuration options can be used to
make tweaks and customizations to existing themes. To use these, you simply
need to include either CSS or JavaScript files within your documentation
directory.

For example, to change the colour of the headers in your documentation, create
a file called extra.css and place it next to the documentation Markdown. In
that file add the following CSS.

h1 {
 color: red;
}

!!! note

If you are deploying your documentation with [ReadTheDocs]. You will need
to explicitly list the CSS and JavaScript files you want to include in
your config. To do this, add the following to your mkdocs.yml.

 extra_css: [extra.css]

After making these changes, they should be visible when you run
mkdocs serve - if you already had this running, you should see that the CSS
changes were automatically picked up and the documentation will be updated.

!!! note

Any extra CSS or JavaScript files will be added to the generated HTML
document after the page content. If you desire to include a JavaScript
library, you may have better success including the library by using the
theme [custom_dir].

Using the theme custom_dir

The theme.custom_dir configuration option can be used to point to a directory
of files which override the files in a parent theme. The parent theme would be
the theme defined in the theme.name configuration option. Any file in the
custom_dir with the same name as a file in the parent theme will replace the
file of the same name in the parent theme. Any additional files in the
custom_dir will be added to the parent theme. The contents of the custom_dir
should mirror the directory structure of the parent theme. You may include
templates, JavaScript files, CSS files, images, fonts, or any other media
included in a theme.

!!! Note

For this to work, the theme `name` setting must be set to a known installed theme.
If the `name` setting is instead set to `null` (or not defined), then there
is no theme to override and the contents of the `custom_dir` must be a
complete, standalone theme. See [Custom Themes][custom theme] for more
information.

For example, the mkdocs theme (browse source [https://github.com/mkdocs/mkdocs/tree/master/mkdocs/themes/mkdocs]), contains the following
directory structure (in part):

- css\
- fonts\
- img\
 - favicon.ico
 - grid.png
- js\
- 404.html
- base.html
- content.html
- nav-sub.html
- nav.html
- toc.html

To override any of the files contained in that theme, create a new directory
next to your docs_dir:

mkdir custom_theme

And then point your mkdocs.yml configuration file at the new directory:

theme:
 name: mkdocs
 custom_dir: custom_theme/

To override the 404 error page (“file not found”), add a new template file named
404.html to the custom_theme directory. For information on what can be
included in a template, review the documentation for building a custom theme.

To override the favicon, you can add a new icon file at
custom_theme/img/favicon.ico.

To include a JavaScript library, copy the library to the custom_theme/js/
directory.

Your directory structure should now look like this:

- docs/
 - index.html
- custom_theme/
 - img/
 - favicon.ico
 - js/
 - somelib.js
 - 404.html
- config.yml

!!! Note

Any files included in the parent theme (defined in `name`) but not included
in the `custom_dir` will still be utilized. The `custom_dir` will only
override/replace files in the parent theme. If you want to remove files, or
build a theme from scratch, then you should review the documentation for
building a [custom theme].

Overriding Template Blocks

The built-in themes implement many of their parts inside template blocks which
can be individually overridden in the main.html template. Simply create a
main.html template file in your custom_dir and define replacement blocks
within that file. Just make sure that the main.html extends base.html. For
example, to alter the title of the MkDocs theme, your replacement main.html
template would contain the following:

{% extends "base.html" %}

{% block title %}
<title>Custom title goes here</title>
{% endblock %}

In the above example, the title block defined in your custom main.html file
will be used in place of the default title block defined in the parent theme.
You may re-define as many blocks as you desire, as long as those blocks are
defined in the parent. For example, you could replace the Google Analytics
script with one for a different service or replace the search feature with your
own. You will need to consult the parent theme you are using to determine what
blocks are available to override. The MkDocs and ReadTheDocs themes provide the
following blocks:

	site_meta: Contains meta tags in the document head.

	htmltitle: Contains the page title in the document head.

	styles: Contains the link tags for stylesheets.

	libs: Contains the JavaScript libraries (jQuery, etc) included in the page header.

	scripts: Contains JavaScript scripts which should execute after a page loads.

	analytics: Contains the analytics script.

	extrahead: An empty block in the <head> to insert custom tags/scripts/etc.

	site_name: Contains the site name in the navigation bar.

	site_nav: Contains the site navigation in the navigation bar.

	search_box: Contains the search box in the navigation bar.

	next_prev: Contains the next and previous buttons in the navigation bar.

	repo: Contains the repository link in the navigation bar.

	content: Contains the page content and table of contents for the page.

	footer: Contains the page footer.

You may need to view the source template files to ensure your modifications will
work with the structure of the site. See Template Variables for a list of
variables you can use within your custom blocks. For a more complete
explanation of blocks, consult the Jinja documentation [http://jinja.pocoo.org/docs/dev/templates/#template-inheritance].

Combining the custom_dir and Template Blocks

Adding a JavaScript library to the custom_dir will make it available, but
won’t include it in the pages generated by MkDocs. Therefore, a link needs to
be added to the library from the HTML.

Starting the with directory structure above (truncated):

- docs/
- custom_theme/
 - js/
 - somelib.js
- config.yml

A link to the custom_theme/js/somelib.js file needs to be added to the
template. As somelib.js is a JavaScript library, it would logically go in the
libs block. However, a new libs block that only includes the new script will
replace the block defined in the parent template and any links to libraries in
the parent template will be removed. To avoid breaking the template, a
super block [http://jinja.pocoo.org/docs/dev/templates/#super-blocks] can be used with a call to super from within the block:

{% extends "base.html" %}

{% block libs %}
 {{ super() }}
 <script src="{{ base_url }}/js/somelib.js"></script>
{% endblock %}

Note that the base_url template variable was used to ensure that the link is
always relative to the current page.

Now the generated pages will include links to the template provided libraries as
well as the library included in the custom_dir. The same would be required for
any additional CSS files included in the custom_dir.

Writing your docs

How to layout and write your Markdown source files.

File layout

Your documentation source should be written as regular Markdown files (see
Writing with Markdown below), and placed in the
documentation directory. By default, this directory
will be named docs and will exist at the top level of your project, alongside
the mkdocs.yml configuration file.

The simplest project you can create will look something like this:

mkdocs.yml
docs/
 index.md

By convention your project homepage should always be named index. Any of the
following extensions may be used for your Markdown source files: markdown,
mdown, mkdn, mkd, md. All Markdown files included in your documentation
directory will be rendered in the built site regardless of any settings.

You can also create multi-page documentation, by creating several Markdown
files:

mkdocs.yml
docs/
 index.md
 about.md
 license.md

The file layout you use determines the URLs that are used for the generated
pages. Given the above layout, pages would be generated for the following URLs:

/
/about/
/license/

You can also include your Markdown files in nested directories if that better
suits your documentation layout.

docs/
 index.md
 user-guide/getting-started.md
 user-guide/configuration-options.md
 license.md

Source files inside nested directories will cause pages to be generated with
nested URLs, like so:

/
/user-guide/getting-started/
/user-guide/configuration-options/
/license/

Index pages

When a directory is requested, by default, most web servers will return an index
file (usually named index.html) contained within that directory if one exists.
For that reason, the homepage in all of the examples above has been named
index.md, which MkDocs will render to index.html when building the site.

Many repository hosting sites provide special treatment for README files by
displaying the contents of the README file when browsing the contents of a
directory. Therefore, MkDocs will allow you to name your index pages as
README.md instead of index.md. In that way, when users are browsing your
source code, the repository host can display the index page of that directory as
it is a README file. However, when MkDocs renders your site, the file will be
renamed to index.html so that the server will serve it as a proper index file.

If both an index.md file and a README.md file are found in the same
directory, then the index.md file is used and the README.md file is
ignored.

Configure Pages and Navigation

The nav configuration setting in your mkdocs.yml file
defines which pages are included in the global site navigation menu as well as
the structure of that menu. If not provided, the navigation will be
automatically created by discovering all the Markdown files in the
documentation directory. An automatically created
navigation configuration will always be sorted alphanumerically by file name
(except that index files will always be listed first within a sub-section). You
will need to manually define your navigation configuration if you would like
your navigation menu sorted differently.

A simple navigation configuration looks like this:

nav:
- 'index.md'
- 'about.md'

All paths in the navigation configuration must be relative to the docs_dir
configuration option. If that option is set to the default value, docs, the
source files for the above configuration would be located at docs/index.md and
docs/about.md.

The above example will result in two navigation items being created at the top
level and with their titles inferred from the contents of the file (or the
filename if no title is defined within the file). To define a custom title for
the pages, the title can be added before the filename.

nav:
- Home: 'index.md'
- About: 'about.md'

Note that if a title is defined for a page in the navigation, that title will be
used throughout the site for that page and will override any title defined
within the page itself.

Navigation sub-sections can be created by listing related pages together under a
section title. For example:

nav:
- Home: 'index.md'
- User Guide:
 - 'Writing your docs': 'writing-your-docs.md'
 - 'Styling your docs': 'styling-your-docs.md'
- About:
 - 'License': 'license.md'
 - 'Release Notes': 'release-notes.md'

With the above configuration we have three top level items: “Home”, “User Guide”
and “About.” “Home” is a link to the homepage for the site. Under the “User
Guide” section two pages are listed: “Writing your docs” and “Styling your
docs.” Under the “About” section two more pages are listed: “License” and
“Release Notes.”

Note that a section cannot have a page assigned to it. Sections are only
containers for child pages and sub-sections. You may nest sections as deeply as
you like. However, be careful that you don’t make it too difficult for your
users to navigate through the site navigation by over-complicating the nesting.
While sections may mirror your directory structure, they do not have to.

Any pages not listed in your navigation configuration will still be rendered and
included with the built site, however, they will not be linked from the global
navigation and will not be included in the previous and next links. Such
pages will be “hidden” unless linked to directly.

Writing with Markdown

MkDocs pages must be authored in Markdown [https://daringfireball.net/projects/markdown/], a lightweight markup language
which results in easy-to-read, easy-to-write plain text documents that can be
converted to valid HTML documents in a predictable manner.

MkDocs uses the Python-Markdown [https://python-markdown.github.io/] library to render Markdown documents to HTML.
Python-Markdown is almost completely compliant with the reference
implementation [https://daringfireball.net/projects/markdown/], although there are a few very minor differences [https://python-markdown.github.io/#differences].

In addition to the base Markdown syntax [https://daringfireball.net/projects/markdown/syntax] which is common across all Markdown
implementations, MkDocs includes support for extending the Markdown syntax with
Python-Markdown extensions [https://python-markdown.github.io/extensions/]. See the MkDocs’ markdown_extensions
configuration setting for details on how to enable extensions.

MkDocs includes some extensions by default, which are highlighted below.

Internal links

MkDocs allows you to interlink your documentation by using regular Markdown
links [https://daringfireball.net/projects/markdown/syntax#link]. However, there are a few additional benefits to formatting those links
specifically for MkDocs as outlined below.

Linking to pages

When linking between pages in the documentation you can simply use the regular
Markdown linking [https://daringfireball.net/projects/markdown/syntax#link] syntax, including the relative path to the Markdown
document you wish to link to.

Please see the [project license](license.md) for further details.

When the MkDocs build runs, these Markdown links will automatically be
transformed into an HTML hyperlink to the appropriate HTML page.

If the target documentation file is in another directory you’ll need to make
sure to include any relative directory path in the link.

Please see the [project license](../about/license.md) for further details.

The toc [https://python-markdown.github.io/extensions/toc/] extension is used by MkDocs to generate an ID for every header in your
Markdown documents. You can use that ID to link to a section within a target
document by using an anchor link. The generated HTML will correctly transform
the path portion of the link, and leave the anchor portion intact.

Please see the [project license](about.md#license) for further details.

Note that IDs are created from the text of a header. All text is converted to
lowercase and any disallowed characters, including white-space, are converted to
dashes. Consecutive dashes are then reduced to a single dash.

There are a few configuration settings provided by the toc extension which you
can set in your mkdocs.yml configuration file to alter the default behavior:

permalink:

: Generate permanent links at the end of each header. Default: False.

When set to True the paragraph symbol (¶ or `¶`) is used as the
link text. When set to a string, the provided string is used as the link
text. For example, to use the hash symbol (`#`) instead, do:

 markdown_extensions:
 - toc:
 permalink: "#"

baselevel:

: Base level for headers. Default: 1.

This setting allows the header levels to be automatically adjusted to fit
within the hierarchy of your HTML templates. For example, if the Markdown
text for a page should not contain any headers higher than level 2 (`<h2>`),
do:

 markdown_extensions:
 - toc:
 baselevel: 2

Then any headers in your document would be increased by 1. For example, the
header `# Header` would be rendered as a level 2 header (`<h2>`) in the HTML
output.

separator:

: Word separator. Default: -.

Character which replaces white-space in generated IDs. If you prefer
underscores, then do:

 markdown_extensions:
 - toc:
 separator: "_"

Note that if you would like to define multiple of the above settings, you must
do so under a single toc entry in the markdown_extensions configuration
option.

markdown_extensions:
 - toc:
 permalink: "#"
 baselevel: 2
 separator: "_"

Linking to images and media

As well as the Markdown source files, you can also include other file types in
your documentation, which will be copied across when generating your
documentation site. These might include images and other media.

For example, if your project documentation needed to include a GitHub pages
CNAME file [https://help.github.com/articles/using-a-custom-domain-with-github-pages/] and a PNG formatted screenshot image then your file layout might
look as follows:

mkdocs.yml
docs/
 CNAME
 index.md
 about.md
 license.md
 img/
 screenshot.png

To include images in your documentation source files, simply use any of the
regular Markdown image syntaxes:

Cupcake indexer is a snazzy new project for indexing small cakes.

![Screenshot](img/screenshot.png)

Above: Cupcake indexer in progress

Your image will now be embedded when you build the documentation, and should
also be previewed if you’re working on the documentation with a Markdown editor.

Linking from raw HTML

Markdown allows document authors to fall back to raw HTML when the Markdown
syntax does not meets the author’s needs. MkDocs does not limit Markdown in this
regard. However, as all raw HTML is ignored by the Markdown parser, MkDocs is
not able to validate or convert links contained in raw HTML. When including
internal links within raw HTML, you will need to manually format the link
appropriately for the rendered document.

Meta-Data

MkDocs includes support for both YAML and MultiMarkdown style meta-data (often
called front-matter). Meta-data consists of a series of keywords and values
defined at the beginning of a Markdown document, which are stripped from the
document prior to it being processing by Python-Markdown. The key/value pairs
are passed by MkDocs to the page template. Therefore, if a theme includes
support, the values of any keys can be displayed on the page or used to control
the page rendering. See your theme’s documentation for information about which
keys may be supported, if any.

In addition to displaying information in a template, MkDocs includes support for
a few predefined meta-data keys which can alter the behavior of MkDocs for that
specific page. The following keys are supported:

template:

: The template to use with the current page.

By default, MkDocs uses the `main.html` template of a theme to render
Markdown pages. You can use the `template` meta-data key to define a
different template file for that specific page. The template file must be
available on the path(s) defined in the theme's environment.

title:

: The “title” to use for the document.

MkDocs will attempt to determine the title of a document in the following
ways, in order:

1. A title defined in the [nav] configuration setting for a document.
2. A title defined in the `title` meta-data key of a document.
3. A level 1 Markdown header on the first line of the document body.
4. The filename of a document.

Upon finding a title for a page, MkDoc does not continue checking any
additional sources in the above list.

YAML Style Meta-Data

YAML style meta-data consists of YAML [http://yaml.org] key/value pairs wrapped in YAML style
deliminators to mark the start and/or end of the meta-data. The first line of
a document must be ---. The meta-data ends at the first line containing an
end deliminator (either --- or ...). The content between the deliminators is
parsed as YAML [http://yaml.org].

title: My Document
summary: A brief description of my document.
authors:
 - Waylan Limberg
 - Tom Christie
date: 2018-07-10
some_url: https://example.com

This is the first paragraph of the document.

YAML is able to detect data types. Therefore, in the above example, the values
of title, summary and some_url are strings, the value of authors is a
list of strings and the value of date is a datetime.date object. Note that
the YAML keys are case sensitive and MkDocs expects keys to be all lowercase.
The top level of the YAML must be a collection of key/value pairs, which results
in a Python dict being returned. If any other type is returned or the YAML
parser encounters an error, then MkDocs does not recognize the section as
meta-data, the page’s meta attribute will be empty, and the section is not
removed from the document.

MultiMarkdown Style Meta-Data

MultiMarkdown style meta-data uses a format first introduced by the
MultiMarkdown [http://fletcherpenney.net/MultiMarkdown_Syntax_Guide#metadata] project. The data consists of a series of keywords and values
defined at the beginning of a Markdown document, like this:

Title: My Document
Summary: A brief description of my document.
Authors: Waylan Limberg
 Tom Christie
Date: January 23, 2018
blank-value:
some_url: https://example.com

This is the first paragraph of the document.

The keywords are case-insensitive and may consist of letters, numbers,
underscores and dashes and must end with a colon. The values consist of anything
following the colon on the line and may even be blank.

If a line is indented by 4 or more spaces, that line is assumed to be an
additional line of the value for the previous keyword. A keyword may have as
many lines as desired. All lines are joined into a single string.

The first blank line ends all meta-data for the document. Therefore, the first
line of a document must not be blank.

!!! note

MkDocs does not support YAML style deliminators (`---` or `...`) for
MultiMarkdown style meta-data. In fact, MkDocs relies on the the presence or
absence of the deliminators to determine whether YAML style meta-data or
MultiMarkdown style meta-data is being used. If the deliminators are
detected, but the content between the deliminators is not valid YAML
meta-data, MkDocs does not attempt to parse the content as MultiMarkdown
style meta-data.

Tables

The tables [https://python-markdown.github.io/extensions/tables/] extension adds a basic table syntax to Markdown which is popular
across multiple implementations. The syntax is rather simple and is generally
only useful for simple tabular data.

A simple table looks like this:

First Header	Second Header	Third Header
Content Cell | Content Cell | Content Cell
Content Cell | Content Cell | Content Cell

If you wish, you can add a leading and tailing pipe to each line of the table:

First Header	Second Header	Third Header
Content Cell	Content Cell	Content Cell
Content Cell	Content Cell	Content Cell

Specify alignment for each column by adding colons to separator lines:

First Header	Second Header	Third Header
Left | Center | Right
Left | Center | Right

Note that table cells cannot contain any block level elements and cannot contain
multiple lines of text. They can, however, include inline Markdown as defined in
Markdown’s syntax [https://daringfireball.net/projects/markdown/syntax] rules.

Additionally, a table must be surrounded by blank lines. There must be a blank
line before and after the table.

Fenced code blocks

The fenced code blocks [https://python-markdown.github.io/extensions/fenced_code_blocks/] extension adds an alternate method of defining code
blocks without indentation.

The first line should contain 3 or more backtick (`) characters, and the
last line should contain the same number of backtick characters (`):

```
Fenced code blocks are like Standard
Markdown’s regular code blocks, except that
they’re not indented and instead rely on
start and end fence lines to delimit the
code block.
```


With this approach, the language can optionally be specified on the first line
after the backticks which informs any syntax highlighters of the language used:

```python
def fn():
    pass
```


Note that fenced code blocks can not be indented. Therefore, they cannot be
nested inside list items, blockquotes, etc.

 _static/file.png

_static/minus.png

_static/down.png

_static/up-pressed.png

_static/up.png

_static/plus.png

_static/comment-close.png

_static/comment.png

_static/comment-bright.png

_static/down-pressed.png

nav.xhtml

 Table of Contents

 		
 Welcome to Read the Docs

_images/readthedocs.png
€« C' [1127.0.0.1:8000

MkLorum

Home

MkLorum
Commands

Project layout

Docs » Home

MkLorum

For full documentation visit mkdocs.org.

Commands

* nkdocs new [dir-nane] - Create anew project.
« mkdocs serve - Start the live-reloading docs server.
« nkdocs buita - Build the documentation site.

« nkdocs nelp - Printthis help message.

Project layout

mkdocs . yml
docs/

index.nd # The documentation homepage

Other markdown pages, images and other files

The configuration file

Next©

Built with MkDocs using a theme provided by Read the Docs.

_static/ajax-loader.gif

_images/mkdocs.png
MkDocs Home

MkDocs
Overview
Installation
Getting started
Adding pages

Theming our
documentation

Building the site
Deploying
Getting help

User Guid

About €Previous Nexty OGitHub

MkDocs

Project documentation with Markdown.

Overview

MKkDacs is a fast, simple and downright gorgeous static site generator that's geared towards building
project documentation. Documentation source files are written in Markdown, and configured with a single
'YAML configuration file.

MKkDocs is currently still in development.

We're progressing quickly, but the documentation still needs fillng in, and there are a few rough edges. The
1.0 release is planned to arrive in the next few months.

Host anywhere.

Builds completely static HTML sites that you can host on GitHub pages, Amazon 3, or anywhere else you
choose.

Great themes available.

There's a stack of good looking themes included by default. Choose from bootstrap, readthedocs, or any of
the 12 bootswatch themes.

