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User Guide


Introduction


Mirai: future in japanese.




MiraiML is an asynchronous engine for continuous & autonomous machine learning,
built for real-time usage.


	It’s asynchronous because it runs in background, allowing you to execute custom
Python code as you interact with the engine;


	It’s continuous because it can run “forever”, always looking for solutions that
can achieve better performances;


	It’s autonomous because it does not wander on the search space blindly and does
not perform exhaustive grid searches. Instead, it combines past attempts to guide
its next steps, always allowing itself to jump out of local minima.




MiraiML improves the chosen metric by searching good hyperparameters and sets of
features for base statistical models, whilst finding smart ways to combine the
predictions of those models in order to achieve even higher scores.


But how can MiraiML help me? And how does it even work?




We’re going to address these questions on the next subsections.




MiraiML usability

Tired of coding the same grid searches, cross-validations, training and predicting
scripts over and over? I was. MiraiML does it all with a simple API, so you can
spend less time on such mechanical tasks. MiraiML works on the typical train/test
scenario, when the data can fit in the RAM. Let’s explore the API from a bottom-up
perspective.

The basic usage flow is represented in the image below:

[image: _images/pub.png]

Search spaces

MiraiML requires that you define the search spaces in which it will look for
solution candidates. In order to instantiate a search space, you need to use the
miraiml.SearchSpace class. A search space is a combination of an id, a
model class and a dictionary of hyperparameters values to be tested. The only
requirement is that the model class must implement a fit method as well as a
predict method for regression problems or a predict_proba for
classification problems. For instance, you can use scikit-learn’s models:

>>> from sklearn.linear_model import LinearRegression
>>> from miraiml import SearchSpace

>>> search_space = SearchSpace(
...     id = 'Linear Regression',
...     model_class = LinearRegression,
...     parameters_values = dict(
...         fit_intercept = [True, False],
...         normalize = [True, False]
...     )
... )





miraiml.SearchSpace also allows you to provide a parameters_rules
function to deal with prohibitive combinations of hyperparameters. Please refer
to its documentation for further understanding.

After you’ve defined your search spaces, the next step is building the
configuration object.




Configuration

The configuration for MiraiML’s Engine is defined by an instance of the
miraiml.Config class, which tells the Engine where to save its local
files (checkpoints), the problem type, the function to score the candidate
solutions, the search spaces that should be used and a few other things. For
instance:

>>> from sklearn.metrics import r2_score
>>> from miraiml import Config

>>> config = Config(
...     local_dir = 'miraiml_local',
...     problem_type = 'regression',
...     score_function = r2_score,
...     search_spaces = [search_space]
... )





Alright, now we’re all set to use the Engine.




The Engine

miraiml.Engine provides a straightforward interface to access its
functionalities. The instantiation only requires a configuration object:

>>> from miraiml import Engine

>>> engine = Engine(config)






Note

You can also provide a on_improvement function that will be executed
everytime the engine finds a better modeling solution. Check out the API
documentation for more information.



Let’s use scikit-learn’s classic California Housing dataset as an example:

>>> from sklearn.datasets import fetch_california_housing
>>> import pandas as pd

>>> X, y = fetch_california_housing(return_X_y=True)
>>> data = pd.DataFrame(X)
>>> data['target'] = y

>>> engine.load_train_data(train_data=data, target_column='target')





After the training data is loaded, you can trigger the optimization process with:

>>> engine.restart()





And to interrupt it:

>>> engine.interrupt()





The miraiml.Engine documentation contains the full set of functionalities
that are available for you.






MiraiML internals

MiraiML works in cycles. In each cycle, the Engine tries to find better solutions
for each search space and for the ensemble. There are three main concepts at play
here:


	Base models represent solutions in the search space


	Mirai Seeker manages the walk through the search spaces


	Ensembler attempts weighted combinations of base models





Base models


Fit, predict and validate with a single button.




Base models are the fundamental bricks of the optimization process. A base model
is a combination of a model class, a set of parameters and a set of features.

Base models implement a versatile method for predictions, which return predictions
for the training data and for the testing data, as well as the score achieved on
the training data.

The mechanics of this process is similar to a cross-validation, with a slight
difference: the final score is not the mean score of each fold. Instead, the array
of predictions is built iteratively and then fully compared to the target column.
More precisely:


	Filter training and testing features


	Split the training data in N folds


	
	For each fold:

	
	Train the model on the bigger part


	Make predictions for the smaller part


	Make predictions for the testing dataset










	Compute the score for the entire column of predictions on the training dataset


	Compute the average of the predictions for the testing dataset




Averaging the predictions for the testing dataset may result in slightly better
accuracies than expected.

Pipelines

Pipelines can be used as base models when you want to test various ways of
pre-processing your data before fitting it with an estimator.

If that’s your case, please check out the miraiml.pipeline module.




Mirai Seeker

There can be too many base models in the search space and we may not be able to
afford exhausive searches. Thus, a smart strategy to search good base models is
mandatory.

The engine registers optimization attempts on dataframes called histories. These
dataframes have columns for each hyperparameter and each feature, as well as a
column for the reported scores. The values of the hyperparameters’ columns are the
values of the hyperparameters themselves. The values of the features’ columns are
either 0 or 1, which indicate whether the features were used or not. An example
of history dataframe for a K-NN classifier with three registries would be:










	Hyperparameters

	Features

	—



	n_neighbors

	weights

	age

	gender

	score





	3

	‘uniform’

	1

	0

	0.82



	2

	‘distance’

	0

	1

	0.76



	4

	‘uniform’

	1

	1

	0.84






As the history grows, it can be used to generate potentially good base models for
future optimization attempts. Currently, the available strategies to create base
models are:


	
	Random

	Generates a completely random base model.







	
	Naive

	The naive strategy iterates over the history columns (except the score) and
groups the data by the current column values using the mean aggregation
function on the score column. Each value present on the current column can be
chosen with a probability that is proportional to the mean score from the
group by aggregation.

For instance, if we aggregate the history dataframe above by the column age,
the mean score of attempts in which the feature age was chosen is 0.83 and
the mean score of the attempts in which the feature age was not chosen
is 0.76. Now, we choose to use age on the next base model with a probability
that’s proportional to 0.83 and we choose not to with a probability that’s
proportional to 0.76.

It’s called Naive because it assumes the strong hypothesis that the columns
of history dataframes affect the score independently.







	
	Linear Regression

	Uses a simple linear regression to model the score as a function of the other
history columns. Categorical columns are processed with One-Hot-Encoding. This
strategy makes n/2 guesses and chooses the best guess according to the linear
regression model, where n is the size of the history dataframe.









The strategy is chosen stochastically according to the following priority rule:


The random strategy will be chosen with a probability of 0.5. If it’s not,
the other strategies will be chosen with equal probabilities.







Ensembler

It is possible to combine the predictions of various base models in order to reach
even higher scores. This process is done by computing a straightforward linear
combination of the base models’ predictions.

More precisely, suppose we have a set of base models. For each base model \(i\),
let \(tr_i\) and \(ts_i\) be its predictions for the training and testing
dataset, respectively. The ensemble of the base models is based on a set of
coefficients \(w\) (weights), for which we can compute the combined predictions
\(E_{tr}\) and \(E_{ts}\) for the training and testing datasets, respectively,
according to the formula:


\[(E_{tr}, E_{ts}) = \left(\frac{\sum w_i tr_i}{\sum w_i},
\frac{\sum w_i ts_i}{\sum w_i}\right)\]

With a smart choice of \(w\), the score for \(E_{tr}\) may be better than
the score of any \(tr_i\).

Now, the obvious question is: how to find a good \(w\)? This is where the
concept of ensembling cycles comes into play.

An ensembling cycle is an attempt to generate good weights stochastically, based
on the the score of each base model individually. This is done by using triangular
distributions [https://en.wikipedia.org/wiki/Triangular_distribution].

The weight of the best base model is drawn from the triangular distribution that
varies from 0 to 1, with mode 1.

For every other base model \(i\) (not a base model with the highest score),
the weight is drawn from a triangular distribution that varies from 0 to range,
with mode 0. It means that its weight will most likely be close to 0 and its
upperbound is defined by the range variable.

The value of range should depend on the relative score of the base model. But
preventing it from reaching 1 would be too prohibitive. A solution for this is:
range is chosen from a triangular distribution that varies from 0 to 1, with mode
normalized. The variable normalized measures the relative quality of the base
model.

The value of normalized is computed by the formula \((s_i-s_\textrm{min})/
(s_\textrm{max}-s_\textrm{min})\), where \(s_i\) is the score of the base model
and \(s_\textrm{min}\) and \(s_\textrm{max}\) are the scores of the worst
and the best base models, respectively.

In the end, bad base models can still influence the ensemble, but their
probabilities of having high weights are relatively low.

The number of ensembling cycles depend on the time consumed by the other models.
The current rule is:


The time consumed by the ensemble is limited by the total time consumed by
all base models, on average.





Warning

The score of the Ensemble may decrease when the engine finds a better base
model and updates its predictions.








Optimization workflow

The optimization cycle starts by looking for better base models for each search
space. Mirai Seeker is responsible for keeping track of old base models attempts
in order to provide good guesses for new attempts. If a better base model is found
for some search space, the ensembler output is updated with the new predictions.
Then, after a new solution is attempted for each search space, the Engine executes
the ensembling cycles, looking for better ensembling weights.

Wrapping it all up, the following diagram represents the workflow within an
optimization loop:
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The User’s API

miraiml provides the following components:


	miraiml.SearchSpace represents the search space for a base model


	miraiml.Config defines the general behavior for miraiml.Engine


	miraiml.Engine manages the optimization process


	miraiml.pipeline has some features related to pipelines (hot!)





miraiml.SearchSpace


	
class miraiml.SearchSpace(id, model_class, parameters_values=None, parameters_rules=<function SearchSpace.<lambda>>)

	This class represents the search space of hyperparameters for a base model.


	Parameters

	
	id (str) – The id that will be associated with the models generated within
this search space.


	model_class (type) – Any class that represents a statistical model. It must
implement the methods fit as well as predict for regression or
predict_proba for classification problems.


	parameters_values (dict, optional, default=None) – A dictionary containing lists of values to be
tested as parameters when instantiating objects of model_class for
id.


	parameters_rules (function, optional, default=lambda x: None) – A function that constrains certain parameters because
of the values assumed by others. It must receive a dictionary as input and
doesn’t need to return anything. Not used if parameters_values has no
keys.


Warning

Make sure that the parameters accessed in parameters_rules exist
in the set of parameters defined on parameters_values, otherwise
the engine will attempt to access an invalid key.










	Raises

	NotImplementedError if a model class does not implement fit
or none of predict or predict_proba.



	Raises

	TypeError if some parameter is of a prohibited type.



	Raises

	ValueError if a provided id is not allowed.



	Example

	




>>> import numpy as np
>>> from sklearn.linear_model import LogisticRegression
>>> from miraiml import SearchSpace

>>> def logistic_regression_parameters_rules(parameters):
...     if parameters['solver'] in ['newton-cg', 'sag', 'lbfgs']:
...         parameters['penalty'] = 'l2'

>>> search_space = SearchSpace(
...     id = 'Logistic Regression',
...     model_class = LogisticRegression,
...     parameters_values = {
...         'penalty': ['l1', 'l2'],
...         'C': np.arange(0.1, 2, 0.1),
...         'max_iter': np.arange(50, 300),
...         'solver': ['newton-cg', 'lbfgs', 'liblinear', 'sag', 'saga'],
...         'random_state': [0]
...     },
...     parameters_rules = logistic_regression_parameters_rules
... )






Warning

Do not allow random_state assume multiple values. If model_class
has a random_state parameter, force the engine to always choose the
same value by providing a list with a single element.

Allowing random_state to assume multiple values will confuse the engine
because the scores will be unstable even with the same choice of
hyperparameters and features.










miraiml.Config


	
class miraiml.Config(local_dir, problem_type, score_function, search_spaces, use_all_features=False, n_folds=5, stratified=True, ensemble_id=None, stagnation=60)

	This class defines the general behavior of the engine.


	Parameters

	
	local_dir (str) – The name of the folder in which the engine will save its
internal files. If the directory doesn’t exist, it will be created
automatically. .. and / are not allowed to compose local_dir.


	problem_type (str) – 'classification' or 'regression'. The problem
type. Multi-class classification problems are not supported.


	search_spaces (list) – The list of miraiml.SearchSpace
objects to optimize. If search_spaces has length 1, the engine
will not run ensemble cycles.


	score_function (function) – A function that receives the “truth” and the predictions
(in this order) and returns the score. Bigger scores must mean better models.


	use_all_features (bool, optional, default=False) – Whether to force MiraiML to always use all features
or not.


	n_folds (int, optional, default=5) – The number of folds for the fitting/predicting process. The
minimum value allowed is 2.


	stratified (bool, optional, default=True) – Whether to stratify folds on target or not. Only used if
problem_type == 'classification'.


	ensemble_id (str, optional, default=None) – The id for the ensemble. If none is given, the engine will
not ensemble base models.


	stagnation (int or float, optional, default=60) – The amount of time (in minutes) for the engine to
automatically interrupt itself if no improvement happens. Negative numbers
are interpreted as “infinite”.


Warning

Stagnation checks only happen after the engine finishes at least one
optimization cycle. In other words, every base model and the ensemble
(if set) must be scored at least once.










	Raises

	NotImplementedError if a model class does not implement the proper
method for prediction.



	Raises

	TypeError if some parameter is not of its allowed type.



	Raises

	ValueError if some parameter has an invalid value.



	Example

	




>>> from sklearn.metrics import roc_auc_score
>>> from sklearn.naive_bayes import GaussianNB
>>> from sklearn.tree import DecisionTreeClassifier
>>> from miraiml import SearchSpace, Config

>>> search_spaces = [
...     SearchSpace('Naive Bayes', GaussianNB),
...     SearchSpace('Decicion Tree', DecisionTreeClassifier)
... ]

>>> config = Config(
...     local_dir = 'miraiml_local',
...     problem_type = 'classification',
...     score_function = roc_auc_score,
...     search_spaces = search_spaces,
...     use_all_features = False,
...     n_folds = 5,
...     stratified = True,
...     ensemble_id = 'Ensemble',
...     stagnation = -1
... )












miraiml.Engine


	
class miraiml.Engine(config, on_improvement=None)

	This class offers the controls for the engine.


	Parameters

	
	config (miraiml.Config) – The configurations for the behavior of the engine.


	on_improvement (function, optional, default=None) – A function that will be executed everytime the engine
finds an improvement for some id. It must receive a status parameter,
which is the return of the method request_status() (an instance of
miraiml.Status).






	Raises

	TypeError if config is not an instance of miraiml.Config
or on_improvement (if provided) is not callable.



	Example

	




>>> from sklearn.metrics import roc_auc_score
>>> from sklearn.naive_bayes import GaussianNB
>>> from sklearn.tree import DecisionTreeClassifier
>>> from miraiml import SearchSpace, Config, Engine

>>> search_spaces = [
...     SearchSpace('Naive Bayes', GaussianNB),
...     SearchSpace('Decision Tree', DecisionTreeClassifier)
... ]

>>> config = Config(
...     local_dir = 'miraiml_local',
...     problem_type = 'classification',
...     score_function = roc_auc_score,
...     search_spaces = search_spaces,
...     ensemble_id = 'Ensemble'
... )

>>> def on_improvement(status):
...     print('Scores:', status.scores)

>>> engine = Engine(config, on_improvement=on_improvement)











	is_running

	Tells whether the engine is running or not.



	interrupt

	Makes the engine stop on the first opportunity.



	load_train_data

	Interrupts the engine and loads the train dataset.



	load_test_data

	Interrupts the engine and loads the test dataset.



	shuffle_train_data

	Interrupts the engine and shuffles the training data.



	reconfigure

	Interrupts the engine and loads a new configuration.



	restart

	Interrupts the engine and starts again from last checkpoint (if any).



	request_status

	Queries the current status of the engine.







	
is_running()

	Tells whether the engine is running or not.


	Return type

	bool



	Returns

	True if the engine is running and False otherwise.










	
interrupt()

	Makes the engine stop on the first opportunity.


Note

This method is not asynchronous. It will wait until the engine
stops.








	
load_train_data(train_data, target_column, restart=False)

	Interrupts the engine and loads the train dataset. All of its columns must
be either instances of str or int.


Warning

Loading new training data will always trigger the loss of history
for optimization.




	Parameters

	
	train_data (pandas.DataFrame) – The training data.


	target_column (str or int) – The target column identifier.


	restart (bool, optional, default=False) – Whether to restart the engine after updating data or not.






	Raises

	TypeError if train_data is not an instance of
pandas.DataFrame.



	Raises

	ValueError if target_column is not a column of
train_data or if some column name is of a prohibited type.










	
load_test_data(test_data, restart=False)

	Interrupts the engine and loads the test dataset. All of its columns must
be columns in the train data.

The test dataset is the one for which we don’t have the values for the
target column. This method should be used to load data in production.


Warning

This method can only be called after
miraiml.Engine.load_train_data()




	Parameters

	
	test_data (pandas.DataFrame, optional, default=None) – The testing data. Use the default value if you don’t
need to make predictions for data with unknown labels.


	restart (bool, optional, default=False) – Whether to restart the engine after loading data or not.






	Raises

	RuntimeError if this method is called before loading the
train data.



	Raises

	ValueError if the column names are not consistent.










	
clean_test_data(restart=False)

	Cleans the test data from the buffer.


Note

Keep in mind that if you don’t intend to make predictions for
unlabeled data, the engine will run faster with a clean test data
buffer.




	Parameters

	restart (bool, optional, default=False) – Whether to restart the engine after cleaning test data or
not.










	
shuffle_train_data(restart=False)

	Interrupts the engine and shuffles the training data.


	Parameters

	restart (bool, optional, default=False) – Whether to restart the engine after shuffling data or not.



	Raises

	RuntimeError if the engine has no data loaded.






Note

It’s a good practice to shuffle the training data periodically to avoid
overfitting on a particular folding pattern.








	
reconfigure(config, restart=False)

	Interrupts the engine and loads a new configuration.


Warning

Reconfiguring the engine will always trigger the loss of history
for optimization.




	Parameters

	
	config (miraiml.Config) – The configurations for the behavior of the engine.


	restart (bool, optional, default=False) – Whether to restart the engine after reconfiguring it or
not.













	
restart()

	Interrupts the engine and starts again from last checkpoint (if any). It
is also used to start the engine for the first time.


	Raises

	RuntimeError if no data is loaded.










	
request_status()

	Queries the current status of the engine.


	Return type

	miraiml.Status



	Returns

	The current status of the engine in the form of a dictionary.
If no score has been computed yet, returns None.
















miraiml.Status


	
class miraiml.Status(**kwargs)

	Represents the current status of the engine. Objects of this class are
not supposed to be instantiated by the user. Rather, they are returned
by the miraiml.Engine.request_status() method.

The following attributes are accessible:


	best_id: the id of the best base model (or ensemble)


	scores: a dictionary containing the current score of each id


	train_predictions: a pandas.DataFrame object containing the predictions        for the train data for each id


	test_predictions: a pandas.DataFrame object containing the predictions        for the test data for each id


	ensemble_weights: a dictionary containing the ensemble weights for        each base model id


	base_models: a dictionary containing the characteristics of each base        model (accessed by its respective id)


	histories: a dictionary of pandas.DataFrame objects for each id,        containing the history of base models attempts and their respective scores.        Hyperparameters columns end with the '__(hyperparameter)' suffix and        features columns end with the '__(feature)' suffix. The score column        can be accessed with the key 'score'. For more information, please        check the User Guide.




The characteristics of each base model are represent by dictionaries, containing
the following keys:


	'model_class': The name of the base model’s modeling class


	'parameters': The dictionary of hyperparameters values


	'features': The list of features used





	
build_report(include_features=False)

	Returns the report of the current status of the engine in a formatted
string.


	Parameters

	include_features (bool, optional, default=False) – Whether to include the list of features on the
report or not (may cause some visual mess).



	Return type

	str



	Returns

	The formatted report.
















miraiml.pipeline

miraiml.pipeline contains a function that lets you build your own
pipeline classes. It also contains a few pre-defined pipelines for baselines.







	compose

	A function that defines pipeline classes dinamically.



	NaiveBayesBaseliner

	This is a baseline pipeline for classification problems.



	LinearRegressionBaseliner

	This is a baseline pipeline for regression problems.







	
miraiml.pipeline.compose(steps)

	A function that defines pipeline classes dinamically. It builds a pipeline
class that can be instantiated with particular parameters for each of its
transformers/estimator without needing to call set_params as you would
do with scikit-learn’s Pipeline when performing hyperparameters optimizations.

Similarly to scikit-learn’s Pipeline, steps is a list of tuples
containing an alias and the respective pipeline element. Although, since
this function is a class factory, you shouldn’t instantiate the
transformer/estimator as you would do with scikit-learn’s Pipeline. Thus,
this is how compose() should be called:

>>> from sklearn.ensemble import RandomForestClassifier
>>> from sklearn.preprocessing import StandardScaler

>>> from miraiml.pipeline import compose

>>> MyPipelineClass = compose(
...     steps = [
...         ('scaler', StandardScaler), # StandardScaler instead of StandardScaler()
...         ('rfc', RandomForestClassifier) # No instantiation either
...     ]
... )





And then, in order to instantiate MyPipelineClass with the desired
parameters, you just need to refer to them as a concatenation of their
respective class aliases and their names, separated by '__'.

>>> pipeline = MyPipelineClass(scaler__with_mean=False, rfc__max_depth=3)





If you want to know which parameters you’re allowed to play with, just call
get_params:

>>> params = pipeline.get_params()
>>> print("\n".join(params))
scaler__with_mean
scaler__with_std
rfc__bootstrap
rfc__class_weight
rfc__criterion
rfc__max_depth
rfc__max_features
rfc__max_leaf_nodes
rfc__min_impurity_decrease
rfc__min_impurity_split
rfc__min_samples_leaf
rfc__min_samples_split
rfc__min_weight_fraction_leaf
rfc__n_estimators
rfc__n_jobs
rfc__oob_score
rfc__random_state
rfc__verbose
rfc__warm_start





You can check the available methods for your instantiated pipelines on the
documentation for miraiml.core.BasePipelineClass, which is the
class from which the composed classes inherit from.

The intended purpose of such pipeline classes is that they can work as
base models to build instances of miraiml.SearchSpace.

>>> from miraiml import SearchSpace

>>> search_space = SearchSpace(
...     id='MyPipelineClass',
...     model_class=MyPipelineClass,
...     parameters_values=dict(
...         scaler__with_mean=[True, False],
...         scaler__with_std=[True, False],
...         rfc__max_depth=[3, 4, 5, 6]
...     )
... )






	Parameters

	steps (list) – The list of pairs (alias, class) to define the pipeline.


Warning

Repeated aliases are not allowed and none of the aliases can start
with numbers or contain '__'.

The classes used to compose a pipeline must implement get_params
and set_params, such as scikit-learn’s classes, or compose()
will break.







	Return type

	type



	Returns

	The composed pipeline class



	Raises

	TypeError if an alias is not a string.



	Raises

	ValueError if an alias has an invalid name.



	Raises

	NotImplementedError if some class of the pipeline does not implement
the required methods.










	
class miraiml.pipeline.NaiveBayesBaseliner

	This is a baseline pipeline for classification problems. It’s composed by
the following transformers/estimator:


	sklearn.preprocessing.OneHotEncoder


	sklearn.impute.SimpleImputer


	sklearn.preprocessing.MinMaxScaler


	sklearn.naive_bayes.GaussianNB




The available parameters to tweak are:

>>> from miraiml.pipeline import NaiveBayesBaseliner

>>> for param in NaiveBayesBaseliner().get_params():
...     print(param)
...
ohe__categorical_features
ohe__categories
ohe__drop
ohe__dtype
ohe__handle_unknown
ohe__n_values
ohe__sparse
impute__add_indicator
impute__fill_value
impute__missing_values
impute__strategy
impute__verbose
min_max__feature_range
naive__priors
naive__var_smoothing










	
class miraiml.pipeline.LinearRegressionBaseliner

	This is a baseline pipeline for regression problems. It’s composed by the
following transformers/estimator:


	sklearn.preprocessing.OneHotEncoder


	sklearn.impute.SimpleImputer


	sklearn.preprocessing.MinMaxScaler


	sklearn.linear_model.LinearRegression




The available parameters to tweak are:

>>> from miraiml.pipeline import LinearRegressionBaseliner

>>> for param in LinearRegressionBaseliner().get_params():
...     print(param)
...
ohe__categorical_features
ohe__categories
ohe__drop
ohe__dtype
ohe__handle_unknown
ohe__n_values
ohe__sparse
impute__add_indicator
impute__fill_value
impute__missing_values
impute__strategy
impute__verbose
min_max__feature_range
lin_reg__fit_intercept
lin_reg__n_jobs
lin_reg__normalize















          

      

      

    

  

    
      
          
            
  
Internal modules’ API

The documentation related to these modules is meant for developers.


miraiml.core

miraiml.core contains internal classes responsible for the optimization
process.


	
class miraiml.core.BaseModel(model_class, parameters, features)

	Represents an element from the search space, defined by an instance of
miraiml.SearchSpace and a set of features.

Read more in the User Guide.


	Parameters

	
	model_class (type) – A statistical model class that must implement the methods
fit and predict for regression or predict_proba classification
problems.


	parameters (dict) – The parameters that will be used to instantiate objects of
model_class.


	features (list) – The list of features that will be used to train the statistical
model.









	
predict(X_train, y_train, X_test, config)

	Performs the predictions for the training and testing datasets and also
computes the score of the model.


	Parameters

	
	X_train (pandas.DataFrame) – The dataframe that contains the training inputs for the
model.


	y_train (pandas.Series or numpy.ndarray) – The training targets for the model.


	X_test (pandas.DataFrame) – The dataframe that contains the testing inputs for the model.


	config (miraiml.Config) – The configuration of the engine.






	Return type

	tuple



	Returns

	(train_predictions, test_predictions, score)


	train_predictions: The predictions for the training dataset


	test_predictions: The predictions for the testing dataset


	score: The score of the model on the training dataset








	Raises

	RuntimeError when fitting or predicting doesn’t work.














	
miraiml.core.dump_base_model(base_model, path)

	Saves the characteristics of a base model as a checkpoint.


	Parameters

	
	base_model (miraiml.core.BaseModel) – The base model to be saved


	path (str) – The path to save the base model






	Return type

	tuple



	Returns

	(train_predictions, test_predictions, score)










	
miraiml.core.load_base_model(model_class, path)

	Loads the characteristics of a base model from disk and returns its respective
instance of miraiml.core.BaseModel.


	Parameters

	
	model_class (type) – The model class related to the base model


	path (str) – The path to load the base model from






	Return type

	miraiml.core.BaseModel



	Returns

	The base model loaded from disk










	
class miraiml.core.MiraiSeeker(search_spaces, all_features, config)

	This class implements a smarter way of searching good parameters and sets of
features.

Read more in the User Guide.


	Parameters

	
	base_models_ids (list) – The list of base models’ ids to keep track of.


	all_features (list) – A list containing all available features.


	config (miraiml.Config) – The configuration of the engine.









	
reset()

	Deletes all base models registries.






	
parameters_features_to_dataframe(parameters, features, score)

	Creates an entry for a history.


	Parameters

	
	parameters (list) – The set of parameters to transform.


	parameters – The set of features to transform.


	score (float) – The score to transform.













	
register_base_model(id, base_model, score)

	Registers the performance of a base model and its characteristics.


	Parameters

	
	id (str) – The id associated with the base model.


	base_model (miraiml.core.BaseModel) – The base model being registered.


	score (float) – The score of base_model.













	
is_ready(id)

	Tells whether the history of an id is large enough for more advanced
strategies or not.


	Parameters

	id (str) – The id to be inspected.



	Return type

	bool



	Returns

	Whether id can be used to generate parameters and features
lists or not.










	
seek(id)

	Manages the search strategy for better solutions.

With a probability of 0.5, the random strategy will be chosen. If it’s
not, the other strategies will be chosen with equal probabilities.


	Parameters

	id (str) – The id for which a new base model is required.



	Return type

	miraiml.core.BaseModel



	Returns

	The next base model for exploration.



	Raises

	KeyError if parameters_rules tries to access an invalid
key.










	
random_search(id)

	Generates completely random sets of parameters and features.


	Parameters

	all_features (list) – The list of available features.



	Return type

	tuple



	Returns

	(parameters, features)
Respectively, the dictionary of parameters and the list of features
that can be used to generate a new base model.










	
naive_search(id)

	Characteristics that achieved higher scores have independently higher
chances of being chosen again.


	Parameters

	id (str) – The id for which we want a new set of parameters and features.



	Return type

	tuple



	Returns

	(parameters, features)
Respectively, the dictionary of parameters and the list of features
that can be used to generate a new base model.










	
linear_regression_search(id)

	Uses the history to model the score with a linear regression. Guesses the
scores of n/2 random sets of parameters and features, where n is the
size of the history. The one with the highest score is chosen.


	Parameters

	id (str) – The id for which we want a new set of parameters and features.



	Return type

	tuple



	Returns

	(parameters, features)
Respectively, the dictionary of parameters and the list of features
that can be used to generate a new base model.














	
class miraiml.core.Ensembler(base_models_ids, y_train, train_predictions_df, test_predictions_df, scores, config)

	Performs the ensemble of the base models and optimizes its weights.

Read more in the User Guide.


	Parameters

	
	y_train (pandas.Series or numpy.ndarray) – The target column.


	base_models_ids (list) – The list of base models’ ids to keep track of.


	train_predictions_df (pandas.DataFrame) – The dataframe of predictions for the training
dataset.


	test_predictions_df (pandas.DataFrame) – The dataframe of predictions for the testing
dataset.


	scores (dict) – The dictionary of scores.


	config (miraiml.Config) – The configuration of the engine.









	
interrupt()

	Sets an internal flag to interrupt the optimization process on the first
opportunity.






	
update()

	Updates the ensemble with the newest predictions from the base models.






	
gen_weights()

	Generates the ensemble weights according to the score of each base model.
Higher scores have higher chances of generating higher weights.


	Return type

	dict



	Returns

	A dictionary containing the weights for each base model id.










	
ensemble(weights)

	Performs the ensemble of the current predictions of each base model.


	Parameters

	weights (dict) – A dictionary containing the weights related to the id of
each base model.



	Return type

	tuple



	Returns

	(train_predictions, test_predictions, score)


	train_predictions: The ensemble predictions for the training dataset


	test_predictions: The ensemble predictions for the testing dataset


	score: The score of the ensemble on the training dataset















	
optimize(max_duration)

	Performs ensembling cycles for max_duration seconds.


	Parameters

	max_duration (float) – The maximum duration allowed for the optimization
process.



	Return type

	bool



	Returns

	True if a better set of weights was found and False
otherwise.














	
class miraiml.core.BasePipelineClass(**params)

	This is the base class for your custom pipeline classes.


Warning

Instantiating this class directly does not work.




	
get_params()

	Gets the list of parameters that can be set.


	Parameters

	X (iterable) – Data to predict on.



	Return type

	list



	Returns

	The list of allowed parameters










	
set_params(**params)

	Sets the parameters for the pipeline. You can check the parameters that
are allowed to be set by calling get_params().


	Return type

	miraiml.core.BasePipelineClass



	Returns

	self










	
fit(X, y)

	Fits the pipeline to X using y as the target.


	Parameters

	
	X (iterable) – The training data.


	y (iterable) – The target.






	Return type

	miraiml.core.BasePipelineClass



	Returns

	self










	
predict(X)

	Predicts the class for each element of X in case of classification
problems or the estimated target value in case of regression problems.


	Parameters

	X (iterable) – Data to predict on.



	Return type

	numpy.ndarray



	Returns

	The set of predictions










	
predict_proba(X)

	Returns the probabilities for each class. Available only if your end
estimator implements it.


	Parameters

	X (iterable) – Data to predict on.



	Return type

	numpy.ndarray



	Returns

	The probabilities for each class
















miraiml.util

miraiml.util provides utility functions that are used by higher level
modules.


	
miraiml.util.load(path)

	A clean pickle.load wrapper for binary files.


	Parameters

	path (string) – The path of the binary file to be loaded.



	Return type

	object



	Returns

	The loaded object.










	
miraiml.util.dump(obj, path)

	Optimizes the process of writing objects on disc by triggering a thread.


	Parameters

	
	obj (object) – The object to be dumped to the binary file.


	path (string) – The path of the binary file to be written.













	
miraiml.util.sample_random_len(lst)

	Returns a sample of random size from the list lst. The minimum length of
the returned list is 1.


	Parameters

	lst (list) – A list containing the elements to be sampled.



	Return type

	sampled_lst: list



	Returns

	The randomly sampled elements from lst.










	
miraiml.util.is_valid_filename(filename)

	Tells whether a string can be used as a safe file name or not.


	Parameters

	filename (str) – The file name.



	Return type

	bool



	Returns

	Whether filename is a valid file name or not.










	
miraiml.util.is_valid_pipeline_name(pipeline_name)

	Tells whether a string can be used to compose pipelines or not.


	Parameters

	pipeline_name (str) – The file name.



	Return type

	bool



	Returns

	Whether pipeline_name is a valid name or not.















          

      

      

    

  

    
      
          
            
  
Example notebook

This notebook will cover a regression case using scikit-learn’s California Housing dataset.

from sklearn.datasets import fetch_california_housing
import pandas as pd

X, y = fetch_california_housing(data_home='miraiml_local', return_X_y=True)
data = pd.DataFrame(X)
data['target'] = y





Downloading Cal. housing from https://ndownloader.figshare.com/files/5976036 to miraiml_local





Let’s split the data into training and testing data. In a real case scenario, we’d only have labels for training data.

from sklearn.model_selection import train_test_split

train_data, test_data = train_test_split(data, test_size=0.2)






Building the search spaces

Let’s compare (and ensemble) a KNeighborsRegressor and a pipeline composed by StandardScaler and a LinearRegression.

from sklearn.neighbors import KNeighborsRegressor
from sklearn.linear_model import LinearRegression
from sklearn.preprocessing import StandardScaler

from miraiml import SearchSpace
from miraiml.pipeline import compose

Pipeline = compose(
    [('scaler', StandardScaler), ('lin_reg', LinearRegression)]
)

search_spaces = [
    SearchSpace(
        id='k-NN Regressor',
        model_class=KNeighborsRegressor,
        parameters_values=dict(
            n_neighbors=range(2, 9),
            weights=['uniform', 'distance'],
            p=range(2, 5)
        )
    ),
    SearchSpace(
        id='Pipeline',
        model_class=Pipeline,
        parameters_values=dict(
            scaler__with_mean=[True, False],
            scaler__with_std=[True, False],
            lin_reg__fit_intercept=[True, False]
        )
    )
]








Configuring the Engine

For this demonstration, let’s use r2_score to evaluate our modeling.

from sklearn.metrics import r2_score

from miraiml import Config

config = Config(
    local_dir='miraiml_local',
    problem_type='regression',
    score_function=r2_score,
    search_spaces=search_spaces,
    ensemble_id='Ensemble'
)








Triggering the Engine

Let’s also print the scores everytime the Engine finds a better solution.

from miraiml import Engine

def on_improvement(status):
    scores = status.scores
    for key in sorted(scores.keys()):
        print('{}: {}'.format(key, round(scores[key], 3)), end='; ')
    print()

engine = Engine(config=config, on_improvement=on_improvement)





Now we’re ready to load the data.

engine.load_train_data(train_data, 'target')
engine.load_test_data(test_data)





Let’s leave it running for 2 minutes, shuffle the train data, let it run for 2 more minutes and then interrupt it.

from time import sleep

engine.restart()

sleep(120)

print('\nShuffling train data')
engine.shuffle_train_data(restart=True)

sleep(120)

engine.interrupt()





Ensemble: 0.118; Pipeline: -3.214; k-NN Regressor: 0.118; 
Ensemble: 0.142; Pipeline: -3.214; k-NN Regressor: 0.142; 
Ensemble: 0.143; Pipeline: 0.467; k-NN Regressor: 0.142; 
Ensemble: 0.474; Pipeline: 0.467; k-NN Regressor: 0.142; 
Ensemble: 0.473; Pipeline: 0.467; k-NN Regressor: 0.172; 
Ensemble: 0.509; Pipeline: 0.503; k-NN Regressor: 0.172; 
Ensemble: 0.509; Pipeline: 0.503; k-NN Regressor: 0.172; 
Ensemble: 0.525; Pipeline: 0.503; k-NN Regressor: 0.321; 
Ensemble: 0.539; Pipeline: 0.503; k-NN Regressor: 0.321; 
Ensemble: 0.552; Pipeline: 0.503; k-NN Regressor: 0.521; 
Ensemble: 0.566; Pipeline: 0.503; k-NN Regressor: 0.521; 
Ensemble: 0.565; Pipeline: 0.503; k-NN Regressor: 0.538; 
Ensemble: 0.566; Pipeline: 0.503; k-NN Regressor: 0.538; 
Ensemble: 0.566; Pipeline: 0.503; k-NN Regressor: 0.538; 
Ensemble: 0.566; Pipeline: 0.512; k-NN Regressor: 0.538; 
Ensemble: 0.566; Pipeline: 0.512; k-NN Regressor: 0.538; 
Ensemble: 0.566; Pipeline: 0.512; k-NN Regressor: 0.538; 
Ensemble: 0.587; Pipeline: 0.512; k-NN Regressor: 0.544; 
Ensemble: 0.597; Pipeline: 0.536; k-NN Regressor: 0.544; 
Ensemble: 0.598; Pipeline: 0.536; k-NN Regressor: 0.544; 
Ensemble: 0.648; Pipeline: 0.536; k-NN Regressor: 0.659; 
Ensemble: 0.666; Pipeline: 0.536; k-NN Regressor: 0.659; 
Ensemble: 0.68; Pipeline: 0.536; k-NN Regressor: 0.665; 
Ensemble: 0.681; Pipeline: 0.536; k-NN Regressor: 0.665; 
Ensemble: 0.681; Pipeline: 0.536; k-NN Regressor: 0.665; 
Ensemble: 0.681; Pipeline: 0.536; k-NN Regressor: 0.665; 
Ensemble: 0.695; Pipeline: 0.584; k-NN Regressor: 0.665; 
Ensemble: 0.698; Pipeline: 0.584; k-NN Regressor: 0.665; 
Ensemble: 0.698; Pipeline: 0.597; k-NN Regressor: 0.665; 
Ensemble: 0.698; Pipeline: 0.597; k-NN Regressor: 0.665; 
Ensemble: 0.698; Pipeline: 0.597; k-NN Regressor: 0.665; 
Ensemble: 0.698; Pipeline: 0.597; k-NN Regressor: 0.665; 
Ensemble: 0.698; Pipeline: 0.597; k-NN Regressor: 0.665; 
Ensemble: 0.698; Pipeline: 0.597; k-NN Regressor: 0.665; 
Ensemble: 0.698; Pipeline: 0.597; k-NN Regressor: 0.665; 
Ensemble: 0.698; Pipeline: 0.597; k-NN Regressor: 0.687; 
Ensemble: 0.7; Pipeline: 0.597; k-NN Regressor: 0.687; 
Ensemble: 0.7; Pipeline: 0.597; k-NN Regressor: 0.687; 
Ensemble: 0.738; Pipeline: 0.597; k-NN Regressor: 0.72; 
Ensemble: 0.738; Pipeline: 0.597; k-NN Regressor: 0.72; 
Ensemble: 0.738; Pipeline: 0.597; k-NN Regressor: 0.72; 
Ensemble: 0.754; Pipeline: 0.597; k-NN Regressor: 0.753; 
Ensemble: 0.757; Pipeline: 0.597; k-NN Regressor: 0.753; 
Ensemble: 0.757; Pipeline: 0.597; k-NN Regressor: 0.753; 
Ensemble: 0.757; Pipeline: 0.597; k-NN Regressor: 0.753; 
Ensemble: 0.757; Pipeline: 0.597; k-NN Regressor: 0.753; 

Shuffling train data
Ensemble: 0.757; Pipeline: 0.596; k-NN Regressor: 0.753; 
Ensemble: 0.757; Pipeline: 0.596; k-NN Regressor: 0.753; 
Ensemble: 0.757; Pipeline: 0.596; k-NN Regressor: 0.753; 
Ensemble: 0.758; Pipeline: 0.596; k-NN Regressor: 0.755; 
Ensemble: 0.758; Pipeline: 0.596; k-NN Regressor: 0.755; 
Ensemble: 0.758; Pipeline: 0.596; k-NN Regressor: 0.755; 
Ensemble: 0.758; Pipeline: 0.596; k-NN Regressor: 0.755; 
Ensemble: 0.758; Pipeline: 0.596; k-NN Regressor: 0.755; 
Ensemble: 0.758; Pipeline: 0.596; k-NN Regressor: 0.755; 
Ensemble: 0.758; Pipeline: 0.596; k-NN Regressor: 0.755; 
Ensemble: 0.758; Pipeline: 0.596; k-NN Regressor: 0.755; 
Ensemble: 0.758; Pipeline: 0.596; k-NN Regressor: 0.755; 
Ensemble: 0.758; Pipeline: 0.596; k-NN Regressor: 0.755; 
Ensemble: 0.758; Pipeline: 0.596; k-NN Regressor: 0.755; 








Engine’s status analysis

status = engine.request_status()





Let’s see the status report.

print(status.build_report(include_features=True))





########################
best id: Ensemble
best score: 0.7583702712570008
########################
ensemble weights:
    k-NN Regressor: 0.4325346249356786
    Pipeline: 0.06615069839850787
########################
all scores:
    Ensemble: 0.7583702712570008
    k-NN Regressor: 0.7545806614607227
    Pipeline: 0.5963819838101254
########################
id: Pipeline
model class: MiraiPipeline
n features: 8
parameters:
    lin_reg__fit_intercept: True
    scaler__with_mean: False
    scaler__with_std: False
features: 0, 1, 2, 3, 4, 5, 6, 7
########################
id: k-NN Regressor
model class: KNeighborsRegressor
n features: 6
parameters:
    n_neighbors: 6
    p: 2
    weights: distance
features: 0, 2, 3, 5, 6, 7






k-NN Regressor’s history

How does the k-NN Regressor’s scores change with n_neighbors, on average?

import matplotlib.pyplot as plt
%matplotlib inline

knn_history = status.histories['k-NN Regressor']

knn_history[['n_neighbors__(hyperparameter)', 'score']]\
    .groupby('n_neighbors__(hyperparameter)').mean()\
    .plot.bar()

plt.show()





[image: _images/example_19_0.png]png

We can also see how the presence of features (0 or 1) correlate with the score. These results can work as some sort of feature importance.

knn_history[[col for col in knn_history if col.endswith('(feature)')] + ['score']]\
    .corr()['score'][:-1]\
    .sort_values()\
    .plot.bar(label='Correlation')

plt.legend()
plt.show()





[image: _images/example_21_0.png]png




Theoretical performance in production

Again, in practice we wouldn’t have labels for test_data. But since we do have labels here, how would MiraiML perform on the test dataset?

r2_score(test_data['target'], status.test_predictions['Ensemble'])





0.7802410717298023
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