
Miniature Unicycle Firmware
Documentation

Release

Eric Wieser

Jul 12, 2017

Contents:

1 Toolchain 1
1.1 PlatformIO . 1
1.2 Protobuf . 1
1.3 Documentation . 1

2 Hardware 3
2.1 Pin assignments . 3
2.2 Compiler-verification of pin assignments . 4
2.3 Flashing a program . 6
2.4 Motors . 7
2.5 Sensors . 7

3 Communication protocol 11

4 Terminal 13

5 Matlab interface 15

6 Indices and tables 17

Bibliography 19

i

ii

CHAPTER 1

Toolchain

PlatformIO

To build the code, you’ll need to install PlatformIO. This is used as a a replacement for the Arduino IDE, which has a
number of shortcomings:

• Poor dependency management - using other people’s code is tricky, and specifying versions of their code is even
harder

• No command-line interface - downloading code requires clumsy clicking.

The “Core” version of PlatformIO is sufficient, as that gives you the command line tools.

Once installed, open a terminal and type pio run. This should install all the libraries we depend on, and compile
the code.

To upload the program, run pio run -t upload. See the notes about Flashing a program for hardware-related
issues with this opperation.

Protobuf

To send messages from the robot to the PC, we use protobuf.

When building the code with pio run, the command protoc --nanopb_out ... will be executed. This
requires that protoc, the protobuf compiler, is on the path, and that the nanopb plugin is also installed.

Documentation

The HTML version of this documentation is generated with Sphinx. To generate the help from C++ comments, both
Breathe and Doxygen are required.

Once everything is installed, typing make html in the documentation directory should rebuild the documentation.

1

https://platformio.org/
https://developers.google.com/protocol-buffers/
https://jpa.kapsi.fi/nanopb/
https://www.sphinx-doc.org
https://breathe.readthedocs.io
https://www.doxygen.org/

Miniature Unicycle Firmware Documentation, Release

However, this is not necessary - the documentation will be automatically built by Read the Docs whenever this repos-
itory is pushed to.

2 Chapter 1. Toolchain

https://readthedocs.org/

CHAPTER 2

Hardware

The controller for the robot is a chipKIT Max32, which is an arduino-compatible board with a PIC32 microcontroller
on board. The specific microcontroller on the board is a PIC32MX795F512, which is relevant when looking for
specific hardware features such as timers and PWM.

Power comes from a 7.4V Li-ion battery.

Pin assignments

The following is autogenerated from the source code. Pin numbers correspond to those printed on the board. Within
the code, these can be accessed with pins::TT_DIR. These can be passed to functions like io::timer_for()
and io::oc_for() in order to convert them into peripheral objects.

namespace pins

Encoders

const uint8_t TT_DIR = 39

const uint8_t W_DIR = 47

const uint8_t TT_CLK = 22

const uint8_t W_CLK = 23

I2C Sensors

const uint8_t IMU_SCL = 21

const uint8_t IMU_SDA = 20

3

http://store.digilentinc.com/chipkit-max32-microcontroller-board-with-mega-r3-headers/
http://ww1.microchip.com/downloads/en/DeviceDoc/61156G.pdf

Miniature Unicycle Firmware Documentation, Release

Motors

const uint8_t TT_FWD = 3

const uint8_t TT_REV = 5

const uint8_t W_FWD = 6

const uint8_t W_REV = 9

Human interaction

const uint8_t SWITCH = 43
Input for the limit switch.

const uint8_t LED = PIN_LED1

const uint8_t USB_RX = 0

const uint8_t USB_TX = 1

Compiler-verification of pin assignments

This project uses a novel approach to selecting microprocessor peripherals from their pin numbers.

A typical microprocessor has multiple different features available on each pin. However, very rarely is every feature
available on every pin, and the mapping between these features and their pins is only discoverable through a very long
table in the data sheet. For instance, we might find that OC1 is available on pin 3.

The result is typically that the source code does not contain any reference to pin 3 at all, and only refers to the
underlying hardare, OC1. This is bad for maintainability, as it tells the programmer nothing about how to check the
wiring, or what to change should the wiring change.

Obviously then, we want a function to convert pin numbers into their corresponding hardware names, and this is not
a hard task. But this creates a new danger - it encourages the programmer to change pin a pin to one that no longer
supports the features needed! This kind of mistake can be caught at run-time, but when programming takes a few
minutes, or getting feedback is difficult, this is not acceptable.

C++11 introduces a new keyword called constexpr. When attached to a variable, this tells the compiler that its value
must be calculated at compile-time. The trick then, is to produce a function that for a valid pin, is calculable at
compilation-time, and for an invalid pin, is not calculable at compilation-time. We capitalize on the fact that the
compiler only cares about the compile-time-calculability of the code-path it takes:

// note: no constexpr
int failure(const char* msg) { report_error(msg); while(1); }

constexpr int must_be_even(int i) {
return i % 2 == 0

? i // calculable at compile-time
: failure("Not even"); // not calculable at compile-time

}

This almost works as intended:

constexpr int ok = must_be_even(2);
constexpr int compile_error = must_be_even(3);

4 Chapter 2. Hardware

Miniature Unicycle Firmware Documentation, Release

int ok = must_be_even(2);
int runtime_error = must_be_even(3);

There is a isocpp paper [N3583] and a follow-up paper that details possible language changes and workaround to the
problem of this third line. The solution opted for was to encourage writing these as:

constexpr int ok = must_be_even<2>();
constexpr int compile_error = must_be_even<3>();
int compile_error = must_be_even<2>();
int compile_error = must_be_even<3>();

API documentation

namespace io

Devices

These variables just turn the long #defined names into C++ references of the approapriate types

constexpr p32_oc &oc1 = *reinterpret_cast<p32_oc*>(_OCMP1_BASE_ADDRESS)

constexpr p32_oc &oc2 = *reinterpret_cast<p32_oc*>(_OCMP2_BASE_ADDRESS)

constexpr p32_oc &oc3 = *reinterpret_cast<p32_oc*>(_OCMP3_BASE_ADDRESS)

constexpr p32_oc &oc4 = *reinterpret_cast<p32_oc*>(_OCMP4_BASE_ADDRESS)

constexpr p32_timer &tmr1 = *reinterpret_cast<p32_timer*>(_TMR1_BASE_ADDRESS)

constexpr p32_timer &tmr2 = *reinterpret_cast<p32_timer*>(_TMR2_BASE_ADDRESS)

constexpr p32_timer &tmr3 = *reinterpret_cast<p32_timer*>(_TMR3_BASE_ADDRESS)

constexpr p32_timer &tmr4 = *reinterpret_cast<p32_timer*>(_TMR4_BASE_ADDRESS)

constexpr p32_timer &tmr5 = *reinterpret_cast<p32_timer*>(_TMR5_BASE_ADDRESS)

constexpr p32_i2c &i2c1 = *reinterpret_cast<p32_i2c*>(_I2C1_BASE_ADDRESS)

constexpr p32_i2c &i2c2 = *reinterpret_cast<p32_i2c*>(_I2C2_BASE_ADDRESS)

constexpr p32_cn &cn = *reinterpret_cast<p32_cn*>(_CN_BASE_ADDRESS)

Helpers

These functions allow conversion between devices and relevant configuation needed to use them elsewhere.
These prevent a device having to be referred to by name in more than one place.

These should all be evaluated at compile time!

constexpr int irq_for(const p32_timer &tmr)
Get the interrupt bit number for a given timer.

constexpr int irq_for(const p32_cn &cn)
Get the interrupt bit number for the change notice hardware.

constexpr int vector_for(const p32_timer &tmr)
Get the interrupt vector number for a given timer.

2.2. Compiler-verification of pin assignments 5

https://drive.google.com/file/d/0B0-xyi_NILkZZEZQT2VPY21BVTQ/edit

Miniature Unicycle Firmware Documentation, Release

constexpr int vector_for(const p32_cn &cn)
Get the interrupt vector number for the change notice hardare.

constexpr p32_timer &timer_for(uint8_t pin)
Get the timer connected to a given CK (clock) pin.

constexpr p32_oc &oc_for(uint8_t pin)
Get the output compare (PWM) connected to a given pin.

constexpr p32_i2c &i2c_for(uint8_t scl, uint8_t sda)
Get the I2C connected to a given pair of pins.

Compile-time Helpers

Like the above functions, but with arguments re-expresed as template parameters to force errors at compile time.
These make it impossible to choose an invalid pin.

template <uint8_t pin>
p32_timer &timer_for()

template <uint8_t pin>
p32_oc &oc_for()

template <uint8_t scl, uint8_t sda>
p32_i2c &i2c_for()

Functions

template <typename T>
T failed(const char *)

Helper function for when an invalid argument is supplied.

Flashing a program

The trace under JP5 has been deliberately cut on the board. This jumper connects the DTR line of the RS232 in-
terface (from the FTDI232RQ chip that tunnels RS232 over USB), to the reset pin of the microcontroller. The flash
programmer normally uses this line to send the chip into the bootloader, so its code can be changed.

Unfortunately, this line is also unconditionally asserted when plugged into a computer, making it impossible to attach
to a long-running program. The fact that this is a problem at all is a design flaw in the Max32 - were the CTS line used
instead, there would be no problem.

To reprogram the board then, JP5 must be temporarily closed. This could be done with a jumper, but this requires
that the top layer of circuit board be removed. In practive, this is best done using a screwdriver to short the two pins.

Danger: Do not reprogram the board while the battery is attached! Shorting JP5 is clumsy, and has a risk
of shorting other parts of the board. Your USB port is probably protected against this, but the battery may do
unspeakably bad things.

6 Chapter 2. Hardware

http://www.ftdichip.com/Support/Documents/DataSheets/ICs/DS_FT232R.pdf
https://superuser.com/questions/1040824/are-usb-ports-in-laptops-protected-against-short-circuits

Miniature Unicycle Firmware Documentation, Release

Motors

There are a pair of motors on the unicycle, driver with some custom and unfortunately poorly-documented hardware.
The interface to the microcontroller is a pair of pwm lines, one for the forward direction, and one for the reverse
direction.

Each motor is a Maxon 110134 with a Maxon 134158 gearbox attached. These motors also have attached Encoders.

Functions

void setMotorTurntable(float cmd)
Set the speed of the turntable.

Parameters

• cmd: The fraction of maximum speed, in [-1 1]. Positive is counter-clockwise around the positive Z
axis

void setMotorWheel(float cmd)
Set the speed of the wheel

Parameters

• cmd: The fraction of maximum speed, in [-1 1].

void setupMotors()
Initialize the timers and PWM needed for the motors.

void beep(float freq, int duration)
Play a tone, using the turntable motor.

Not all frequencies resonate well. The built in <ToneNotes.h> is handy for turning note names to frequen-
cies. Octaves 6 and 7 are loud and audible.

Parameters

• freq: The frequency in Hz

• duration: The duration in milliseconds

Sensors

There is a limit switch attached to the top of the robot, for use as basic human input. This switch must be connected to
a CN pin, as only those pins support pull-up resistors.

Inertial

The robot has a combined accelerometer and gyro board that is sold by Sparkfun. The accelerometer is an ADXL345,
and the gyroscope is an ITG-3200.

Both of these sensors use the I2C protocol - in fact, they share a bus. Unfortunately, the builtin arduino Wire interface
that implements this protocol does not appear to work on our microcontroller board.

2.4. Motors 7

http://www.maxonmotor.com/maxon/view/product/110134
http://www.maxonmotor.com/maxon/view/product/134158
https://www.sparkfun.com/products/10121
https://www.sparkfun.com/datasheets/Sensors/Accelerometer/ADXL345.pdf
https://www.sparkfun.com/datasheets/Sensors/Gyro/PS-ITG-3200-00-01.4.pdf
https://www.arduino.cc/en/reference/wire

Miniature Unicycle Firmware Documentation, Release

Functions

void gyroAccelSetup()
Initialize the connection to the accelerometer and gyro.

template <typename T>
Vector3<T> chipToRobotFrame(Vector3<T> v_chip)

Convert from the chip coordinate frame to the robot frame.

The robot frame has x pointing forwards (the side with the microcontroller) z pointing left y pointing up

template <typename T>
Vector3<float> gyroRawToSI(Vector3<T> raw)

Convert from the raw chip reading to radians per second, in the robot frame.

template <typename T>
Vector3<float> accRawToSI(Vector3<T> raw)

Convert from the raw chip reading to meters per second squared, in the robot frame.

Vector3<int16_t> accelReadRaw()
Read the raw values of the accelerometer, in internal frame and units.

Vector3<float> accelRead()
Get the acceleration in m s^-2, in the robot frame.

Vector3<int16_t> gyroReadRaw()
Read the raw values of the gyroscope, without subtracting initial values.

Vector3<float> gyroCalibrate(int N)
calibrate the offset for the gyro. Returns the stdev of each component

Vector3<float> gyroRead()
Get the angular velocity in the robot frame.

quat accelOrient(Vector3<float> acc)
Get the robot orientation based on the accelerometer reading. Only accurate when static

quat accelOrient()

Encoders

The robot has an encoder on each motor. These go via some circuitry on the board that convert them into two lines - a
tick, and a direction.

We count the ticks using the builtin hardware timers, but in order to deal with the direction reversing, we have to
monitor the direction pin. We use the “change notifier” hardware to fire an interrupt whenever these pins change, and
correct the sign accordingly.

Each encoder is a Maxon 201937, “Encoder MR, Type M, 512 CPT, 2 Channels, with Line Driver”.

Functions

void setupEncoders()
Initialize the hardware required by the encoders.

void resetEncoders()
Reset the counts of the encoders.

8 Chapter 2. Hardware

http://www.maxonmotor.com/maxon/view/product/201937

Miniature Unicycle Firmware Documentation, Release

wrapping<uint16_t> getTTangle()
Get the angle of the turntable, in encoder ticks. Increases with counter-clockwise in the vertical axis

wrapping<uint16_t> getWangle()
Get the angle of the wheel, in encoder ticks. Increases with forwards motion

2.5. Sensors 9

Miniature Unicycle Firmware Documentation, Release

10 Chapter 2. Hardware

CHAPTER 3

Communication protocol

11

Miniature Unicycle Firmware Documentation, Release

12 Chapter 3. Communication protocol

CHAPTER 4

Terminal

To open the terminal to connect to the robot, run:

cd tools
python3 terminal.py

You’ll be greeted with a yauc> prompt, into which you can type help for more information.

A typical session looks as follows:

...\tools> .\terminal.py
Yaw Actuated UniCycle command line interface
Connected!
Yaw Actuated UniCycle startup
Starting PWM setup
Starting I2C setup
Starting encoder setup
All done
yauc> policy ../ctrl.mat
controller {

wheel {
k_pitch: 1.2732395447351628

}
turntable {
k_dyaw: -0.6366197723675814

}
}

yauc> go 5
Starting bulk mode
Asking for logs
Waiting for reply
No data yet
Asking for logs
Waiting for reply
No data yet

13

Miniature Unicycle Firmware Documentation, Release

Asking for logs
Waiting for reply
Test completed
Sending test data
Success
Saved rollout of 5 steps to ..\logs\2017-04-04 102550\0.mat
yauc> disconnect
Connection lost
yauc> ^D
Exiting cli and stopping motors
Already disconnected
yauc>

After using the go command, the USB cable can be disconnected. The terminal will automatically reconnect to and
recieve data from the robot when the USB cable is reattached.

14 Chapter 4. Terminal

CHAPTER 5

Matlab interface

Unfortunately, there is no stable implementation of protobuf for matlab. Instead, the python terminal outputs .mat files.
These contains arrays of structs in the msg variable, with the fields in the structs matching the names of the protobuf
fields.

Rather than reading these files directly, we expose the same interface as PILCO_:

rollout(start, ctrl, H, plant, cost, verb)
Shadows the PILCO method. Writes ctrl.mat with the necessary information to load in the terminal, and then
brings up a file/open dialog to load the logs from the robot.

Parameters

• start – Ignored

• ctrl – Contains the policy parameters. Currently assumed to be a linear controller or a
random one. When passed a random one, a hand-crafted deterministic controller is used
instead.

• H – The number of steps to run for. Assumed to be 50.

• plant – Information about the plant. Provides .dt, .in_frame, and .out_frame,
which are useful for converting to and from protobuf field names

• cost – As in the normal rollout, produces costs from the states

• verb – Ignored

15

Miniature Unicycle Firmware Documentation, Release

16 Chapter 5. Matlab interface

CHAPTER 6

Indices and tables

• genindex

• modindex

• search

17

Miniature Unicycle Firmware Documentation, Release

18 Chapter 6. Indices and tables

Bibliography

[N3583] Scott Schurr, Exploring constexpr at Runtime, 2013. https://isocpp.org/files/papers/n3583.pdf

19

https://isocpp.org/files/papers/n3583.pdf

Miniature Unicycle Firmware Documentation, Release

20 Bibliography

Index

A
accelOrient (C++ function), 8
accelRead (C++ function), 8
accelReadRaw (C++ function), 8
accRawToSI (C++ function), 8

B
beep (C++ function), 7

C
chipToRobotFrame (C++ function), 8

G
getTTangle (C++ function), 8
getWangle (C++ function), 9
gyroAccelSetup (C++ function), 8
gyroCalibrate (C++ function), 8
gyroRawToSI (C++ function), 8
gyroRead (C++ function), 8
gyroReadRaw (C++ function), 8

I
io (C++ type), 5
io::cn (C++ member), 5
io::failed (C++ function), 6
io::i2c1 (C++ member), 5
io::i2c2 (C++ member), 5
io::i2c_for (C++ function), 6
io::irq_for (C++ function), 5
io::oc1 (C++ member), 5
io::oc2 (C++ member), 5
io::oc3 (C++ member), 5
io::oc4 (C++ member), 5
io::oc_for (C++ function), 6
io::timer_for (C++ function), 6
io::tmr1 (C++ member), 5
io::tmr2 (C++ member), 5
io::tmr3 (C++ member), 5
io::tmr4 (C++ member), 5

io::tmr5 (C++ member), 5
io::vector_for (C++ function), 5

P
pins (C++ type), 3
pins::IMU_SCL (C++ member), 3
pins::IMU_SDA (C++ member), 3
pins::LED (C++ member), 4
pins::SWITCH (C++ member), 4
pins::TT_CLK (C++ member), 3
pins::TT_DIR (C++ member), 3
pins::TT_FWD (C++ member), 4
pins::TT_REV (C++ member), 4
pins::USB_RX (C++ member), 4
pins::USB_TX (C++ member), 4
pins::W_CLK (C++ member), 3
pins::W_DIR (C++ member), 3
pins::W_FWD (C++ member), 4
pins::W_REV (C++ member), 4

R
resetEncoders (C++ function), 8
rollout() (built-in function), 15

S
setMotorTurntable (C++ function), 7
setMotorWheel (C++ function), 7
setupEncoders (C++ function), 8
setupMotors (C++ function), 7

21

	Toolchain
	PlatformIO
	Protobuf
	Documentation

	Hardware
	Pin assignments
	Compiler-verification of pin assignments
	Flashing a program
	Motors
	Sensors

	Communication protocol
	Terminal
	Matlab interface
	Indices and tables
	Bibliography

