BBC micro:bit MicroPython

Documentation
Kiadas 0.0.1

Multiple authors

maj. 24, 2017

Leckék

1. Bevezeto 3
1.1. Hello, World! e e e 3
1.2, Képek . . o o o e e e e 4
1.3, GomboK e e e e 9
1.4. Bemenet/Kimenet e e 12
1.5, MUSIC . . . o e e e e e e 16
1.6, Random e 19
LI.7. MOVEmMENt i i e e e e e e e 21
1.8, GeStures o e e e e e e e e e e 23
1.9, Direction e e e e 24
110 Storage o o o e e e e e 25
LI1. Speech o o e e e e e e e e e 29
112, Network e e e e e e 36
1.13. Radio e e e e e e e e e e e e e e 41
L14. NextSeps . . o v v o o e e e e e e e e e e e e e e e e e e 44
2. micro:bit Micropython API 47
2.1. Themicrobitmodule e e e e e e 47
3. Microbit Module 53
3.1, Functions e e e e e e e e e e e 53
3.2, Aibutes e e e e e e e e e e e e e e 53
3.3, CIaSSES . & v v v e e e e e s 58
34, Moduleso e e 61
4. Bluetooth 71
5. Local Persistent File System 73
6. Music 75
6.1. Musical Notation o o e e e e e e e e e e e e e 76
6.2. Functions e e e e e e e e e 77
7. NeoPixel 81
Tdo CIasSeS . v v v v e e e e e e e e e e e e 82
7.2, OPErations . . . v v v v o v e 83
7.3. UsingNeopixels e 83

T4, Example e e e e e e e e e e 83

8. The os Module 85
8.1. Functions o e e e e e e e e e e e e e 85
9. Radio 87
0.1, COonStants v v v o e e e e e e e e e e e e e e e e e e e 87
0.2, FUNCHONS o i e 88
10. Random Number Generation 91
10.1. FUnCtions v v i o e 91
11. Speech 93
T1.1. Functions o e e e e e e e e e e e e e e e e e e 95
11.2. Punctuation o o e e e e e e e e e e e e e e e e e e e 95
11.3. Timbre o o e e e e e e e e 95
[1.4. Phonemes o o v i e e e e e e e e e 96
T1.5. Singing o o o o e e e e e e e e e 99
11.6. How Does it Work? o e e e e e e e 100
11.7. Example o e e e e e 100
12. Installation 103
12.1. Dependencies L e e e e 103
12.2. Development Environment Lo e e 103
12.3. Installation Scenarios o v i e e e e e e e e e e e e e e e 103
12,4, NEXUSIEPS « v v v v o e 104
13. Flashing Firmware 105
13.1. Building firmware e e e e e e e e e e e 105
13.2. Preparing firmware and a Python program L L . 105
13.3. Flashing tothe micro:bit e 105
14. Accessing the REPL 107
14.1. Serial communicationt .o e e e e e e e e e e e e e e 107
14.2. Determining POt o ot i e e e e e e e e e e e e e 107
14.3. Establishing communication with the micro:bit 0oL 107
15. Developer FAQ 109
16. Contributing 111
16.1. Checklist e e e e 111
Python Modul Mutat6 113

BBC micro:bit MicroPython Documentation, Kiadas 0.0.1

K6szontiink!

A BBC micro:bit egy kicsi szdmitdstechnikai eszkoz, elsGsorban gyerekeknek. A micro:bit tobbek kozott a népszeri
Python programozdsi nyelvet is érti. A MicroPython a Python nyelv azon verzidja, ami fut a BBC micro:biten.

Ez a dokumentacio leckéket tartalmaz tanaroknak és API dokumentaciét fejlesztSknek (vess egy pillantast a balra 1évé
targymutatéra). Reméljiik, szivesen segitesz a BBC micro:bit fejlesztésében.

Ha a programozas dj neked, tandr vagy, vagy csak nem tudod, mi legyen az els6 1épés, kezdd az oktatéanyaggal.

First Steps with MicroPython by Vike Rowbitt

Itworks wt the BB micro:bit.
T T T i

Everything you need to know about
MicroPython on the BBEC microsbit is
found in this documentation.

Generated by Python Comics. MAKE YOUR OWN

Ha a kozosség tagja szeretnél lenni, iratkozz fel a microbit@python.org levelezdlistara (https://mail.python.org/
mailman/listinfo/microbit).

Megjegyzés: Ez a projekt fejlesztés alatt all.

Néhany MicroPythonhoz és a BBC micro:bithez kapcsol6dé projekt:

* Mu - egy egyszer(i kddszerkesztd gyerekeknek, tandroknak és kezdd rogramozoknak. Az egyik legegyszeriibb
mddja a BBC micro:bit MicroPython nyelven valé programozasdnak.

* uFlash - egy parancssori eszkoz, amivel PYthon kédot tudsz lefuttatni a BBC micro:biteden.

Leckék 1

mailto:microbit@python.org
https://mail.python.org/mailman/listinfo/microbit
https://mail.python.org/mailman/listinfo/microbit
https://github.com/ntoll/mu
https://uflash.readthedocs.io/en/latest/

BBC micro:bit MicroPython Documentation, Kiadas 0.0.1

2 Leckék

1. fejezet

Bevezeto

Azt ajanljuk, hogy toltsd le és haszndld a Mu szerkeszt6t amig ezeket a leckéket tanulmédnyozod. A Mu letoltésé-
r6l és installacidjarél tovabbi informdacidt a honlapjan taldlsz. Esetleg installdlnod fog kelleni egy meghajtét, ez a
platformodtdl fiigg (minden instrukciét megtaldlsz a honlapon).

A Mu Windowszal, OSX-szel és Linuxszal is kompatibilis.
Miutén installdltad a Mut, egy USB kébellel kosd 6ssze a micro:bitedet a szamitégépeddel.

frd be a kédodat a szerkesztablakba, majd nyomj rd a ,,Flash” gombra, hogy az lefusson a micro:biten. Ha nem
miikodik, ellendrizd le, hogy a micro:bit megjelenik-e USB taroléeszkozként a fajlkezelddben.

Hello, World!

A programozdst hagyomanyosan gy kezdjiik, hogy a szamitégéppel kiiratjuk, hogy ,,Hello, World!” (magyarul ,,Hel-
16, Vilag!”).

Ez MicroPythonnal egyszert:

from microbit import =«
display.scroll ("Hello, World!"™)

Minden sornak fontos szerepe van. Az elsd sor:

from microbit import =«

...megmondja a MicroPythonnak, hogy szerezzen meg mindent, ami ahhoz kell, hogy a BBC micro:bittel egyiitt tudjon
miikddni. Minden ehhez sziikséges dolgot egy microbit nevii modul tartalmaz (a modul egy konyvtar, ami el6re
megirt kodot tartalmaz). Amikor importilsz (impoxrt) valamit, akkor megmondod a MicroPythonnak, hogy szeretnéd
azt hasznélni. Pythonban a « jelenti azt, hogy minden(t). Tehdt a from microbit import * sor magyarul azt
jelenti, hogy ,,mindent szeretnék tudni hasznélni, ami a microbit konyvtarban van”.

A masodik sor:

display.scroll ("Hello, World!"™)

...megmondja a MicroPythonnak, hogy a kijelz6n futtassa végig a ,,Hello, World!” stringet (a programozdsban string-
nek nevezik a karakterek sorozatit). A display a microbit modul egyik objektuma, ami az eszkoz kijelz6jét
jeloli. A kijelz8t utasithatjuk dolgok elvégzésére egy ponttal (.), amit egy parancsnak kinézd kifejezés kovet (ezeket

http://codewith.mu/

BBC micro:bit MicroPython Documentation, Kiadas 0.0.1

a kifejezéseket metodusnak nevezziik). Ebben az esetben a scroll metédust haszndljuk. Mivel a scroll metédus-
nak tudnia kell, hogy milyen karaktereket szeretnénk végigfuttatni a képernydn, ezt zardjelek kozott két idézdjel kozé
rakjuk. Ezeket argumentumoknak nevezzikk. Vagyis a display.scroll ("Hello, World!") sor magyarul:
»a kijelzén szeretném végigfuttatni a ,,Hello, World!” szdveget”. Ha egy metddusnak nincs argumentuma, akkor két

tires zarojelet tesziink: ().

Maisold be a ,,Hello, World!” kédot a szerkeszt6dbe és futtasd az eszkdzon. Ki tudod talalni, hogyan kell megvaltoz-
tatni az iizenetet? Be tudod éallitani, hogy neked koszonjon? Példdul én dgy frndm dt, hogy azt irja ki, hogy ,,Hello,
Dani!”. Egy kis segitség: a scroll metddus argumentumdt kell megvaltoztatni.

Figyelem: Lehet, hogy nem fog miikodni. :-)

Itt valnak a dolgok izgalmassa és a MicroPython segit6kész probdl lenni. Ha hibat taldl, egy segitd iizenetet fog
megjeleniteni a micro:bit képerny6jén. Ha tudja, megmondja, hogy a k6d melyik sordban van a hiba.

A Python azt viarja, hogy PONTOSAN a helyes kodot ird. Példaul a Microbit, microbit és microBit
nem ugyanazt jelenti a Python szdméra. Ha a MicroPython NameError-t jelez, az valdszinfileg azért van, mert
valamit pontatlanul irtdl. Ez olyan, mint a kiilonbség ,,Nicholas” és ,,Nicolas” kozott. A neviik hasonlit, mégis két
kiilonb6z6 emberrSl van sz6.

Ha a MicroPython SyntaxError-t jelez, akkor valamit olyan médon irtal, amit a MicroPython nem ért meg.
Ellenérizd, hogy nem hagytél-e ki egy specidlis karaktert, mint példdul " vagy :. Ez olyan. mintha pontot raknal
egy mondat kozepére. Nehéz megérteni, hogy mit akarsz mondani pontosan.

El6fordulhat, hogy a microbited nem reagdl: nem tudsz Uj kédot futtatni rajta vagy kddot beirni a szerkeszt6dbe.
Ha ez torténik, akkor hizd ki az USB kabelt (és a tolt6t is, ha csatlakoztatva van), majd csatlakoztasd a kabelt djra.
Lehet, hogy majd ki is kell Iépned és djrainditanod a szerkeszt6programod.

Képek

A MicroPython koriilbeliil olyan j6l rajzol, mint te, ha csak egy 5x5-0s, piros LED-ekbdl all6 racs all rendelkezésedre
(LED: Light-Emitting Diode, vagyis fényt kibocsdté didda - a kis cuccok, amik az eszk6zod elején vildgitanak). A
MicroPythonnal lehet6séged van szabdlyozni a kijelz&t, ezaltal sokféle kiilonbozd effektust tudsz eldidézni.

A MicroPython sok el6re beépitett képet tartalmaz, amit meg tudsz jeleniteni a kijelzén. Példaul, ha szeretnéd, hogy a
kijelzé viddmnak nézzen ki, a kovetkezd kédot kell beirni:

from microbit import x
display.show (Image.HAPPY)

Gondolom emlékszel mit csindl a kod els6 sora. A masodik sor a display (magyarul kijelzd) objektum segitségével
mutat (show) egy beépitett képet. A mosolygds kép, amit ki szeretnénk jelezni, az Image (kép) objektum tagja, a
neve HAPPY (viddm). Az Image . HAPPY kddrészletet zardjelek kozé rakjuk, ezzel utasitjuk a show metédust, hogy
ezt a képet mutassa.

4 Leckék

BBC micro:bit MicroPython Documentation, Kiadas 0.0.1

A

A beépitett képek listdja:
* Image.HEART
¢ ITmage.HEART_SMALL
* Image.HAPPY
¢ Image.SMILE
¢ Tmage.SAD
¢ Image.CONFUSED
¢ Image.ANGRY
¢ Image.ASLEEP
¢ Image.SURPRISED
¢ Image.SILLY
¢ Image.FABULOUS
¢ ITmage.MEH
* Image.YES
¢ ITmage.NO

* Image.CLOCK12, Image.CLOCK11l, Image.CLOCK10, Image.CLOCK9, Image.CLOCKS8, Image.
CLOCK7, Image.CLOCK6, Image.CLOCK5, Image.CLOCK4, Image.CLOCK3, Image.CLOCK2,

Leckék 5

BBC micro:bit MicroPython Documentation, Kiadas 0.0.1

Image.

e Image.
Image.

¢ ITmage.
e Image.
* Image.
e Tmage.
e Tmage.
* Image.
* Image.
¢ Tmage.
e Image.
* Image.
* Image.
e Tmage.
* Image.
* Image.
e ITmage.
e ITmage.
* Image.
* Image.
e Image.
¢ Image
* Image.
¢ Tmage.
e Tmage.
* Image.
* Image.
e ITmage.
e ITmage.
* Image.

e Tmage.

CLOCKL1
ARROW_N, Image.ARROW_NE, Image.ARROW_E,
ARROW_SW, Image .ARROW_W, Image . ARROW_NW

TRIANGLE
TRIANGLE_LEFT
CHESSBOARD
DIAMOND
DIAMOND_SMALL
SQUARE
SQUARE_SMALL
RABBIT

cow
MUSIC_CROTCHET
MUSIC_QUAVER
MUSIC_QUAVERS
PITCHFORK
XMAS

PACMAN

TARGET

TSHIRT
ROLLERSKATE

DUCK

.HOUSE

TORTOISE
BUTTERFLY
STICKFIGURE
GHOST

SWORD
GIRAFFE
SKULL
UMBRELLA

SNAKE

Image.ARROW_SE,

Image.ARROW_S,

There’s quite a lot! Why not modify the code that makes the micro:bit look happy to see what some of the other
built-in images look like? (Just replace Image . HAPPY with one of the built-in images listed above.)

Elég sok van! Miért ne valtoztassuk meg a micro:bitet mosolygdssa tevé kddot, hogy az egy mdésik beépitett képet
mutasson? (Csak cseréld ki az Image . HAPPY kodrészletet az egyik fent taldlhatéval.)

Leckék

BBC micro:bit MicroPython Documentation, Kiadas 0.0.1

Sajat készitési képek
Ugye szeretnéd megjeleniteni a micro:bit képerny@jén a sajat képedeit is?

Ez elég egyszerti.

A képernydn 1év6 6sszes LED pixel tiz kiilonbozd értéket vehet fel. Ha egy pixel 0-ra van allitva, akkor nem vilagit.
A fényereje nulla. Amikor viszont 9-esre van allitva, akkor van a legnagyobb fényereje. Az értékek 1-t6l 8-ig egy-egy
fényerS-szintet jelolnek, a kikapcsolt dllapot (0) és a maximalis fényerd kozott.

Armed with this information, it’s possible to create a new image like this:: Ennek az informacidnak a segitségével
lehet késziteni 4j képet:

from microbit import x

hajé = Image ("05050:"
"05050:"
"05050:"
"99999
"09990")

display.show (hajd)

(Futtatds utdn az eszkdz egy ddivatd vitorlast fog mutatni, aminek az drbocai halvdnyabbak, mint a hajé teste.)

Kitalaltad, hogy kell képet rajzolni? Eszrevetted, hogy a kijelz6 minden sorit egy-egy szdmsor jelol, ami egy kettds-
ponttal végzddik, és idézdjelek (") kozott van? Minden szam egy fényerdt hatdroz meg. 5 sor van, mindegyikben van
5 szam, igy a kijelz6 mind az 5 sordnak mind az 5 pixelének fényerejét be lehet allitani. Igy kell 4j képet 1étrehozni.

Egyszer(!

Valgjaban ezt nem musz4j tobb sorba irni. Ha tigy gondolod, hogy szdmon tudod tartani a sorokat, irhatod igy is:

hajé = Image ("05050:05050:05050:99999:09990")

Animacio

Az alloképek mendk, de sokkal érdekesebb, ha mozognak is. Ez szintén meglep6en egyszerd a MicroPythonnal: csak
haszndljunk egy képekbdl all6 listat!

Itt egy bevasarldlista:

Tojas
Bacon
Paradicsom

Ezt a listat igy jelenitjiik meg Pythonban:

vasadrlds = ["Tojas", "Bacon", "Paradicsom"]

Létrehoztam egy vasarlas nevd listat, ami hdrom elemet tartalmaz. A Python onnan tudja, hogy ez lista, hogy
szogletes zardjelek kozé frjuk ([]). A lista tagjait vesszdvel vdlasztjuk el. Ebben az esetben a lista elemei sztringek (a
sztring karakterek halmaza): ,,Tojas”, ,,Bacon” és ,Paradicsom”. Tudjuk, hogy sztringek, mivel idéz&jelek k6zé irjuk
oket.

Pythonban barmit tarolhatsz egy listdban. Itt van egy szamokbdl 4ll6 lista:

primek = [2, 3, 5, 7, 11, 13, 17, 19]

Leckék 7

BBC micro:bit MicroPython Documentation, Kiadas 0.0.1

s e

Megjegyzés: Szamokat nem kell idézGjelbe rakni, mivel azok egy értéket jelolnek, nem karakterek halmazat. Ez a
kiilonbség a 2 (a 2-es szdm értéke) és a "2" (a karakter, ami a 2-es szdmot jeloli) kozott. Ne aggddj, ha ennek még
nem igazdn latod értelmét. Hamarosan hozza fogsz szokni.

Egy listdban akar kiilonb6z6 fajta dolgokat is tarolhatsz:

vegyes_lista = ["helldo!", 1.234, Image.HAPPY]

Figyelted az utolsé elemet? Az egy kép volt!

A MicroPythont utasithatjuk egy képekbdl 4ll6 lista animdldsara. Szerencsére van néhdny képekbdl 4ll6 lista eldre
beépitve. Ezek az Tmage . ALL_CLOCKS és az Image . ALL_ARROWS:

from microbit import =«

display.show (Image.ALL_CLOCKS, loop=True, delay=100)

Mint egy 6nmagéban 4116 képnél, itt is a display . show kdéddal mutatjuk a képernyén. Megmondjuk a MicroPy-
thonnak, hogy haszndlja az Tmage . ALL_CLOCKS-ot, és tudja, hogy mutatnia kell egymads utdn a listdban taldlhaté
Osszes képet. A loop=True (magyarul ciklus=Igaz) kéddal azt mondjuk meg, hogy ciklikusan ismétlédjenek a ké-
pek (igy az animéci6 orokkeé tart). A delay=100 (magyarul késleltetés=100) argumentum azt jelenti, hogy a képek
kozotti késleltetés 100 milliszekundum legyen (100/1000 mp, vagyis 1/10 mp).

Ki tudod taldlni, hogyan animdld meg az Image .ALL_ARROWS listdt? Hogyan kell kikeriilni, hogy az animacié
o0roké tarson (segitség: a True (Igaz) ellentéte a False (Hamis), bar a loop argumentum alapértelmezett értéke
egyébként is False)? Meg tudod véltoztatni az animé4ci6 sebességét?

Végiil lassuk, hogyan készitsd el a sajat animaciddat. Ebben a példdban el fogom siillyeszteni a hajomat:

from microbit import x

hajél = Image ("05050:"
"05050:"
"05050:"
"99999: "
"09990™)

hajé2 = Image ("00000:"
"05050:"
"05050:"
"05050:"
"99999")

hajé3 = Image ("00000:"
"00000:"
"05050:"
"05050:"
"05050")

hajé4 = Image ("00000:"
"00000:"
"00000:"
"05050:"
"05050")

hajé5 = Image ("00000:"
"00000:"

8 Leckék

BBC micro:bit MicroPython Documentation, Kiadas 0.0.1

"00000:"
"00000:"
"05050™)

hajé6 = Image ("00000:"
"00000:"
"00000:"
"00000:"
"00000")

0sszes_hajé = [hajdél, hajd2, hajoé3, hajdéd, hajd5, hajdo]
display.show (6sszes_hajé, delay=200)

Igy mikodik a kéd:
» Készitek hat hajés képet a fent leirt médszerrel.
 Utdna belerakom 6ket egy 6sszes_hajo nevil listaba.
e Végiilladisplay.show kéddal animéciot készitek a lista képeibdl. A késleltetés 0,2 masodperc.

* Mivel nem 4llitottam be a ciklikus ismétlodést (Loop=True), ezért a hajém csak egyszer fog elsiillyedni (ez-
altal az animaciém tudomdnyosan is helytallo lesz). :-)

Te milyen animéciot készitenél? Tudsz csindlni kiilonleges effektusokat? Hogyan oldandd meg, hogy egy kép elhal-
vanyodjon, majd djra el6tlinjon?

Gombok

Eddig olyan kédokat {rtunk, amik megcsindltattak valamit az eszkozzel. Ezt kimenetnek nevezziik. Viszont arra is
sziikségiink van, hogy az eszkoziink tudjon reagalni is a dolgokra. Ezeket a dolgokat bemenetnek hivjuk.

Konnyli megjegyezni: a kimenet az, amit az eszkoz kijelez, kiir, mig a bemenet az, amit bekiildiink neki feldolgozésra.
A micro:bit legszembet{inébb beviteli eszkdze a két (A és B jelolésti) gomb. Valahogy meg kell oldanunk, hogy a
MicroPython reagiljon a gombnyomasokra.

Ez kifejezetten egyszer:

from microbit import =«

sleep (10000)
display.scroll (str (button_a.get_presses()))

Ez a kéd mind6ssze annyit csindl, hogy tizezer milliszekundum (10 mp) alvds (vagyis késleltetés) utan végigfuttatja a
képerny6n azt a szdmot, ahdnyszor megnyomtad az A gombot. Ennyi!

Igaz, hogy ez egy elég felesleges program, viszont megjelenik benne néhany érdekes, 1j koncepcio:

1. A sleep (magyarul alvas) fiiggvény elaltatja, azaz késlelteti a kovetkez6 kddrész lefutasat valahany millisze-
kundummal. Ha tehat sziinetet szeretnél tenni a programodba, azt igy tudod megtenni. Egy fiiggvény pont olyan,
mint egy metddus, csak nem kapcsoljuk objektumhoz egy pont segitségével.

2. Van egy button_a nevii objektum, és a get_presses metddus segitségével megkaphatjuk, hogy hanyszor
lett megnyomva.

Mivel a get_presses metddus egy numerikus értéket ad visszaésa display. scroll metddus csak karaktereket
tud mutatni, at kell alakitanunk a numerikus értéket egy sztringgé. Ezt a str fiiggvénnyel tudjuk megtenni, ami
dolgokat sztringekké alakit at.

Leckék 9

BBC micro:bit MicroPython Documentation, Kiadas 0.0.1

A harmadik sor egy kicsit olyan, mint egy hagyma. A zéréjelek a hagyma héjai. Eszreveheted, hogy a button_a.
get_presses benne van a str fiiggvényben, ami meg a display.scroll-ban van benne. A Python el6szor
a legbelsd kodrészletet futtatja le, majd egyre kijjebb halad. Ezt egymdsba dgyazdsnak hivjuk - az orosz matrjoska
babdk programozdsban hasznalt megfelel6je.

e SoaTy &
Gt

""f""f;; ‘ﬁim E £ ?@\ e

Tegyiik fel, hogy megnyomtad a gombot 10-szer. Nézziik meg, hogy jon rd a Python, hogy mit csindl a harmadik sor:

A Python latja az egész sort, majd megdllapitja a get _presses metddus értékét:

’display.scroll(str(button_a.get_presses()))

Most, hogy tudja, hogy hany gombnyomads tortént, dtalakitja a numerikus értéket sztringgé:

’display.scroll(str(l@))

Végiil, a kapott sztringet végigfuttatja a képernyon:

’display.scroll("l@")

Ez sok meldnak tlinik, mégis a MicroPython elképeszt gyorsan futtatja le ezt a kodot.

While ciklusok

Gyakran sziikséges, hogy a kéd ne azonnal fusson le, hanem vérjon egy esemény bekovetkezéséig. Ehhez az kell, hogy
a program ismételjen egy kdédrészletet, ami megmondja, hogy hogyan reagéljon konkrét eseményekre (mint példaul
egy gomb megnyomadsara).

A Pythonban ciklusokhoz a while (magyarul mig) kulcsszot haszndljuk. Ez leellenérzi, hogy valami igaz-e (True).
Ha igen, akkor lefutatt egy kédtombat, amit angolul a ciklus body-jdnak (magyarul test) hivnak. Ha nem igaz a feltétel,

zo 2

akkor a program kitor a ciklusbdl, nem futtatja le a bodyban 1év6 kédot, hanem tovdbbhalad a kédban.

A Pythonban egyszerti k6dtombot definidlni. Mondjuk, hogy irtam egy tennivalé listat egy papirra. Valahogy igy fog
kinézni:

10 Leckék

BBC micro:bit MicroPython Documentation, Kiadas 0.0.1

Vasarlés
Megjavitani a tordtt ereszt
Ftnyiras

Ha a pontokat jobban ki szeretném fejteni, akkor valami ilyesmit irnék:

Vasarléas:
Tojas
Bacon
Paradicsom
Megjavitani a tdrdtt ereszt:
Létrat kodlcsdnkérni a szomszédtdl
Kalapacsot és szdgeket keresni
Létrat visszavinni
Flnyiréas:
Té6 korlil koriilnézni, hatha vannak békéak
Leelendrizni a flnyird lizemanyagszintjét

A fé6feladatokat tobb kisebbb feladatra bontottuk szét. Minden kisebb feladat a hozzd tartozé f6feladat ald keriil
behizassal. Vagyis a Tojdas, a Bacon és a Paradicsom a Vasarlas-hoz kapcsolddik. A behizds miatt elsd
ranézésre meg lehet dllapitani, hogy hogyan viszonyulnak egymashoz a feladatok.

Ezt hivjuk egymdsba dgyazdsnak. Egymdasba dgyazassal definidljuk a kédtomboket:

from microbit import =«

while running_time () < 10000:
display.show (Image.ASLEEP)

display.show (Image.SURPRISED)

A running_time (magyarul futas ideje) fiiggvény azt a szamot adja vissza, ahany milliszekundum eltelt a késziilék
beinditdsa 6ta.

A while running_time () < 10000: sor megnézi, hogy a program futdsanak ideje kevesebb-e, mint 10000
milliszekundum (10 mp). Ha igen, akkor a kijelz6 megjeleniti az Image . ASLEEP képet. Figyeld meg, hogy a
harmadik sor be van hizva a while feltétel alatt, pont mint a tennivalo listankban.

Mikor a futds ideje nagyobb vagy egyenlé mint 10000 milliszekundum, a képernyd az Image . SURPRISED képet
fogja mutatni. Hogy miért? Mert a while feltétel mar hamis (False) lesz, a running_time mér nem lesz <
10000. Ebben az esetben a ciklusnak vége van, a program tovabblép a while ciklus kédtombjén. Az eszkoz dgy
fog kinézni, mintha 10 masodpercet aludna, majd csodalkoz6 fejjel felébredne.

Prébald ki!

Események kezelése

Ha azt szeretnénk, hogy a MicroPython reagdljon a gombok megnyomadsdra, akkor egy végtelen ciklust kell 1étrehoz-
nunk, ami ellendrzi, hogy a gomb meg lett-e nyomva (is_pressed).

Végtelen ciklusokat kdnnyen csindlhatunk:

while True:
Csindlj dolgokat

(A while ciklus ellendrzi, hogy egy feltétel igaz-e, és ez alapjan donti el, hogy lefutassa-e a kédtombjét. Mivel a
True (igaz) egyértelmiien mindig igaz lesz, ezért végtelen ciklust kapunk!)

Leckék 11

BBC micro:bit MicroPython Documentation, Kiadas 0.0.1

Csindljunk egy nagyon egyszer(, virtudlis dllatot! Mindig szomort lesz, kivéve, ha megnyomod az A gombot. Ha
megnyomod a B gombot, meghal. (Ez nem egy tdl bardtsdgos jaték, de esetleg gondolkozhatsz rajta, hogy hogyan
tegylik azzd.):

from microbit import =«

while True:
if button_a.is_pressed():
display.show (Image.HAPPY)
elif button_b.is_pressed():
break
else:
display.show (Image.SAD)

display.clear ()

Latod hogyan ellendrizziik, hogy melyik gombokat nyomjdk meg éppen? Ehhez az if (magyarul ha), az elif
(else if roviditése - mdsik ha) és az else (mdas) kulcsszavakat hasznaljuk. Ezeket feltételeknek hivjuk. Itt lathat6 a
mikodésiik:

if valami igaz (True):
csinalj valamit

elif valami méds dolog igaz (True):
csindlj valami mast

else:
itt is csindlj valamit

Az is_pressed (magyarul meg van-e nyomva) metddus csak kétféle valaszt adhat: True vagy False (igaz vagy
hamis). Ha épp nyomod a gombot, akkor True-t fog visszaadni, egyébként False-ot. A fenti kéd magyarra forditva:
»amikor megnyomjdk az A gombot, akkor mutass egy vidam arcot, ha nem nyomjdk meg, viszont a B gombot igen,
akkor 1épj ki a ciklusbdl, egyébként meg mutass egy szomoru arcot”. A break utasitdssal kilépiink a ciklusbél (ezutidn
mar nem fog ismétlddni tovabb a ciklus).

A legvégén, amikor a virtudlis allatunk meghalt, a c1lear metddussal eltiintetiink mindent a képerny6rol.

At tudod irni tgy a kédot, hogy a jaték kevésbé legyen tragikus? Hogyan ellenériznéd le, hogy mindkét gomb meg
van-e nyomva? (Segitség: a Pythonban az and (és), az or (vagy) és a not (nem) logikai operatorok segitségével
leelenGrizhetiink tobb feltételt is.)

Bemenet/Kimenet

A BBC mirco:bit alsé szegélye mentén taldlhatdéak fém savok, amiktdl gy néz ki, mintha fogai lennének. Ezek a
bemeneti/kimeneti labak (angolul input/output pins, réviden I/O pins).

12 Leckék

BBC micro:bit MicroPython Documentation, Kiadas 0.0.1

Néhany 1ab nagyobb, mint a tobbi, igy lehet krokodilcsipeszt hozzajuk csatlakoztatni. Ezek azok, amik O, 1, 2, 3V
és GND cimkével vannak elldtva (a szamit6gépek mindig 0-t6l kezdik a szamolast). Ha hozzacsatlakoztatsz egy edge
connectort a késziilékhez, be lehet dugni vezetékeket, amik a tobbi (kisebb) 1dbhoz csatlakoznak.

Minden egyes ldbat a BBC micro:biten egy objektum jel6l, aminek a neve pinN, ahol N a 14db (pin) szdma. Tehat
példaul ha a 0-val jelolt 1dbbal szeretnél valamit kezdeni, akkor hasznéld a pin0 nevii objektumot.

Egyszert!

Ezekhez az objektumokhoz kiilonféle metodusok tartoznak, attdl fiiggben, hogy az adott 1ab mit tud csindlni.

Csikis Python

A legegyszeriibb példa a ldbak éltali bemenetre az, ha megnézziik, hogy meg vannak-e érintve (angolul is touched).
Meg tudod csikizni az eszkdzodet, hogy az nevessen:

from microbit import =x

while True:
if pin0O.is_touched() :
display.show (Image.HAPPY)
else:
display.show (Image.SAD)

Az egyik kezeddel fogd meg az eskozt a GND labndl. Aztdn a masik kezeddel érintsd meg (vagy csikizd meg) a 0-s
labat. Lathatod a képernydn, ahogy a szomortu fej boldogga valik!

Leckék 13

BBC micro:bit MicroPython Documentation, Kiadas 0.0.1

Ez a bemenet vizsgdlatanak egyik legalapvet6bb médja. Az igazi mék akkor kezdddik, ha dramkoroket és egyéb
eszkozoket csatlakoztatsz az eszk6zhoz a labako keresztiil.

Bleeps and Bloops

The simplest thing we can attach to the device is a Piezo buzzer. We’re going to use it for output.

These small devices play a high-pitched bleep when connected to a circuit. To attach one to your BBC micro:bit you
should attach crocodile clips to pin 0 and GND (as shown below).

14 Leckék

BBC micro:bit MicroPython Documentation, Kiadas 0.0.1

The wire from pin O should be attached to the positive connector on the buzzer and the wire from GND to the negative
connector.

The following program will cause the buzzer to make a sound:

from microbit import =«

pin0O.write_digital (1)

This is fun for about 5 seconds and then you’ll want to make the horrible squeaking stop. Let’s improve our example
and make the device bleep:

from microbit import =«

while True:
pinO.write_digital (1)

Leckék 15

BBC micro:bit MicroPython Documentation, Kiadas 0.0.1

sleep (20)
pin0O.write_digital (0)
sleep (480)

Can you work out how this script works? Remember that 1 is ,,on” and 0 is ,,off”” in the digital world.

The device is put into an infinite loop and immediately switches pin 0 on. This causes the buzzer to emit a beep. While
the buzzer is beeping, the device sleeps for twenty milliseconds and then switches pin O off. This gives the effect of a
short bleep. Finally, the device sleeps for 480 milliseconds before looping back and starting all over again. This means
you’ll get two bleeps per second (one every 500 milliseconds).

We’ve made a very simple metronome!

Music

MicroPython on the BBC micro:bit comes with a powerful music and sound module. It’s very easy to generate bleeps
and bloops from the device if you attach a speaker. Use crocodile clips to attach pin 0 and GND to the positive and
negative inputs on the speaker - it doesn’t matter which way round they are connected to the speaker.

16 Leckék

BBC micro:bit MicroPython Documentation, Kiadas 0.0.1

Megjegyzés: Do not attempt this with a Piezo buzzer - such buzzers are only able to play a single tone.

Let’s play some music:

import music

music.play (music.NYAN)

Notice that we import the music module. It contains methods used to make and control sound.
MicroPython has quite a lot of built-in melodies. Here’s a complete list:
* music.DADADADUM

* music.ENTERTAINER

Leckék 17

BBC micro:bit MicroPython Documentation, Kiadas 0.0.1

* music.PRELUDE

* music.ODE

* music.NYAN

* music.RINGTONE
* music.FUNK

* music.BLUES

* music.BIRTHDAY
* music.WEDDING

* music.FUNERAL

* music.PUNCHLINE
* music.PYTHON

* music.BADDY

* music.CHASE

* music.BA_DING

* music.WAWAWAWAA
e music.JUMP_UP

* music.JUMP_DOWN
* music.POWER_UP
* music.POWER_DOWN

Take the example code and change the melody. Which one is your favourite? How would you use such tunes as signals
or cues?

Wolfgang Amadeus Microbit

Creating your own tunes is easy!

Each note has a name (like C# or F), an octave (telling MicroPython how high or low the note should be played) and a
duration (how long it lasts through time). Octaves are indicated by a number ~ 0 is the lowest octave, 4 contains middle
C and 8 is about as high as you’ll ever need unless you’re making music for dogs. Durations are also expressed as
numbers. The higher the value of the duration the longer it will last. Such values are related to each other - for instance,
a duration of 4 will last twice as long as a duration 2 (and so on). If you use the note name R then MicroPython will
play a rest (i.e. silence) for the specified duration.

Each note is expressed as a string of characters like this:

NOTE [octave] [:duration]

For example, "A1: 4" refers to the note named A in octave number 1 to be played for a duration of 4.

Make a list of notes to create a melody (it’s equivalent to creating an animation with a list of images). For example,
here’s how to make MicroPython play opening of ,,Frere Jaques™:

import music

tune = ["C4:4", "D4:4", "E4:4", "C4:4", "C4:4", "D4:4", "E4:4", "C4:4",

18 Leckék

BBC micro:bit MicroPython Documentation, Kiadas 0.0.1

"E4:4", "F4:4", "G4:8", "E4:4", "F4:4", "G4:8"]
music.play (tune)

Megjegyzés: MicroPython helps you to simplify such melodies. It’ll remember the octave and duration values until
you next change them. As a result, the example above can be re-written as:

import music

tune = ["C4:4", "D", "Ell, YIC", "C", "D", HE", llC", "E", "Fll’ "G:8",
"E:4"’ "FH, "G:8"J
music.play (tune)

Notice how the octave and duration values only change when they have to. It’s a lot less typing and simpler to read.

Sound Effects

MicroPython lets you make tones that are not musical notes. For example, here’s how to create a Police siren effect:

import music

while True:
for freq in range (880, 1760, 16):
music.pitch (freq, 6)
for freq in range (1760, 880, -16):
music.pitch (freq, 6)

Notice how the music.pitch method is used in this instance. It expects a frequency. For example, the frequency
of 440 is the same as a concert A used to tune a symphony orchestra.

In the example above the range function is used to generate ranges of numeric values. These numbers are used to
define the pitch of the tone. The three arguments for the range function are the start value, end value and step size.
Therefore, the first use of range is saying, in English, ,,create a range of numbers between 880 and 1760 in steps of
16”. The second use of range is saying, ,,create a range of values between 1760 and 880 in steps of -16”. This is
how we get a range of frequencies that go up and down in pitch like a siren.

Because the siren should last forever it’s wrapped in an infinite while loop.

Importantly, we have introduced a new sort of a loop inside the while loop: the for loop. In English it’s like saying,
,for each item in some collection, do some activity with it”. Specifically in the example above, it’s saying, ,.for each
frequency in the specified range of frequencies, play the pitch of that frequency for 6 milliseconds”. Notice how the
thing to do for each item in a for loop is indented (as discussed earlier) so Python knows exactly which code to run to
handle the individual items.

Random

Sometimes you want to leave things to chance, or mix it up a little: you want the device to act randomly.

MicroPython comes with a random module to make it easy to introduce chance and a little chaos into your code. For
example, here’s how to scroll a random name across the display:

from microbit import =«
import random

Leckék 19

BBC micro:bit MicroPython Documentation, Kiadas 0.0.1

names = ["Mary", "Yolanda", "Damien", "Alia", "Kushal", "Mei Xiu", "Zoltan"]

display.scroll (random.choice (names))

The list (names) contains seven names defined as strings of characters. The final line is nested (the ,,onion” effect
introduced earlier): the random. choice method takes the names list as an argument and returns an item chosen at
random. This item (the randomly chosen name) is the argument for display.scroll.

Can you modify the list to include your own set of names?

Random Numbers

Random numbers are very useful. They’re common in games. Why else do we have dice?

MicroPython comes with several useful random number methods. Here’s how to make a simple dice:

from microbit import =«
import random

display.show(str (random.randint (1, 6)))

Every time the device is reset it displays a number between 1 and 6. You're starting to get familiar with nesting, so it’s
important to note that random. randint returns a whole number between the two arguments, inclusive (a whole
number is also called an integer - hence the name of the method). Notice that because display.show expects a
character then we use the st r function to turn the numeric value into a character (we turn, for example, 6 into "6").

If you know you’ll always want a number between 0 and N then use the random. randrange method. If you give
it a single argument it’1l return random integers up to, but not including, the value of the argument N (this is different
to the behaviour of random. randint).

Sometimes you need numbers with a decimal point in them. These are called floating point numbers and it’s possible
to generate such a number with the random. random method. This only returns values between 0.0 and 1.0
inclusive. If you need larger random floating point numbers add the results of random. randrange and random.
random like this:

from microbit import =«
import random

answer = random.randrange (100) + random.random()
display.scroll (str (answer))

Seeds of Chaos

The random number generators used by computers are not truly random. They just give random like results given a
starting seed value. The seed is often generated from random-ish values such as the current time and/or readings from
sensors such as the thermometers built into chips.

Sometimes you want to have repeatable random-ish behaviour: a source of randomness that is reproducible. It’s like
saying that you need the same five random values each time you throw a dice.

This is easy to achieve by setting the seed value. Given a known seed the random number generator will create the
same set of random numbers. The seed is set with random. seed and any whole number (integer). This version of
the dice program always produces the same results:

20 Leckék

BBC micro:bit MicroPython Documentation, Kiadas 0.0.1

from microbit import =«
import random

random. seed (1337)
while True:
if button_a.was_pressed():
display.show(str (random.randint (1, 6)))

Can you work out why this program needs us to press button A instead of reset the device as in the first dice example..?

Movement

Your BBC micro:bit comes with an accelerometer. It measures movement along three axes:
e X - tilting from left to right.
* Y - tilting forwards and backwards.
e Z - moving up and down.

There is a method for each axis that returns a positive or negative number indicating a measurement in milli-g’s. When
the reading is 0 you are ,.level” along that particular axis.

For example, here’s a very simple spirit-level that uses get_ x to measure how level the device is along the X axis:

from microbit import =«

while True:

reading = accelerometer.get_x()

if reading > 20:
display.show ("R")

elif reading < -20:
display.show ("L")

else:
display.show ("-")

If you hold the device flat it should display —; however, rotate it left or right and it’ll show L and R respectively.

We want the device to constantly react to change, so we use an infinite while loop. The first thing to happen within
the body of the loop is a measurement along the X axis which is called reading. Because the accelerometer is
so sensitive I’ve made level +/-20 in range. It’s why the if and elif conditionals check for > 20 and < -20.
The else statement means that if the reading is between -20 and 20 then we consider it level. For each of these
conditions we use the display to show the appropriate character.

There is also a get_y method for the Y axis and a get_ z method for the Z axis.

If you’ve ever wondered how a mobile phone knows which up to show the images on its screen, it’s because it uses
an accelerometer in exactly the same way as the program above. Game controllers also contain accelerometers to help
you steer and move around in games.

Musical Mayhem
One of the most wonderful aspects of MicroPython on the BBC micro:bit is how it lets you easily link different
capabilities of the device together. For example, let’s turn it into a musical instrument (of sorts).

Connect a speaker as you did in the music tutorial. Use crocodile clips to attach pin 0 and GND to the positive and
negative inputs on the speaker - it doesn’t matter which way round they are connected to the speaker.

Leckék 21

BBC micro:bit MicroPython Documentation, Kiadas 0.0.1

What happens if we take the readings from the accelerometer and play them as pitches? Let’s find out:

from microbit import =«
import music

while True:
music.pitch (accelerometer.get_y (), 10)

The key line is at the end and remarkably simple. We nest the reading from the Y axis as the frequency to feed into
the music.pitch method. We only let it play for 10 milliseconds because we want the tone to change quickly as
the device is tipped. Because the device is in an infinite while loop it is constantly reacting to changes in the Y axis
measurement.

That’s it!

Tip the device forwards and backwards. If the reading along the Y axis is positive it’ll change the pitch of the tone

22 Leckék

BBC micro:bit MicroPython Documentation, Kiadas 0.0.1

played by the micro:bit.

Imagine a whole symphony orchestra of these devices. Can you play a tune? How would you improve the program to
make the micro:bit sound more musical?

Gestures

The really interesting side-effect of having an accelerometer is gesture detection. If you move your BBC micro:bit in
a certain way (as a gesture) then MicroPython is able to detect this.

MicroPython is able to recognise the following gestures: up, down, left, right, face up, face down,
freefall, 3q, 69, 8g, shake. Gestures are always represented as strings. While most of the names should be
obvious, the 3g, 6g and 8g gestures apply when the device encounters these levels of g-force (like when an astronaut
is launched into space).

To get the current gesture use the accelerometer.current_gesture method. Its result is going to be one of
the named gestures listed above. For example, this program will only make your device happy if it is face up:

from microbit import =«

while True:

gesture = accelerometer.current_gesture ()
if gesture == "face up":

display.show (Image.HAPPY)
else:

display.show (Image.ANGRY)

Once again, because we want the device to react to changing circumstances we use a while loop. Within the scope of
the loop the current gesture is read and put into gesture. The i f conditional checks if gesture isequal to "face
up" (Python uses == to test for equality, a single equals sign = is used for assignment - just like how we assign the
gesture reading to the gesture object). If the gesture is equal to "face up" then use the display to show a happy
face. Otherwise, the device is made to look angry!

Magic-8

A Magic-8 ball is a toy first invented in the 1950s. The idea is to ask it a yes/no question, shake it and wait for it to
reveal the truth. It’s rather easy to turn into a program:

from microbit import =«
import random

answers = [
"It is certain",
"It is decidedly so",
"Without a doubt",
"Yes, definitely",
"You may rely on it",
"As I see it, yes",
"Most likely",
"Outlook good",
"Yes",
"Signs point to yes",
"Reply hazy try again",
"Ask again later",
"Better not tell you now",

Leckék 23

BBC micro:bit MicroPython Documentation, Kiadas 0.0.1

"Cannot predict now",
"Concentrate and ask again",
"Don't count on it"

"My reply is no",

"My sources say no",
"Outlook not so good",

"Very doubtful",

while True:
display.show("8")
if accelerometer.was_gesture ("shake") :
display.clear ()
sleep (1000)
display.scroll (random.choice (answers))

Most of the program is a list called answers. The actual game is in the while loop at the end.

The default state of the game is to show the character " 8". However, the program needs to detect if it has been shaken.
The was_gesture method uses its argument (in this case, the string "shake" because we want to detect a shake)
to return a True / False response. If the device was shaken the if conditional drops into its block of code where it
clears the screen, waits for a second (so the device appears to be thinking about your question) and displays a randomly
chosen answer.

Why not ask it if this is the greatest program ever written? What could you do to ,,cheat” and make the answer always
positive or negative? (Hint: use the buttons.)

Direction

There is a compass on the BBC micro:bit. If you ever make a weather station use the device to work out the wind
direction.

Compass

It can also tell you the direction of North like this:

from microbit import =«
compass.calibrate ()
while True:

needle = ((15 - compass.heading()) // 30) % 12
display.show (Image.ALL_CLOCKS[needle])

Megjegyzés: You must calibrate the compass before taking readings. Failure to do so will produce garbage
results. The calibration method runs a fun little game to help the device work out where it is in relation to the
Earth’s magnetic field.

To calibrate the compass, tilt the micro:bit around until a circle of pixels is drawn on the outside edges of the display.

The program takes the compass . heading and, using some simple yet cunning maths, floor division // and modulo
%, works out the number of the clock hand to use to display on the screen so that it is pointing roughly North.

24 Leckék

https://en.wikipedia.org/wiki/Floor_and_ceiling_functions
https://en.wikipedia.org/wiki/Modulo_operation

BBC micro:bit MicroPython Documentation, Kiadas 0.0.1

Storage

Sometimes you need to store useful information. Such information is stored as data: representation of information (in
a digital form when stored on computers). If you store data on a computer it should persist, even if you switch the
device off and on again.

Happily MicroPython on the micro:bit allows you to do this with a very simple file system. Because of memory
constraints there is approximately 30k of storage available on the file system.

What is a file system?

It’s a means of storing and organising data in a persistent manner - any data stored in a file system should survive
restarts of the device. As the name suggests, data stored on a file system is organised into files.

A computer file is a named digital resource that’s stored on a file system. Such resources contain useful information as
data. This is exactly how a paper file works. It’s a sort of named container that contains useful information. Usually,
both paper and digital files are named to indicate what they contain. On computers it is common to end a file with a
.something suffix. Usually, the ,,something” indicates what type of data is used to represent the information. For
example, . txt indicates a text file, . jpg a JPEG image and . mp3 sound data encoded as MP3.

Some file systems (such as the one found on your laptop or PC) allow you to organise your files into directories: named
containers that group related files and sub-directories together. However, the file system provided by MicroPython is a
flat file system. A flat file system does not have directories - all your files are just stored in the same place.

The Python programming language contains easy to use and powerful ways in which to work with a computer’s file
system. MicroPython on the micro:bit implements a useful subset of these features to make is easy to read and write

Leckék 25

BBC micro:bit MicroPython Documentation, Kiadas 0.0.1

files on the device, while also providing consistency with other versions of Python.

Figyelem: Flashing your micro:bit will DESTROY ALL YOUR DATA since it re-writes all the flash memory
used by the device and the file system is stored in the flash memory.

However, if you switch off your device the data will remain intact until you either delete it or re-flash the device.

Open Sesame

Reading and writing a file on the file system is achieved by the open function. Once a file is opened you can do stuff
with it until you close it (analogous with the way we use paper files). It is essential you close a file so MicroPython
knows you’ve finished with it.

The best way to make sure of this is to use the with statement like this:

with open('story.txt') as my_file:
content = my_file.read()
print (content)

The with statement uses the open function to open a file and assign it to an object. In the example above, the open
function opens the file called story.txt (obviously a text file containing a story of some sort). The object that’s
used to represent the file in the Python code is called my__ £i1le. Subsequently, in the code block indented underneath
the with statement, the my_file object is used to read () the content of the file and assign it to the content
object.

Here’s the important point, the next line containing the print statement is not indented. The code block associated
with the with statement is only the single line that reads the file. Once the code block associated with the with
statement is closed then Python (and MicroPython) will automatically close the file for you. This is called context
handling and the open function creates objects that are context handlers for files.

Put simply, the scope of your interaction with a file is defined by the code block associated with the with statement
that opens the file.

Confused?

Don’t be. I'm simply saying your code should look like this:

with open('some_file') as some_object:
Do stuff with some_object in this block of code
associated with the with statement.

When the block is finished then MicroPython
automatically closes the file for you.

Just like a paper file, a digital file is opened for two reasons: to read its content (as demonstrated above) or to write
something to the file. The default mode is to read the file. If you want to write to a file you need to tell the open
function in the following way:

with open('hello.txt', 'w') as my_file:
my_file.write("Hello, World!")

Notice the 'w' argument is used to set the my_file object into write mode. You could also pass an 'r' argument
to set the file object to read mode, but since this is the default, it’s often left off.

Writing data to the file is done with the (you guessed it) write method that takes the string you want to write to the
file as an argument. In the example above, I write the text ,,Hello, World!” to a file called ,,hello.txt”.

26 Leckék

BBC micro:bit MicroPython Documentation, Kiadas 0.0.1

Simple!

Megjegyzés: When you open a file and write (perhaps several times while the file is in an open state) you will be
writing OVER the content of the file if it already exists.

If you want to append data to a file you should first read it, store the content somewhere, close it, append your data to
the content and then open it to write again with the revised content.

While this is the case in MicroPython, ,,normal” Python can open files to write in ,,append” mode. That we can’t do
this on the micro:bit is a result of the simple implementation of the file system.

OS SOS

As well as reading and writing files, Python can manipulate them. You certainly need to know what files are on the
file system and sometimes you need to delete them too.

On a regular computer, it is the role of the operating system (like Windows, OSX or Linux) to manage this on Python’s
behalf. Such functionality is made available in Python via a module called os. Since MicroPython is the operating
system we’ve decided to keep the appropriate functions in the os module for consistency so you’ll know where to find
them when you use ,,regular” Python on a device like a laptop or Raspberry Pi.

Essentially, you can do three operations related to the file system: list the files, remove a file and ask for the size of a
file.

To list the files on your file system use the 1istdir function. It returns a list of strings indicating the file names of
the files on the file system:

import os
my_files = os.listdir()

To delete a file use the remove function. It takes a string representing the file name of the file you want to delete as
an argument, like this:

import os
os.remove ('filename.txt')

Finally, sometimes it’s useful to know how big a file is before reading from it. To achieve this use the size function.
Like the remove function, it takes a string representing the file name of the file whose size you want to know. It
returns an integer (whole number) telling you the number of bytes the file takes up:

import os
file_size = os.size('a_big_file.txt")

It’s all very well having a file system, but what if we want to put or get files on or off the device?

Just use the microfs utility!

File Transfer

If you have Python installed on the computer you use to program your BBC micro:bit then you can use a special utility
called microfs (shortened to ufs when using it in the command line). Full instructions for installing and using all
the features of microfs can be found in its documentation.

Nevertheless it’s possible to do most of the things you need with just four simple commands:

Leckék 27

https://microfs.readthedocs.io

BBC micro:bit MicroPython Documentation, Kiadas 0.0.1

$ ufs 1s
story.txt

The 1s sub-command lists the files on the file system (it’s named after the common Unix command, 1s, that serves
the same function).

’$ ufs get story.txt ‘

The get sub-command gets a file from the connected micro:bit and saves it into your current location on your com-
puter (it’s named after the get command that’s part of the common file transfer protocol [FTP] that serves the same
function).

’$ ufs rm story.txt ‘

The rm sub-command removes the named from from the file system on the connected micro:bit (it’s named after the
common Unix command, rm, that serves the same function).

’$ ufs put story2.txt ‘

Finally, the put sub-command puts a file from your computer onto the connected device (it’s named after the put
command that’s part of FTP that serves the same function).

Mainly main.py

The file system also has an interesting property: if you just flashed the MicroPython runtime onto the device then
when it starts it’s simply waiting for something to do. However, if you copy a special file called main.py onto the
file system, upon restarting the device, MicroPython will run the contents of the main. py file.

Furthermore, if you copy other Python files onto the file system then you can import them as you would any other
Python module. For example, if you had a hello. py file that contained the following simple code:

def say_hello (name="World") :
return "Hello, I'" format (name)

...you could import and use the say_hel1lo function like this:

from microbit import display
from hello import say_hello

display.scroll (say_hello())

Of course, it results in the text ,,Hello, World!” scrolling across the display. The important point is that such an
example is split between two Python modules and the import statement is used to share code.

Megjegyzés: If you have flashed a script onto the device in addition to the MicroPython runtime, then MicroPython
will ignore main . py and run your embedded script instead.

To flash just the MicroPython runtime, simply make sure the script you may have written in your editor has zero
characters in it. Once flashed you’ll be able to copy over amain. py file.

28 Leckék

BBC micro:bit MicroPython Documentation, Kiadas 0.0.1

Speech

Figyelem: WARNING! THIS IS ALPHA CODE.
We reserve the right to change this API as development continues.

The quality of the speech is not great, merely ,,good enough”. Given the constraints of the device you may
encounter memory errors and / or unexpected extra sounds during playback. It’s early days and we’re improving
the code for the speech synthesiser all the time. Bug reports and pull requests are most welcome.

Computers and robots that talk feel more ,,human”.

So often we learn about what a computer is up to through a graphical user interface (GUI). In the case of a BBC
micro:bit the GUI is a 5x5 LED matrix, which leaves a lot to be desired.

Getting the micro:bit talk to you is one way to express information in a fun, efficient and useful way. To this end, we
have integrated a simple speech synthesiser based upon a reverse-engineered version of a synthesiser from the early
1980s. It sounds very cute, in an ,,all humans must die” sort of a way.

With this in mind, we’re going to use the speech synthesiser to create...

Leckék 29

BBC micro:bit MicroPython Documentation, Kiadas 0.0.1

30

Leckék

BBC micro:bit MicroPython Documentation, Kiadas 0.0.1

DALEK Poetry

A2

SHALL I COMPARE THEE
70 A SUMMEKRS DAY
FOR THOU ART MOKRE LOVELY
AND EXTERMINATE

BBC micro:bit MicroPython Documentation, Kiadas 0.0.1

It’s a little known fact that DALEKS enjoy poetry ~ especially limericks. They go wild for anapestic meter with a strict
AABBA form. Who’d have thought?

(Actually, as we’ll learn below, it’s The Doctor’s fault DALEKS like limericks, much to the annoyance of Davros.)

In any case, we’re going to create a DALEK poetry recital on demand.

Say Something

Before the device can talk you need to plug in a speaker like this:

A

Y4

L

The simplest way to get the device to speak is to import the speech module and use the say function like this:

import speech

speech.say ("Hello, World")

32 Leckék

BBC micro:bit MicroPython Documentation, Kiadas 0.0.1

While this is cute it’s certainly not DALEK enough for our taste, so we need to change some of the parameters that
the speech synthesiser uses to produce the voice. Our speech synthesiser is quite powerful in this respect because we
can change four parameters:

e pitch - how high or low the voice sounds (0 = high, 255 = Barry White)
* speed - how quickly the device talks (0 = impossible, 255 = bedtime story)

* mouth - how tight-lipped or overtly enunciating the voice sounds (0 = ventriloquist’s dummy, 255 = Foghorn
Leghorn)

* throat - how relaxed or tense is the tone of voice (0 = falling apart, 255 = totally chilled)

Collectively, these parameters control the quality of sound - a.k.a. the timbre. To be honest, the best way to get the
tone of voice you want is to experiment, use your judgement and adjust.

To adjust the settings you pass them in as arguments to the say function. More details can be found in the speech
module’s API documentation.

After some experimentation we’ve worked out this sounds quite DALEK-esque:

speech.say ("I am a DALEK - EXTERMINATE", speed=120, pitch=100, throat=100, mouth=200)

Poetry on Demand

Being Cyborgs DALEKSs use their robot capabilities to compose poetry and it turns out that the algorithm they use is
written in Python like this:

DALEK poetry generator, by The Doctor
import speech

import random

from microbit import sleep

Randomly select fragments to interpolate into the template.

location = random.choice(["brent", "trent", "kent", "tashkent"])
action = random.choice (["wrapped up", "covered", "sang to", "played games with"])
obj = random.choice (["head", "hand", "dog", "foot"])
prop = random.choice(["in a tent", "with cement", "with some scent",
"that was bent"])

result = random.choice(["it ran off", "it glowed", "it blew up",

"it turned blue"])
attitude = random.choice(["in the park", "like a shark", "for a lark",

"with a bark"])

conclusion = random.choice(["where it went", "its intent", "why it went",

"what it meant"])

A template of the poem. The {} are replaced by the named fragments.
poem = [

"there was a young man from ".format (location),

"who his ".format (action, obj, prop),

"one night after dark",

" ".format (result, attitude),

"and he never worked out ", format (conclusion),

"EXTERMINATE",

Loop over each line in the poem and use the speech module to recite it.
for line in poem:

Leckék 33

BBC micro:bit MicroPython Documentation, Kiadas 0.0.1

speech.say(line, speed=120, pitch=100, throat=100, mouth=200)
sleep (500)

As the comments demonstrate, it’s a very simple in design:

e Named fragments (Location, prop, attitude etc) are randomly generated from pre-defined lists of pos-
sible values. Note the use of random. choice to select a single item from a list.

* A template of a poem is defined as a list of stanzas with ,;holes” in them (denoted by { }) into which the named
fragments will be put using the format method.

¢ Finally, Python loops over each item in the list of filled-in poetry stanzas and uses speech.say with the
settings for the DALEK voice to recite the poem. A pause of 500 milliseconds is inserted between each line
because even DALEKS need to take a breath.

Interestingly the original poetry related routines were written by Davros in FORTRAN (an appropriate language for
DALEKS since you type it ALL IN CAPITAL LETTERS). However, The Doctor went back in time to precisely the
point between Davros’s unit tests passing and the deployment pipeline kicking in. At this instant he was able to insert
a MicroPython interpreter into the DALEK operating system and the code you see above into the DALEK memory
banks as a sort of long hidden Time-Lord Easter Egg or Rickroll.

Phonemes

You’ll notice that sometimes, the say function doesn’t accurately translate from English words into the correct sound.
To have fine grained control of the output, use phonemes: the building-block sounds of language.

The advantage of using phonemes is that you don’t have to know how to spell! Rather, you only have to know how to
say the word in order to spell it phonetically.

A full list of the phonemes the speech synthesiser understands can be found in the API documentation for speech.
Alternatively, save yourself a lot of time by passing in English words to the t ranslate function. It’ll return a first
approximation of the phonemes it would use to generate the audio. This result can be hand-edited to improve the
accuracy, inflection and emphasis (so it sounds more natural).

The pronounce function is used for phoneme output like this:

speech.pronounce (" /HEHS5EHAEH3EH2EH2EH3EH4EHSEHLP .)

How could you improve on The Doctor’s code to make it use phonemes?

Sing A Song of Micro:bit

By changing the pitch setting and calling the sing function it’s possible to make the device sing (although it’s not
going to win Eurovision any time soon).

The mapping from pitch numbers to musical notes is shown below:

34 Leckék

https://en.wikipedia.org/wiki/Fortran
https://en.wikipedia.org/wiki/Unit_testing
https://en.wikipedia.org/wiki/Continuous_delivery
https://en.wikipedia.org/wiki/Easter_egg_(media)
https://www.youtube.com/watch?v=dQw4w9WgXcQ

BBC micro:bit MicroPython Documentation, Kiadas 0.0.1

& ﬁf '#7_

58 55 52 49

1@ BN
I

\

\

11510810398 94 88 82 78 74 70 66 62

s iypio e i £

o>

7

46 44 42 39 37 35 33 31 |29 28 26 25 |23 22 21 20

The sing function must take phonemes and pitch as input like this:

speech.sing ("#115DOWWWW™)

Notice how the pitch to be sung is prepended to the phoneme with a hash (#). The pitch will remain the same for
subsequent phonemes until a new pitch is annotated.

The following example demonstrates how all three generative functions (say, pronounce and sing) can be used
to produce speech like output:

import speech
from microbit import sleep

The say method attempts to convert English into phonemes.
speech.say ("I can sing!™")

sleep (1000)

speech.say ("Listen to me!")

sleep (1000)

Clearing the throat requires the use of phonemes. Changing
the pitch and speed also helps create the right effect.
speech.pronounce ("AEAE/HAEMM", pitch=200, speed=100) # Ahem
sleep (1000)

Singing requires a phoneme with an annotated pitch for each syllable.
solfa = [

"#115DOWWWWWW" , # Doh
"4#103REYYYYYY", # Re
"H9AMIYYYYYY", # Mi
"#88FAOAOAOAOR", # Fa
" 478 SOHWWWWW ", # Soh
"#70LAOAOAOAOR", # La

Leckék 35

BBC micro:bit MicroPython Documentation, Kiadas 0.0.1

"#62TIYYYYYY", # T1
"#58DOWWWWWW" , # Doh
Sing the scale ascending in pitch.

I

song ''".join(solfa)

speech.sing (song, speed=100)

Reverse the list of syllables.
solfa.reverse ()

song = ''.join(solfa)

Sing the scale descending in pitch.

speech.sing (song, speed=100)

Network

It is possible to connect devices together to send and receive messages to and from each other. This is called a network.

A network of interconnected networks is called an internet. The Internet is an internet of all the internets.

Networking is hard and this is reflected in the program described below. However, the beautiful thing about this project
is it contains all the common aspects of network programming you need to know about. It’s also remarkably simple

and fun.

But first, let’s set the scene...

Connection

Imagine a network as a series of layers. At the very bottom is the most fundamental aspect of communication: there
needs to be some sort of way for a signal to get from one device to the other. Sometimes this is done via a radio

connection, but in this example we’re simply going to use two wires.

36

Leckék

BBC micro:bit MicroPython Documentation, Kiadas 0.0.1

It is upon this foundation that we can build all the other layers in the network stack.

As the diagram shows, blue and red micro:bits are connected via crocodile leads. Both use pin 1 for output and pin 2
for input. The output from one device is connected to the input on the other. It’s a bit like knowing which way round
to hold a telephone handset - one end has a microphone (the input) and the other a speaker (the output). The recording
of your voice via your microphone is played out of the other person’s speaker. If you hold the phone the wrong way
up, you’ll get strange results!

It’s exactly the same in this instance: you must connect the wires properly!

Signal

The next layer in the network stack is the signal. Often this will depend upon the characteristics of the connection. In
our example it’s simply digital on and off signals sent down the wires via the IO pins.

If you remember, it’s possible to use the 10 pins like this:

pinl.write_digital (1) # switch the signal on
pinl.write_digital (0) # switch the signal off
input = pin2.read_digital() # read the value of the signal (either 1 or 0)

The next step involves describing how to use and handle a signal. For that we need a...

Protocol

If you ever meet the Queen there are expectations about how you ought to behave. For example, when she arrives you
may bow or curtsey, if she offers her hand politely shake it, refer to her as ,,your majesty” and thereafter as ,,ma’am”
and so on. This set of rules is called the royal protocol. A protocol explains how to behave given a specific situation
(such as meeting the Queen). A protocol is pre-defined to ensure everyone understands what’s going on before a given
situation arises.

It is for this reason that we define and use protocols for communicating messages via a computer network. Computers
need to agree before hand how to send and receive messages. Perhaps the best known protocol is the hypertext transfer
protocol (HTTP) used by the world wide web.

Another famous protocol for sending messages (that pre-dates computers) is Morse code. It defines how to send
character-based messages via on/off signals of long or short durations. Often such signals are played as bleeps. Long
durations are called dashes (—) whereas short durations are dots (.). By combining dashes and dots Morse defines a
way to send characters. For example, here’s how the standard Morse alphabet is defined:

Leckék 37

BBC micro:bit MicroPython Documentation, Kiadas 0.0.1

- A -— g s -—— 1 -——=. 9
- B -.- K - T -— 2 e 0
-.-. C - L - U -— 3
- D -- M - v - 4
E - N -— W ... 5
- F -—— 0 -..- X - 6
-- G -—. P - Y - 7
H —.- 0 - z -—- 8
I R

Given the chart above, to send the character ,,H” the signal is switched on four times for a short duration, indicating
four dots (. ...). For the letter ,,L.” the signal is also switched on four times, but the second signal has a longer
duration (. —. .).

Obviously, the timing of the signal is important: we need to tell a dot from a dash. That’s another point of a protocol,
to agree such things so everyone’s implementation of the protocol will work with everyone elses. In this instance we’ll
just say that:

* A signal with a duration less than 250 milliseconds is a dot.

* A signal with a duration from 250 milliseconds to less than 500 milliseconds is a dash.

* Any other duration of signal is ignored.

* A pause / gap in the signal of greater than 500 milliseconds indicates the end of a character.

In this way, the sending of a letter ,,H” is defined as four ,,on” signals that last no longer than 250 milliseconds each,
followed by a pause of greater than 500 milliseconds (indicating the end of the character).

Message
We’re finally at a stage where we can build a message - a message that actually means something to us humans. This
is the top-most layer of our network stack.

Using the protocol defined above I can send the following sequence of signals down the physical wire to the other
micro:bit:

Y N A N e eV R N R N

Can you work out what it says?

Application

It’s all very well having a network stack, but you also need a way to interact with it - some form of application to send
and receive messages. While HTTP is interesting most people don’t know about it and let their web-browser handle it
- the underlying network stack of the world wide web is hidden (as it should be).

So, what sort of application should we write for the BBC micro:bit? How should it work, from the user’s point of
view?

Obviously, to send a message you should be able to input dots and dashes (we can use button A for that). If we want to
see the message we sent or just received we should be able to trigger it to scroll across the display (we can use button
B for that). Finally, this being Morse code, if a speaker is attached, we should be able to play the beeps as a form of
aural feedback while the user is entering their message.

38 Leckék

BBC micro:bit MicroPython Documentation, Kiadas 0.0.1

The End Result

Here’s the program, in all its glory and annotated with plenty of comments so you can see what’s going on:

from microbit import =«
import music

A lookup table of morse codes and associated characters.
MORSE_CODE_LOOKUP = {
"= "AM,
"-...": "B",
"= "ooen,
"-..": "D,
".T: "E",
L. "R,
", " "G",
"....": "H,
TLoutomI,
"oo—="oo"gn,
"-.-": "K",

"o w. wpm
e T e . ’

L "M",
o n. "N",
L "Oll,
LI "P",
L quv,

mo_ o m. "R",
woom. HSII,
. VIT",

L "U",

" —m. myn
.« e H 7

Moo=t

L 4
T A
Mooz,
Moo———m:omln,
A AR
moL.-=":oM3n,
AN LR
o " ovsn,
"eLLLu":o"en,
Moo TN,
me——..": "g",
Me———.": Mgn,
w____ ": "O"

def decode (buffer):
Attempts to get the buffer of Morse code data from the lookup table. If
it's not there, just return a full stop.
return MORSE_CODE_LOOKUP.get (buffer, '.")

How to display a single dot.
DOT = Image ("00000:"
"00000:"

Leckék 39

BBC micro:bit MicroPython Documentation, Kiadas 0.0.1

"00900:"
"00000:"
"00000:")

How to display a single dash.
DASH = Image ("00000:"

"00000:"

"09990:"

"00000:"

"00000:™)

To create a DOT you need to hold the button for less than 250ms.
DOT_THRESHOLD = 250
To create a DASH you need to hold the button for less than 500ms.
DASH_THRESHOLD = 500

Holds the incoming Morse signals.

buffer = "'

Holds the translated Morse as characters.
message = "'

The time from which the device has been waiting for the next keypress.

started_to_wait = running_time ()

Put the device in a loop to wait for and react to key presses.
while True:
Work out how long the device has been waiting for a keypress.
waiting = running_time () - started_to_wait
Reset the timestamp for the key_down_time.
key_down_time = None
If button_a is held down, then...
while button_a.is_pressed():
Play a beep - this is Morse code y'know ;-)
music.pitch (880, 10)
Set pinl (output) to "on"
pinl.write_digital (1)

...and if there's not a key_down_time then set it to now!
if not key_down_time:
key_down_time = running_time ()

Alternatively, 1if pin2 (input) 1is getting a signal, pretend it's a
button_a key press...
while pin2.read_digital():

if not key_down_time:

key_down_time = running_time ()
Get the current time and call it key_up_time.
key_up_time = running_time ()

Set pinl (output) to "off"
pinl.write_digital (0)
If there's a key_down time (created when button_a was first pressed

down) .
if key_down_time:
... then work out for how long it was pressed.

duration = key_up_time - key_down_time
If the duration is less than the max length for a "dot" press...
if duration < DOT_THRESHOLD:

40 Leckék

BBC micro:bit MicroPython Documentation, Kiadas 0.0.1

... then add a dot to the buffer containing incoming Morse codes
and display a dot on the display.
buffer += '".'

display.show (DOT)
Else, if the duration is less than the max length for a "dash"

press... (but longer than that for a DOT ~ handled above)
elif duration < DASH_THRESHOLD:
... then add a dash to the buffer and display a dash.
buffer += '-'

display.show (DASH)
Otherwise, any other sort of keypress duration is ignored (this isn't
needed, but added for "understandability").
else:
pass
The button press has been handled, so reset the time from which the
device is starting to wait for a button press.
started_to_wait = running_time ()
Otherwise, there hasn't been a button_a press during this cycle of the
loop, so check there's not been a pause to indicate an end of the
incoming Morse code character. The pause must be longer than a DASH
code's duration.
elif len(buffer) > 0 and waiting > DASH_THRESHOLD:
There is a buffer and it's reached the end of a code so...
Decode the incoming buffer.
character = decode (buffer)
Reset the buffer to empty.
buffer = "'
Show the decoded character.
display.show(character)
Add the character to the message.
message += character
Finally, 1if button_b was pressed while all the above was going on...
if button_b.was_pressed() :
... display the message,
display.scroll (message)
then reset it to empty (ready for a new message).
message = "'

How would you improve it? Can you change the definition of a dot and a dash so speedy Morse code users can use it?
What happens if both devices are sending at the same time? What might you do to handle this situation?

Radio

Interaction at a distance feels like magic.
Magic might be useful if you’re an elf, wizard or unicorn, but such things only exist in stories.
However, there’s something much better than magic: physics!

Wireless interaction is all about physics: radio waves (a type of electromagnetic radiation, similar to visible light) have
some sort of property (such as their amplitude, phase or pulse width) modulated by a transmitter in such a way that
information can be encoded and, thus, broadcast. When radio waves encounter an electrical conductor (i.e. an aerial),
they cause an alternating current from which the information in the waves can be extracted and transformed back into
its original form.

Leckék 41

BBC micro:bit MicroPython Documentation, Kiadas 0.0.1

Layers upon Layers

If you remember, networks are built in layers.

The most fundamental requirement for a network is some sort of connection that allows a signal to get from one device
to the other. In our networking tutorial we used wires connected to the I/O pins. Thanks to the radio module we can
do away with wires and use the physics summarised above as the invisible connection between devices.

The next layer up in the network stack is also different from the example in the networking tutorial. With the wired
example we used digital on and off to send and read a signal from the pins. With the built-in radio on the micro:bit the
smallest useful part of the signal is a byte.

Bytes

A byte is a unit of information that (usually) consists of eight bits. A bit is the smallest possible unit of information
since it can only be in two states: on or off.

Bytes work like a sort of abacus: each position in the byte is like a column in an abacus - they represent an associated
number. In an abacus these are usually thousands, hundreds, tens and units (in UK parlance). In a byte they are 128,
64,32, 16, 8, 4,2 and 1. As bits (on/off signals) are sent over the air, they are re-combined into bytes by the recipient.

Have you spotted the pattern? (Hint: base 2.)

By adding the numbers associated with the positions in a byte that are set to ,,on” we can represent numbers between
0 and 255. The image below shows how this works with five bits and counting from zero to 32:

If we can agree what each one of the 255 numbers (encoded by a byte) represents ~ such as a character ~ then we can
start to send text one character per byte at a time.

Funnily enough, people have already thought of this ~ using bytes to encode and decode information is commonplace.
This approximately corresponds to the Morse-code ,,protocol” layer in the wired networking example.

A really great series of child (and teacher) friendly explanations of ,,all things bytes” can be found at the CS unplugged
website.

Addressing

The problem with radio is that you can’t transmit directly to one person. Anyone with an appropriate aerial can receive
the messages you transmit. As a result it’s important to be able to differentiate who should be receiving broadcasts.

The way the radio built into the micro:bit solves this problem is quite simple:

* It’s possible to tune the radio to different channels (numbered 0-100). This works in exactly the same way
as kids’ walkie-talkie radios: everyone tunes into the same channel and everyone hears what everyone else
broadcasts via that channel. As with walkie-talkies, if you use adjacent channels there is a slight possibility of
interference.

* The radio module allows you to specify two pieces of information: an address and a group. The address is like
a postal address whereas a group is like a specific recipient at the address. The important thing is the radio
will filter out messages that it receives that do not match your address and group. As a result, it’s important to
pre-arrange the address and group your application is going to use.

Of course, the micro:bit is still receiving broadcast messages for other address/group combinations. The important
thing is you don’t need to worry about filtering those out. Nevertheless, if someone were clever enough, they could
just read all the wireless network traffic no matter what the target address/group was supposed to be. In this case, it’s
essential to use encrypted means of communication so only the desired recipient can actually read the message that
was broadcast. Cryptography is a fascinating subject but, unfortunately, beyond the scope of this tutorial.

42 Leckék

https://en.wikipedia.org/wiki/ASCII
http://csunplugged.org/binary-numbers/

BBC micro:bit MicroPython Documentation, Kiadas 0.0.1

Fireflies

This is a firefly:

It’s a sort of bug that uses bioluminescence to signal (without wires) to its friends. Here’s what they look like when
they signal to each other:

The BBC have rather a beautiful video of fireflies available online.
We’re going to use the radio module to create something akin to a swarm of fireflies signalling to each other.

First import radio to make the functions available to your Python program. Then call the radio.on () function
to turn the radio on. Since the radio draws power and takes up memory we’ve made it so you decide when it is enabled
(there is, of course a radio.off () function).

At this point the radio module is configured to sensible defaults that make it compatible with other platforms that
may target the BBC micro:bit. It is possible to control many of the features discussed above (such as channel and
addressing) as well as the amount of power used to broadcast messages and the amount of RAM the incoming message
queue will take up. The API documentation contains all the information you need to configure the radio to your needs.

Assuming we’re happy with the defaults, the simplest way to send a message is like this:

radio.send("a message")

The example uses the send function to simply broadcast the string ,,a message”. To receive a message is even easier:

’new_message = radio.receive ()

As messages are received they are put on a message queue. The receive function returns the oldest message from
the queue as a string, making space for a new incoming message. If the message queue fills up, then new incoming
messages are ignored.

That’s really all there is to it! (Although the radio module is also powerful enough that you can send any arbitrary type
of data, not just strings. See the API documentation for how this works.)

Armed with this knowledge, it’s simple to make micro:bit fireflies like this:

A micro:bit Firefly.

By Nicholas H.Tollervey. Released to the public domain.
import radio

import random

from microbit import display, Image, button_a, sleep

Create the "flash" animation frames. Can you work out how it's done?
flash [Image () .invert ()« (1/9) for i in range(9, -1, -1)]

The radio won't work unless it's switched on.
radio.on ()

Event loop.

while True:
Button A sends a "flash" message.
if button_a.was_pressed() :

radio.send('flash'") # a—-ha

Read any incoming messages.
incoming = radio.receive ()
if incoming == 'flash':

Leckék 43

http://www.bbc.com/earth/story/20160224-worlds-largest-gathering-of-synchronised-fireflies

BBC micro:bit MicroPython Documentation, Kiadas 0.0.1

If there's an incoming "flash" message display

the firefly flash animation after a random short
pause.

sleep (random.randint (50, 350))

display.show(flash, delay=100, wait=False)

Randomly re-broadcast the flash message after a
slight delay.

if random.randint (0, 9) == 0:
sleep (500)
radio.send('flash'") # a-ha

The import stuff happens in the event loop. First, it checks if button A was pressed and, if it was, uses the radio to send
the message ,.flash”. Then it reads any messages from the message queue with radio.receive (). If there is a
message it sleeps a short, random period of time (to make the display more interesting) and uses display.show ()
to animate a firefly flash. Finally, to make things a bit exciting, it chooses a random number so that it has a 1 in 10
chance of re-broadcasting the ,,flash” message to anyone else (this is how it’s possible to sustain the firefly display
among several devices). If it decides to re-broadcast then it waits for half a second (so the display from the initial
flash message has chance to die down) before sending the ,,flash” signal again. Because this code is enclosed within a
while True block, it loops back to the beginning of the event loop and repeats this process forever.

The end result (using a group of micro:bits) should look something like this:

Next Steps

These tutorials are only the first steps in using MicroPython with the BBC micro:bit. A musical analogy: you’ve got
a basic understanding of a very simple instrument and confidently play ,,Three Blind Mice”.

This is an achievement to build upon.
Ahead of you is an exciting journey to becoming a virtuoso coder.

You will encounter frustration, failure and foolishness. When you do please remember that you’re not alone. Python
has a secret weapon: the most amazing community of programmers on the planet. Connect with this community and
you will make friends, find mentors, support each other and share resources.

The examples in the tutorials are simple to explain but may not be the simplest or most efficient implementations.
We’ve left out lots of really fun stuff so we could concentrate on arming you with the basics. If you really want to
know how to make MicroPython fly on the BBC micro:bit then read the API reference documentation. It contains
information about all the capabilities available to you.

Explore, experiment and be fearless trying things out ~ for these are the attributes of a virtuoso coder. To encourage
you we have hidden a number of Easter eggs in MicroPython and the code editors (both TouchDevelop and Mu).
They’re fun rewards for looking ,,under the hood” and ,,poking with a stick”.

Such skill in Python is valuable: it’s one of the world’s most popular professional programming languages.
Amaze us with your code! Make things that delight us! Most of all, have fun!
Happy hacking!

A Python a vildg egyik legnépszer(ibb programozasi nyelve. Valdsziniileg minden nap (anélkiil, hogy tudndl réla)
haszndlsz Python nyelvet haszndl6 programokat. Rengeteg kiilonb6z6 cég és szervezet haszndl Pythont nagyon sokféle
applikdcidéhoz. Google, Nasa, Bank of America, Disney, CERN, YouTube, Mozilla, The Guardian - a lista ennél sokkal
hosszabb, a Pythont hasznald cégek lefedik a gazdasdg, tudomany és miivészet kiillonbozd teriileteit.

Péld4ul emlékszel a graviticios hulldimok felfedezésére? Az eszkoz, ami a méréseket végezte, Python nyelvet hasznalt.

44 Leckék

http://www.tiobe.com/index.php/content/paperinfo/tpci/index.html
http://www.bbc.co.uk/news/science-environment-35552207
https://www.reddit.com/r/IAmA/comments/45g8qu/we_are_the_ligo_scientific_collaboration_and_we/czxnlux

BBC micro:bit MicroPython Documentation, Kiadas 0.0.1

Roviden, ha Pythont tanulsz vagy tanitasz, azzal egy olyan készséget fejlesztesz, aminek hasznat veheted az emberi
torekvések minden teriiletén.

Az egyik ilyen teriilet a BBC leny(ig6z6 micro:bit eszkéze. Ezen a Python MicroPython nevi verzidja fut, ami kis-
méretli eszk6zokhoz lett kitaldlva, mint amilyen a BBC micro:bit. A MicroPython a Python 3 teljes implementacidja,
vagyis amikor mds dolgokat fogsz programozni (példaul a Raspberry Pit, Python nyelven), akkor is ugyanezt a nyelvet
fogod hasznélni.

A MicroPython nem tartalmaz minden programkonyvtdrat, ami a ,,normdlis” Pythonnal jar. Viszont {rtunk a MicroPy-
thonhoz egy kiilonleges microbit modult, aminek segitségével lehet kezelni az eszkozt.

A Python és a MicroPython szoftverek ingyenesek. Ez nem csak azt jelenti, hogy nem kell a hasznalatukért fizetni,
de Te is segithetsz a Python kozosségnek. Ennek a formédja lehet egy kéd, dokumentécio, hibajelentés, egy kozos-
ségi csoport l1étrehozdsa, vagy akar oktatdanyagok irdsa (mint ez itt). Valdjaban a Python azon elemei, amik a BBC
micro:bithez irédtak, egy nemzetkozi, onkéntesekbdl 4116 csapat munkdja, akik a szabadidejiikben dolgoztak.

A dokumentéciéban taldlhat6 leckék konnen kovethetd 1épésekben, alapos magyarazatokkal mutatjak be a MicroPy-
thont és a BBC micro:bitet. Nyugodtan hasznald 6ket iskolai tanérak keretében, vagy csak otthoni tanulasra.

Akkor fogod a legtobb sikert elérni, ha felfedezel, kisrletezgetsz és jatszol. Egy hibds kéddal nem tudod elrondtani az
eszkozt! Ugorj fejest a programozésba!

Egy kis figyelmeztetés: sokszor fogsz hibdzni, és ez rendben is van. A joé szoftverfejlesztok a hibakbél tanulnak.
Akik koziiliink szoftverfejlesztoként dolgoznak, élvezetesnek taldljak a hibakeresést és a hibak megismétlésének elke-
riilését.

Ha kétségek gyotornének, csak idézd fel a MicroPython mott6jét:

Kédolj,

Hackeld meg,

A kevesebb tdbb,
Ne bonyolitsd tul,
A kicsi gyodnyodrd,

Légy bator! Merj hibdzni! Tanulj, és érezd jél magad!
Fejezd ki magad a MicroPythonnal.

J6 hackelést! :-)

Sok szerencsét!

Leckék 45

BBC micro:bit MicroPython Documentation, Kiadas 0.0.1

46

Leckék

2. fejezet

micro:bit Micropython API

Figyelem: As we work towards a 1.0 release, this API is subject to frequent changes. This page reflects the
current micro:bit API in a developer-friendly (but not necessarily kid-friendly) way. The tutorials associated with
this documentation are a good place to start for non-developers looking for information.

The microbit module

Everything directly related to interacting with the hardware lives in the microbit module. For ease of use it’s recom-
mended you start all scripts with:

’from microbit import »*

The following documentation assumes you have done this.

There are a few functions available directly:

sleep for the given number of milliseconds.

sleep (ms)

returns the number of milliseconds since the micro:bit was last switched on.
running_time ()

makes the micro:bit enter panic mode (this usually happens when the DAL runs
out of memory, and causes a sad face to be drawn on the display). The error
code can be any arbitrary integer value.

panic(error_code)

resets the micro:bit.

reset ()

The rest of the functionality is provided by objects and classes in the microbit module, as described below.

Note that the API exposes integers only (ie no floats are needed, but they may be accepted). We thus use milliseconds
for the standard time unit.

Buttons

There are 2 buttons:

button_a
button_b

47

BBC micro:bit MicroPython Documentation, Kiadas 0.0.1

These are both objects and have the following methods:

returns True or False to indicate if the button is pressed at the time of

the method call.

button.is_pressed()

returns True or False to indicate if the button was pressed since the device
started or the last time this method was called.

button.was_pressed()

returns the running total of button presses, and resets this counter to zero
button.get_presses|()

The LED display

The LED display is exposed via the display object:

gets the brightness of the pixel (x,y). Brightness can be from 0 (the pixel
is off) to 9 (the pixel is at maximum brightness).

display.get_pixel (x, V)

sets the brightness of the pixel (x,y) to val (between 0 [off] and 9 [max
brightness], inclusive).

display.set_pixel(x, y, val)

clears the display.

display.clear ()

shows the image.

display.show(image, delay=0, wait=True, loop=False, clear=False)

shows each image or letter in the iterable, with delay ms. in between each.
display.show(iterable, delay=400, wait=True, loop=False, clear=False)

scrolls a string across the display (more exciting than display.show for

written messages).

display.scroll (string, delay=400)

Pins

Provide digital and analog input and output functionality, for the pins in the connector. Some pins are connected

internally to the I/O that drives the LED matrix and the buttons.

Each pin is provided as an object directly in the mi crobit module. This keeps the API relatively flat, making it very

easy to use:
¢ pin0
* pinl

¢ pinl5
e pinl6
e Warning: P17-P18 (inclusive) are unavailable.
e pinl9
¢ pin20

Each of these pins are instances of the MicroBitPin class, which offers the following API:

48

Leckék

BBC micro:bit MicroPython Documentation, Kiadas 0.0.1

value can be 0, 1, False, True

pin.write_digital (value)

returns either 1 or 0

pin.read_digital ()

value 1is between 0 and 1023

pin.write_analog(value)

returns an integer between 0 and 1023

pin.read_analog ()

sets the period of the PWM output of the pin in milliseconds
(see https://en.wikipedia.org/wiki/Pulse-width_modulation)
pin.set_analog_period (int)

sets the period of the PWM output of the pin in microseconds
(see https://en.wikipedia.org/wiki/Pulse-width_modulation)
pin.set_analog_period_microseconds (int)

returns boolean

pin.is_touched()

Images

Megjegyzés: You don’t always need to create one of these yourself - you can access the image shown on the display
directly with display.image. display.image is just an instance of Image, so you can use all of the same methods.

Images API:

creates an empty 5x5 image

image = Image ()

create an image from a string - each character in the string represents an
LED — 0 (or space) 1is off and 9 is maximum brightness. The colon ":"

indicates the end of a line.

image = Image ('90009:09090:00900:09090:90009:")

create an empty image of given size

image = Image (width, height)

initialises an Image with the specified width and height. The buffer
should be an array of length width x height

image = Image (width, height, buffer)

methods

returns the image's width (most often 5)

image.width ()

returns the image's height (most often 5)

image.height ()

sets the pixel at the specified position (between 0 and 9). May fail for
constant images.

image.set_pixel(x, y, value)

gets the pixel at the specified position (between 0 and 9)
image.get_pixel (x, V)

returns a new image created by shifting the picture left 'n' times.
image.shift_left (n)

returns a new image created by shifting the picture right 'n' times.
image.shift_right (n)

returns a new image created by shifting the picture up 'n' times.
image.shift_up (n)

returns a new image created by shifting the picture down 'n' times.
image.shift_down (n)

Leckék 49

BBC micro:bit MicroPython Documentation, Kiadas 0.0.1

get a compact string representation of the image

repr (image)

get a more readable string representation of the image
str (image)

#operators

returns a new image created by superimposing the two images

image + image

returns a new image created by multiplying the brightness of each pixel by n
image * n

built-in images.
Image.HEART
Image.HEART_SMALL
Image.HAPPY
Image.SMILE
Image.SAD
Image.CONFUSED
Image.ANGRY
Image.ASLEEP
Image.SURPRISED
Image.SILLY
Image.FABULOUS
Image.MEH
Image.YES
Image.NO
Image.CLOCKl2 # clock at 12 o' clock
Image.CLOCK11

many clocks (Image.CLOCKn)
Image.CLOCKl # clock at 1 o'clock
Image.ARROW_N

arrows pointing N, NE, E, SE, S, SW, W, NW (microbit.Image.ARROW_direction)
Image .ARROW_NW
Image.TRIANGLE
Image.TRIANGLE_LEFT
Image.CHESSBOARD
Image .DIAMOND
Image.DIAMOND_SMALL
Image.SQUARE
Image.SQUARE_SMALL
Image .RABBIT
Image.COW
Image .MUSIC_CROTCHET
Image .MUSIC_QUAVER
Image .MUSIC_QUAVERS
Image.PITCHFORK
Image.XMAS
Image.PACMAN
Image.TARGET
Image.TSHIRT
Image .ROLLERSKATE
Image.DUCK
Image.HOUSE
Image.TORTOISE
Image.BUTTERFLY
Image.STICKFIGURE
Image.GHOST
Image.SWORD

50

Leckék

BBC micro:bit MicroPython Documentation, Kiadas 0.0.1

Image.GIRAFFE

Image.SKULL

Image.UMBRELLA

Image.SNAKE

built—-in lists - useful for animations, e.g. display.show(Image.ALIL_CLOCKS)
Image.ALL_CLOCKS

Image.ALL_ARROWS

The accelerometer

The accelerometer is accessed via the accelerometer object:

read the X axis of the device. Measured in milli-g.

accelerometer.get_x()

read the Y axis of the device. Measured in milli-g.

accelerometer.get_y ()

read the Z axis of the device. Measured in milli-g.

accelerometer.get_z ()

get tuple of all three X, Y and 7 readings (listed in that order).
accelerometer.get_values|()

return the name of the current gesture.

accelerometer.current_gesture ()

return True or False to indicate if the named gesture is currently active.
accelerometer.is_gesture (name)

return True or False to indicate if the named gesture was active since the
last call.

accelerometer.was_gesture (name)

return a tuple of the gesture history. The most recent is listed last.
accelerometer.get_gestures()

The recognised gestures are: up, down, left, right, face up, face down, freefall, 3g, 649, 8g, shake

The compass

The compass is accessed via the compass object:

calibrate the compass (this is needed to get accurate readings).
compass.calibrate ()

return a numeric indication of degrees offset from "north".
compass.heading ()

return an numeric indication of the strength of magnetic field around
the micro:bit.

compass.get_field strength()

returns True or False to indicate 1if the compass is calibrated.
compass.is_calibrated()

resets the compass to a pre—calibration state.
compass.clear_calibration ()

12C bus

There is an I2C bus on the micro:bit that is exposed via the i2c object. It has the following methods:

Leckék 51

BBC micro:bit MicroPython Documentation, Kiadas 0.0.1

read n bytes from device with addr; repeat=True means a stop bit won't

be sent.

i2c.read(addr, n, repeat=False)

write buf to device with addr; repeat=True means a stop bit won't be sent.
i2c.write (addr, buf, repeat=False)

UART

Use uart to communicate with a serial device connected to the device’s I/O pins:

set up communication (use pins 0 [TX] and 1 [RX]) with a baud rate of 9600.
uart.init ()

return True or False to indicate if there are incoming characters waiting to
be read.

uart.any ()

return (read) n incoming characters.

uart.read(n)

return (read) as much incoming data as possible.

uart.readall ()

return (read) all the characters to a newline character is reached.
uart.readline ()

read bytes into the referenced buffer.

uart.readinto (buffer)

write bytes from the buffer to the connected device.

uvuart.write (buffer)

52

Leckék

3. fejezet

Microbit Module

The microbit module gives you access to all the hardware that is built-in into your board.

Functions

microbit.panic (n)
Enter a panic mode. Requires restart. Pass in an arbitrary integer <= 255 to indicate a status:

’microbit.panic(255)

microbit.reset ()
Restart the board.

microbit.sleep (n)
Wait for n milliseconds. One second is 1000 milliseconds, so:

microbit.sleep (1000)

will pause the execution for one second. n can be an integer or a floating point number.

microbit.running_ time ()
Return the number of milliseconds since the board was switched on or restarted.

microbit.temperature ()
Return the temperature of the micro:bit in degrees Celcius.

Attributes

Buttons

There are two buttons on the board, called button_a and button_b.

Attributes

button_a
A Button instance (see below) representing the left button.

53

BBC micro:bit MicroPython Documentation, Kiadas 0.0.1

button_b
Represents the right button.

Classes

class Button
Represents a button.

Megjegyzés: This class is not actually available to the user, it is only used by the two button instances, which
are provided already initialized.

is_pressed()
Returns True if the specified button button is pressed, and False otherwise.

was_pressed ()
Returns True or False to indicate if the button was pressed since the device started or the last time this
method was called.

get_presses ()
Returns the running total of button presses, and resets this total to zero before returning.

Example

import microbit

while True:

if microbit.button_a.is_pressed() and microbit.button_b.is_pressed() :
microbit.display.scroll ("AB")
break

elif microbit.button_a.is_pressed() :
microbit.display.scroll ("A")

elif microbit.button_b.is_pressed():
microbit.display.scroll ("B")

microbit.sleep(100)

Input/Output Pins

The pins are your board’s way to communicate with external devices connected to it. There are 19 pins for your
disposal, numbered 0-16 and 19-20. Pins 17 and 18 are not available.

For example, the script below will change the display on the micro:bit depending upon the digital reading on pin 0:

from microbit import x

while True:
if pin0O.read_digital():
display.show (Image.HAPPY)
else:
display.show (Image.SAD)

54 Leckék

BBC micro:bit MicroPython Documentation, Kiadas 0.0.1

Pin Functions

——— miso SPI1

LED Col 8
BUTTON A PS
LED Col 2 ANALOG IN 5

o LEDColl H anaos v HITE]

Those pins are available as attributes on the microbit module:microbit.pin0 -microbit.pin20.

Pin | Type Function

0 Touch | Pad0

1 Touch | Pad1

2 Touch | Pad?2

3 Analog | Column 1
4 Analog | Column 2
5 Digital | Button A
6 Digital | Row 2

7 Digital | Row 1

8 Digital

9 Digital | Row 3

10 | Analog | Column 3

11 Digital | Button B
12 | Digital
13 | Digital | SPI MOSI
14 | Digital | SPI MISO
15 | Digital | SPI SCK

16 | Digital

19 | Digital | I2C SCL
20 | Digital | I2C SDA

The above table summarizes the pins available, their types (see below) and what they are internally connected to.

Leckék 55

BBC micro:bit MicroPython Documentation, Kiadas 0.0.1

Pulse-Width Modulation

The pins of your board cannot output analog signal the way an audio amplifier can do it — by modulating the voltage
on the pin. Those pins can only either enable the full 3.3V output, or pull it down to OV. However, it is still possible
to control the brightness of LEDs or speed of an electric motor, by switching that voltage on and off very fast, and
controlling how long it is on and how long it is off. This technique is called Pulse-Width Modulation (PWM), and
that’s what the write_analog method below does.

Above you can see the diagrams of three different PWM signals. All of them have the same period (and thus frequ-
ency), but they have different duty cycles.

The first one would be generated by write_analog (511), as it has exactly 50% duty — the power is on half of the
time, and off half of the time. The result of that is that the total energy of this signal is the same, as if it was 1.65V
instead of 3.3V.

The second signal has 25% duty cycle, and could be generated with write_analog (255). It has similar effect as
if 0.825V was being output on that pin.

The third signal has 75% duty cycle, and can be generated with write_analog (767). It has three times as much
energy, as the second signal, and is equivalent to outputting 2.475V on th pin.

Note that this works well with devices such as motors, which have huge inertia by themselves, or LEDs, which blink
too fast for the human eye to see the difference, but will not work so good with generating sound waves. This board
can only generate square wave sounds on itself, which sound pretty much like the very old computer games — mostly
because those games also only could do that.

Classes

There are three kinds of pins, differing in what is available for them. They are represented by the classes listed below.
Note that they form a hierarchy, so that each class has all the functionality of the previous class, and adds its own to

56 Leckék

BBC micro:bit MicroPython Documentation, Kiadas 0.0.1

that.

Megjegyzés: Those classes are not actually available for the user, you can’t create new instances of them. You can
only use the instances already provided, representing the physical pins on your board.

classmicrobit .MicroBitDigitalPin

read_digital ()
Return 1 if the pin is high, and 0 if it’s low.

write_digital (value)
Set the pin to high if value is 1, or to low, if it is 0.

classmicrobit .MicroBitAnalogDigitalPin

read_analog ()
Read the voltage applied to the pin, and return it as an integer between 0 (meaning O0V) and 1023 (meaning
3.3V).

write_analog (value)
Output a PWM signal on the pin, with the duty cycle proportional to the provided value. The value
may be either an integer or a floating point number between 0 (0% duty cycle) and 1023 (100% duty).

set_analog_period (period)
Set the period of the PWM signal being output to period in milliseconds. The minimum valid value is
Ims.

set_analog period_microseconds (period)
Set the period of the PWM signal being output to period in microseconds. The minimum valid value is
35ps.

class microbit .MicroBitTouchPin

is_touched()
Return True if the pin is being touched with a finger, otherwise return False.

This test is done by measuring the capacitance of the pin together with whatever is connected to it. Human
body has quite a large capacitance, so touching the pin gives a dramatic change in reading, which can be
detected.

The pull mode for a pin is automatically configured when the pin changes to an input mode. Input modes are when
you call read_analog/ read_digital / is_touched. The pull mode for these is, respectively, NO_PULL,
PULL_DOWN, PULL_UP. Only when in read_digital mode can you call set_pull to change the pull mode
from the default.

Megjegyzés: Also note, the micro:bit has external weak (10M) pull-ups fitted on pins 0, 1 and 2 only, in order for the
touch sensing to work. See the edge connector data sheet here: http://tech.microbit.org/hardware/edgeconnector_ds/

Leckék 57

BBC micro:bit MicroPython Documentation, Kiadas 0.0.1

Classes

Image

The Image class is used to create images that can be displayed easily on the device’s LED matrix. Given an image
object it’s possible to display it via the device API:

display.show (Image.HAPPY)

Classes

class microbit .Image (string)
class microbit . Image (width=None, height=None, buffer=None)
If string is used, it has to consist of digits 0-9 arranged into lines, describing the image, for example:

"o

image = Image ("90009:"
"09090:"
"00900:"
"09090:"
"90009")

will create a 5x5 image of an X. The end of a line is indicated by a colon. It’s also possible to use a newline (n)
to indicate the end of a line like this:

58 Leckék

BBC micro:bit MicroPython Documentation, Kiadas 0.0.1

image = Image ("90009\n"
"09090\n"
"00900\n"
"09090\n"
"90009"M)

The other form creates an empty image with width columns and height rows. Optionally buffer can be
an array of width * x* “height integers in range 0-9 to initialize the image.

width ()
Return the number of columns in the image.

height ()
Return the numbers of rows in the image.

set_pixel (x,y, value)
Set the brightness of the pixel at column x and row y to the value, which has to be between 0 (dark) and
9 (bright).

This method will raise an exception when called on any of the build-in read-only images, like Image.
HEART.

Return the brightness of pixel at column x and row y as an integer between 0 and 9.

shift_ left (n)
Return a new image created by shifting the picture left by n columns.

shift_right (n)
Same as image.shift_left (-n).

shift_up (n)
Return a new image created by shifting the picture up by n rows.

shift down (n)
Same as image.shift_up (-n).

crop (x,y, w, h)
Return a new image by cropping the picture to a width of w and a height of h, starting with the pixel at
column x and row y.

copy ()
Return an exact copy of the image.

invert ()
Return a new image by inverting the brightness of the pixels in the source image.

Attributes

The Image class also has the following built-in instances of itself included as its attributes (the attribute names indicate
what the image represents):

Image.HEART
Image.HEART_SMALL
Image.HAPPY
Image.SMILE

Image.SAD

Leckék 59

BBC micro:bit MicroPython Documentation, Kiadas 0.0.1

Image.
Image.
Image.
Image.
Image.
Image.
Image.
Image.
Image.

Image.

Image.

Image.
Image.

Image.
Image.
Image.
Image.
Image.
Image.
Image.
Image.
Image.
Image.
Image.
Image.
Image.
Image.
Image.
Image.
Image.
Image.
Image.
Image.
Image.
Image.

Image.

CONFUSED
ANGRY
ASLEEP
SURPRISED
SILLY
FABULOUS
MEH

YES

NO

CLOCK12, Image.CLOCK11l, Image.CLOCK10, Image.CLOCKY9, Image.CLOCKS8, Image.
CLOCK7, Image.CLOCK6, Image.CLOCK)5, Image.CLOCK4, Image.CLOCK3, Image.CLOCK2,

CLOCK1

ARROW_N, Image.ARROW_NE,
ARROW_SW, Image . ARROW_W, Image . ARROW_NW

TRIANGLE
TRIANGLE_LEFT
CHESSBOARD
DIAMOND
DIAMOND_SMALL
SQUARE
SQUARE_SMALL
RABBIT

cow
MUSIC_CROTCHET
MUSIC_QUAVER
MUSIC_QUAVERS
PITCHFORK
XMAS

PACMAN

TARGET

TSHIRT
ROLLERSKATE
DUCK

HOUSE
TORTOISE
BUTTERFLY

STICKFIGURE

Image.ARROW_E, Image.ARROW_SE,

Image.ARROW_S,

60

Leckék

BBC micro:bit MicroPython Documentation, Kiadas 0.0.1

¢ Image.GHOST

¢ Image.SWORD

e Image.GIRAFFE
¢ ITmage.SKULL

¢ Image.UMBRELLA
¢ Image.SNAKE

Finally, related collections of images have been grouped together:

% " Image.ALL_CLOCKS'
% " Image.ALL_ARROWS' °

Operations

repr (image)

Get a compact string representation of the image.

str (image)

Get a readable string representation of the image.

imagel + image?2

Create a new image by adding the brightness values from the two images for each pixel.

image * n

Create a new image by multiplying the brightness of each pixel by n.

Modules

Display

This module controls the 5x5 LED display on the front of your board. It can be used to display images, animations
and even text.

Functions
microbit.display.get_pixel (x,y)
Return the brightness of the LED at column x and row y as an integer between O (off) and 9 (bright).

microbit.display.set_pixel (x,y, value)
Set the brightness of the LED at column x and row y to value, which has to be an integer between 0 and 9.

microbit.display.clear ()
Set the brightness of all LEDs to 0 (off).

Leckék 61

BBC micro:bit MicroPython Documentation, Kiadas 0.0.1

microbit.display.show (image)
Display the image.

microbit.display.show (iterable, delay=400, *, wait=True, loop=False, clear=False)
Display images or letters from the iterable in sequence, with delay milliseconds between them.

If wait is True, this function will block until the animation is finished, otherwise the animation will happen
in the background.

If 1loop is True, the animation will repeat forever.
If clear is True, the display will be cleared after the iterable has finished.

Note that the wait, loop and clear arguments must be specified using their keyword.

Megjegyzés: If using a generator as the iterable, then take care not to allocate any memory in the generator as
allocating memory in an interrupt is prohibited and will raise a MemoryError.

microbit.display.secroll (string, delay=150, *, wait=True, loop=False, monospace=False)
Similar to show, but scrolls the st ring horizontally instead. The delay parameter controls how fast the text
is scrolling.

If wait is True, this function will block until the animation is finished, otherwise the animation will happen
in the background.

If 1loop is True, the animation will repeat forever.

If monospace is True, the characters will all take up 5 pixel-columns in width, otherwise there will be exactly
1 blank pixel-column between each character as they scroll.

Note that the wait, loop and monospace arguments must be specified using their keyword.

microbit.display.on()
Use on() to turn on the display.

microbit.display.off ()
Use off() to turn off the display (thus allowing you to re-use the GPIO pins associated with the display for other
purposes).

microbit.display.is_on/()
Returns True if the display is on, otherwise returns False.

Example

To continuously scroll a string across the display, and do it in the background, you can use:

import microbit

microbit.display.scroll('Hello!', wait=False, loop=True)

UART

The uart module lets you talk to a device connected to your board using a serial interface.

62 Leckék

BBC micro:bit MicroPython Documentation, Kiadas 0.0.1

Functions

microbit.uart.init (baudrate=9600, bits=8, parity=None, stop=1, *, tx=None, rx=None)
Initialize serial communication with the specified parameters on the specified t x and rx pins. Note that for
correct communication, the parameters have to be the same on both communicating devices.

Figyelem: Initializing the UART on external pins will cause the Python console on USB to become unac-
cessible, as it uses the same hardware. To bring the console back you must reinitialize the UART without
passing anything for

tx” or ¢
rx” (or passing *
None” to these arguments). This means that calling

uart.init(115200)” is enough to restore the Python console.

The baudrate defines the speed of communication. Common baud rates include:

*9600

14400

19200

28800

38400

57600

*115200

The bits defines the size of bytes being transmitted, and the board only supports 8. The parity parameter
defines how parity is checked, and it can be None, microbit .uart.ODDormicrobit .uart .EVEN. The
stop parameter tells the number of stop bits, and has to be 1 for this board.

If tx and rx are not specified then the internal USB-UART TX/RX pins are used which connect to the USB
serial convertor on the micro:bit, thus connecting the UART to your PC. You can specify any other pins you
want by passing the desired pin objects to the t x and rx parameters.

Megjegyzés: When connecting the device, make sure you ,,cross” the wires — the TX pin on your board needs
to be connected with the RX pin on the device, and the RX pin — with the TX pin on the device. Also make sure
the ground pins of both devices are connected.

uart.any ()
Return True if any characters waiting, else False.

uart.read ([nbytes])
Read characters. If nbytes is specified then read at most that many bytes.

uart.readall ()
Read as much data as possible.

Return value: a bytes object or None on timeout.

uart.readinto (buf[, nbytes])
Read bytes into the buf. If nbytes is specified then read at most that many bytes. Otherwise, read at most
len (buf) bytes.

Leckék 63

BBC micro:bit MicroPython Documentation, Kiadas 0.0.1

Return value: number of bytes read and stored into buf or None on timeout.

uart.readline ()
Read a line, ending in a newline character.

Return value: the line read or None on timeout. The newline character is included in the returned bytes.

uart.write (buf)
Write the buffer of bytes to the bus.

Return value: number of bytes written or None on timeout.

SPI

The spi module lets you talk to a device connected to your board using a serial peripheral interface (SPI) bus. SPI
uses a so-called master-slave architecture with a single master. You will need to specify the connections for three
signals:

* SCLK : Serial Clock (output from master).
e MOSI : Master Output, Slave Input (output from master).

e MISO : Master Input, Slave Output (output from slave).

Functions

microbit.spi.init (baudrate=1000000, bits=8, mode=0, sclk=pinl3, mosi=pinl5, miso=pinl4)
Initialize SPI communication with the specified parameters on the specified pins. Note that for correct com-
munication, the parameters have to be the same on both communicating devices.

The baudrate defines the speed of communication.

The bits defines the size of bytes being transmitted. Currently only bit s=8 is supported. However, this may
change in the future.

The mode determines the combination of clock polarity and phase according to the following convention, with
polarity as the high order bit and phase as the low order bit:

SPIMode | Polarity (CPOL) | Phase (CPHA)
0 0 0
1 0 1
2 1 0
3 1 1

Polarity (aka CPOL) 0 means that the clock is at logic value O when idle and goes high (logic value 1) when
active; polarity 1 means the clock is at logic value 1 when idle and goes low (logic value 0) when active. Phase
(aka CPHA) 0 means that data is sampled on the leading edge of the clock, and 1 means on the trailing edge
(viz. https://en.wikipedia.org/wiki/Signal_edge).

The sclk, mosi and miso arguments specify the pins to use for each type of signal.

spi.read (nbytes)
Read at most nbytes. Returns what was read.

spi.write (buffer)
Write the buf fer of bytes to the bus.

spi.write_readinto (out, in)
Write the out buffer to the bus and read any response into the in buffer. The length of the buffers should be
the same. The buffers can be the same object.

64 Leckék

https://en.wikipedia.org/wiki/Signal_edge

BBC micro:bit MicroPython Documentation, Kiadas 0.0.1

I2C

The i2c module lets you communicate with devices connected to your board using the I>C bus protocol. There can
be multiple slave devices connected at the same time, and each one has its own unique address, that is either fixed for
the device or configured on it. Your board acts as the I>C master.

We use 7-bit addressing for devices because of the reasons stated here.
This may be different to other micro:bit related solutions.

How exactly you should communicate with the devices, that is, what bytes to send and how to interpret the responses,
depends on the device in question and should be described separately in that device’s documentation.

Functions

microbit.i2c.init (freq=100000, sda=pin20, scl=pinl9)
Re-initialize peripheral with the specified clock frequency freqg on the specified sda and sc1 pins.

Figyelem: Changing the I’C pins from defaults will make the accelerometer and compass stop working, as
they are connected internally to those pins.

microbit.i2c.read (addr, n, repeat=False)
Read n bytes from the device with 7-bit address addr. If repeat is True, no stop bit will be sent.

microbit.i2c.write (addr, buf, repeat=False)
Write bytes from buf to the device with 7-bit address addr. If repeat is True, no stop bit will be sent.

Connecting

You should connect the device’s SCL pin to micro:bit pin 19, and the device’s SDA pin to micro:bit pin 20. You also
must connect the device’s ground to the micro:bit ground (pin GND). You may need to power the device using an
external power supply or the micro:bit.

There are internal pull-up resistors on the I?C lines of the board, but with particularly long wires or large number of
devices you may need to add additional pull-up resistors, to ensure noise-free communication.

Accelerometer

This object gives you access to the on-board accelerometer. The accelerometer also provides convenience functions for
detecting gestures. The recognised gestures are: up, down, left, right, face up, face down, freefall,
39, 69, 8g, shake.

Functions
microbit.accelerometer.get_x()
Get the acceleration measurement in the x axis, as a positive or negative integer, depending on the direction.

microbit.accelerometer.get_y ()
Get the acceleration measurement in the y axis, as a positive or negative integer, depending on the direction.

microbit.accelerometer.get_z ()
Get the acceleration measurement in the z axis, as a positive or negative integer, depending on the direction.

Leckék 65

http://www.totalphase.com/support/articles/200349176-7-bit-8-bit-and-10-bit-I2C-Slave-Addressing

BBC micro:bit MicroPython Documentation, Kiadas 0.0.1

microbit.accelerometer.get_values ()
Get the acceleration measurements in all axes at once, as a three-element tuple of integers ordered as X, Y, Z.

microbit.accelerometer.current_gesture ()
Return the name of the current gesture.

Megjegyzés: MicroPython understands the following gesture names: "up", "down", "left", "right", "face
up", "face down", "freefall", "3g","6g", "8g", "shake". Gestures are always represented as strings.

microbit.accelerometer.is_gesture (name)
Return True or False to indicate if the named gesture is currently active.

microbit.accelerometer.was_gesture (name)
Return True or False to indicate if the named gesture was active since the last call.

microbit.accelerometer.get_gestures ()
Return a tuple of the gesture history. The most recent is listed last. Also clears the gesture history before
returning.

Examples

A fortune telling magic 8-ball. Ask a question then shake the device for an answer.

Magic 8 ball by Nicholas Tollervey. February 2016.

#

Ask a question then shake.

#

This program has been placed into the public domain.
from microbit import =«

import random

answers = [
"It is certain",
"It is decidedly so",
"Without a doubt",
"Yes, definitely",
"You may rely on it",
"As I see it, yes",
"Most likely",
"Outlook good",
"Yes",
"Signs point to yes",
"Reply hazy try again",
"Ask again later",
"Better not tell you now",
"Cannot predict now",
"Concentrate and ask again",
"Don't count on it",
"My reply is no",
"My sources say no",
"Outlook not so good",
"Very doubtful",

while True:
display.show('8")

66 Leckék

BBC micro:bit MicroPython Documentation, Kiadas 0.0.1

if accelerometer.was_gesture ('shake'):
display.clear ()
sleep (1000)
display.scroll (random.choice (answers))
sleep (10)

Simple Slalom. Move the device to avoid the obstacles.

Simple Slalom by Larry Hastings, September 2015
#

This program has been placed into the public domain.

import microbit as m
import random

p = m.display.show

min_x = -1024
max_x = 1024
range_x = max_XxX — min_x

wall_min_speed = 400
player_min_speed = 200

wall_max_speed = 100
player_max_speed = 50

speed_max = 12

while True:

i = m.Image ('00000:"x5)
s = i.set_pixel

player_x = 2

wall_y = -1
hole = 0

score = 0
handled_this_wall = False

wall_speed = wall_min_speed
player_speed = player_min_speed

wall _next = 0
player_next = 0

while True:

t = m.running_time ()

player_update = t >= player_next

wall_update = t >= wall_next

if not (player_update or wall_update):
next_event = min(wall_next, player_next)
delta = next_event - t
m.sleep(delta)
continue

Leckék 67

BBC micro:bit MicroPython Documentation, Kiadas 0.0.1

if wall_update:
calculate new speeds
speed = min(score, speed_max)
wall_speed = wall_min_speed + int ((wall_max_speed - wall_min_speed) =
—speed / speed_max)
player_speed = player_min_speed + int ((player_max_speed - player_min__
—speed) * speed / speed_max)

wall_next = t + wall_speed
if wall_y < 5:
erase old wall
use_wall_y = max(wall_y, 0)
for wall_x in range (5) :
if wall_x != hole:
s(wall_x, use_wall_y, 0)

wall_reached_player = (wall_y == 4)
if player_update:
player_next = t + player_speed
find new x coord
X = m.accelerometer.get_x()
x = min(max (min_x, x), max_x)
print ("x accel", x)
s(player_x, 4, 0) # turn off old pixel

x = ((x — min_x) / range_x) = 5

x = min(max (0, x), 4)

x = int(x + 0.5)

print ("have", position, "want", x)

if not handled_this_wall:
if player_x < x:
player_x += 1
elif player_x > x:
player_x —= 1
print ("new", position)
print()

if wall_update:
update wall position
wall_y += 1

if wall_y ==
wall vy = -1
hole = random.randrange (5)

handled_this_wall = False

if wall_y < 5:
draw new wall
use_wall_y = max(wall_y, 0)
for wall_x in range (5):
if wall_x != hole:
s(wall_x, use_wall_y, 6)

if wall_reached_player and not handled_this_wall:
handled_this wall = True

if (player_x != hole):
collision! game over!
break

68 Leckék

BBC micro:bit MicroPython Documentation, Kiadas 0.0.1

score += 1

if player_update:
s(player_x, 4, 9) # turn on new pixel

p (1)

p(i.SAD)
m.sleep(1000)
m.display.scroll ("Score:" + str(score))

while True:
if (m.button_a.is_pressed() and m.button_a.is_pressed()):
break
m.sleep(100)

Compass

This module lets you access the built-in electronic compass. Before using, the compass should be calibrated, otherwise
the readings may be wrong.

Figyelem: Calibrating the compass will cause your program to pause until calibration is complete. Calibration
consists of a little game to draw a circle on the LED display by rotating the device.

Functions

microbit.compass.calibrate ()
Starts the calibration process. An instructive message will be scrolled to the user after which they will need to
rotate the device in order to draw a circle on the LED display.

microbit.compass.is_calibrated()
Returns True if the compass has been successfully calibrated, and returns False otherwise.

microbit.compass.clear calibration ()
Undoes the calibration, making the compass uncalibrated again.

microbit.compass.get_x()
Gives the reading of the magnetic force on the x axis, as a positive or negative integer, depending on the direction
of the force.

microbit.compass.get_y ()
Gives the reading of the magnetic force on the x axis, as a positive or negative integer, depending on the direction
of the force.

microbit.compass.get_z ()
Gives the reading of the magnetic force on the x axis, as a positive or negative integer, depending on the direction
of the force.

microbit.compass.heading ()
Gives the compass heading, calculated from the above readings, as an integer in the range from O to 360,
representing the angle in degrees, clockwise, with north as 0.

microbit.compass.get_field_ strength ()
Returns an integer indication of the magnitude of the magnetic field around the device.

Leckék 69

BBC micro:bit MicroPython Documentation, Kiadas 0.0.1

Example

mmwn

compass.py

Creates a compass.

The user will need to calibrate the compass first. The compass uses the

built-in clock images to display the position of the needle.

mwn

from microbit import =«

Start calibrating
compass.calibrate ()

Try to keep the needle pointed in (roughly) the correct direction

while True:
sleep (100)
needle = ((15 - compass.heading()) // 30) % 12

display.show (Image.ALL_CLOCKS[needle])

70 Leckék

4. fejezet

Bluetooth

While the BBC micro:bit has hardware capable of allowing the device to work as a Bluetooth Low Energy (BLE)
device, it only has 16k of RAM. The BLE stack alone takes up 12k RAM which means there’s not enough room to
run MicroPython.

Future versions of the device may come with 32k RAM which would be sufficient. However, until such time it’s highly
unlikely MicroPython will support BLE.

Megjegyzés: MicroPython uses the radio hardware with the radio module. This allows users to create simple yet
effective wireless networks of micro:bit devices.

Furthermore, the protocol used in the radio module is a lot simpler than BLE, making it far easier to use in an
educational context.

71

BBC micro:bit MicroPython Documentation, Kiadas 0.0.1

72

Leckék

5. fejezet

Local Persistent File System

It is useful to store data in a persistent manner so that it remains intact between restarts of the device. On traditional
computers this is often achieved by a file system consisting of named files that hold raw data, and named directories
that contain files. Python supports the various operations needed to work with such file systems.

However, since the micro:bit is a limited device in terms of both hardware and storage capacity MicroPython pro-
vides a small subset of the functions needed to persist data on the device. Because of memory constraints there is
approximately 30k of storage available on the file system.

Figyelem: Re-flashing the device will DESTROY YOUR DATA.

Since the file system is stored in the micro:bit’s flash memory and flashing the device rewrites all the available
flash memory then all your data will be lost if you flash your device.

However, if you switch your device off the data will remain intact until you either delete it (see below) or re-flash
the device.

MicroPython on the micro:bit provides a flat file system; i.e. there is no notion of a directory hierarchy, the file system
is just a list of named files. Reading and writing a file is achieved via the standard Python open function and the
resulting file-like object (representing the file) of types Text IO or BytesIO. Operations for working with files on
the file system (for example, listing or deleting files) are contained within the os module.

If a file ends in the . py file extension then it can be imported. For example, a file named hello.py can be imported
like this: import hello.

An example session in the MicroPython REPL may look something like this:

>>> with open('hello.py', 'w') as hello:
hello.write("print ('"Hello') ™)

>>> import hello

Hello

>>> with open('hello.py') as hello:
print (hello.read())

print ('Hello'")

>>> import os

>>> os.listdir ()
["hello.py']

>>> os.remove ('hello.py")

73

BBC micro:bit MicroPython Documentation, Kiadas 0.0.1

>>> os.listdir ()

(]

open (filename, mode="r")

Returns a file object representing the file named in the argument £i lename. The mode defaults to ' r' which
means open for reading in text mode. The other common mode is 'w"' for writing (overwriting the content of
the file if it already exists). Two other modes are available to be used in conjunction with the ones describes
above: 't' means text mode (for reading and writing strings) and 'b' means binary mode (for reading and
writing bytes). If these are not specified then 't ' (text mode) is assumed. When in text mode the file object will
be an instance of Text I0. When in binary mode the file object will be an instance of BytesIO. For example,
use 'rb' to read binary data from a file.

class TextIO
class BytesIO

Instances of these classes represent files in the micro:bit’s flat file system. The TextIO class is used to represent
text files. The BytesIO class is used to represent binary files. They work in exactly the same except that TextIO
works with strings and BytesIO works with bytes.

You do not directly instantiate these classes. Rather, an appropriately configured instance of the class is returned
by the open function described above.

close ()
Flush and close the file. This method has no effect if the file is already closed. Once the file is closed, any
operation on the file (e.g. reading or writing) will raise an exception.

name ()
Returns the name of the file the object represents. This will be the same as the filename argument
passed into the call to the open function that instantiated the object.

read (size)
Read and return at most size characters as a single string or size bytes from the file. As a convenience,
if size is unspecified or -1, all the data contained in the file is returned. Fewer than size characters or
bytes may be returned if there are less than size characters or bytes remaining to be read from the file.

If O characters or bytes are returned, and size was not 0, this indicates end of file.
A MemoryError exception will occur if size is larger than the available RAM.

readinto (buf, n=-1)
Read characters or bytes into the buffer buf. If n is supplied, read n number of bytes or characters into
the buffer buf.

readline (size)
Read and return one line from the file. If size is specified, at most size characters will be read.

The line terminator is always ' \n' for strings or b ' \n"' for bytes.

writable ()
Return True if the file supports writing. If False, write () will raise OSError.

write (buf)
Write the string or bytes bu £ to the file and return the number of characters or bytes written.

74

Leckék

6. fejezet

Music

This is the music module. You can use it to play simple tunes, provided that you connect a speaker to your board.
By default the mus ic module expects the speaker to be connected via pin 0:

75

BBC micro:bit MicroPython Documentation, Kiadas 0.0.1

This arrangement can be overridden (as discussed below).

To access this module you need to:

‘import music

We assume you have done this for the examples below.

Musical Notation

An individual note is specified thus:

‘NOTE[octave][:durationJ

76 Leckék

BBC micro:bit MicroPython Documentation, Kiadas 0.0.1

For example, A1 : 4 refers to the note ,,A” in octave 1 that lasts for four ticks (a tick is an arbitrary length of time
defined by a tempo setting function - see below). If the note name R is used then it is treated as a rest (silence).

Accidentals (flats and sharps) are denoted by the b (flat - a lower case b) and # (sharp - a hash symbol). For example,
Ab is A-flat and C# is C-sharp.

Note names are case-insensitive.

The octave and duration parameters are states that carry over to subsequent notes until re-specified. The default
states are octave = 4 (containing middle C) and duration = 4 (a crotchet, given the default tempo settings -
see below).

For example, if 4 ticks is a crotchet, the following list is crotchet, quaver, quaver, crotchet based arpeggio:

’['cl:ll', 'e:2', 'g', 'c2:4']

The opening of Beethoven’s 5th Symphony would be encoded thus:

’[vrq:zv, lgl, lgl, lgl, 'eb:8', vr:2|’ lfl, Vfl, Yfl, 'd:8']

The definition and scope of an octave conforms to the table listed on this page about scientific pitch notation. For
example, middle ,,C” is 'c4 ' and concert ,,A” (440) is 'a4 '. Octaves start on the note ,,C”.

Functions

music.set_tempo (ticks=4, bpm=120)
Sets the approximate tempo for playback.

A number of ticks (expressed as an integer) constitute a beat. Each beat is to be played at a certain frequency
per minute (expressed as the more familiar BPM - beats per minute - also as an integer).

Suggested default values allow the following useful behaviour:
'music.set_tempo () - reset the tempo to default of ticks = 4, bpm = 120
emusic.set_tempo (ticks=8) - change the ,.definition” of a beat
emusic.set_tempo (bpm=180) - just change the tempo

To work out the length of a tick in milliseconds is very simple arithmeticc 60000/bpm/
ticks_per_beat . For the default values that’s 60000/120/4 = 125 milliseconds or 1 beat
= 500 milliseconds.

music.get_tempo ()
Gets the current tempo as a tuple of integers: (ticks, bpm).

music.play (music, pin=microbit.pin0, wait=True, loop=False)
Plays music containing the musical DSL defined above.

If music is a string it is expected to be a single note such as, 'c1:4".

If music is specified as a list of notes (as defined in the section on the musical DSL, above) then they are played
one after the other to perform a melody.

In both cases, the duration and octave values are reset to their defaults before the music (whatever it may
be) is played.

An optional argument to specify the output pin can be used to override the default of microbit.pin0.
If wait is set to True, this function is blocking.

If 1oop is set to True, the tune repeats until stop is called (see below) or the blocking call is interrupted.

Leckék 77

https://en.wikipedia.org/wiki/Scientific_pitch_notation#Table_of_note_frequencies

BBC micro:bit MicroPython Documentation, Kiadas 0.0.1

music.pitch (frequency, len=-1, pin=microbit.pin0, wait=True)
Plays a pitch at the integer frequency given for the specified number of milliseconds. For example, if the
frequency is set to 440 and the length to 1000 then we hear a standard concert A for one second.

If wait is set to True, this function is blocking.

If 1en is negative the pitch is played continuously until either the blocking call is interrupted or, in the case of
a background call, a new frequency is set or stop is called (see below).

music.stop (pin=microbit.pin0)
Stops all music playback on a given pin.

music.reset ()
Resets the state of the following attributes in the following way:

sticks = 4
*bpm = 120
eduration = 4

eoctave = 4

Built in Melodies

For the purposes of education and entertainment, the module contains several example tunes that are expressed as
Python lists. They can be used like this:

>>> import music
>>> music.play (music.NYAN)

All the tunes are either out of copyright, composed by Nicholas H.Tollervey and released to the public domain or have
an unknown composer and are covered by a fair (educational) use provision.

They are:
e DADADADUM - the opening to Beethoven’s 5th Symphony in C minor.
* ENTERTAINER - the opening fragment of Scott Joplin’s Ragtime classic ,,The Entertainer”.
* PRELUDE - the opening of the first Prelude in C Major of J.S.Bach’s 48 Preludes and Fugues.
* ODE - the ,,Ode to Joy” theme from Beethoven’s 9th Symphony in D minor.

* NYAN - the Nyan Cat theme (http://www.nyan.cat/). The composer is unknown. This is fair use for educational
porpoises (as they say in New York).

* RINGTONE - something that sounds like a mobile phone ringtone. To be used to indicate an incoming message.
* FUNK - a funky bass line for secret agents and criminal masterminds.
* BLUES - a boogie-woogie 12-bar blues walking bass.

* BIRTHDAY - ,Happy Birthday to You..” for copyright status see: http://www.bbc.co.uk/news/
world-us-canada-34332853

e WEDDING - the bridal chorus from Wagner’s opera ,,L.ohengrin”.
e FUNERAL - the ,,funeral march” otherwise known as Frédéric Chopin’s Piano Sonata No. 2 in B minor, Op. 35.
* PUNCHLINE - a fun fragment that signifies a joke has been made.

e PYTHON - John Philip Sousa’s march ,.Liberty Bell” aka, the theme for ,,Monty Python’s Flying Circus” (after
which the Python programming language is named).

78 Leckék

http://www.nyan.cat/
http://www.bbc.co.uk/news/world-us-canada-34332853
http://www.bbc.co.uk/news/world-us-canada-34332853

BBC micro:bit MicroPython Documentation, Kiadas 0.0.1

* BADDY - silent movie era entrance of a baddy.

* CHASE - silent movie era chase scene.

* BA_DING - a short signal to indicate something has happened.

* WAWAWAWAA - a very sad trombone.

e JUMP_UP - for use in a game, indicating upward movement.

e JUMP_DOWN - for use in a game, indicating downward movement.
¢ POWER_UP - a fanfare to indicate an achievement unlocked.

¢ POWER_DOWN - a sad fanfare to indicate an achievement lost.

Example

mmn

music.py

Plays a simple tune using the Micropython music module.
This example requires a speaker/buzzer/headphones connected to PO and GND.

mmwn

from microbit import =«
import music

play Prelude in C
notes = [

'c4:1', 'e', 'g', 'cb', 'e5', 'g4', 'c5', 'eb5', 'c4', 'e', 'g', 'cb', 'e5', 'g4d',
—'ch', 'eb',

'c4', '4', 'g', 'd5', 'f5', 'g4', 'd5', 'f5', 'c4', 'd4d', 'g', 'd5', 'f5', 'g4',
—'ds5', 'f5°',

'b3', 'd4', 'g', 'd5', 'f5', 'g4', 'd5', 'f5', 'b3', 'd4', 'g', 'd5', 'f5', 'g4d’',
—'ds5', 'f5',

'c4', 'e', 'g', 'ch', 'e5', 'g4', 'c5', 'e5', 'c4', 'e', 'g', 'c5', 'eb', 'g4',
—'ch', 'eb',

'c4', 'e', 'a', 'eb', 'ab5', 'a4', 'e5', 'ab', 'c4', 'e', 'a', 'eb5', 'ab', 'as',
—'e5', 'as',

'c4', '4d', 'f#', 'a', 'd5', 'f#4', 'a', 'd5', ‘'c4', 'd', 'f#', 'a', 'd5', 'f#4',
~'a', 'd5"',

'b3', 'd4', 'g', 'd5', 'g5', 'g4', 'd5', 'g5' 'b3', 'd4', 'g', 'd5', 'g5', 'g4d',
—'d5', 'g5',

'b3', 'c4', 'e', 'g', 'c5', 'ed', 'g', 'c5', 'b3', 'c4', 'e', 'g', 'chH', 'ed', 'g
‘—>', 'C5',

'b3', 'c4', 'e', 'g', 'c5', 'ed', 'g', 'c5', 'b3', 'c4', 'e', 'g', 'chH', 'ed', 'g
‘**', 'C5'(

'a3', 'c4', 'e', 'g', 'c5', 'e4', 'g', 'c5', 'a3', 'c4', 'e', 'g', 'ch', 'ed', 'g
‘—)', 'C5',

'd3', 'a', 'd4', 'f#', 'c5', 'd4', 'f#', 'c5', 'd3', 'a', 'd4', 'f#', 'c5', 'd4’',
‘—>'f#', 'C5’,

'g3', 'b', 'a4', 'g', 'b', '4', 'g', 'b', 'g3', 'b3', 'd4', 'g', 'b', '4d', 'g', 'b
1
music.play (notes)
Leckék 79

BBC micro:bit MicroPython Documentation, Kiadas 0.0.1

80

Leckék

7. fejezet

NeoPixel

The neopixel module lets you use Neopixel (WS2812) individually addressable RGB LED strips with the Microbit.
Note to use the neopixel module, you need to import it separately with:

import neopixel

Megjegyzés: From our tests, the Microbit Neopixel module can drive up to around 256 Neopixels. Anything above
that and you may experience weird bugs and issues.

NeoPixels are fun strips of multi-coloured programmable LEDs. This module contains everything to plug them into a
micro:bit and create funky displays, art and games such as the demo shown below.

To connect a strip of neopixels you’ll need to attach the micro:bit as shown below (assuming you want to drive the
pixels from pin O - you can connect neopixels to pins 1 and 2 too). The label on the crocodile clip tells you where to
attach the other end on the neopixel strip.

Figyelem: Do not use the 3v connector on the Microbit to power any more than 8 Neopixels at a time.

If you wish to use more than 8 Neopixels, you must use a separate 3v-5v power supply for the Neopixel power pin.

81

BBC micro:bit MicroPython Documentation, Kiadas 0.0.1

Classes

class neopixel .NeoPixel (pin, n)
Initialise a new strip of n number of neopixel LEDs controlled via pin pin. Each pixel is addressed by a position
(starting from 0). Neopixels are given RGB (red, green, blue) values between 0-255 as a tuple. For example,
(255,255, 255) is white.

clear ()
Clear all the pixels.

show ()
Show the pixels. Must be called for any updates to become visible.

82 Leckék

BBC micro:bit MicroPython Documentation, Kiadas 0.0.1

Operations

Writing the colour doesn’t update the display (use show () for that).

np[0] = (255, 0, 128) # first element
np[-1] = (0, 255, 0) # last element
np.show () # only now will the updated value be shown

To read the colour of a specific pixel just reference it.

’print(np[OJ)

Using Neopixels

Interact with Neopixels as if they were a list of tuples. Each tuple represents the RGB (red, green and blue) mix of
colours for a specific pixel. The RGB values can range between 0 to 255.

For example, initialise a strip of 8 neopixels on a strip connected to pin0 like this:

import neopixel
np = neopixel.NeoPixel (pin0O, 8)

Set pixels by indexing them (like with a Python list). For instance, to set the first pixel to full brightness red, you
would use:

]np[OJ = (255, 0, 0)

Or the final pixel to purple:

’np[—l] = (255, 0, 255)

Get the current colour value of a pixel by indexing it. For example, to print the first pixel’s RGB value use:

]print(np[01>

Finally, to push the new colour data to your Neopixel strip, use the .show() function:

’np.show()

If nothing is happening, it’s probably because you’ve forgotten this final step..!

Megjegyzés: If you're not seeing anything change on your Neopixel strip, make sure you’re show () at least som-
ewhere otherwise your updates won’t be shown.

Example

mn

neopixel_random.py

Repeatedly displays random colours onto the LED strip.
This example requires a strip of 8 Neopixels (WS2812) connected to pin0.

Leckék 83

BBC micro:bit MicroPython Documentation, Kiadas 0.0.1

mwn

from microbit import =
import neopixel
from random import randint

Setup the Neopixel strip on pin0O with a length of 8 pixels
np = neopixel.NeoPixel (pin0O, 8)

while True:
#Iterate over each LED in the strip

for pixel_id in range (0, len(np)):
red = randint (0, 60)
green = randint (0, 60)
blue = randint (0, 60)

Assign the current LED a random red, green and blue value between 0 and 60
npl[pixel_id] = (red, green, blue)

Display the current pixel data on the Neopixel strip
np.show ()
sleep (100)

84 Leckék

8. fejezet

The os Module

MicroPython contains an os module based upon the os module in the Python standard library. It’s used for accessing
what would traditionally be termed as operating system dependent functionality. Since there is no operating system in
MicroPython the module provides functions relating to the management of the simple on-device persistent file system
and information about the current system.

To access this module you need to:

’ import os

We assume you have done this for the examples below.

Functions

os.listdir ()
Returns a list of the names of all the files contained within the local persistent on-device file system.

os.remove (filename)
Removes (deletes) the file named in the argument £ilename. If the file does not exist an OSError exception
will occur.

os.size (filename)
Returns the size, in bytes, of the file named in the argument £ilename. If the file does not exist an OSError
exception will occur.

os.uname ()
Returns information identifying the current operating system. The return value is an object with five attributes:

esysname - operating system name

enodename - name of machine on network (implementation-defined)
erelease - operating system release

eversion - operating system version

emachine - hardware identifier

Megjegyzés: There is no underlying operating system in MicroPython. As a result the information returned by the
uname function is mostly useful for versioning details.

85

BBC micro:bit MicroPython Documentation, Kiadas 0.0.1

86

Leckék

9. fejezet

Radio

The radio module allows devices to work together via simple wireless networks.

The radio module is conceptually very simple:

Broadcast messages are of a certain configurable length (up to 251 bytes).

Messages received are read from a queue of configurable size (the larger the queue the more RAM is used). If
the queue is full, new messages are ignored.

Messages are broadcast and received on a preselected channel (numbered 0-100).
Broadcasts are at a certain level of power - more power means more range.

Messages are filtered by address (like a house number) and group (like a named recipient at the specified add-
ress).

The rate of throughput can be one of three pre-determined settings.
Send and receieve bytes to work with arbitrary data.
As a convenience for children, it’s easy to send and receive messages as strings.

The default configuration is both sensible and compatible with other platforms that target the BBC micro:bit.

To access this module you need to:

’import radio

We assume you have done this for the examples below.

Constants

radio.RATE_250KBIT

Constant used to indicate a throughput of 256 Kbit a second.

radio.RATE_1MBIT

Constant used to indicate a throughput of 1 MBit a second.

radio.RATE_2MBIT

Constant used to indicate a throughput of 2 MBit a second.

87

BBC micro:bit MicroPython Documentation, Kiadas 0.0.1

Functions

radio.on()

Turns the radio on. This needs to be explicitly called since the radio draws power and takes up memory that you
may otherwise need.

radio.off ()

Turns off the radio, thus saving power and memory.

radio.config (**kwargs)

Configures various keyword based settings relating to the radio. The available settings and their sensible default
values are listed below.

The length (default=32) defines the maximum length, in bytes, of a message sent via the radio. It can be up
to 251 bytes long (254 - 3 bytes for SO, LENGTH and S1 preamble).

The queue (default=3) specifies the number of messages that can be stored on the incoming message queue. If
there are no spaces left on the queue for incoming messages, then the incoming message is dropped.

The channel (default=7) can be an integer value from 0 to 100 (inclusive) that defines an arbitrary ,,channel”
to which the radio is tuned. Messages will be sent via this channel and only messages received via this channel
will be put onto the incoming message queue. Each step is IMHz wide, based at 2400MHz.

The power (default=0) is an integer value from O to 7 (inclusive) to indicate the strength of signal used when
broadcasting a message. The higher the value the stronger the signal, but the more power is consumed by the
device. The numbering translates to positions in the following list of dBm (decibel milliwatt) values: -30, -20,
-16,-12,-8,-4,0, 4.

The address (default=0x75626974) is an arbitrary name, expressed as a 32-bit address, that’s used to filter
incoming packets at the hardware level, keeping only those that match the address you set. The default used by
other micro:bit related platforms is the default setting used here.

The group (default=0) is an 8-bit value (0-255) used with the address when filtering messages. Conceptu-
ally, ,,address” is like a house/office address and ,,group” is like the person at that address to which you want to
send your message.

The data_rate (default=radio.RATE_IMBIT) indicates the speed at which data throughput takes place.
Can be one of the following contants defined in the radio module : RATE_250KBIT, RATE_1MBIT or
RATE_2MBIT.

If config is not called then the defaults described above are assumed.

radio.reset ()

Reset the settings to their default values (as listed in the documentation for the conf i g function above).

Megjegyzés: None of the following send or receive methods will work until the radio is turned on.

radio.send_bytes (message)

Sends a message containing bytes.

radio.receive_bytes ()

Receive the next incoming message on the message queue. Returns None if there are no pending messages.
Messages are returned as bytes.

radio.receive_bytes_into (buffer)

Receive the next incoming message on the message queue. Copies the message into buf fer, trimming the end
of the message if necessary. Returns None if there are no pending messages, otherwise it returns the length of
the message (which might be more than the length of the buffer).

88

Leckék

BBC micro:bit MicroPython Documentation, Kiadas 0.0.1

radio.send (message)
Sends a message string. This is the equivalent of send_bytes (bytes (message, 'utf8')) but with
b'"\x01\x00\x01" prepended to the front (to make it compatible with other platforms that target the mic-
ro:bit).

radio.receive ()
Works in exactly the same way as receive_bytes but returns whatever was sent.

Currently, it’s equivalent to str (receive_bytes (), 'utf8') but with a check that the the first three
bytes are b' \x01\x00\x01" (to make it compatible with other platforms that may target the micro:bit). It
strips the prepended bytes before converting to a string.

A ValueError exception is raised if conversion to string fails.

Examples

A micro:bit Firefly.

By Nicholas H.Tollervey. Released to the public domain.
import radio

import random

from microbit import display, Image, button_a, sleep

Create the "flash" animation frames. Can you work out how it's done?
flash = [Image () .invert()*(i/9) for i in range(9, -1, -1)]

The radio won't work unless it's switched on.
radio.on ()

Event loop.
while True:
Button A sends a "flash" message.
if button_a.was_pressed():
radio.send('flash'") # a—-ha
Read any incoming messages.
incoming = radio.receive ()
if incoming == 'flash':
If there's an incoming "flash" message display
the firefly flash animation after a random short
pause.
sleep (random.randint (50, 350))
display.show(flash, delay=100, wait=False)
Randomly re-broadcast the flash message after a
slight delay.

if random.randint (0, 9) == 0:
sleep (500)
radio.send('flash'") # a-ha

Leckék 89

BBC micro:bit MicroPython Documentation, Kiadas 0.0.1

90

Leckék

10. fejezet

Random Number Generation

This module is based upon the random module in the Python standard library. It contains functions for generating
random behaviour.

To access this module you need to:

’ import random

We assume you have done this for the examples below.

Functions

random.getrandbits (n)
Returns an integer with n random bits.

Figyelem: Because the underlying generator function returns at most 30 bits, n may only be a value between 1-30
(inclusive).

random. seed (n)
Initialize the random number generator with a known integer n. This will give you reproducibly deterministic
randomness from a given starting state (n).

random.randint (a, b)
Return a random integer N such that a <= N <= b. Alias for randrange (a, b+1).

random.randrange (sfop)
Return a randomly selected integer between zero and up to (but not including) stop.

random. randrange (sfart, stop)
Return a randomly selected integer from range (start, stop).

random. randrange (start, stop, step)
Return a randomly selected element from range (start, stop, step).

random. choice (seq)
Return a random element from the non-empty sequence seq. If seq is empty, raises IndexError.

random.random ()
Return the next random floating point number in the range [0.0, 1.0)

91

BBC micro:bit MicroPython Documentation, Kiadas 0.0.1

random.uniform (a, b)
Return a random floating point number N such thata <= N <= bfora <= bandb <= N <= aforb <
a.

92 Leckék

11. fejezet

Speech

Figyelem: WARNING! THIS IS ALPHA CODE.

We reserve the right to change this API as development continues.

the code for the speech synthesiser all the time. Bug reports and pull requests are most welcome.

The quality of the speech is not great, merely ,,good enough”. Given the constraints of the device you may
encounter memory errors and / or unexpected extra sounds during playback. It’s early days and we’re improving

This module makes microbit talk, sing and make other speech like sounds provided that you connect a speaker to your

board as shown below:

93

BBC micro:bit MicroPython Documentation, Kiadas 0.0.1

A

r Y r Y
Megjegyzés: This work is based upon the amazing reverse engineering efforts of Sebastian Macke based upon
an old text-to-speech (TTS) program called SAM (Software Automated Mouth) originally released in 1982 for the
Commodore 64. The result is a small C library that we have adopted and adapted for the micro:bit. You can find out

more from his homepage. Much of the information in this document was gleaned from the original user’s manual
which can be found here.

The speech synthesiser can produce around 2.5 seconds worth of sound from up to 255 characters of textual input.

To access this module you need to:

import speech

We assume you have done this for the examples below.

94 Leckék

http://simulationcorner.net/index.php?page=sam
http://www.apple-iigs.info/newdoc/sam.pdf

BBC micro:bit MicroPython Documentation, Kiadas 0.0.1

Functions

speech.translate (words)
Given English words in the string words, return a string containing a best guess at the appropriate phonemes
to pronounce. The output is generated from this text to phoneme translation table.

This function should be used to generate a first approximation of phonemes that can be further hand-edited to
improve accuracy, inflection and emphasis.

speech.pronounce (phonemes, *, pitch=64, speed=72, mouth=128, throat=128)
Pronounce the phonemes in the string phonemes. See below for details of how to use phonemes to finely
control the output of the speech synthesiser. Override the optional pitch, speed, mouth and throat settings to
change the timbre (quality) of the voice.

speech. say (words, *, pitch=64, speed=72, mouth=128, throat=128)
Say the English words in the string words. The result is semi-accurate for English. Override the optional pitch,
speed, mouth and throat settings to change the timbre (quality) of the voice. This is a short-hand equivalent of:
speech.pronounce (speech.translate (words))

speech. sing (phonemes, *, pitch=64, speed=72, mouth=128, throat=128)
Sing the phonemes contained in the string phonemes. Changing the pitch and duration of the note is described
below. Override the optional pitch, speed, mouth and throat settings to change the timbre (quality) of the voice.

Punctuation

Punctuation is used to alter the delivery of speech. The synthesiser understands four punctuation marks: hyphen,
comma, full-stop and question mark.

The hyphen (-) marks clause boundaries by inserting a short pause in the speech.

The comma (,) marks phrase boundaries and inserts a pause of approximately double that of the hyphen.
The full-stop (.) and question mark (?) end sentences.

The full-stop inserts a pause and causes the pitch to fall.

The question mark also inserts a pause but causes the pitch to rise. This works well with yes/no questions such as,
»-are we home yet?” rather than more complex questions such as ,,why are we going home?”. In the latter case, use a
full-stop.

Timbre

The timbre of a sound is the quality of the sound. It’s the difference between the voice of a DALEK and the voice of a
human (for example). To control the timbre change the numeric settings of the pitch, speed, mouth and throat
arguments.

The pitch (how high or low the voice sounds) and speed (how quickly the speech is delivered) settings are rather
obvious and generally fall into the following categories:

Pitch:
* 0-20 impractical
* 20-30 very high
* 30-40 high

Leckék 95

https://github.com/s-macke/SAM/wiki/Text-to-phoneme-translation-table

BBC micro:bit MicroPython Documentation, Kiadas 0.0.1

40-50 high normal
50-70 normal

70-80 low normal
80-90 low

* 90-255 very low
(The default is 64)

Speed:
* 0-20 impractical
e 20-40 very fast
* 40-60 fast
* 60-70 fast conversational
* 70-75 normal conversational
* 75-90 narrative
* 90-100 slow
¢ 100-225 very slow
(The default is 72)

The mouth and throat values are a little harder to explain and the following descriptions are based upon our aural
impressions of speech produced as the value of each setting is changed.

For mouth, the lower the number the more it sounds like the speaker is talking without moving their lips. In contrast,
higher numbers (up to 255) make it sound like the speech is enunciated with exagerated mouth movement.

For throat, the lower the number the more relaxed the speaker sounds. In contrast, the higher the number, the more
tense the tone of voice becomes.

The important thing is to experiment and adjust the settings until you get the effect you desire.

To get you started here are some examples:

speech.say
speech.say
speech.say

(am a little robot", speed=92, pitch=60, throat=190, mouth=190)

(

(
speech.say ("

(

(

am an elf", speed=72, pitch=64, throat=110, mouth=160)

am a news presenter", speed=82, pitch=72, throat=110, mouth=105)

am an old lady", speed=82, pitch=32, throat=145, mouth=145)

am E.T.", speed=100, pitch=64, throat=150, mouth=200)

am a DALEK - EXTERMINATE", speed=120, pitch=100, throat=100, mouth=200)

speech.say
speech.say

Phonemes

The say function makes it easy to produce speech - but often it’s not accurate. To make sure the speech synthesiser
pronounces things exactly how you’d like, you need to use phonemes: the smallest perceptually distinct units of sound
that can be used to distinguish different words. Essentially, they are the building-block sounds of speech.

The pronounce function takes a string containing a simplified and readable version of the International Phonetic
Alphabet and optional annotations to indicate inflection and emphasis.

The advantage of using phonemes is that you don’t have to know how to spell! Rather, you only have to know how to
say the word in order to spell it phonetically.

96 Leckék

https://en.wikipedia.org/wiki/International_Phonetic_Alphabet
https://en.wikipedia.org/wiki/International_Phonetic_Alphabet

BBC micro:bit MicroPython Documentation, Kiadas 0.0.1

The table below lists the phonemes understood by the synthesiser.

Megjegyzés: The table contains the phoneme as characters, and an example word. The example words have the
sound of the phoneme (in parenthesis), but not necessarily the same letters.

Often overlooked: the symbol for the ,,H” sound is /H. A glottal stop is a forced stoppage of sound.

SIMPLE VOWELS

VOICED CONSONANTS

1Y f(ee)t R (r)ed
IH p(i)n L a(ll)ow
EH b(e)g W a(w)ay
AE S(a)m W (wh)ale
AA p(o)t Y (y)ou
AH b (u) dget M (S) am
AO t(al)k N ma (n)
OH c (o) ne NX s0 (ng)
UH b (00) k B (b) ad
Ux l(oo)t D (d)og
ER b(ir)d G a(g)ain
AX gall(o)n J (j)u(dg)e
IX dig(i)t Z (z)oo0
ZH plea(s)ure
DIPHTHONGS v se (v)en
EY m(a)de DH (th)en
AY h(igh)
oY b (oy)
AW h (ow) UNVOICED CONSONANTS
ow sl (ow) S (S)am
Uuw cr (ew) SH fi (sh)
F (f)ish
TH (th) in
SPECIAL PHONEMES P (p) oke
UL sett (le) (=AXL) T (t)alk
UM astron (om)y (=AXM) K (c) ake
UN functi (on) (=AXN) CH spee (ch)
Q kitt-en (glottal stop) /H a(h)ead

The following non-standard symbols are also available to the user:

YX diphthong ending (weaker version of Y)

WX diphthong ending (weaker version of W)

RX R after a vowel (smooth version of R)

LX L after a vowel (smooth version of L)

/X H before a non-front vowel or consonant - as in (wh)o
DX T as in pi(t)y (weaker version of T)

Here are some seldom used phoneme combinations (and suggested alternatives):

PHONEME YOU PROBABLY WANT: UNLESS IT SPLITS SYLLABLES LIKE:
COMBINATION

GS GZ e.g. bal(gs) bu (gs)pray

BS BZ e.g. slo(bz) o (bsc)ene

DS DZ e.g. su(ds) Hu (ds) son

PZ PS e.g. sla(ps) —————

TZ TS e.g. cur(ts)y ————

KZ KS e.g. fi(x) —————

NG NXG e.g. singing i(ng)rate

Leckék

97

BBC micro:bit MicroPython Documentation, Kiadas 0.0.1

‘NK NXK e.g. bank Su (nk) ist

If you use anything other than the phonemes described above, a ValueError exception will be raised. Pass in the
phonemes as a string like this:

’speech‘pronounce("/HEHLOW") # "Hello"

The phonemes are classified into two broad groups: vowels and consonants.

Vowels are further subdivided into simple vowels and diphthongs. Simple vowels don’t change their sound as you say
them whereas diphthongs start with one sound and end with another. For example, when you say the word ,,0il” the
,,01” vowel starts with an ,,oh” sound but changes to an ,,ee” sound.

Consonants are also subdivided into two groups: voiced and unvoiced. Voiced consonants require the speaker to
use their vocal chords to produce the sound. For example, consonants like ,,L.”, ,N” and ,,Z” are voiced. Unvoiced
consonants are produced by rushing air, such as ,,P”, ,,T” and ,,SH”.

Once you get used to it, the phoneme system is easy. To begin with some spellings may seem tricky (for example,
»adventure” has a ,,CH” in it) but the rule is to write what you say, not what you spell. Experimentation is the best
way to resolve problematic words.

It’s also important that speech sounds natural and understandable. To help with improving the quality of spoken output
it’s often good to use the built-in stress system to add inflection or emphasis.

There are eight stress markers indicated by the numbers 1 - 8. Simply insert the required number after the vowel to
be stressed. For example, the lack of expression of ,/HEHLOW” is much improved (and friendlier) when spelled out
~/HEH3LOW”.

It’s also possible to change the meaning of words through the way they are stressed. Consider the phrase ,,Why should
I walk to the store?”. It could be pronounced in several different ways:

You need a reason to do it.

speech.pronounce ("WAY2 SHUH7D AY WAOS5K TUX DHAH STOH5R.")

You are reluctant to go.

speech.pronounce ("WAY7 SHUH2D AY WAO7K TUX DHAH STOHS5R.")
You want someone else to do it.

speech.pronounce ("WAY5 SHUH7D AY2 WAO7K TUX DHAH STOHR.")

You'd rather drive.

speech.pronounce ("WAY5 SHUHD AY7 WAOZK TUX7 DHAH STOHR.")

You want to walk somewhere else.

speech.pronounce ("WAY5 SHUHD AY WAOS5K TUX DHAH STOH20H7R.™)

Put simply, different stresses in the speech create a more expressive tone of voice.

They work by raising or lowering pitch and elongating the associated vowel sound depending on the number you give:
1. very emotional stress

very emphatic stress

rather strong stress

ordinary stress

tight stress

neutral (no pitch change) stress

pitch-dropping stress

® =N Rk wN

extreme pitch-dropping stress

98 Leckék

BBC micro:bit MicroPython Documentation, Kiadas 0.0.1

The smaller the number, the more extreme the emphasis will be. However, such stress markers will help pronounce
difficult words correctly. For example, if a syllable is not enunciated sufficiently, put in a neutral stress marker.

It’s also possible to elongate words with stress markers:

’speech.pronounce("/HEHBEH4EH3EH2EH2EH3EH4EH5EHLP.")

Singing

It’s possible to make MicroPython sing phonemes.

This is done by annotating a pitch related number onto a phoneme. The lower the number, the higher the pitch.
Numbers roughly translate into musical notes as shown in the diagram below:

-&G"::b

‘ﬁf ’_#7_

58 55 52 49

D e rief

11510810398 94 88 82 78 74 70 66 62

.!_'—#'—'—

B

A
7{“ dle p (PEF T

46 44 42 39 37 35 33 31 |29 28 26 25 |23 22 21 20

)

Annotations work by pre-pending a hash (#) sign and the pitch number in front of the phoneme. The pitch will remain
the same until a new annotation is given. For example, make MicroPython sing a scale like this:

solfa = [
"#115DOWWWWWW",
"#103REYYYYYY",
"EOAMIYYYYYY",
" #88FAOAOAOAOR",
"#78SOHWWWWW",
"#70LAOAOAOAOR",
"H#E2TIYYYYYY",
" #58DOWWWWWW",

oW W W W W W
o
)

Doh
1

song = ''.join(solfa)
speech.sing (song, speed=100)

Leckék 99

BBC micro:bit MicroPython Documentation, Kiadas 0.0.1

In order to sing a note for a certain duration extend the note by repeating vowel or voiced consonant phonemes (as
demonstrated in the example above). Beware diphthongs - to extend them you need to break them into their component
parts. For example, ,,OY” can be extended with ,,OHOHIYIYIY”.

Experimentation, listening carefully and adjusting is the only sure way to work out how many times to repeat a
phoneme so the note lasts for the desired duration.

How Does it Work?

The original manual explains it well:

First, instead of recording the actual speech waveform, we only store the frequency spectrums. By doing
this, we save memory and pick up other advantages. Second, we [...] store some data about timing. These
are numbers pertaining to the duration of each phoneme under different circumstances, and also some
data on transition times so we can know how to blend a phoneme into its neighbors. Third, we devise
a system of rules to deal with all this data and, much to our amazement, our computer is babbling in no
time.

—S.A.M. owner’s manual.

The output is piped through the functions provided by the audio module and, hey presto, we have a talking micro:bit.

Example

import speech
from microbit import sleep

The say method attempts to convert English into phonemes.
speech.say ("I can sing!™)

sleep (1000)

speech.say ("Listen to me!")

sleep (1000)

Clearing the throat requires the use of phonemes. Changing
the pitch and speed also helps create the right effect.
speech.pronounce ("AEAE/HAEMM", pitch=200, speed=100) # Ahem
sleep (1000)

Singing requires a phoneme with an annotated pitch for each syllable.
solfa = [

"4#115DOWWWWWIW", # Doh
"4#103REYYYYYY", # Re
"H9AMIYYYYYY", # Mi
"#88FAOAOAOAOR", # Fa
" 478 SOHWWWWW ", # Soh
"#70LAOAOAOAOR", # La
"H62TIYYYYYY", # Ti
" 45 8DOWWWWWW ", # Doh

Sing the scale ascending in pitch.
song = ''.join(solfa)

speech.sing (song, speed=100)

Reverse the list of syllables.
solfa.reverse()

100 Leckék

BBC micro:bit MicroPython Documentation, Kiadas 0.0.1

song =

Sing the scale descending in pitch.

''".join(solfa)

speech.sing (song, speed=100)

Leckék

101

BBC micro:bit MicroPython Documentation, Kiadas 0.0.1

102 Leckék

12. fejezet

Installation

This section will help you set up the tools and programs needed for developing programs and firmware to flash to the
BBC micro:bit using MicroPython.

Dependencies

Development Environment

You will need:
o git
* yotta

Depending on your operating system, the installation instructions vary. Use the installation scenario that best suits
your system.

Yotta will require an ARM mbed account. It will walk you through signing up if you are not registered.

Installation Scenarios

* Windows

e OSX

e Linux

* Debian and Ubuntu
Red Hat Fedora/CentOS

* Raspberry Pi

Windows

When installing Yotta, make sure you have these components ticked to install.

* python

103

http://yottadocs.mbed.com/

BBC micro:bit MicroPython Documentation, Kiadas 0.0.1

* gcc
e cMake
* ninja
* Yotta
e git-scm

¢ mbed serial driver

oS X

Linux

These steps will cover the basic flavors of Linux and working with the micro:bit and MicroPython. See also the specific
sections for Raspberry Pi, Debian/Ubuntu, and Red Hat Fedora/Centos.

Debian and Ubuntu

sudo add-apt-repository -y ppa:team-gcc-arm-embedded

sudo add-apt-repository -y ppa:pmiller-opensource/ppa

sudo apt-get update

sudo apt-get install cmake ninja-build gcc-arm-none-eabi srecord libssl-dev
pip3 install yotta

Red Hat Fedora/CentOS

Raspberry Pi

Next steps

Congratulations. You have installed your development environment and are ready to begin flashing firmware to the
micro:bit.

104 Leckék

13. fejezet

Flashing Firmware

Building firmware

Use yotta to build.

Use target bbc-microbit-classic-gcc-nosd:

’yt target bbc-microbit-classic-gcc—nosd

Run yotta update to fetch remote assets:

lyt up

Start the build with either yotta:

’yt build

...or use the Makefile:

’make all

The result is a microbit-micropython hex file (i.e. microbit-micropython.hex) found in the build/bbc-
microbit-classic-gcc-nosd/source from the root of the repository.

The Makefile does some extra preprocessing of the source, which is needed only if you add new interned strings
to gstrdefsport.h. The Makefile also puts the resulting firmware at build/firmware.hex, and includes some
convenience targets.

Preparing firmware and a Python program

tools/makecombined

hexlify

Flashing to the micro:bit

Installation Scenarios

105

BBC micro:bit MicroPython Documentation, Kiadas 0.0.1

» Windows

* OSX

* Linux

* Debian and Ubuntu

* Red Hat Fedora/CentOS

* Raspberry Pi

106 Leckék

14. fejezet

Accessing the REPL

Accessing the REPL on the micro:bit requires:
 Using a serial communication program
* Determining the communication port identifier for the micro:bit
* Establishing communication with the correct settings for your computer
If you are a Windows user you’ll need to install the correct drivers. The instructions for which are found here:

https://developer.mbed.org/handbook/Windows-serial-configuration

Serial communication

To access the REPL, you need to select a program to use for serial communication. Some common options are picocom
and screen. You will need to install program and understand the basics of connecting to a device.

Determining port

The micro:bit will have a port identifier (tty, usb) that can be used by the computer for communicating. Before
connecting to the micro:bit, we must determine the port identifier.

Establishing communication with the micro:bit

Depending on your operating system, environment, and serial communication program, the settings and commands
will vary a bit. Here are some common settings for different systems (please suggest additions that might help others)

Settings
* Windows
e OSX
s Linux

e Debian and Ubuntu

Red Hat Fedora/CentOS

107

https://developer.mbed.org/handbook/Windows-serial-configuration

BBC micro:bit MicroPython Documentation, Kiadas 0.0.1

* Raspberry Pi

108 Leckék

15. fejezet

Developer FAQ

Megjegyzés: This project is under active development. Please help other developers by adding tips, how-tos, and
Q&A to this document. Thanks!

Where do I get a copy of the DAL? A: Ask Nicholas Tollervey for details.

109

BBC micro:bit MicroPython Documentation, Kiadas 0.0.1

110 Leckék

16. fejezet

Contributing

Hey! Many thanks for wanting to improve MicroPython on the micro:bit.

Contributions are welcome without prejudice from anyone irrespective of age, gender, religion, race or sexuality. Good
quality code and engagement with respect, humour and intelligence wins every time.

If you’re from a background which isn’t well-represented in most geeky groups, get involved - we want to help
you make a difference.

If you’re from a background which is well-represented in most geeky groups, get involved - we want your help
making a difference.

If you’re worried about not being technical enough, get involved - your fresh perspective will be invaluable.
If you think you’re an imposter, get involved.

If your day job isn’t code, get involved.

This isn’t a group of experts, just people. Get involved!

This is a new community, so, get involved.

We expect contributors to follow the Python Software Foundation’s Code of Conduct: https://www.python.org/psf/
codeofconduct/

Feedback may be given for contributions and, where necessary, changes will be politely requested and discussed with
the originating author. Respectful yet robust argument is most welcome.

Checklist

Your code should be commented in plain English (British spelling).

If your contribution is for a major block of work and you’ve not done so already, add yourself to the AUTHORS
file following the convention found therein.

If in doubt, ask a question. The only stupid question is the one that’s never asked.
Have fun!

genindex

modindex

search

111

https://www.python.org/psf/codeofconduct/
https://www.python.org/psf/codeofconduct/

BBC micro:bit MicroPython Documentation, Kiadas 0.0.1

112 Leckék

Python Modul Mutaté

m

microbit, 54
microbit.accelerometer, 65
microbit.compass, 69
microbit.display, 6l
microbit.i2c, 65
microbit.spi, 64
microbit.uart, 62

music, 75

n

neopixel, 81
(0]

os, 85

r

radio, 87
random, 91

S

speech, 93

113

BBC micro:bit MicroPython Documentation, Kiadas 0.0.1

114 Python Modul Mutaté

Targymutato

A

any() (microbit.uart.uart metddus), 63

B

Button (beépitett osztily), 54
button_a, 53

button_b, 53

BytesIO (beépitett osztély), 74

C

calibrate() (microbit.compass modulban), 69
choice() (random modulban), 91

clear() (microbit.display modulban), 61

clear() (neopixel.NeoPixel metddus), 82
clear_calibration() (microbit.compass modulban), 69
close() (TextIO met6dus), 74

config() (radio modulban), 88

copy() (microbit.Image metddus), 59

crop() (microbit.Image met6dus), 59

current_gesture() (microbit.accelerometer modulban), 66

G

get_field_strength() (microbit.compass modulban), 69
get_gestures() (microbit.accelerometer modulban), 66
get_pixel() (microbit.display modulban), 61
get_pixel() (microbit.Image metddus), 59
get_presses() (Button metddus), 54

get_tempo() (music modulban), 77

get_values() (microbit.accelerometer modulban), 65
get_x() (microbit.accelerometer modulban), 65
get_x() (microbit.compass modulban), 69

get_y() (microbit.accelerometer modulban), 65
get_y() (microbit.compass modulban), 69

get_z() (microbit.accelerometer modulban), 65
get_z() (microbit.compass modulban), 69
getrandbits() (random modulban), 91

H

heading() (microbit.compass modulban), 69

height() (microbit.Image met6dus), 59

Image (osztaly microbit), 58

init() (microbit.i2c modulban), 65

init() (microbit.spi modulban), 64

init() (microbit.uart modulban), 63

invert() (microbit.Image metédus), 59

is_calibrated() (microbit.compass modulban), 69
is_gesture() (microbit.accelerometer modulban), 66
is_on() (microbit.display modulban), 62

is_pressed() (Button metddus), 54

is_touched() (microbit.MicroBitTouchPin metédus), 57

L

listdir() (os modulban), 85

M

microbit (modul), 53, 54, 58
microbit.accelerometer (modul), 65
microbit.compass (modul), 69
microbit.display (modul), 61

microbit.i2¢ (modul), 65

microbit.spi (modul), 64

microbit.uart (modul), 62
MicroBitAnalogDigitalPin (osztdly microbit), 57
MicroBitDigitalPin (osztily microbit), 57
MicroBitTouchPin (osztdly microbit), 57
music (modul), 75

N

name() (TextIO metédus), 74
neopixel (modul), 81
NeoPixel (osztily neopixel), 82

O

off() (microbit.display modulban), 62
off() (radio modulban), 88
on() (microbit.display modulban), 62

115

BBC micro:bit MicroPython Documentation, Kiadas 0.0.1

on() (radio modulban), 88
open() (beépitett fiiggvény), 74
os (modul), 85

P

panic() (microbit modulban), 53
pitch() (music modulban), 77
play() (music modulban), 77
pronounce() (speech modulban), 95

R

radio (modul), 87

randint() (random modulban), 91

random (modul), 91

random() (random modulban), 91

randrange() (random modulban), 91

RATE_IMBIT (radio modulban), 87

RATE_250KBIT (radio modulban), 87

RATE_2MBIT (radio modulban), 87

read() (microbit.i2c modulban), 65

read() (microbit.spi.spi metédus), 64

read() (microbit.uart.uart metédus), 63

read() (TextIO metddus), 74

read_analog() (microbit.MicroBitAnalogDigitalPin met6-
dus), 57

read_digital() (microbit.MicroBitDigitalPin metédus), 57

readall() (microbit.uart.uart metédus), 63

readinto() (microbit.uart.uart metédus), 63

readinto() (TextIO metddus), 74

readline() (microbit.uart.uart metddus), 64

readline() (TextIO metddus), 74

receive() (radio modulban), 89

receive_bytes() (radio modulban), 88

receive_bytes_into() (radio modulban), 88

remove() (os modulban), 85

reset() (microbit modulban), 53

reset() (music modulban), 78

reset() (radio modulban), 88

running_time() (microbit modulban), 53

S

say() (speech modulban), 95

scroll() (microbit.display modulban), 62

seed() (random modulban), 91

send() (radio modulban), 88

send_bytes() (radio modulban), 88

set_analog_period() (microbit.MicroBitAnalogDigitalPin
metddus), 57

set_analog_period_microseconds()
bit.MicroBitAnalogDigitalPin
57

set_pixel() (microbit.display modulban), 61

set_pixel() (microbit.Image metddus), 59

set_tempo() (music modulban), 77

(micro-
met6dus),

shift_down() (microbit.Image metdédus), 59
shift_left() (microbit.Image metddus), 59
shift_right() (microbit.Image metédus), 59
shift_up() (microbit.Image metédus), 59
show() (microbit.display modulban), 61, 62
show() (neopixel.NeoPixel metédus), 82
sing() (speech modulban), 95

size() (os modulban), 85

sleep() (microbit modulban), 53

speech (modul), 93

stop() (music modulban), 78

T

temperature() (microbit modulban), 53
TextIO (beépitett osztaly), 74
translate() (speech modulban), 95

U

uname() (os modulban), 85
uniform() (random modulban), 91

W

was_gesture() (microbit.accelerometer modulban), 66
was_pressed() (Button metédus), 54

width() (microbit.Image metddus), 59

writable() (TextIO metddus), 74

write() (microbit.i2c modulban), 65

write() (microbit.spi.spi metddus), 64

write() (microbit.uart.uart metédus), 64

write() (TextIO met6dus), 74

write_analog() (microbit.MicroBitAnalogDigitalPin me-

todus), 57
write_digital() (microbit.MicroBitDigitalPin metddus),
57

write_readinto() (microbit.spi.spi metddus), 64

116

Targymutatoé

	Bevezető
	Hello, World!
	Képek
	Gombok
	Bemenet/Kimenet
	Music
	Random
	Movement
	Gestures
	Direction
	Storage
	Speech
	Network
	Radio
	Next Steps

	micro:bit Micropython API
	The microbit module

	Microbit Module
	Functions
	Attributes
	Classes
	Modules

	Bluetooth
	Local Persistent File System
	Music
	Musical Notation
	Functions

	NeoPixel
	Classes
	Operations
	Using Neopixels
	Example

	The os Module
	Functions

	Radio
	Constants
	Functions

	Random Number Generation
	Functions

	Speech
	Functions
	Punctuation
	Timbre
	Phonemes
	Singing
	How Does it Work?
	Example

	Installation
	Dependencies
	Development Environment
	Installation Scenarios
	Next steps

	Flashing Firmware
	Building firmware
	Preparing firmware and a Python program
	Flashing to the micro:bit

	Accessing the REPL
	Serial communication
	Determining port
	Establishing communication with the micro:bit

	Developer FAQ
	Contributing
	Checklist

	Python Modul Mutató

