
Micropython on ESP8266 Workshop
Documentation

Release 1.0

Radomir Dopieralski

Oct 01, 2017

Contents

1 Setup 3
1.1 Prerequisites . 3
1.2 Development Board . 4
1.3 Connecting . 5
1.4 Official Documentation and Support . 6

2 Basics 7
2.1 Blink . 7
2.2 External Components . 8
2.3 Pulse Width Modulation . 10
2.4 Buttons . 11
2.5 Servomechanisms . 12
2.6 Beepers . 14
2.7 Network . 16
2.8 WebREPL . 17
2.9 Filesystem . 17
2.10 Uploading Files . 18
2.11 HTTP Requests . 18

3 Advanced 19
3.1 Schematics . 19
3.2 Analog to Digital Converter . 21
3.3 Communication Protocols . 22
3.4 Neopixels . 22
3.5 Temperature and Humidity . 23
3.6 LED Matrix and 7-segment Displays . 24
3.7 TFT LCD Display . 25

4 Indices and tables 27

i

ii

Micropython on ESP8266 Workshop Documentation, Release 1.0

Contents:

Contents 1

Micropython on ESP8266 Workshop Documentation, Release 1.0

2 Contents

CHAPTER 1

Setup

Prerequisites

To participate in the workshop, you will need the following:

• A laptop with Linux, Mac OS or Windows and at least one free USB port.

• If it’s Windows or Mac OS, make sure to install drivers for the CP2102 UBS2TTL chip. MacOS El Capitan
requires disabling kext signing to install it.

• A micro-USB cable with data lines that fits your USB port.

• You will need a terminal application installed. For Linux and Mac you can use screen, which is installed by
default. For Windows we recommend PuTTy or CoolTerm.

• Please note that the workshop will be in English.

In addition, at the workshop, you will receive:

• “NodeMCU AMICA” development board with ESP8266 on it,

• Red LED,

• 100Ω resistor,

• SG90 microservo,

• Female-female and Male-female dupont cables,

• Piezoelectric speaker.

You will take all that home with you.

The firmware that is flashed on the boards is also available at https://bitbucket.org/thesheep/espworkshop/downloads/
firmware-combined.bin

There will be also some additional hardware available for experimenting, which you won’t take home.

3

http://www.silabs.com/products/mcu/Pages/USBtoUARTBridgeVCPDrivers.aspx
http://farazmemon.com/2016/02/07/flashing-latest-firmware-on-nodemcu-devkit-v0-9-osx-el-capitan/
http://www.chiark.greenend.org.uk/~sgtatham/putty/download.html
http://freeware.the-meiers.org/
https://bitbucket.org/thesheep/espworkshop/downloads/firmware-combined.bin
https://bitbucket.org/thesheep/espworkshop/downloads/firmware-combined.bin

Micropython on ESP8266 Workshop Documentation, Release 1.0

Development Board

The board we are using is called “NodeMCU AMICA” and has an ESP8266 module on it, which we will be program-
ming. It comes with the latest version of Micropython already setup on it, together with all the drivers we are going to
use.

Note: The D0, D1, D2, ... numbers printed on the board are different from what Micropython uses – because
originally those boards were made for a different software. Make sure to refer to the image below to determine which
pins are which.

On top it has a micro-USB socket, for connecting to the computer. Next to it are two buttons, one for reset and one for
flashing. Then on both sides of the board are two rows of pins, to which we will be connecting cables.

The symbols meaning is as follows:

• 3v3 - this is a fancy way to write 3.3V, which is the voltage that the board runs on internally. You can think
about this pin like the plus side of a battery. There are several pins like this, they are all connected inside.

• gnd - this is the ground. Think about it like the minus side of the battery. They are also all connected.

• gpioXX - “gpio” stands for “general purpose input output”. Those are the pins we will be using for sending
and receiving signals to and from various devices that we will connect to them. They can act as output – pretty

4 Chapter 1. Setup

Micropython on ESP8266 Workshop Documentation, Release 1.0

much like a switch that you can connect to plus or to minus with your program. Or they can act as input, telling
your program whether they are connected to plus or minus.

• a0 - this is the analog pin. It can measure the voltage that is applied to it, but it can only handle up to 1V.

• vin - this pin is connected with the 5V from your computer. You can also use it to power your board with a
battery when it’s not connected to the computer. The voltage applied here will be internally converted to the
3.3V that the board needs.

• rst - this is a reset button (and a corresponding pin, to which you can connect external button).

• flash - hold down this button while resetting to bring the board into programming mode (also known as
flashing mode).

The other pins are used internally by the board, and we will not be connecting anything to them.

Connecting

The board you got should already have Micropython with all the needed libraries flashed on it. In order to access its
console, you will need to connect it to your computer with the micro-USB cable, and access the serial interface that
appears with a terminal program.

Linux and MacOS

Simply open a terminal and run the following commands. On Linux:

screen /dev/ttyUSB0 115200

On MacOS:

screen /dev/tty.SLAB_USBtoUART 115200

To exit screen, press ctrl+A and then capital K.

Windows

For the serial interface to appear in your system, you will need to install the drivers for CP2102. Once you have that,
you can use either Hyper Terminal, PuTTy or CoolTerm to connect to it, following this guide.

The parameters for the connection are: 115200 baud rate, 8 data bits, no parity, 1 stop bit, no flow control.

Hello world!

Once you are connected, press “enter” and you should see the Micropython prompt, that looks like this:

>>>

It’s traditional to start with a “Hello world!” program, so type this and press “enter”:

print("Hello world!")

If you see “Hello world!” displayed in the next line, then congratulations, you got it working.

1.3. Connecting 5

http://www.silabs.com/products/mcu/Pages/USBtoUARTBridgeVCPDrivers.aspx
https://techawarey.wordpress.com/tag/serial-port-communication-in-windows-7-using-hyper-terminal-and-putty/

Micropython on ESP8266 Workshop Documentation, Release 1.0

Official Documentation and Support

The official documentation for this port of Micropython is available at http://micropython.org/resources/docs/en/latest/
esp8266/. There is a also a forum on which you can ask questions and get help, located at http://forum.micropython.
org/. Finally, there are #esp8266 and #micropython channels on http://freenode.net IRC network, where people
chat in real time. Remember that all people there are just users like you, but possibly more experienced, and not
employees who get paid to help you.

6 Chapter 1. Setup

http://micropython.org/resources/docs/en/latest/esp8266/
http://micropython.org/resources/docs/en/latest/esp8266/
http://forum.micropython.org/
http://forum.micropython.org/
http://freenode.net

CHAPTER 2

Basics

Blink

The traditional first program for hobby electronics is a blinking light. We will try to build that.

The boards you have actually have a light built-in, so we can use that. There is a LED (light-emitting diode) near the
antenna (the golden zig-zag). The plus side of that LED is connected to the 3v3 pins internally, and the minus side is
connected to gpio2. So we should be able to make that LED shine with our program by making gpio2 behave like
the gnd pins. We need to “bring the gpio2 low”, or in other words, make it connected to gnd. Let’s try that:

from machine import Pin

led = Pin(2, Pin.OUT)
led.low()

The first line “imports” the “Pin” function from the “machine” module. In Python, to use any libraries, you first have
to import them. The “machine” module contains most of the hardware-specific functions in Micropython.

Once we have the “Pin” function imported, we use it to create a pin object, with the first parameter telling it to use
gpio2, and the second parameter telling it to switch it into output mode. Once created, the pin is assigned to the
variable we called “led”.

Finally, we bring the pin low, by calling the “low” method on the “led” variable. At this point the LED should start
shining. In fact, it may have started shining a line earlier, because once we switched the pin into output mode, its
default state is “low”.

Now, how to make the LED stop shining? There are two ways. We could switch it back into “input” mode, where the
pin is not connected to anything. Or we could bring it “high”. If we do that, both ends of the LED will be connected
to “plus”, and the current won’t flow. We do that with:

led.high()

Now, how can we make the LED blink 10 times? We could of course type led.low() and led.high() ten times
quickly, but that’s a lot of work and we have computers to do that for us. We can repeat a command or a set of
commands using the “for” loop:

7

Micropython on ESP8266 Workshop Documentation, Release 1.0

for i in range(10):
led.high()
led.low()

Note, that when you are typing this, it will look more like:

>>> for i in range(10):
... led.high()
... led.low()
...
...
>>>

That’s because the console automatically understands that when you indent a line, you mean it to be a block of code
inside the “for” loop. You have to un-indent the last line (by removing the spaces with backspace) to finish this
command. You can avoid that by using “paste mode” – press ctrl+E, paste your code, and then press ctrl+D to
have it executed.

What happened? Nothing interesting, the LED just shines like it did. That’s because the program blinked that LED as
fast as it could – so fast, that we didn’t even see it. We need to make it wait a little before the blinks, and for that we
are going to use the “time” module. First we need to import it:

import time

And then we will repeat our program, but with the waiting included:

for i in range(10):
led.high()
time.sleep(0.5)
led.low()
time.sleep(0.5)

Now the LED should turn on and off every half second.

External Components

Now let’s try the same, but not with the build-in LED – let’s connect an external LED and try to use that. The
connection should look like this:

8 Chapter 2. Basics

Micropython on ESP8266 Workshop Documentation, Release 1.0

Note how one leg of the LED is a little bit longer, and the other had a flattening on the plastic of the LED next to it.
The long leg should go to the plus, and the short one to the minus. We are connecting the LED in opposite way than
the internal one is connected – between the pin and gnd. That means that it will shine when the pin is high, and be
dark when it’s low.

Also note how we added a resistor in there. That is necessary to limit the amount of current that is going to flow through
the LED, and with it, its brightness. Without the resistor, the LED would shine very bright for a short moment, until
either it, or the board, would overheat and break. We don’t want that.

Now, let’s try the code:

2.2. External Components 9

Micropython on ESP8266 Workshop Documentation, Release 1.0

from machine import Pin
import time

led = Pin(14, Pin.OUT)
for i in range(10):

led.high()
time.sleep_ms(500)
led.low()
time.sleep_ms(500)

Again, you should see the LED blink 10 times, half a second for each blink.

This time we used time.sleep_ms() instead of time.sleep() – it does the same thing, but takes the number
of milliseconds instead od seconds as the parameter, so we don’t have to use fractions.

Pulse Width Modulation

Wouldn’t it be neat if instead of blinking, the LED slowly became brighter and then fade out again? Can we do this
somehow?

The brightness of the LED depends on the voltage being supplied to it. Unfortunately, our GPIO pins only have a
simple switch functionality – we can turn them on or off, but we can’t fluently change the voltage (there are pins that
could do that, called DAC, for “digital to analog converter”, but our board doesn’t have those). But there is another
way. Remember when we first tried to blink the LED without any delay, and it happened too fast to see?

Turns out we can blink the LED very fast, and by varying the time it is on and off change how bright it seems to be to
the human eye. The longer it is on and the shorter it is off, the brighter it will seem.

Now, we could do that with a simple loop and some very small delays, but it would keep our board busy and prevent
it from doing anything else, and also wouldn’t be very accurate or terribly fast. But the ESP8266 has special hardware
dedicated just for blinking, and we can use that! This hardware is called PWM (for Pulse Width Modulation), and you
can use it like this:

from machine import Pin, PWM
import time

pwm = PWM(Pin(2))
pwm.duty(896)
time.sleep(1)
pwm.duty(512)
time.sleep(1)
pwm.duty(0)

If you run this, you should see the blue led on gpio2 change brightness. The possible range is from 1023 (100% duty
cycle, the LED is off) to 0 (0% duty cycle, the LED is on full brightness). Why is 0 full brightness? Remember, that
the LED on the gpio2 is reversed – it shines when the pin is off, and the duty cycle tells how much the pin is on.

You can also change the frequency of the blinking. Try this:

pwm.freq(1)

That should blink the LED with frequency of 1Hz, so once per second – we are basically back to our initial program,
except the LED blinks “in the background” controlled by dedicated hardware, while your program can do other things!

10 Chapter 2. Basics

Micropython on ESP8266 Workshop Documentation, Release 1.0

Buttons

We don’t have a button in our kit, but we can simulate one by just using two wires, one with a male plug, and one with
female. Connect them like so:

Now we will write some code that will switch the LED on and off each time the wires are put together:

from machine import Pin
led = Pin(2, Pin.OUT)
button = Pin(14, Pin.IN, Pin.PULL_UP)
while True:

if not button.value():
led.value(not led.value())
while not button.value():

pass

2.4. Buttons 11

Micropython on ESP8266 Workshop Documentation, Release 1.0

We have used Pin.IN because we want to use gpio14 as an input pin, on which we will read the voltage. We also
added Pin.PULL_UP – that means that there is a special internal resistor enabled between that pin and the 3V3 pins.
The effect of this is that when the pin is not connected to anything (we say it’s “floating”), it will return 1. If we didn’t
do that, it would return random values depending on its environment. Of course when you connect the pin to GND, it
will return 0.

However, when you try this example, you will see that it doesn’t work reliably. The LED will blink, and sometimes
stay off, sometimes switch on again, randomly. Why is that?

That’s because your hands are shaking. A mechanical switch has a spring inside that would shake and vibrate too.
That means that each time you touch the wires (or close the switch), there are in reality multiple signals sent, not just
one. This is called “bouncing”, because the signal bounces several times.

To fix this issue, we will do something that is called “de-bouncing”. There are several ways to do it, but the easiest is
to just wait some time for the signal to stabilize:

import time
from machine import Pin
led = Pin(2, Pin.OUT)
button = Pin(14, Pin.IN, Pin.PULL_UP)
while True:

if not button.value():
led.value(not led.value())
time.sleep_ms(300)
while not button.value():

pass

Here we wait 3/10 of a second – too fast for a human to notice, but enough for the signal to stabilize. The exact time
for this is usually determined experimentally, or by measuring the signal from the switch and analyzing it.

Servomechanisms

Time to actually physically move something. If you plan on building a robot, there are three main ways of moving
things from the microcontroller:

• a servomechanism (servo for short),

• an H-bridge and a DC motor,

• a stepper or brushless motor with a driver.

We are going to focus on the servo first, because I think this is the easiest and cheapest way. We are going to use a
cheap “hobby” servo, the kind that is used in toys – it’s not particularly strong, but it’s enough for most use cases.

Warning: Don’t try to force the movement of the servo arms with your hand, you are risking breaking the delicate
plastic gears inside.

A hobby servo has three wires: brown or black gnd, red or orange vcc, and white or yellow signal. The gnd
should of course be connected to the gnd of our board. The vcc is the power source for the servo, and we are going
to connect it to the vin pin of our board – this way it is connected directly to the USB port, and not powered through
the board.

12 Chapter 2. Basics

Micropython on ESP8266 Workshop Documentation, Release 1.0

Caution: Servos and motors usually require a lot of current, more then your board can supply, and often even
more than than you can get from USB. Don’t connect them to the 3v3 pins of your board, and if you need two or
more, power them from a battery (preferably rechargeable).

The third wire, signal tells the servo what position it should move to, using a 50Hz PWM signal. The center is
at around 77, and the exact range varies with the servo model, but should be somewhere between 30 and 122, which
corresponds to about 180° of movement. Note that if you send the servo a signal that is outside of the range, it will
still obediently try to move there – hitting a mechanical stop and buzzing loudly. If you leave it like this for longer,
you can damage your servo, your board or your battery, so please be careful.

2.5. Servomechanisms 13

Micropython on ESP8266 Workshop Documentation, Release 1.0

So now we are ready to try and move it to the center position:

from machine import Pin, PWM
servo = PWM(Pin(14), freq=50, duty=77)

Then we can see where the limits of its movement are:

servo.duty(30)
servo.duty(122)

There also exist “continuous rotation” servos, which don’t move to the specified position, but instead rotate with
specified speed. Those are suitable for building simple wheeled robots. It’s possible to modify a normal servo into a
continuous rotation servo.

Beepers

When I wrote that PWM has a frequency, did you immediately think about sound? Yes, electric signals can be similar
to sound, and we can turn them into sound by using speakers. Or small piezoelectric beepers, like in our case.

14 Chapter 2. Basics

Micropython on ESP8266 Workshop Documentation, Release 1.0

The piezoelectric speaker doesn’t use any external source of power – it will be powered directly from the GPIO pin –
that’s why it can be pretty quiet. Still, let’s try it:

from machine import Pin, PWM
import time

beeper = PWM(Pin(14), freq=440, duty=512)
time.sleep(0.5)
beeper.deinit()

We can even play melodies! For instance, here’s the musical scale:

from machine import Pin, PWM
import time

2.6. Beepers 15

Micropython on ESP8266 Workshop Documentation, Release 1.0

tempo = 5
tones = {

'c': 262,
'd': 294,
'e': 330,
'f': 349,
'g': 392,
'a': 440,
'b': 494,
'C': 523,
' ': 0,

}
beeper = PWM(Pin(14, Pin.OUT), freq=440, duty=512)
melody = 'cdefgabC'
rhythm = [8, 8, 8, 8, 8, 8, 8, 8]

for tone, length in zip(melody, rhythm):
beeper.freq(tones[tone])
time.sleep(tempo/length)

beeper.deinit()

Unfortunately, the maximum frequency of PWM is currently 1000Hz, so you can’t play any notes higher than that.

It’s possible to make the sounds louder by using a better speaker and possibly an audio amplifier.

Network

The ESP8266 has wireless networking support. It can act as a WiFi access point to which you can connect, and it can
also connect to the Internet.

To configure it as an access point, run code like this (use your own name and password):

import network
ap = network.WLAN(network.AP_IF)
ap.active(True)
ap.config(essid="network-name", authmode=network.AUTH_WPA_WPA2_PSK, password=
→˓"abcdabcdabcd")

To scan for available networks (and also get additional information about their signal strength and details), use:

import network
sta = network.WLAN(network.STA_IF)
sta.active(True)
print(sta.scan())

To connect to an existing network, use:

import network
sta = network.WLAN(network.STA_IF)
sta.active(True)
sta.connect("network-name", "password")

Once the board connects to a network, it will remember it and reconnect every time. To get details about connection,
use:

16 Chapter 2. Basics

Micropython on ESP8266 Workshop Documentation, Release 1.0

sta.ifconfig()
sta.status()
sta.isconnected()

WebREPL

The command console in which you are typing all the code is called “REPL” – an acronym of “read-evaluate-print-
loop”. It works over a serial connection over USB. However, once you have your board connected to network, you
can use the command console in your browser, over network. That is called WebREPL.

First, you will need to download the web page for the WebREPL to your computer. Get the file from https://github.com/
micropython/webrepl/archive/master.zip and unpack it somewhere on your computer, then click on the webrepl.
html file to open it in the browser.

In order to connect to your board, you have to know its address. If the board works in accesspoint mode, it uses the
default address. If it’s connected to WiFi, you can check it with this code:

import network
sta = network.WLAN(network.STA_IF)
print(sta.ifconfig())

You will see something like XXX.XXX.XXX.XXX – that’s the IP address. Enter it in the WebREPL’s address box at
the top like this ws://XXX.XXX.XXX.XXX:8266/.

To connect to your board, you first have to start the server on it. You do it with this code:

import webrepl
webrepl.start()

Now you can go back to the browser and click “connect”. On the first connection, you will be asked to setup a
password – later you will use that password to connect to your board.

Filesystem

Writing in the console is all fine for experimenting, but when you actually build something, you want the code to stay
on the board, so that you don’t have to connect to it and type the code every time. For that purpose, there is a file
storage on your board, where you can put your code and store data.

You can see the list of files in that storage with this code:

import os
print(os.listdir())

You should see something like ['boot.py'] – that’s a list with just one file name in it. boot.py and later main.
py are two special files that are executed when the board starts. boot.py is for configuration, and you can put your
own code in main.py.

You can create, write to and read from files like you would with normal Python:

with open("myfile.txt", "w") as f:
f.write("Hello world!")

print(os.listdir())
with open("myfile.txt", "r") as f:

print(f.read())

2.8. WebREPL 17

https://github.com/micropython/webrepl/archive/master.zip
https://github.com/micropython/webrepl/archive/master.zip

Micropython on ESP8266 Workshop Documentation, Release 1.0

Please note that since the board doesn’t have much memory, you can put large files on it.

Uploading Files

You can use the WebREPL to upload files to the board from your computer. To do that, you need to open a terminal in
the directory where you unpacked the WebREPL files, and run the command:

python webrepl_cli.py yourfile.xxx XXX.XXX.XXX.XXX:

Where yourfile.xxx is the file you want to send, and XXX.XXX.XXX.XXX is the address of your board.

Note: You have to have Python installed on your computer for this to work.

HTTP Requests

Once you are connected to network, you can talk to servers and interact with web services. The easiest way is to just
do a HTTP request – what your web browser does to get the content of web pages:

import urequests
r = urequests.get("http://duckduckgo.com/?q=micropython&format=json").json()
print(r)
print(r['AbstractText'])

You can use that to get information from websites, such as weather forecasts:

import json
import urequests
r = urequests.get("http://api.openweathermap.org/data/2.5/weather?q=Zurich&appid=XXX
→˓").json()
print(r["weather"][0]["description"])
print(r["main"]["temp"] - 273.15)

It’s also possible to make more advanced requests, adding special headers to them, changing the HTTP method and
so on. However, keep in mind that our board has very little memory for storing the answer, and you can easily get a
MemoryError.

18 Chapter 2. Basics

CHAPTER 3

Advanced

Schematics

The pretty colorful pictures that we have been using so far are not very useful in practical projects. You can’t really
draw them by hand, different components may look very similar, and it’s hard to see what is going on when there are
a lot of connections. That’s why engineers prefer to use more symbolic representation of connection, a schematic.

A schematic doesn’t care how the parts actually look like, or how their pins are arranged. Instead they use simple
symbols. For instance, here’s a schematic of our experiment with the external LED:

19

Micropython on ESP8266 Workshop Documentation, Release 1.0

The resistor is symbolized by a zig-zag. The LED is marked by a diode symbol (a triangle with a bar), with additional
two arrows showing that it’s a light emitting diode. The board itself doesn’t have a special symbol – instead it’s
symbolized by a rectangle with the board’s name written in it.

There is also a symbol for “ground” – the three horizontal lines. Since a lot of components need to be usually connected
to the ground, instead of drawing all those wires, it’s easier to simply use that symbol.

Here are some more symbols:

20 Chapter 3. Advanced

Micropython on ESP8266 Workshop Documentation, Release 1.0

It’s important to learn to read and draw electric schematics, because anything more advanced is going to use them, and
you will also need them when asking for help on the Internet.

Analog to Digital Converter

Our board has only one “analog” pin, A0. That pin is connected to an ADC, or “analog to digital converter” – basically
an electronic voltmeter, which can tell you what voltage is on the pin. The one we have can only measure from 0 to
1V, and would be damaged if it got more than 1V, so we have to be careful.

We will connect a photo-resistor to it. It’s a special kind of a resistor that changes its resistance depending on how
much light shines on it. But to make this work, we will need a second, fixed, resistor to make a “volatge divider”. This
way the voltage will change depending on the resistance of our photo-resistor.

Now, we will just read the values in our program, and print them in a loop:

3.2. Analog to Digital Converter 21

Micropython on ESP8266 Workshop Documentation, Release 1.0

from machine import ADC
adc = ADC(0)
while True:

print(adc.read())

You should see a column of numbers changing depending on how much light the photo-resistor has. Try to cover it or
point it toward a window or lamp. The values are from 0 for 0V, to 1024 for 1V. Ours will be somewhere in between.

Communication Protocols

So far all devices we connected to the board were relatively simple and only required a single pin. More sophisticated
devices are controlled with multiple pins, and often have very elaborate ways in which you have to change the pins to
make them do something, like sending a character to them, or retrieving a value. Those ways are often standardized,
and already implemented for you, so that you don’t have to care about all the gory details – you just call high-level
commands, and the libraries and/or hardware in your board handles it all for you.

Among the most popular protocols are UART, I2C and SPI. We are going to have examples of each of them, but we
are not going to get into details of how they work internally. It’s enough to know that they let you send bytes to the
device, and receive bytes in response.

Neopixels

Those are actually WS2812B addressable RGB LEDs, but they are commonly known as “neopixels”. You can control
individually the brightness and color of each of the LEDs in a string (or matrix, or ring). The connection is simple:

22 Chapter 3. Advanced

Micropython on ESP8266 Workshop Documentation, Release 1.0

And the code for driving them is not very complex either, because the library for generating the signal is included in
Micropython:

form machine import Pin
import neopixel
pixels = neopixel.Neopixel(Pin(14, Pin.OUT), 8)
pixels[0] = (0xff, 0x00, 0x00)
pixels.write()

Where 8 is the number of LEDs in a chain. You can create all sorts of animations, rainbows and pretty effects with
those.

Temperature and Humidity

The DHT11 and DHT22 sensors are quite popular for all sorts of weather stations. They use a single-wire protocol for
communication. Micropython on ESP9266 has that covered:

from machine import Pin
import dht
sensor = dht.DHT11(Pin(2))
sensor.measure()
print(sensor.temperature())
print(sensor.humidity())

The connections are simple:

3.5. Temperature and Humidity 23

Micropython on ESP8266 Workshop Documentation, Release 1.0

LED Matrix and 7-segment Displays

Adafruit sells a lot of “backpacks” with 7- or 14-segment displays or LED matrices, that we can control easily over
I2C. They use a HT16K33 chip, so that we don’t have to switch on and off the individual LEDs – we just tell the chip
what to do, and it takes care of the rest.

The schematic for connecting any I2C device will be almost always the same:

Note: The two resistors on the schematic are needed for the protocol to work reliably with longer wires. For our
experiments, it’s enough to rely on the pull-up resistors that are built into the board we are using.

The communication with the backpack is relatively simple, but I wrote two libraries for making it more convenient.
For the matrix:

from machine import I2C, Pin
from ht16k33_matrix import Matrix8x8
i2c = I2C(sda=Pin(4), scl=Pin(5))
display = Matrix8x8(i2c)
display.brightness(8)

24 Chapter 3. Advanced

Micropython on ESP8266 Workshop Documentation, Release 1.0

display.blink_rate(2)
display.fill(True)
display.pixel(0, 0, False)
display.pixel(7, 0, False)
display.pixel(0, 7, False)
display.pixel(7, 7, False)
display.show()

and for the 7- and 14-segment displays:

from machine import I2C, Pin
from ht16k33_seg import Seg7x4
i2c = I2C(sda=Pin(4), scl=Pin(5))
display = Seg7x4(i2c)
display.push("8.0:0.8")
display.show()

TFT LCD Display

The I2C protocol is nice and simple, but not very fast, so it’s only good when you have a few pixels to switch. With
larger displays, it’s much better to use SPI, which can be much faster.

Here is an example on how to connect an ILI9340 display:

3.7. TFT LCD Display 25

Micropython on ESP8266 Workshop Documentation, Release 1.0

And here is a simple library that lets you draw on that display:

from machine import Pin, SPI
import ili9341
spi = SPI(miso=Pin(12), mosi=Pin(13), sck=Pin(14))
display = ili9341.ILI9341(spi, cs=Pin(2), dc=Pin(4), rst=Pin(5))
display.fill(ili9341.color565(0xff, 0x11, 0x22))
display.pixel(120, 160, 0)

As you can see, the display is still quite slow – there are a lot of bytes to send, and we are using software SPI
implementation here. The speed will greatly improve when Micropython adds hardware SPI support.

26 Chapter 3. Advanced

CHAPTER 4

Indices and tables

• genindex

• modindex

• search

27

	Setup
	Prerequisites
	Development Board
	Connecting
	Official Documentation and Support

	Basics
	Blink
	External Components
	Pulse Width Modulation
	Buttons
	Servomechanisms
	Beepers
	Network
	WebREPL
	Filesystem
	Uploading Files
	HTTP Requests

	Advanced
	Schematics
	Analog to Digital Converter
	Communication Protocols
	Neopixels
	Temperature and Humidity
	LED Matrix and 7-segment Displays
	TFT LCD Display

	Indices and tables

