

Welcome!

	Introduction
	Python project mitschreiben

	Example Usage

	Formatting the output

	Tutorial

	API Documentation
	Class List

	Classes

	Releases
	Release 0.3

	Release 0.2

	Release 0.1

Indices and tables

	Index

	Module Index

	Search Page

Introduction

Python project mitschreiben

[image: CodeShip]
 [https://codeship.com/projects/364816][image: Travis ci]
 [https://travis-ci.org/sonntagsgesicht/mitschreiben][image: Read the Docs]
 [http://mitschreiben.readthedocs.io][image: CodeFactor Grade]
 [https://www.codefactor.io/repository/github/sonntagsgesicht/mitschreiben][image: Code Climate maintainability]
 [https://codeclimate.com/github/sonntagsgesicht/mitschreiben/maintainability][image: Codecov]
 [https://codecov.io/gh/sonntagsgesicht/mitschreiben][image: lgtm grade]
 [https://lgtm.com/projects/g/sonntagsgesicht/mitschreiben/context:python/][image: total lgtm alerts]
 [https://lgtm.com/projects/g/sonntagsgesicht/mitschreiben/alerts/][image: GitHub]
 [https://github.com/sonntagsgesicht/mitschreiben/raw/master/LICENSE][image: GitHub release]
 [https://github.com/sonntagsgesicht/mitschreiben/releases][image: PyPI Version]
 [https://pypi.org/project/mitschreiben/][image: PyPI - Python Version]
 [https://pypi.org/project/mitschreiben/][image: PyPI Downloads]
 [https://pypi.org/project/mitschreiben/]mitschreiben (german for ‘to take notes’) helps recording values during
calculations for later evaluation, e.g. check if the right objects or
values were used or to present the results in structure of tables

It provides a class called Record which is basically used for everything. It grants access to record object, it is used
for the recording and it is a context manager used to trigger whether to record or not.

Example Usage

In the first Record(key = value) or Record(dictionary) is placed where one wants to
record a value. The decorator Prefix provided by this class is used
to define a key extension under which the recorded value will be stored in the
Record. The Prefixes get stacked, so when there is a successive
function call to another function which is prefixed those Prefixes are
concatenated.

from mitschreiben import Record

def magical_stuff_happens(baz, barz):
 return "That's", "great"

class Foo():

 @Record.Prefix()
 def bar(self, baz, barz)
 some_value1, some_value2 = self.do_something(baz, barz)

 Record(a_key=some_value1, another_key=some_value2)

 return some_value1, some_value2

 @Record.Prefix()
 def do_something(self, baz, barz):

 a_dict = {'again_a_key': baz, 'so_creative': barz}

 Record(a_dict)

 return magical_stuff_happens(baz, barz)

 def __repr__(self):
 return "Foo({})".format(id(self))

Now, since Record is a contextmanager, the recording will only
happen in such a context. The with-statement activates the recording and returns the current scopes record object
for convenient access. Another thing is, that record level is increased by this statement, leading to record objects
that are only available in that scope. When leaving the with the outer scopes’s record will be extend by the inner
one, by prepending the outer records current prefix stack to each key of the inner one.

with Record() as rec:
 foo = Foo()
 foo.do_something("baz", "barz")
 foo.bar("baz","barz")

 print rec.entries

The entries are a dict whose keys are tuples which are the stacked Prefixes. In this way it is possible to determine which method on which object was called, what then led
to successive calls, where in the end a value is recorded. The example above has the following output.

{('Foo(42403656).do_something', 'again_a_key'): 'baz', ('Foo(42403656).bar', 'Foo(42403656).do_something', 'again_a_key'): 'baz', ('Foo(42403656).do_something', 'so_creative'): 'barz', ('Foo(42403656).bar', 'a_key'): "That's", ('Foo(42403656).bar', 'another_key'): 'great', ('Foo(42403656).bar', 'Foo(42403656).do_something', 'so_creative'): 'barz'}

Formatting the output

The Record can be represented in different formats. The base to this is a tree of dictionaries,
implemented by the class DictTree in mitschreiben.formatting. For the two base outputs however, one
does not need to actually instantiate a DictTree yourself. The respective methods are

Both of these methods produce tables of the output. The idea is that, that certain calculations are made with different
objects, leading to the same keywords. So one obtains a table with row keys (object names) and column keys (the keywords
used to record a value). As the name of the former methods suggests, it produces this tables and writes them as single
.csv files into Path, whereas the latter construct a html document in which one can navigate through the tree structure
and see the tables at those positions where they would be placed in the tree. Those tables would look similar to

<div class='panel-elem'><table>
<tr class='headrow'>
<th colspan='5'>table</th>
</tr>
<tr class='bodyrow'>
<th> </th>
<th>a_key</th>
<th>again_a_key</th>
<th>another_key</th>
<th>so_creative</th>
</tr>
<tr class='bodyrow'>
<th>Foo(42403656).bar</th>
<td>That's</td>
<td>None</td>
<td>great</td>
<td>None</td>
</tr><tr class='bodyrow'>
<th>Foo(42403656).do_something</th>
<td>None</td>
<td>baz</td>
<td>None</td>
<td>barz</td>
</tr></table></div>
<div class='panel'>
<div class='panel-elem'><table>
<tr class='headrow'>
<th colspan='2'>table</th>
</tr>
<tr class='bodyrow'>
<th> </th>
<th>Foo(42403656).do_something</th>
</tr>
<tr class='bodyrow'>
<th>again_a_key</th>
<td>baz</td>
</tr><tr class='bodyrow'>
<th>so_creative</th>
<td>barz</td>
</tr></table></div>

Another way would be to work with the DictTree directly.

from mitschreiben.formatting import DictTree

DT = DictTree(rec.entries)

tables = DT.make_tables()
for t in tables:
 print t.pretty_string()
 print

This results in the following output. The first table represents the top
level of the record, whereas the other tabels are named by
object.function.

 Values | a_key | again_a_key | another_key | so_creative
 Foo(42403656).bar | That's | None | great | None
Foo(42403656).do_something | None | baz | None | barz

Foo(42403656).bar
 Values | again_a_key | so_creative
Foo(42403656).do_something | baz | barz

Tutorial

… will come soon.

API Documentation

Class List

	mitschreiben.recording.Record

	This class can be used to record values during calculations.

	mitschreiben.table.Table

	A table consist of columns and rows.

	mitschreiben.formatting.DictTree

	A class to work with a dict whose keys are tuples as if this dict was a dictionary of dictionaries of dictionaries…

Classes

	
class mitschreiben.recording.Record

	Bases: object

This class can be used to record values during calculations. The class can be called to do the actual recording.
Moreover the class grants access to the record depending on the record level and finally it is a contextmanager to
control whether to record or not.

The call “Record()” yields the Record-Object of the current scope of recording.
Within each scope this object is unique.

The call Record(key=value,key2=value2,...) or
Record(keyval) [with keyval={key:value, key2:value2, ...}]
records the values with the given keys in the Record-Object.
The actual keys will be concatenated keys depending on a stack of prefixes (see below).
The Record-Object knows this stack and records {"former|keystack|key" : value} .

By default no value will be recorded unless the recording is started. This is can be done in two ways.

	Record is a contextmanager. A call looks like this:

 Record(key=value) # No recording of key, value
 with Record() [as rec]:
 ...
 Record(key=value) # key, value is recorded
 Record(key=value) # No recording of key, value

Thereby it is ensured to also stop the recording after the leaving the with environment.

	The call |Record().start()| enables recording whereas |Record().stop()| stops the recording

Record(key=value) # No recording of key, value
Record().start()
Record(key=value) # key, value is recorded
Record().stop()
Record(key=value) # No recording of key, value

There can be different scopes of recording by using the context management functionality of Record. As soon as the
recording context is entered the level of record is incremented by one and a within this scope this Record-Object
does not know what might have been recorded in an outer scope. When leaving the inner scope the Record-Object will
be integrated in the Record-Object of the outer scope.

With |Record().entries| one access the dict containing the recorded keys and values.

Record makes use of two subclasses: Key and Prefix

Key is class that provides some convenience to add keys and obtain new keys, which are used as the keys of the
of the |Record().entries|.

The keys may contain some information on the call stack when the class Prefix is used. As mentioned above, Record
knows a prefix stack two record in which successive function call a value was recorded. A Prefix is added when a
function is decorated with @Record.Prefix().

input

@Record.Prefix()
def foo(obj):
 ...
Record(key=value)

with Record() as rec:
 foo(bar)

print rec.entries

output

{"bar.foo|key":value}

	
class Key

	Bases: tuple

Key for the record entries

	
class Prefix(prefix=None)

	Bases: object

This decorator generates a key extension depending on the method it decorates and the object that is passed
to that method. This class remembers which methods have been decorated.

	
classmethod logged_methods()

	

	
classmethod autologging(boolean)

	

	
is_started

	Returns a bool whether the Record is started or not. If False, Record(*args, **kwargs) has no effect.

	
entries

	returns a dictionary with Recordkeys and Values

	
to_csv_files(path)

	creates csv files for the different levels of the record in the given path.

	
to_html_tables(filename, path=None)

	creates a html structured like the levels of the graph (directory like) where the last two branch levels are
made into a table

	
clear()

	this method clears the entries of a Record instance. Since there is only one toplevel Record instance everything
is recorded there during its lifetime.

	
start()

	

	
stop()

	

	
append_prefix(prefix)

	extend the current prefix stack by the prefix. If used as contextmanager the prefix will be removed outside
of the context

	
pop_prefix()

	remove the last extension from the prefix stack

	
class mitschreiben.table.Table(default_value=None, name=None, left_upper=None)

	Bases: object

A table consist of columns and rows. Each entry has a row and a column key.

	
rows_count

	

	
cols_count

	

	
is_empty()

	

	
transpose()

	

	
append(row_key, col_key, value)

	

	
append_row(row_key, row)

	

	
get(row_key, col_key)

	

	
get_row(row_key)

	

	
get_row_list(row_key, col_keys)

	returns the values of the row:row_key for all col_keys.

	
get_column(col_key)

	

	
get_default()

	

	
sort(row_compare=None, column_compare=None)

	

	
to_csv(leftUpper=None, tabName=None, separator=';')

	

	
pretty_string(leftUpper=None, tabName=None, separator=' | ')

	

	
to_html()

	

	
to_nested_list()

	returns the table as a nested list rows

	
static create_from_json_dict(json_dict)

	

	
class mitschreiben.formatting.DictTree

	Bases: dict

A class to work with a dict whose keys are tuples as if this dict was a dictionary of dictionaries of dictionaries…
When trying to look up a value with key (=tuple) and this tuple is partially contained in other keys (=tuples) than
a DictTree with only those truncated keys is returned.

	
toplevel_tables(name)

	Return tables from the two uppermost layers of the DictTree. One of them is a true table and the
other is a collection of values

	
to_tables()

	Makes a table from each level within the DictTree and returns those tables stored in a new DictTree

	
pretty_print()

	this function prints an alphabetically sorted tree in a directory-like structure.

	
as_tree_to_html(filename, path=None)

	This function creates a html file that presents the dicttree in its tree structure.

	
as_tables_to_html(filename, path=None)

	This functions creates a html file presenting the tree in tables

	
as_html_tree_table(filename, path=None)

	This function creates a html file, that is structured like a tree, where the last two-level-deep branches
are represented as tables

	
to_csv_files(path)

	this function creates csv files for every table that can be made from the tree

Releases

These changes are listed in decreasing version number order.

Release 0.3

Release date was Wednesday, 18 September 2019

Release 0.2

December 31th, 2017

Release 0.1

Release date was July 7th, 2017

 Python Module Index

 m

 		 	

 		
 m	

 	
 	
 mitscheiben	

 	[image: -]
 	
 mitschreiben	

 	
 	
 mitschreiben.formatting	

 	
 	
 mitschreiben.recording	

 	
 	
 mitschreiben.table	

Index

 A
 | C
 | D
 | E
 | G
 | I
 | L
 | M
 | P
 | R
 | S
 | T

A

 	
 	append() (mitschreiben.table.Table method)

 	append_prefix() (mitschreiben.recording.Record method)

 	append_row() (mitschreiben.table.Table method)

 	
 	as_html_tree_table() (mitschreiben.formatting.DictTree method)

 	as_tables_to_html() (mitschreiben.formatting.DictTree method)

 	as_tree_to_html() (mitschreiben.formatting.DictTree method)

 	autologging() (mitschreiben.recording.Record.Prefix class method)

C

 	
 	clear() (mitschreiben.recording.Record method)

 	
 	cols_count (mitschreiben.table.Table attribute)

 	create_from_json_dict() (mitschreiben.table.Table static method)

D

 	
 	DictTree (class in mitschreiben.formatting)

E

 	
 	entries (mitschreiben.recording.Record attribute)

G

 	
 	get() (mitschreiben.table.Table method)

 	get_column() (mitschreiben.table.Table method)

 	
 	get_default() (mitschreiben.table.Table method)

 	get_row() (mitschreiben.table.Table method)

 	get_row_list() (mitschreiben.table.Table method)

I

 	
 	is_empty() (mitschreiben.table.Table method)

 	
 	is_started (mitschreiben.recording.Record attribute)

L

 	
 	logged_methods() (mitschreiben.recording.Record.Prefix class method)

M

 	
 	mitscheiben (module)

 	mitschreiben.formatting (module)

 	
 	mitschreiben.recording (module)

 	mitschreiben.table (module)

P

 	
 	pop_prefix() (mitschreiben.recording.Record method)

 	
 	pretty_print() (mitschreiben.formatting.DictTree method)

 	pretty_string() (mitschreiben.table.Table method)

R

 	
 	Record (class in mitschreiben.recording)

 	Record.Key (class in mitschreiben.recording)

 	
 	Record.Prefix (class in mitschreiben.recording)

 	rows_count (mitschreiben.table.Table attribute)

S

 	
 	sort() (mitschreiben.table.Table method)

 	
 	start() (mitschreiben.recording.Record method)

 	stop() (mitschreiben.recording.Record method)

T

 	
 	Table (class in mitschreiben.table)

 	to_csv() (mitschreiben.table.Table method)

 	to_csv_files() (mitschreiben.formatting.DictTree method)

 	(mitschreiben.recording.Record method)

 	to_html() (mitschreiben.table.Table method)

 	
 	to_html_tables() (mitschreiben.recording.Record method)

 	to_nested_list() (mitschreiben.table.Table method)

 	to_tables() (mitschreiben.formatting.DictTree method)

 	toplevel_tables() (mitschreiben.formatting.DictTree method)

 	transpose() (mitschreiben.table.Table method)

 _static/minus.png

_static/plus.png

_static/up.png

_static/up-pressed.png

_static/ajax-loader.gif

nav.xhtml

 Table of Contents

 		
 Welcome!

 		
 Introduction

 		
 Python project mitschreiben

 		
 Example Usage

 		
 Formatting the output

 		
 Tutorial

 		
 API Documentation

 		
 Class List

 		
 Classes

 		
 Releases

 		
 Release 0.3

 		
 Release 0.2

 		
 Release 0.1

_static/comment-close.png

_static/comment.png

_static/comment-bright.png

_static/file.png

_static/down-pressed.png

_static/down.png

_static/logo.png

