

Welcome to mk-project’s documentation!

Contents:

	mk-project
	Presentation

	Hackme

	What provide mk-project

	How mk-project works

	Author(s)

	Contributor(s)

	The future of mk-project

	Building a mk-project project
	Starting

	C/C++ Compiler settings

	Files

	Disassembling

	Profiling

	C/C++ code formatters

	Documentation

	About informations

	Others Informations

	Licensing

	*.desktop file

	Archiving your project

	Summary

	Working on an existing mk-project project
	Open an mk-project project

	Reconfiguring an existing project

	Adding files to your project

	mk-project documentation
	Introduction

	You are a sphinx user:

	You aren’t a sphinx user

	mk-project documentation visualize

	mk-project slots

	rst2man

	mk-project code investigating, debugging and disassembling
	Introduction

	The make info target

	The make gdb target

	The make ldd target

	The make nm target

	The make objdump target

	The make strace target

	The make ltrace target

	The make strip target

	Oprofile targets

	Valgrind targets

	Alternative to *_OPTS

	Documentation Source

	mk-project code formatters
	Introduction

	Using the indent utility

	Using the astyle utility

	mk-project contributing advices
	mk-project zen

	How contibute ?

	Makefile

	code formatters

	*.todo or *.tdo file format specifications:
	Markup syntax

	Markup Types

	Priority_level

	TASK_ORDER

	Advices

	Syntax of *.todo file(s) content

	End word of specifications of the *.todo file(s) format

	Example of a *.todo file:

	License

	About mk-project
	A word from the author

	Dependencies

	mk-project Gtk3 types
	GtkSmartIconButton

	GtkSmartIconButton

	GtkTermTab

	GtkMkTerm

Indices and tables

	Index

	Module Index

	Search Page

mk-project

	author:	Brüggemann Eddie <mrcyberfighter@gmail.com>

	program:	mk-project

	version:	latest

	language:	C

	release:	Nov 16, 2017

Presentation

mk-project is a C and C++ project builder, with a nice G.U.I, which generate at first a big, big do it all, Makefile.

So that you can create a project and keep the tree of your project, which reflect the UNIX file system tree.

	note:	mk-project does not claim to replace the auto-tools but it is build on the top in the spirit of development instead of distributing.

In addition vim or others T.U.I editors users,

can use the entire program by editing their source files into the Terminals ‣ Edit terminal which is a notebook, you can adding as many terminals you want.

Else mk-project is a tool done to ease the development process of C or C++ programs and a good bridge for the distributing process. Especially with the autotools.

mk-project is a T.D.E (Terminal Developement Environment):

an utility used for the development of programs with many functionalities !

mk-project is based on the make tool which on his turn, use severals utilities, for providing many features

and so many useful make targets.

Callable through a terminal, in preference (or through the G.U.I from mk-project: targets ‣ *).

mk-project is an Environment in the terms of his wide field of targets which aren’t statically at all.

But dynamically configurable, changeable and self-build-able and so that the grass becomes greener...

The targets are short string easy to remember and so you can make work

	your computer, through the terminals

	and mostly your head through remembering, configuring, modifying and creating targets.

And not become an I.D.E (Integrated Development Environment) zombie thrashing his head and knows !

But a proud well informed programmer which knows exactly how his system and environment works which can easily automate the task using the make syntax.

Hackme

You can edit the Makefile by hand at your convenience, of course !

Note

But I think It’s better for some generic targets to include them directly

into the template file(s) you will find at $(pkgdatadir): /usr(/local/share/mk-project/templates/*

So that you get it every time you generate a new project.

	warning:	If you do this: you must take care of escaping the ‘%’ with a ‘%’ character : “%%”.

But think to notify the developers,

to inform them about your add-on(s) if you think it’s reliable and usable for others.

What provide mk-project

Note

At the time i write this documentation mk-project support:

the C and C++ programming language.

“I invite all the community to work together to take in charge more languages...”

	file:	see this document for participating (You can become from the simple contributor to the entire coauthor).

	mk-project provide at first a solid base for building a work,

through a big Makefile, which can be edited manually in respect of the following few conventions:

Note

	Configuration settings are set through the string:

	F For false (disable option).

	T for true (enable option).

	Some few others variables:

The variable $(SRC_FILES) is build from the variable $(SRC_DIR) which value is always: ./src.

This mean if you want to add files manually (if you doesn’t use the GUI for this task) to your Makefile,

do it properly by using the $(SRC_DIR) variable:

SRC_DIR = ./src

SRC_FILES = ${SRC_DIR}/my_file${EXT_SRC} \
 ${SRC_DIR}/subfolder/my_file${EXT_SRC}

So you will add file(s) relative to the ./src directory where source file(s) have to reside.

	note:	Otherwise simply use the G.U.I for adding file(s) Project -> Add file(s) to project.

	A building system for your source files.

	Many tools for machine code investigation:

From the simple -g option setting by a GNU-Compiler for debbuging with gdb, through disassemble the machine code files and executable tracing, to profiling the entire work.

	For the documentation mk-project support the sphinx documentation generator.

The sphinx documentation targets support many output formats:

	info files.

	man (manual pages).

	HTML, single HTML, and texi HTML documentation.

	PDF and LATEXPDF files.

	XML files.

	LATEX files.

	EPUB files.

And many more through sphinx like: qthelp, applehelp, xml, json or devhelp per example.

mk-project provide a simple G.U.I composing of terminals and a menu-bar.

At first you can use the menu items to perform some actions like:

	Generate a new project: Project -> New Project.

Then you have to configure your project answering some basics questions like:

	Programming language.

	Program name

	Project folder (in which the new project will be generate).

And some others according to your settings.

Once the new project is generated you can access to the make targets either through the mk-project G.U.I menu-bar (simple click on the wanted target to execute it !).

Or from the terminal of mk-project or any else terminal at the condition to be in the Makefile current folder.

	note:	Simply type $ make help to get the list of available targets.

Warning

If you add some user-targets, to the Makefile(s), think at adding them to the $ make help output.

So that mk-project can auto-detect your target and list it to add it as menu item to the make targets.

If you add a bash comment on the same line it will be displayed as tool-tip by overfly the menu items.

	warning:	Simply think to limit your entry at terminal maximal size: 79 characters.

So mk-project provide another terminals ordered in tabs which you can add, remove, and configuring.

For purpose of terminals editor users like vi, ed, emacs which can be easily launch an instance their favorite terminal editor in every tab all that continuing using the mk-project interface.

Finally you can switch between the single terminals -> make terminal (which should stay in the Makefile current folder) and the terminals -> edit terminals terminals using the menu radio items.

How mk-project works

	note:	The answers is simply all is make in Makefiles, which will make you the development easier.

mk-project doesn’t claim to replace an IDE or others building tools but only give you an alternative

which you can entirely adapt to your requirement.

Note

For being true the make tool implementation and the way it make you the life easier

without forgetting your TTY Knows has impress me so that

I couldn’t develop a good project without it

or in others words:

If the make tool have never exist I would invent it...

Author(s)

	Developer:	Brüggemann Eddie

	Documenter:	Brüggemann Eddie

Contributor(s)

Become one !!!

The future of mk-project

mk-project: mic-on !!!

Note

The idea is to sit in front of the interface of mk-project (microphone on !),

writing the source code from your last creation:

And to say execute: make exec, or the target you want...

The program could react by analyzing your voice entry and executing the target !!!

So that the build is automate by (simple) voice recognition.

So you can write your program with your hands

and

build it with by emitting a simple order so that the program execute the corresponding target,

if recognize...

What do you think about it ?

	note:	We could enhance mk-project in the way of Speech recognition...

Building a mk-project project

Starting

At first some basic informations will be required:

	The programming language from the project.

	C

Or

	C++

	The project name which will become the program name

the binary name.

	The program version which, if empty will be arbitrary set to the value 0.0.

	The folder where to generate the project.

	warning:	The folder must be empty (Advice: create it with the folder-chooser at the same time as the project).

	The license of your project.

	GPL

	AGPL

	LGPL

	FDL

	Apache 2.0 License

	Clear BSD

	Free BSD

	Other

	note:	The license files will be copied into the project folder according to your choice of format(s).

	docbook

	epub

	pdf

	latex

	html

	texinfo

	text

C/C++ Compiler settings

For every entry except the “Compiler entry” you get an aside button which

will permit you to add the most common settings easily.

	Compiler:

You can choose a compiler to use, which default to cc for a C project and c++ for C++.

But you can set clang per example or the compiler you want.

	warning:	The exactness of your entry will be checked by compiling a minimal program.

	Warnings:

You can set the warnings to use.

Note

The aside button will permit you to insert as warnings the following most common warnings settings:

	-Wall (All warning: sea the documentation of your compiler to see which are enabled).

	-Wextra (Extra warning: sea the documentation of your compiler to see which are enabled).

	-Wpedantic (ISO conform: most extension are permitted. sea the documentation of your compiler to see which are enabled).

	-w (No output warnings).

	-Werror (A warning is consider as an error).

	warning:	The field is empty per default.

	CFLAGS:

You can set the argument to give to the compiler (like -g, -O2,...).

Note

The aside button provide few flags adding:

	-g

	-O[0123gsf]

	-std=

	-pedantic

	CPPFLAGS:

Preprocessor instruction to pass onto the compile command line.

Note

The aside button permit you to define a definition with a value or without.

	LDFLAGS:

Dynamic Linker Flags.

Note

The aside button will permit you to choose the pkg-config

you want to add to your project.

By listing all the pkg-config available on your system.

	warning:	By hand editing, if you use pkg-config, use the back-ticks syntax:

Else this will not work because of the make syntax.

	LDLIBS:

Dynamic Linker library libraries: per example -lm.

Note

The aside button will permit you to add the linker of your choice.

By listing all linker flags available on your system.

Files

Here you must set the extension you will use for the source and header files.

Especially for the C++ language:

	Source files:

	.cpp

	.CPP

	.c++

	.C

	warning:	This is very important because of the compilation automation which will not work with the wrong extension.

	Header files:

	.h

	.hh

	.H

	.hp

	.hxx

	.hpp

	.HPP

	.h++

	.tcc

	note:	For the C language this default to .c and .h.

Disassembling

Here you can give the default options to pass to the debugging tools:

	nm options.

	gdb options.

	strace options.

	ltrace options.

	objdump options.

	ldd options.

	gprof options.

	note:	For further informations sea the mk-project code investigating, debugging and disassembling page.

Profiling

Oprofile

mk-project use Oprofile version >= 1.0 for profiling you code.

You can set the following default options:

	operf options.

	ocount options.

	opreport options.

	opannotate options.

	opgprof options.

Valgrind

mk-project provides 4 valgrind targets per default:

make valgrind-memcheck # Launch the valgrind memcheck tool on your binary.

make valgrind-cachegrind # Launch the valgrind cachegrind tool on your binary.

make valgrind-callgrind # Launch the valgrind callgrind tool on your binary.

make valgrind-helgrind # Launch the valgrind helgrind tool on your binary.

For this valgrind targets you can set the options.

	note:	You can define more valgrind targets by editing the template.

You can give options to apply to valgrind by setting the environment variable VALGRIND_OPTS.

Or by passing it like this:

$ make valgrind-memcheck VALGRIND_MEMCHECK_OPTS=--option=value

$ make valgrind-cachegrind VALGRIND_CACHEGRIND_OPTS=--option=value

$ make valgrind-callgrind VALGRIND_CALLGRIND_OPTS=--option=value

$ make valgrind-helgrind VALGRIND_HELGRIND_OPTS=--option=value

C/C++ code formatters

Here you can choose the code formatter(s) you want to use.

	You can set the options to give to indent and to astyle for the indent-user and astyle-user target if you know this tools.

	note:	But mk-project provides a lot of pre-configurated astyle, indent, bcpp targets.

	You can set the indentation width to use and wether to use tabulation or not during the formatting process.

	note:	For further information sea the page: mk-project code formatters

Documentation

	Simply choose to use sphinx or not.

	Set the options according to your sphinx version.

	Enable/Disable the wanted sphinx extensions.

	sphinx:	This will generate a Makefile and sphinx specific targets.

man-page

The man page generating is separated from the documentation because they normally

does not contains the same,

so mk-project provides through the rst2man tool an option

to build (using the ReST syntax) and view a man page.

About informations

Here you can set some informations about your program.

	Author(s).

	Mail address.

	Program URL.

	Copyright string.

	note:	All this informations will generate some constant definition into the ./headers/defines.${EXT_HDR} file.

Others Informations

	Make options: the options to pass to make at every call.

	The bash location (auto-detect).

	Compression level for the pkg-* targets, with which you can build an archive from your project.

Licensing

You can edit a source code files header according to the chosen license.

And add it to every source file with the target:

make prepend-license.

*.desktop file

You can build a desktop file with this boilerplate.

Archiving your project

mk-project provides many compressed archiving targets:

	zip archive.

	tar archive compressed with lzma, xz, gz, bz.

	rar archive.

If the wanted archive program is installed at your site. What is not oblige.

	note:	mk-project provides through his G.U.I a: Project –> extract and load menu item.

Summary

Last step to complete the generation of your project.

Enjoy the easiness of working with mk-project the T.D.E Terminal Development Environment.

Exporting your settings

You can exporting your settings as a mk-project profile.

To load it by the next project because typing all this options can be painful.

You will get the most wanted settings setted like nm_options per example,

but not all like the program name.

	warning:	The file extension will arbitrary set to *.mkpp.

Working on an existing mk-project project

Open an mk-project project

For opening an existing project you can make use of the *.mkp file from your project.

	Either by calling mk-project with the *.mkp file given as argument:

$ mk-project /path/to/project_folder/prgname.mkp

Or open the project within mk-project‘s G.U.I (Projects ‣ Load project).

	By using your file manager:

Simply click on the *.mkp file in the project folder

or

Opening the *.mkp file with your file manager using the open with option.

To open the mk-project G.U.I and loading the entire project.

	Using the mk-project G.U.I:

Use the menu item Projects ‣ Load project and choose the *.mkp of interest.

To load the entire project in the mk-project G.U.I

All targets will be available according to your settings.

Note

Else you can simply use a terminal to use the mk-project projects:

simply type make help in the project folder to sea the available targets.

Reconfiguring an existing project

Open the mk-project G.U.I and use the menu item Projects -> Reconfigure project

to open the project reconfiguring project interface.

Here you can:

	Change some settings of your project.

	Enable or disable some features.

	Edit the Licensing boilerplate to prepend it to all source and header files if you want to do so.

	Edit the desktop file boilerplate.

Adding files to your project

Open an existing project and then use the menu item Projects -> Add file(s) to project.

Then select the file(s) you want to add to your project.

Note

Take care of the checkbutton in the file chooser !

	You can choose to add the corresponding header file to your project.

	note:	If the header file doesn’t exist it will be create.

Warning

The file(s) must be in the ./src folder or subfolders from it !

Take care to organize your project properly so that all source files still in the ./src folder from your project !

Else you can add the file(s) to your project anyway but this can break your project tree if you rename the project folder.

	note:	It’s better to create sub-folders from the ./src folder to organize your project properly !

mk-project documentation

Introduction

mk-project currently support only one single documentation generator: sphinx.

sphinx was first design to generate official python documentation but time has past and sphinx

has become very popular at first by the python community.

Without any particular extension (like autodoc) sphinx is based on the R.e.S.T Re Structured Text [http://docutils.sourceforge.net/docs/user/rst/quickref.html] language but Mardown [http://markdown-syntax.html] can be used through modifying the conf.py file.

The Rest language is an easy markup language as like markdown but it is standardized (Markdown not) and can be extented what sphinx does.

	note:	Some R.e.S.T Re Structured Text [http://docutils.sourceforge.net/docs/user/rst/quickref.html] extension permit to build C andf C++ documentation without using any extension.

You are a sphinx user:

So everything is are right.

You aren’t a sphinx user

Let me convince you to adopt sphinx by learning the easy markup R.e.S.T Re Structured Text [http://docutils.sourceforge.net/docs/user/rst/quickref.html] or Markdown [http://markdown-syntax.html] language.

For generating documentation in many formats, mk-project generate make targets from the make output according which sphinx extension are installed on your system.

Per exemple currently on my system.

make sphinx-html # to make standalone HTML files

make sphinx-dirhtml # to make HTML files named index.html in directories

make sphinx-singlehtml # to make a single large HTML file

make sphinx-pickle # to make pickle files

make sphinx-json # to make JSON files

make sphinx-htmlhelp # to make HTML files and an HTML help project

make sphinx-qthelp # to make HTML files and a qthelp project

make sphinx-applehelp # to make an Apple Help Book

make sphinx-devhelp # to make HTML files and a Devhelp project

make sphinx-epub # to make an epub

make sphinx-epub3 # to make an epub3

make sphinx-latex # to make LaTeX files, you can set PAPER=a4 or PAPER=letter

make sphinx-latexpdf # to make LaTeX files and run them through pdflatex

make sphinx-latexpdfja # to make LaTeX files and run them through platex/dvipdfmx

make sphinx-lualatexpdf # to make LaTeX files and run them through lualatex

make sphinx-xelatexpdf # to make LaTeX files and run them through xelatex

make sphinx-text # to make text files

make sphinx-man # to make manual pages

make sphinx-texinfo # to make Texinfo files

make sphinx-info # to make Texinfo files and run them through makeinfo

make sphinx-gettext # to make PO message catalogs

make sphinx-changes # to make an overview of all changed/added/deprecated items

make sphinx-xml # to make Docutils-native XML files

make sphinx-pseudoxml # to make pseudoxml-XML files for display purposes

make sphinx-linkcheck # to check all external links for integrity

make sphinx-doctest # to run all doctests embedded in the documentation (if enabled)

make sphinx-coverage # to run coverage check of the documentation (if enabled)

	Many themes are available.

	Many contrib packages are available for extending sphinx in many ways.

	The rdt theme provide a web service, format the output in his theme and provide the documentation downloadable in many format.

mk-project documentation visualize

mk-project permit you to visualize all the output files in different manners:

mk-project will search severals documentation viewer programs on your installation.

Note

	The make varibale ${BROWSER} will link to your browser.

	The make variable {INFO} will link to the info program.

	The make variable {MAN} will link to the man program.

	The make variable {EPUB} will link to your epub viewer (fbreader or okular) if available.

	The make variable {PDF} will link to your pdf viewer if available.

	note:	If mk-project doesn’t find a binary for viewing a file it will use the xdg-open program as fallback.

Warning

The sphinx-show-* targets are set arbitrary

as best as I can

because their is either no way to know into which sub-folder the documentation will be generate

and nor the filename the documentation will have...

Simply trust me or correct it yourself if necessary.

mk-project slots

Always remember that you can write some make targets into the mk-project Makefile.

To ease you the documentation generating process and so extend mk-project.

Per example by the first version of mk-project, it use a mix of:

	The pandoc package.

	The python(3)-docutils and the rst2pdf packages.

	The texinfo and texlive packages.

To provide ReST, Markdown and texinfo documentation generation but Only one page per output format.

but I used sphinx to write the documentation of the version 1.0 of mk-project

with some few self -builded targets like this:

##

sphinx slot.

.PHONY: sphinx-singlehtml sphinx-html sphinx-htmlhelp sphinx-epub sphinx-info sphinx-man

sphinx Makefile singlehtml target link.
sphinx-singlehtml:
 cd sphinx_doc ; ${MAKE} singlehtml ;

sphinx Makefile html target link.
sphinx-html:
 cd sphinx_doc ; ${MAKE} html ;

sphinx Makefile epub target link.
sphinx-epub:
 cd sphinx_doc ; ${MAKE} epub ;

sphinx Makefile info target link.
sphinx-info:
 cd sphinx_doc ; ${MAKE} info ;

sphinx Makefile man target link.
sphinx-man:
 cd sphinx_doc ; ${MAKE} man ;

sphinx Makefile doctest target link.
sphinx-doctest:
 cd sphinx_doc ; ${MAKE} doctest

sphinx builded files showing targets.
.PHONY: sphinx-show-singlehtml sphinx-show-html sphinx-show-epub sphinx-show-info sphinx-show-man

sphinx-show-singlehtml:
 cd ./sphinx_doc/build/singlehtml ; ${BROWSER} index.html ;

sphinx-show-html:
 cd ./sphinx_doc/build/html ; ${BROWSER} index.html ;

sphinx-show-epub:
 cd ./sphinx_doc/build/epub ; ${EPUB} *.epub ;

sphinx-show-info:
 cd ./sphinx_doc/build/texinfo ; ${INFO} -f *.info ;

sphinx-show-man:
 cd ./sphinx_doc/build/man ; ${MAN} -f ${PRGNAME}.${MAN_LEVEL} ;

sphinx clean target.
sphinx-clean:
 cd sphinx_doc ; cd build ; rm -R * ;

##

rst2man

If you get the program rst2man installed on your system,

mk-project will create a folder named rst2man into the project tree into

which you will find a file ${PRGNAME}.rst to edit a man-page with rst2man.

	warning:	Because the man-page is often apart from the documentation.

mk-project code investigating, debugging and disassembling

Introduction

You want to investigate in deep your binary cause of it bugs or simply per curiosity.

mk-project provide a lot of targets which will make your investigation easier.

The make info target

The make info target display simple informations about your program.

Using the file, size, ls -s -h utilities.

The file utility

The file utility print out the details about any file-type.

So if an executable file is given, the file utility will display informations about it.

The size utility

The size utility print out the byte length of the main binary components:

.text, .data and .bss.

The make gdb target

At first you can use the famous GNU/Debugger gdb for investigating your program,

by simply launching the target make gdb.

This will launch gdb in the ./bin folder where your binary is located

with your program as argument.

Note

Given options to gdb:

For given supplementary options to gdb, which will be passed to gdb at every target call, edit the GDB_OPTS variable.

Else if you want to change the options for a unique call of gdb, by using the target.

Simply set the wanted options into the GDB_OPTS variable on the command line:

$ make gdb GDB_OPTS="--option value"

The make ldd target

The ldd utility show the complete list of dynamic libraries which your program will try to load (i.e. The load time dependencies).

Note

Given options to ldd:

For given supplementary options to ldd, which will be passed to ldd at every target call, edit the LDD_OPTS variable.

Else if you want to change the options for a unique call of ldd, by using the target.

Simply set the wanted options into the LDD_OPTS variable on the command line:

$ make ldd LDD_OPTS="--option value"

Warning

Limitations of ldd:

	ldd cannot identify the libraries dynamically loaded at runtime using dlopen().

Be aware, however, that in some circumstances, some version of ldd may attempt to obtain the dependencies informations
by directly executing the program. Thus, you should never employ ldd on untrusted executables,
since this may result in the execution of arbitrary code.

A safer alternative when dealing with untrusted executables is following:

$ objdump -p /path/to/binary | grep NEEDED

The same result result can be achieve using the readelf utility.

$ readelf -d /path/to/binary | grep NEEDED

The make nm target

The nm utility is used to list the symbols of a binary or object file(s).

It can also find the indicated symbol type.

Note

Given options to nm:

For given supplementary options to nm, which will be passed to nm at every target call, edit the NM_OPTS variable.

Else if you want to change the options for a unique call of nm, by using the target.

Simply set the wanted options into the NM_OPTS variable on the command line:

$ make nm NM_OPTS="--option value"

	note:	You can give the $(OBJECT) make variable as argument to nm instead of the binary.

Note

If the binary contains some C++ code, the symbols are printed by default in mangled form.

Usage examples:

$ nm /path/to/prg

List all symbols of prg (a binary or object file(s)).

$ nm -D /path/to/prg

List only the symbols contains into the dynamic section(s) (exported or visible).

$ nm -C /path/to/prg

List symbols in demangled form.

$ nm -D --no-demangle /path/to/prg

List symbols in not demangled form.

$ nm -u /path/to/prg

List undefined symbols.

Look at The 20 best nm commands [http://www.thegeekstuff.com/2012/03/linux-nm-command]

The make objdump target

objdump is one of the most versatile utility program, so it can support about 50 others binary formats other than the ELF format.

Note

Given options to objdump:

For given supplementary options to objdump, which will be passed to objdump at every target call, edit the OBJDUMP_OPTS variable.

Else if you want to change the options for a unique call of objdump, by using the target.

Simply set the wanted options into the OBJDUMP_OPTS variable on the command line:

$ make objdump OBJDUMP_OPTS="--option value"

	note:	You can give the $(OBJECT) make variable as argument to objdump instead of the binary.

Usage examples:

$ objdump -f /path/to/prg

Is used to obtain an insight into the object file(s) header.
The header provide plenty of informations like
#
* binary type
* entry point (The start of the .text section)
* etc..

$ objdump -h /path/to/prg

Is used to list the available sections from the prg.

$ objdump -T /path/to/prg

List dynamic symbols only.

Is equivalent to running: $ nm -D /path/to/prg

$ objdump -t /path/to/prg

Examines the dynamic section(s).

$ objdump -R /path/to/prg

Examines the relocation section(s).

$ objdump -S -j <section name> /path/to/prg

Provide the hex-dump of the values carried by the given section.

$ objdump -p /path/to/prg

Display informations about the ELF binary segments.

Usage example for code disassembling using objdump:

$ objdump -d -M intel /path/to/prg

Used to disassemble a binary using the Intel syntax.

$ objdump -d -S -M intel /path/to/prg

Like above but interspercing the original source code.

$ objdump -d -M intel -j <section name> /path/to/prg

This only works if the binary is compiled with the -g (debugging) option.

The make strace target

The strace utility tracks down the system calls made by the process as well as the signals received by the process.

Note

Given options to strace:

For given supplementary options to strace, which will be passed to strace at every target call, edit the STRACE_OPTS variable.

Else if you want to change the options for a unique call of strace, by using the target.

Simply set the wanted options into the STRACE_OPTS variable on the command line:

$ make strace STRACE_OPTS="--option value"

The make ltrace target

The ltrace utility tracks down the libraries calls made by the process.

Note

Given options to ltrace:

For given supplementary options to ltrace, which will be passed to ltrace at every target call, edit the LTRACE_OPTS variable.

Else if you want to change the options for a unique call of ltrace, by using the target.

Simply set the wanted options into the LTRACE_OPTS variable on the command line:

$ make ltrace LTRACE_OPTS="--option value"

The make strip target

The strip utility can be used to eliminated all the symbols not needed in the process.

Note

Given options to strip:

For given supplementary options to strip, which will be passed to strip at every target call, edit the STRIP_OPTS variable.

Else if you want to change the options for a unique call of strip, by using the target.

Simply set the wanted options into the STRIP_OPTS variable on the command line:

$ make strip STRIP_OPTS="--option value"

Oprofile targets

The program collection Oprofile is a profiling system for systems running Linux 2.6.31 and greater.

OProfile makes use of the hardware performance counters provided on Intel, AMD, and other processors.

OProfile can profile a selected program or process or the whole system.

OProfile can also be used to collect cumulative event counts at the application, process, or system level.

Begin to show at:

$ man Oprofile

$ ophelp

ophelp lists the available performance counter options.

If you give it a symbolic event name, it will return the hardware value (e.g. “ophelp DATA_MEM_REFS”).

	note:	mk-project use the version >= 1.0 of Oprofile.

And the available Oprofile programs are:

	operf

	ocount

	opreport

	opannotate

	oparchive

	opgprof

mk-project provides wrapper around this programs except oparchive.

Simply remember that operf and ocount generate a profile_specification.

And the other are done to interpret the datas.

	warning:	You must run this programs as root.

Valgrind targets

If valgrind is present on your system mk-project provide you 4 targets for the most common usage of valgrind:

make valgrind-memcheck # Launch the valgrind memcheck tool on your binary.

make valgrind-cachegrind # Launch the valgrind cachegrind tool on your binary.

make valgrind-callgrind # Launch the valgrind callgrind tool on your binary.

make valgrind-helgrind # Launch the valgrind helgrind tool on your binary.

For every target you can set at creating the project or changing at reconfiguring your project the wanted options.

Note

Fell free to edit the template to set your prefered options in hard coded.

Or set the environment variable $VALGRIND_OPTS.

Alternative to *_OPTS

	note:	You can export *_OPTS the corresponding variable before launching the make target.

Documentation Source

	GNU Make manual (A very good manual from the GNU manuals serie).

	authors:	Stallman, McGrath, Smith.

	C/C++ Compiling (A very good book about libraries and machine code investigation).

	author:	Milan Stevanovic.

mk-project code formatters

Introduction

mk-project provide severals utilities with many predefined targets for formatting your source code.

For C or C++ source code:

	indent

	astyle

	bcpp

Using the indent utility

mk-project provide following predefined indent styles:

make indent-kr # Format all source files in the kr style.
make indent-gnu # Format all source files in the gnu style.
make indent-linux # Format all source files in the linux style.
make indent-orig # Format all source files in the original style.
make indent-user # Format all source files in the user defined style.

make indent-clean # Remove all formatted files with suffix.

	note:	The indent-user target use the given options during the project configuration for formatting your source code.

Note

By launching any code formatting target mk-project will output a copy of all your source files suffixed with the corresponding target name:

Per example by using the indent-kr target a file named main.c will ouput as main-kr.c.

For overwriting your source files really you must set the make variable OVERWRITE on the value T.

$ make indent-kr OVERWRITE=T

Using the astyle utility

mk-project provide following predefined indent styles:

make astyle-ansi # Format all source files in the ansi style.
make astyle-java # Format all source files in the java style.
make astyle-kr # Format all source files in the kr style.
make astyle-stroustrup # Format all source files in the stroustrup style.
make astyle-whitesmith # Format all source files in the whitesmith style.
make astyle-banner # Format all source files in the banner style.
make astyle-gnu # Format all source files in the gnu style.
make astyle-linux # Format all source files in the linux style.
make astyle-horstmann # Format all source files in the horstmann style.
make astyle-lisp # Format all source files in the lisp style.
make astyle-pico # Format all source files in the pico style.
make astyle-python # Format all source files in the python style.
make astyle-user # Format all source files in the user defined style.

make astyle-clean # Remove all formatted files with suffix.

	note:	The astyle-user target use the given options during the project configuration for formatting your source code.

Note

By launching any code formatting target mk-project will output a copy of all your source files suffixed with the corresponding target name:

Per example by using the astyle-kr target a file named main.c will ouput as main-kr.c.

For overwriting your source files really you must set the make variable OVERWRITE on the value T.

$ make astyle-kr OVERWRITE=T

mk-project contributing advices

mk-project zen

mk-project zen is simple:

The minimum work for the user.

The maximum configuration possiblities.

+ Minimum informations asking to the user, maximum deduced.

+ Maximum possibilities, with a minimum informations and binaries.

Bring the maximum with the minimum.

! No package is obligatory except the coreutils
 and them needed by the programming language.

How contibute ?

Write a project for a programming language which isn’t done, or enhance one.

Write some useful make targets for any purpose you want.

Write make targets forn your well know documentation generators, for mk-project.

Every help is welcome, thanks.

For writing a new project:

	Simply fork the project.

	Make a folder named lang_mk-project (per example:
perl_mk-project).

	Put your stuff inside this folder.

	And ask for merging.

After your submission your project will be a mimimum tested and they is no matter of refusement only enhancement.

Makefile

You can take the included makefiles (./.SubMakefiles/*.mk)

To put it into your project, this is highly recommanded, don’t reinvent the wheel.

We want targets for:

	Executing the source.

	debugging the source.

	profiling the source.

	And what you want else...

Scripting

We script into bash or python (the script must be compatible with python2 and python3).

Or if your project is about a scripting language you can use this language.

	warning:	Think to modify the script prepend_license.py to adapt the comment sign from your language

It's easy even if you don't know python or

in the worse case i will do this for you.

Scripts are set into the ./.scripts folder.

Becoming

If you create a Makefile project you become a coauthor of mk-project

If you enhance a project you become a contributor of mk-project

So if you submit a project for your well know language(s),

you will take first the benefit to get a Project done for your programming language.

And the proudness to contribute to mk-project

	note:	I will ensure the updating of the GUI at every new project adding.

NOTES

If you write the Makefile for your language, think at writing a minimal example project who writes

hello world welcome to mk-project

on stdout.

You can enhance your project with everything you want like the debugging definition in the C/C++ language,

and write entire module(s) for the project purpose.

Makefile

BINARIES

	Verify the presence of the binary using the function
BINARY_EXIST.

	UPPERCASE the binary variable name for no confusion.

BINARY = ${call BINARY_EXIST, binary}

	test if binary installed with:

Compare the ${BINARY} variable with an empty string.
ifneq (${BINARY},)
do work...
endif

	note:	Binaries test are in file ./.SubMakefiles/binary_checks.mk

VARIABLES

	Make the same for configuration:

	use T for TRUE

	use F for FALSE

No comment on following line and remove trailing spaces.
OVERWRITE = T

Compare the ${OVERWRITE} variable with T (don't insert a space).
ifeq (${OVERWRITE},T)
Do work...
else
Do work...
endif

The configuration options set or select by the user must be at the
top of the Makefile,

with a default value.

And you must inform me about in the goal to update the GUI properly.

	Use the assigments operators cleverly:

define var value # Value definition (used for multiline).
define var = value # indirect. (the value change at the next assignment for the final variable value.)
define var := value # direct. (the value doesn't change at the next assignment for the final variable value.)
define var ::= value # retro and inter compatibility with other make tools.
define var += value # increment assignment operator.
define var ?= value # shell expansion operator.

	Use the increment operator (+=) cleverly so that the user can
define the variable on the command-line.

USE_TABS += -t

Or not:

 override MY_VAR = value

#

	note:	Take care by inserting comments some settings doesn’t support comments on the same line as the variable.

Files

You can verify if a file exist or if it’s generated by using the function FILE_EXIST

MY_FILE = ${call FILE_EXIST, /path/to/my_file.ext}

It will return T (TRUE) or F (FALSE) if the file exist or not.

FILES and FILEPATH

	First define all path relativ, included Makefiles are at the same position as the main Makefile.

	Define a variable for the FILEPATH and for the FILE.

MY_FILEPATH = ./filepath/...

MY_FILE = ${MY_FILEPATH}/my_file.txt

We construct the filepath relativ to the main Makefile: (./Makefile)

	note:	Filepath are defined in file ./.SubMakefiles/path.mk

	You can (not obligatory) put the extension in a variable, if this
make sens.

EXT_TYPE = .type

MY_FILE = ${MY_FILEPATH}/${FILE}${EXT_TYPE}

	You can use the make function FILE_EXIST to verify the presence
of a file.

MY_FILE = ${call FILE_EXIST, my_file}

	note:	The included Makefiles are correctly named and end in the extension *.mk so that an editor can reconize them.

	note:	The included Makefiles are set in the SubMakefiles folder.

LIBRARIES

Today most of the libraries use the program pkg-config which you can use to auto-detect the

presence of a library.

By using the PKG_CONFIG_EXIST function.

HAS_LIB_PC = ${call PKG_CONFIG_EXIST, thelibpc}

It will return T (TRUE) or F (FALSE) in relationship of the presence of a *.pc file for thelibpc.

TARGETS

If you need to compose some targets names from more than a word, separate them by:

	A ‘-‘ (minus) if it’s a user-target.

	A ‘_’ (underscore) if it’s an intern_target.

Which can be put together with others intern targets to form a user-target.

	note:	Don’t forget the .PHONY: definition if the target has no depdending targets.

ADVICES

IMPORTANT: make doesn’t support trailing spaces, so strip them.

You can use the following command

$ sed -i 's/[[:space:]]$//' filepath

code formatters

We can make usages of following utilities, for code formatting in severals languages:

C

	indent (checked).

	astyle (checked).

	bcpp (checked).

	uncrustify (not check, help me !).

C++

	indent (checked).

	astyle (checked).

	bcpp (checked).

	uncrustify (not check, help me !).

	note:	Must check if we can use this scripts by the universalindentgui authors or the tools author(s).

HTML

	tidy (not checked).

CSS

	csstidy (not checked).

Javascipt

	JsDecoder.js (not checked).

	note:	Must check if we can use this scripts by the universalindentgui authors or the tools author(s).

Perl

	perltidy (not checked).

PHP

	phpStylist.php (not checked).

	note:	Must check if we can use this scripts by the universalindentgui authors or the tools author(s).

Ruby

	rbeautify.rb (not checked).

	ruby_formatter.rb (not checked).

	note:	Must check if we can use this scripts by the universalindentgui authors or the tools author(s).

XML

	xmlindent (not checked).

Using a code formatter

The usage of a code formatter must be user defined controlled so that:

	We ask the user if he wants to use it.

	We make his usage conditionnaly in the corresponding Makefile: ./.SubMakefiles/code_formatter.mk.

By using a variable named USE_(TOOL NAME UPPERCASE) given the value:

	T for true or

	F for false.

According the user settings.

*.todo or *.tdo file format specifications:

The *.todo specification give you a advice structure

of how structuring an TODO file for efficiently tasks

organizing, and so don’t forget ideas or things which

you may have to do in the future for the development

of projects of any professional fields where tasks

must be organized and be accomplished in an certain

order.

Markup syntax

Syntax of a mark: [UPPERCASE :Capitalize: <digits>]

Syntax of end mark: [/UPPERCASE] # The end mark is good for reread his todo note.

An entire *.todo file entry can be represent like this:

=================
TITLE OF DOCUMENT
=================

[TYPE :Priority_level: <TASK_ORDER>] Title of todo entry

 Todo main text...

[/TYPE]

[TYPE :Priority_level: <TASK_ORDER>] One line todo entry [/TYPE]

Markup Types

TYPE (can be):

Before complete the task:

	BUG (A bug have to be fixed).

	FIXME (A problem has to be fixed).

	TEST (You have to test a feature).

	CORRECT (Something must be corrected).

	REDO (Something must be redone).

	COMMENT (You must make a comment).

	TODO (Something must be done).

	IDEA (You get an idea for something).

After complete the task:

	BUGFIX (The bug is fixed).

	FIXED (The problem is fixed).

	TESTED (The test is done).

	CORRECTED (The correction is done).

	REDONE (The task is rewritten).

	COMMENTED (The commenting is done).

	DONE (The task TODO is DONE).

	IDIE (The idea is complete (become true)).

Summary of TYPE

	BUG or BUGFIX

	FIXME or FIXED

	TEST or TESTED

	CORRECT or CORRECTED

	REDO or REDONE

	COMMENT or COMMENTED

	TODO or DONE

	IDEA or IDIE

Priority_level

Priority_level (can take following values:)

	High

	Medium

	Low

TASK_ORDER

TASK_ORDER (can be)

	a 2 (Maybe 3 or 4) digits sequences for organizing.

	a digit and a UPPERCASE letter with meaning:

	By TODO, TEST, IDEA entries
	F -> Free time

	N -> Normal (When possible)

	U -> Urgent

	By CORRECT, BUG and FIXME
	I -> Info

	W -> Warning

	F -> Fatal

	note:	the digit(s) are zero per default but it can take a value
between 0-9 for very organized structures.

	note:	This can be omit. Only TYPE and Priority_level are mandatory.

	Summary:	The TASK_ORDER are written between < and >.

Can be composed either of:

	2 digits representing the task priority.

	A digit and a special mean UPPERCASE letter.

	syntax:	<[0-9][0-9|[F|N|U]|[I|W|F]]>

	example:	[TODO :Medium: <0F>] Make a new icon because actual is ugly !!! [/TODO]

Advices

*.todo files extensibility:

	Every entry TYPE can be invented but must be written in UPPERCASE.

	advice:	use only one word. (Else use ‘_’).

DFY (Don’t Forget Yourself: this make sens),

DRY (Don’t Repeat Yourself: don’t be stupid),

KISS (Keep It Simple Stupid: be concise).

	Priority level can be added as long as they are one Capitalize word.

	DIY (Do It Yourself) for the TASK_ORDER or in order to maintain them ordered.

	Advice:	Keep terminal width max 79 chars a line.

The Best for the End: Think at things like timestamps,

doing order, prerequisite for task, and so soon !!!

Syntax of *.todo file(s) content

You can use the ReST or Markdown syntax for the content between or inside the marks.

For Titles

==============
My first Title
==============

My second title

##############
My third title
##############

+++++++++++++++
My fourth title
+++++++++++++++

::::::::::::::
My fifth title
::::::::::::::

My sixth title

~~~~~~~~~~~~~~~~
My seventh title
~~~~~~~~~~~~~~~~


For text decorations:

bold

italic

underline

``inline literals``

--strike-trough--

^^over-line^^

For Lists:

+ List item 1

 - Sub list item 1

 - Sub list item 2

+ List item 2

 1. First numbered list item.

 2. Second numbered list item.

 3. Third numbered list item.

+ List item 3

 Definition list title

 Definition list text

For keywords values pairing:

:author: foo bar

:license: fdl

:version: 1.0.0

For links:

`Link text <http://www.domain.com/folder/file.html>`

For footnotes:

[*] my footnote text

For comments:

My comment line

For code text:

[:LANGUAGE:]

 Indented text is code !

Per example for C code:

[:C:]

 const char *var = "value" ;

End word of specifications of the *.todo file(s) format

Do what you must with this specifications and take it like an TODO file

structuring advice, but this document was establish to define the

specifications of a clean TODO file.

Example of a *.todo file:

An example from a real *.todo file from one of my projects.

IT-EDIT TODO:
+++++++++++++

[IDEA :Low:] Advertisement for it-edit:

 it-edit provide so many schemes (more than the underlying library per default) because per example the

 emacs scheme support italic for the ReST or Markdown language which the kate scheme doesn't support.

 But I think the kate scheme is more adapt, with his settings, for program source code writing in terms of syntax coloration.

 And the emacs theme is better to use for ReST per example, because of better syntax coloration of italic.

 So better get 2 schemes, which you can easily switch, than missing a feature.

[/IDEA]

Editor
======

[IDEA :High:] Make the text-completion configurable.

 1. The text completion is one per file.

 2. The text-completion is one for all files (**not easy**).

[/IDEA]

[TODO :High:] Make the regex replacement become true. (See GLib regex) [/TODO]

[IDEA :Medium:] What about enable/disable spell-check ? [/IDEA]

Schemes

[BUG :High:]

They is a highlight problem with the search all highlight with emacs schemes.

[/BUG]

[IDEA :low: <0F>]

Think of schemes pairs like:

 + kate && emacs (bg white)

 + cobalt && turbo (bg blue)

 + tango && classic (Are settings defendant).

 + vsdark && oblivion (bg maroon).

 + slate && solarized-dark. (bg turquoise)

 + build && solarized-light (bg light yellow).

 + matrix (standalone).

[/IDEA]

Terminals
=========

[IDEA :Medium:] Maybe a (main start) settings individually for every different terminals and/or a main (main start) settings configuration. [/IDEA]

[TODO :Medium:] Open a file into an editor tab with a terminal pattern [/TODO]

Files
=====

[TODO :Medium:] Add a ChangeLog entry !

 The clipboard from the terminals has been upgraded from severals functionalities.

[/TODO]

License

Copyright (c) 2016,2017 Brüggemann Eddie.

Permission is granted to copy, distribute and/or modify this document

under the terms of the GNU Free Documentation License, Version 1.3

or any later version published by the Free Software Foundation;

with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts.

A copy of the license is included in the section entitled "GNU

Free Documentation License".

About mk-project

	author:	Eddie Brüggemann <mrcyberfighter@gmail.com>

	documenter:	Eddie Brüggemann <mrcyberfighter@gmail.com>

A word from the author

I must recognize to write a program which generates and parse severals files is painfull in the C programming language.

But I hope that the community will adopt this usefull tool...

I dislike I.D.E‘s because their advantages is their weak point:

They let you make forget everything once you have configurate their interface.

Even how to build your program (i.e. The command line to build your program, you know it ?).

I use the commandline everyday and by doing a good compromise between automating task and doesn’t forget how the command works.

Is issue mk-project...

The adding of the Edit terminals is suppose for ed, vi, emacs, etc users.

And the G.U.I make targets launching can be extend like explain in the presentation.

Finally: I hope you will join us to make mk-project support more and more programming languages.

	note:	I have put all my savoir-faire in this project for you and the entire community.

Dependencies

Libraries

	libgtk-3-dev

	libvte-2.91-dev

	libxml2-dev

Main program

	The make program.

	coreutils

Documentation

	python(3)-sphinx

	python(3)-docutils

Debugging

	binutils

	libc-bin

	findutils

	file

	size

	hexdump

	note:	Only required if you make usage of them, else the corresponding target won’t be available.

Code formatters

	indent

	astyle

	bcpp

	note:	Only required if you make usage of them, else the corresponding target won’t be available.

Internationalisation

	gettext

	note:	Only required if you make usage of them, else the corresponding target won’t be available.

Documentation Source

	GNU Make manual (A very good manual from the GNU manuals serie).

	authors:	Stallman, McGrath, Smith.

	C/C++ Compiling (A very good book about libraries and machine code investigation).

	author:	Milan Stevanovic.

	Writing efficient C code.

	author:	Jonas Skeppstedt (author of the compiler ISO Certicated and Validated lmpcc).

ISO (ISO/IEC 9899:19999, C language) conform compiler list

	EDG C/C++ 3.0.1, december 2002.

	lmpcc C99 Compiler for Linux / PowerPC 1.3, july 2003.

	Sun studio 9, May 2004.

	IBM VAC 6.0.0.8, October 2004.

	note:	No gcc neither clang are certified to be fully compliant with it.

THANKS

	Dennis M Ritchie, for UNIX and C.

	Richard Stallman, for gcc and the F.S.F movement.

	Ken Tompson, for UNIX.

	Linus Tornvalds, for Linux and git.

	And to every worker for a better world...

Author final word:

I use mk-project since the version 1.0 (spring 2016) for my programs.

Accompanier with my terminals integrated editor it-edit [http://www.open-source-projects.net/it-edit/it-edit],

where I type my targets instead of using vim or any other T.U.I Terminal User Interface.

I must confess that I do not use all the targets provided by mk-project.

My most used targets are:

$ make

$ make -B

$ make exec

$ make fdebug

$ make gdb

$ make search-pattern argv="pattern"

...

mk-project Gtk3 types

mk-project implement some few derivate Widgets, which I will present here.

You can take a look at the source located in the sub-folders from /usr(/local)/share/mk-project/src.

To learn how to implement this kind of Widgets:

	note:	Here you can sea how a sphinx documentation looks like, with this theme, for C code (c++ code can be documented too) with sphinx.

GtkSmartIconButton

A simple button with an icon without label and tool-tip which embed an universal short-cut text.

	
GtkWidget* gtk_smart_menu_item_new_all(const gchar *label, const gchar *icon_filepath, GtkAccelGroup *accel_group, const GdkModifierType accel_modifier, const guint accel_key) ;

	

	Parameters:	
	label (const gchar *) – The label to display into the menu item.

	icon_filepath (const gchar *) – The menu item icon file-path.

	accel_group (GtkAccelGroup *) – The shortcut accelerator group.

	accel_modifier (const GdkModifierType) – The shortcut modifier.

	accel_key (const guint) – The shortcut accelerator key.

	Return type:	GtkWidget*

	Returns:	A pointer to the GtkSmartMenuItem.

	
GtkWidget* gtk_smart_check_menu_item_new_all(const gchar *label, const gboolean draw_as_radio, const gchar *icon_filepath, GtkAccelGroup *accel_group, const GdkModifierType accel_modifier, const guint accel_key) ;

	

	Parameters:	
	label (const gchar *) – The label to display into the menu item.

	draw_as_radio (const gboolean) – draw_as_radio

	icon_filepath (const gchar *) – The menu item icon file-path.

	accel_group (GtkAccelGroup *) – The shortcut accelerator group.

	accel_modifier (const GdkModifierType) – The shortcut modifier.

	accel_key (const guint) – The shortcut accelerator key.

	Return type:	GtkWidget*

	Returns:	A pointer to the GtkSmartMenuItem check button.

	
GtkWidget* gtk_smart_radio_menu_item_new_all(const gchar *label, const gchar *icon_filepath, GtkAccelGroup *accel_group, const GdkModifierType accel_modifier, const guint accel_key, GtkWidget* widget) ;

	

	Parameters:	
	label (const gchar *) – The label to display into the menu item.

	draw_as_radio (const gboolean) – draw_as_radio

	icon_filepath (const gchar *) – The menu item icon file-path.

	accel_group (GtkAccelGroup *) – The shortcut accelerator group.

	accel_modifier (const GdkModifierType) – The shortcut modifier.

	accel_key (const guint) – The shortcut accelerator key.

	widget (NULL or GtkWidget*) – A member from the radio button group.

	Return type:	GtkWidget*

	Returns:	A pointer to the GtkSmartMenuItem radio button.

Note

You can pass a NULL pointer or 0 to the parameters :

	icon_filepath

	accel_group

	accel_modifier

	accel_key.

	widgets.

	note:	You can build others constructors if you have understand How-To build this kind of widgets.

Getters

	
GtkWidget* gtk_smart_menu_item_get_image(GtkWidget* smart_menu_item) ;

	

	Parameters:	
	smart_menu_item (GtkWidget*) – The return value from the constructors.

	Return type:	GtkWidget*

	Returns:	A pointer to the GtkImage widget.

	
GtkWidget* gtk_smart_menu_item_get_menuitem(GtkWidget* smart_menu_item) ;

	

	Parameters:	
	smart_menu_item (GtkWidget*) – The return value from the constructors.

	Return type:	GtkWidget*

	Returns:	A pointer to the GtkMenuItem widget.

	
GtkWidget* gtk_smart_menu_item_get_label(GtkWidget* smart_menu_item) ;

	

	Parameters:	
	smart_menu_item (GtkWidget*) – The return value from the constructors.

	Return type:	GtkWidget*

	Returns:	A pointer to the GtkLabel widget.

	
GtkWidget* gtk_smart_menu_item_get_accel_label(GtkWidget* smart_menu_item) ;

	

	Parameters:	
	smart_menu_item (GtkWidget*) – The return value from the constructors.

	Return type:	GtkWidget*

	Returns:	A pointer to the GtkAccelLabel widget.

GtkSmartIconButton

A simple button with an icon without label and tool-tip which embed an universal short-cut text.

Constructors

	
GtkWidget* gtk_smart_icon_button_new_all(const gchar *filepath, const gchar *tooltip_text, const guint accel_key, const GdkModifierType accel_modifier) ;

	

	Parameters:	
	filepath (const gchar *) – The filepath to the image to use as icon.

	tooltip_text (const gchar *) – The tool-tip text without the accelerator label.

	accel_key (const guint) – The shortcut accelerator key.

	accel_modifier (const GdkModifierType) – The shortcut modifier.

	Return type:	GtkWidget*

	Returns:	A pointer to the GtkSmartIconButton widget.

	
GtkWidget* gtk_smart_icon_toggle_button_new_all(const gchar *filepath, const gchar *tooltip_text, const guint accel_key, const GdkModifierType accel_modifier) ;

	

	Parameters:	
	filepath (const gchar *) – The filepath to the image to use as icon.

	tooltip_text (const gchar *) – The tool-tip text without the accelerator label.

	accel_key (const guint) – The shortcut accelerator key.

	accel_modifier (const GdkModifierType) – The shortcut modifier.

	Return type:	GtkWidget*

	Returns:	A pointer to the GtkSmartIconButton toggle button widget.

	note:	This widget is not used into mk-project but provided in the hope to be useful.

GtkTermTab

A GtkNoteBook tab with an decorative icon, a label, and close icon button.

Constructor

	
GtkWidget* gtk_mk_term_tab_new(const gchar *icon_filepath, const gchar *label, const gchar *close_filepath) ;

	

	Parameters:	
	icon_filepath (const gchar *) – Image filepath to display as decoration on the right of the tab-label.

	label (const gchar *) – The label to display in the GtkMkTermTab.

	close_filepath (const gchar *) – Image filepath to display in the GtkMkTermTab as close button icon.

	Return type:	GtkWidget*

	Returns:	A pointer to the Widget GtkMkTerm.

Getters

	
GtkWidget* gtk_mk_term_tab_get_close_button(GtkMkTermTab *tab);

	

	Parameters:	
	tab (const gchar *) – An instance of the GtkMkTermTab.

	Return type:	GtkWidget*

	Returns:	A pointer to the Widget GtkButton at the right of the label.

GtkMkTerm

	warning:	This widget implementation is not reusable as is, because of VteTerminal configuration variables.

Constructor

	
GtkWidget* gtk_mkterm_new(gboolean initialize, gboolean is_edit_term) ;

	

	Parameters:	
	initialize (gboolean) – Initializing or reconfiguring the GtkMkTerm.

	is_edit_term (gboolean) – Whether or not the GtkMkTerm is a editor widget.

	Return type:	GtkWidget*

	Returns:	A pointer to the Widget GtkMkTerm.

Getters

	
GtkWidget* gtk_mkterm_get_vte_terminal(GtkWidget* mkterm) ;

	

	Parameters:	
	mkterm (GtkWidget*) – An instance of the GtkMkTerm Widget.

	Return type:	GtkWidget*

	Returns:	A pointer to the VteTerminal.

	
GtkWidget* gtk_mkterm_get_clipboard_menu(GtkWidget* mkterm) ;

	

	Parameters:	
	mkterm (GtkWidget*) – Initializing or reconfiguring the GtkMkTerm.

	Return type:	GtkWidget*

	Returns:	A pointer to the GtkMenu associated to the GtkMkTerm.

Index

 Symbols
 | E
 | V

Symbols

 	
 	$VALGRIND_OPTS

E

 	
 	
 environment variable

 	$VALGRIND_OPTS

 	VALGRIND_OPTS

V

 	
 	VALGRIND_OPTS

 _static/minus.png

_static/up-pressed.png

_static/ajax-loader.gif

_static/up.png

_static/comment-bright.png

_static/file.png

_static/comment-close.png

_static/down.png

nav.xhtml

 Table of Contents

 		Welcome to mk-project's documentation!

 		mk-project

 		Presentation

 		Hackme

 		What provide mk-project

 		How mk-project works

 		Author(s)

 		Contributor(s)

 		The future of mk-project

 		mk-project: mic-on !!!

 		Building a mk-project project

 		Starting

 		C/C++ Compiler settings

 		Files

 		Disassembling

 		Profiling

 		Oprofile

 		Valgrind

 		C/C++ code formatters

 		Documentation

 		man-page

 		About informations

 		Others Informations

 		Licensing

 		*.desktop file

 		Archiving your project

 		Summary

 		Exporting your settings

 		Working on an existing mk-project project

 		Open an mk-project project

 		Reconfiguring an existing project

 		Adding files to your project

 		mk-project documentation

 		Introduction

 		You are a sphinx user:

 		You aren't a sphinx user

 		mk-project documentation visualize

 		mk-project slots

 		rst2man

 		mk-project code investigating, debugging and disassembling

 		Introduction

 		The make info target

 		The file utility

 		The size utility

 		The make gdb target

 		The make ldd target

 		The make nm target

 		The make objdump target

 		The make strace target

 		The make ltrace target

 		The make strip target

 		Oprofile targets

 		Valgrind targets

 		Alternative to *_OPTS

 		Documentation Source

 		mk-project code formatters

 		Introduction

 		For C or C++ source code:

 		Using the indent utility

 		Using the astyle utility

 		mk-project contributing advices

 		mk-project zen

 		How contibute ?

 		For writing a new project:

 		Makefile

 		Scripting

 		Becoming

 		NOTES

 		Makefile

 		BINARIES

 		VARIABLES

 		Files

 		FILES and FILEPATH

 		LIBRARIES

 		TARGETS

 		ADVICES

 		code formatters

 		C

 		C++

 		HTML

 		CSS

 		Javascipt

 		Perl

 		PHP

 		Ruby

 		XML

 		Using a code formatter

 		*.todo or *.tdo file format specifications:

 		Markup syntax

 		Markup Types

 		Before complete the task:

 		After complete the task:

 		Summary of TYPE

 		Priority_level

 		TASK_ORDER

 		Advices

 		Syntax of *.todo file(s) content

 		For Titles

 		For text decorations:

 		For Lists:

 		For keywords values pairing:

 		For links:

 		For footnotes:

 		For comments:

 		For code text:

 		End word of specifications of the *.todo file(s) format

 		Example of a *.todo file:

 		License

 		About mk-project

 		A word from the author

 		Dependencies

 		Libraries

 		Main program

 		Documentation

 		Debugging

 		Code formatters

 		Internationalisation

 		Documentation Source

 		THANKS

 		Author final word:

 		mk-project Gtk3 types

 		GtkSmartIconButton

 		Getters

 		GtkSmartIconButton

 		Constructors

 		GtkTermTab

 		Constructor

 		Getters

 		GtkMkTerm

 		Constructor

 		Getters

_static/comment.png

_static/plus.png

_static/down-pressed.png

