

minispec

minispec is a minimal module for computing audio spectrograms.

Getting started

	Installation instructions

Troubleshooting

If you have questions about how to use minispec, please consult the discussion forum [https://groups.google.com/forum/#!forum/minispec].
For bug reports and other, more technical issues, consult the github issues [https://github.com/minispec/minispec/issues].

API documentation

Advanced topics

Reference

	Changelog
	v0.1.1

	v0.1.0

	Glossary

	Index

Installation instructions

pypi

The simplest way to install minispec is through the Python Package Index (PyPI).
This will ensure that all required dependencies are fulfilled.
This can be achieved by executing the following command:

pip install minispec

or:

sudo pip install minispec

to install system-wide, or:

pip install -u minispec

to install just for your own user.

Source

If you’ve downloaded the archive manually from the releases [https://github.com/minispec/minispec/releases/] page, you can install using the
setuptools script:

tar xzf minispec-VERSION.tar.gz
cd minispec-VERSION/
python setup.py install

If you intend to develop minispec or make changes to the source code, you can
install with pip install -e to link to your actively developed source tree:

tar xzf minispec-VERSION.tar.gz
cd minispec-VERSION/
pip install -e .

Alternately, the latest development version can be installed via pip:

pip install git+https://github.com/minispec/minispecbrew install ffmpeg` or get a binary version from their website https://www.ffmpeg.org.

Changelog

v0.1.1

2019-02-28

Merge minispec with librosa v0.6.3

v0.1.0

2018-11-29

Initial release.

Glossary

	time series

	Typically an audio signal, denoted by y, and represented as a
one-dimensional numpy.ndarray of floating-point values. y[t]
corresponds to amplitude of the waveform at sample t.

	sampling rate

	The (positive integer) number of samples per second of a time series.
This is denoted by an integer variable sr.

	frame

	A short slice of a time series used for analysis purposes. This
usually corresponds to a single column of a spectrogram matrix.

	window

	A vector or function used to weight samples within a frame when computing
a spectrogram.

	frame length

	The (positive integer) number of samples in an analysis window (or
frame).
This is denoted by an integer variable n_fft.

	hop length

	The number of samples between successive frames, e.g., the columns
of a spectrogram. This is denoted as a positive integer hop_length.

	window length

	The length (width) of the window function (e.g., Hann window). Note that this
can be smaller than the frame length used in a short-time Fourier
transform. Typically denoted as a positive integer variable win_length.

	spectrogram

	A matrix S where the rows index frequency bins, and the columns index
frames (time). Spectrograms can be either real-valued or complex-valued. By
convention, real-valued spectrograms are denoted as numpy.ndarrays S,
while complex-valued STFT matrices are denoted as D.

	onset (strength) envelope

	An onset envelope onset_env[t] measures the strength of note onsets at
frame t. Typically stored as a one-dimensional numpy.ndarray of
floating-point values onset_envelope.

	chroma

	Also known as pitch class profile (PCP). Chroma representations measure the
amount of relative energy in each pitch class (e.g., the 12 notes in the
chromatic scale) at a given frame/time.

Index

 C
 | F
 | H
 | O
 | S
 | T
 | W

C

 	
 	chroma

F

 	
 	frame

 	
 	frame length

H

 	
 	hop length

O

 	
 	onset (strength) envelope

S

 	
 	sampling rate

 	
 	spectrogram

T

 	
 	time series

W

 	
 	window

 	
 	window length

Caching

This section covers the minispec function cache. This allows you
to store and re-use intermediate computations across sessions.

Enabling the cache

By default, caching is disabled. To enable caching, the environment
variable MINISPEC_CACHE_DIR must be set prior to loading minispec.
This can be done on the command line prior to instantiating a python interpreter:

$ export MINISPEC_CACHE_DIR=/tmp/minispec_cache
$ ipython

or from within python, prior to importing minispec:

>>> import os
>>> os.environ['MINISPEC_CACHE_DIR'] = '/tmp/minispec_cache'
>>> import minispec

Warning

The cache does not implement any eviction policy. As such,
it can grow without bound on disk if not purged.
To purge the cache directly, call:

>>> minispec.cache.clear()

Cache configuration

The cache is implemented on top of joblib.Memory [https://pythonhosted.org/joblib/memory.html].
The default configuration can be overridden by setting the following environment variables

	MINISPEC_CACHE_DIR : path (on disk) to the cache directory

	MINISPEC_CACHE_MMAP : optional memory mapping mode {None, ‘r+’, ‘r’, ‘w+’, ‘c’}

	MINISPEC_CACHE_COMPRESS : flag to enable compression of data on disk {0, 1}

	MINISPEC_CACHE_VERBOSE : controls how much debug info is displayed. {int, non-negative}

	MINISPEC_CACHE_LEVEL : controls the caching level: the larger this value, the more data is cached. {int}

Please refer to the joblib.Memory documentation [https://pythonhosted.org/joblib/memory.html#memory-reference] for a detailed explanation of these
parameters.

As of 0.7, minispec’s cache wraps (rather than extends) the joblib.Memory object.
The memory object can be directly accessed by minispec.cache.memory.

Cache levels

Cache levels operate in a fashion similar to logging levels.
For small values of MINISPEC_CACHE_LEVEL, only the most important (frequently used) data are cached.
As the cache level increases, broader classes of functions are cached.
As a result, application code may run faster at the expense of larger disk usage.

The caching levels are described as follows:

	10: filter bases, independent of audio data (mel)

	20: low-level features (stft, etc)

	30: high-level features (tempo, beats, decomposition, recurrence, etc)

	40: post-processing (stack_memory, normalize, sync)

The default cache level is 10.

 _static/comment-bright.png

_static/comment-close.png

_static/ajax-loader.gif

_static/down.png

_static/comment.png

_static/down-pressed.png

_static/file.png

_static/minus.png

_static/plus.png

nav.xhtml

 Table of Contents

 		
 minispec

 		
 Installation instructions

 		
 pypi

 		
 Source

 		
 Changelog

 		
 v0.1.1

 		
 v0.1.0

 		
 Glossary

_static/up.png

_static/up-pressed.png

