MiCADO Documentation

Attila Farkas

Jan 17, 2019

User Documentation

1 Introduction

1.1
1.2
1.3
1.4
1.5
1.6

3
Deployment e e e e e e e e e e 3
Dashboard e 6
REST APL . . . 6
Application description 7
Tutorials L e 14

6

Release NOES o o it e e e e e e e e e 1

MiCADO Documentation

This software is developed by the COLA project.

User Documentation 1

https://project-cola.eu/

MiCADO Documentation

2 User Documentation

CHAPTER 1

Introduction

MiCADO is an auto-scaling framework for Docker applications. It supports autoscaling at two levels. At vir-
tual machine (VM) level, a built-in Docker Swarm cluster is dynamically extended or reduced by adding/removing
cloud virtual machines. At docker service level, the number of replicas implementing a Docker Service can be in-
creased/decreased.

MiCADO requires a TOSCA based Application Description to be submitted containing three sections: 1) the definition
of the interconnected Docker services, 2) the specification of the virtual machine and 3) the implementation of scaling
policy for both scaling levels. The format of the Application Description for MiCADO is detailed later.

To use MiCADO, first the MiCADO core services must be deployed on a virtual machine (called MiCADO Master)
by an Ansible playbook. MiCADO Master contains Docker engine (configured as Swarm manager), Occopus (to
scale VMs), Prometheus (for monitoring), Policy Keeper (to perform decision on scaling) and Submitter (to provide
submission endpoint) microservices to realize the autoscaling control loops. During operation MiCADO workers
(realised on new VMs) are instantiated on demand which deploy Prometheus Node Exporter, CAdvisor and Docker
engine through contextualisation. The Docker engine of the newly instantiated MiCADO workers joins the Swarm
manager on the MiCADO Master.

In the current release, the status of the system can be inspected through the following ways: REST API provides
interface for submission, update and list functionalities over applications. Dashboard provides three graphical view to
inspect the VMs and Docker services. They are Docker Visualizer, Grafana and Prometheus. Finally, advanced users
may find the logs of the MiCADO core services useful on MiCADO master.

1.1 Deployment

As stated in the above section, to use MiCADO, you need to deploy the MiCADO services on a (separate) virtual
machine, called MiCADO master. We recommend doing the installation remotely i.e. to download the Ansible play-
book on your local machine and run the deployment on an empty virtual machine dedicated for this purpose on your
preferred cloud.

MiCADO Documentation

1.1.1 Prerequisites

Git & Ansible 2.4 or greater are needed on your (local) machine to run the Ansible playbook.

The version of Ansible in the Ubuntu 16.04 APT repository is outdated and insufficient

Ansible

Install Ansible on Ubuntu 16.04.

sudo apt-get update

sudo apt-get install software-properties-common
sudo apt-add-repository ppa:ansible/ansible
sudo apt-get update

sudo apt-get install ansible

To install Ansible on other operation system follow the official installation guide.

1.1.2 Installation

Perform the following steps on your local machine.

Step 1: Download the ansible playbook.

Currently, MiCADO v5 version is available.

git clone https://github.com/micado-scale/ansible-micado.git ansible-micado
cd ansible-micado
git checkout v0.5.0

Step 2: Specify credential for instantiating MiCADO workers.

MiCADO master will use this credential to start/stop VM instances (MiCADO workers) to realize scaling. Credentials
here should belong to the same cloud as where MiCADO master is running. We recommend making a copy of our
predefined template and edit it. The ansible playbook expects the credential in a file, called credentials.yml. Please,
do not modify the structure of the template!

cp sample-credentials.yml credentials.yml
vi credentials.yml

Edit credentials.yml to add cloud credentials. You will find predefined sections in the template for each cloud interface
type MiCADO supports. Fill only the section belonging to your target cloud.

Step 3: (Optional) Specify details of your private Docker repository.

Set the Docker login credentials of your private Docker registries in which your personal containers are stored. We
recommend making a copy of our predefined template and edit it. The ansible playbook expects the docker registry
details in a file, called docker-cred.yml. Please, do not modify the structure of the template!

cp sample-docker—-cred.yml docker-cred.yml
vi docker-cred.yml

4 Chapter 1. Introduction

MiCADO Documentation

Edit docker-cred.yml and add username, password, and repository url. To login to the default docker_hub, leave
DOCKER_REPO as is (a blank string).

Step 4: Launch an empty cloud VM instance for MiCADO master.

This new VM will host the MiCADO master core services. Use any of aws, ec2, nova, etc command-line tools or web
interface of your target cloud to launch a new VM. We recommend a VM with 2 cores, 4GB RAM, 20GB disk. Make
sure you can ssh to it (password-free i.e. ssh public key is deployed) and your user is able to sudo (to install MiCADO
as root). Store its IP address which will be referred as IP in the following steps. The following ports should be open
on the virtual machine:

Icp: 22,2377,3000,4000,5000,5050,7946,8080,8300,8301,8302,8500,8600,9090,9093,12345
UDP: 4789,7946,8301,8302,8600

Step 5: Customize the inventory file for the MiCADO master.

We recommend making a copy of our predefined template and edit it. Use the template inventory file, called sample-
hosts for customisation.

cp sample-hosts hosts
vi hosts

Edit the hosts file to set ansible variables for MiCADO master machine. Update the following parameters: ansi-
ble_host=IP, ansible_connection=ssh and ansible_user=YOUR SUDOER ACCOUNT. Please, revise the other param-
eters as well, however in most cases the default values are correct.

Step 6: Start the installation of MiCADO master.

ansible-playbook —-i hosts micado-master.yml

1.1.3 Health checking

At the end of the deployment, core MiCADO services will be running on the MiCADO master machine. Here are the
commands to test the operation of some of the core MiCADO services:

* Occopus:

’curl -s —-X GET http://IP:5000/infrastructures/

¢ Prometheus:

’curl -s http://IP:9090/api/vl/status/config | jg '.status'

1.1.4 Check the logs

Alternatively, you can SSH into MiCADO master and check the logs at any point after MiCADO is succesfully
deployed. All logs are kept under /var/log/micado and are organised by component. Scaling decisions, for
example, can be inspected under /var/log/micado/policykeeper

1.1. Deployment 5

MiCADO Documentation

1.2 Dashboard

MiCADO has a simple dashboard that collects web-based user interfaces into a single view. To access the Dashboard,
visithttp://IP:4000.

The following webpages are currently exposed:
* Docker visualizer: it graphically visualizes the Swarm nodes and the containers running on them.
* Grafana: graphically visualize the resources (nodes, containers) in time.

* Prometheus: monitoring subsystem. Recommended for developers, experts.

1.3 REST API

MiCADO has a TOSCA compliant submitter to submit, update, list and remove MiCADO applications. The submitter
exposes the following REST API:

* To launch an application specified by a TOSCA description stored locally, use this command:

curl -F file=@[path to the TOSCA description] -X POST http://[IP]:5050/v1.0/app/
—launch/file/

¢ To launch an application specified by a TOSCA description stored locally and specify an application id, use this
command:

curl -F file=@[path to the TOSCA description] -F i1id=[APPLICATION_ID] -X POST http://
—[IP]:5050/v1.0/app/launch/file/

* To launch an application specified by a TOSCA description stored behind a url, use this command:

curl -d input="[url to TOSCA description]" -X POST http://[IP]:5050/v1.0/app/launch/
fA»U]fl/

¢ To launch an application specified by a TOSCA description stored behind an url and specify an application id,
use this command:

curl -d input="[url to TOSCA description]" -d id=[ID] -X POST http://[IP]:5050/v1.0/
—app/launch/url/

* To update a running MiCADO application using a TOSCA description stored locally, use this command:

curl -F file=Q@"[path to the TOSCA description]" -X PUT http://[IP]:5050/v1.0/app/
—update/file/[APPLICATION_ID]

* To update a running MiCADO application using a TOSCA description stored behind a url, use this command:

curl -d input="[url to TOSCA description]" -X PUT http://[IP]:5050/v1.0/app/update/
< file/[APPLICATION_ID]

* To undeploy a running MiCADO application, use this command:

curl -X DELETE http://[IP]:5050/v1.0/app/undeploy/[APPLICATION_ID]

* To query all the running MiCADO applications, use this command:

6 Chapter 1. Introduction

MiCADO Documentation

’curl -X GET http://[IP]:5050/v1.0/1list_app/

* To query one running MiCADO application, use this command:

’curl -X GET http://[IP]:5050/v1.0/app/[APPLICATION_ID]

1.4 Application description

MiCADO executes applications described by the Application Descriptions following the TOSCA format. This section
details the structure of the application description.

Application description has four main sections:
¢ tosca_definitions_version: tosca_simple_yaml_1_0.

* imports: a list of urls pointing to custom TOSCA types. The default url points to the custom types defined for
MiCADO. Please, do not modify this url.

* repositories: docker repositories with their addresses.

* topology_template: the main part of the application description to define 1) docker services, 2) virtual machine
(under the node_templates section) and 3) the scaling policy under the policies subsection. These sections will
be detailed in subsections below.

Here is an overview example for the structure of the MiCADO application description:

tosca_definitions_version: tosca_simple_yaml_1_0

imports:
- https://raw.githubusercontent.com/micado-scale/tosca/v0.5.0/micado_types.yaml

repositories:
docker_hub: https://hub.docker.com/

topology_template:
node_templates:
YOUR_DOCKER_SERVICE:
type: tosca.nodes.MiCADO.Container.Application.Docker
properties:

artifacts:
YOUR_OTHER_DOCKER_SERVICE:
type: tosca.nodes.MiCADO.Container.Application.Docker
properties:
artifacts:
YOUR_DOCKER_NETWORK:

type: tosca.nodes.MiCADO.network.Network.Docker
properties:

YOUR_VIRTUAL_MACHINE:
type: tosca.nodes.MiCADO.Occopus.<CLOUD_API_TYPE>.Compute

(continues on next page)

1.4. Application description 7

MiCADO Documentation

(continued from previous page)

properties:
cloud:
interface_cloud:
endpoint_cloud:
capabilities:
host:
properties:

policies:

- scalability:
type: tosca.policies.Scaling.MiCADO
targets: [YOUR_VIRTUAL_MACHINE]
properties:

— scalability:
type: tosca.policies.Scaling.MiCADO
targets: [YOUR_DOCKER_SERVICE]
properties:

- scalability:
type: tosca.policies.Scaling.MiCADO
targets: [YOUR_OTHER_DOCKER_SERVICE]
properties:

1.4.1 Specification of Docker services

Under the node_templates section you can define any number of interconnected Docker service (see
YOUR_DOCKER_SERVICE) similarly as in a docker-compose file. Each docker service definition consists of
three main parts: type, properties and artifacts. The value of the type keyword for a Docker service must always be
tosca.nodes.MiCADO.Container.Application.Docker. The properties section will contain most of
the setting of the Docker service. Under the artifacts section the Docker image (see YOUR_DOCKER_IMAGE)
must be defined. Optionally, Docker networks can be defined in the same way as in a docker-compose file (see
YOUR_DOCKER_NETWORK).

topology_template:
node_templates:
YOUR_DOCKER_SERVICE:
type: tosca.nodes.MiCADO.Container.Application.Docker
properties:

artifacts:
image:
type: tosca.artifacts.Deployment.Image.Container.Docker
file: YOUR_DOCKER_IMAGE
repository: docker_hub
YOUR_DOCKER_NETWORK:
type: tosca.nodes.MiCADO.network.Network.Docker
properties:

The fields under the properties section of the Docker service are derived from the docker-compose file. Therefore,
you can additional information about the properties in the docker compose documentation. The syntax of the property
values is the same as in the docker-compose file.

8 Chapter 1. Introduction

https://docs.docker.com/compose/compose-file/#service-configuration-reference

MiCADO Documentation

Under the properties section of a Docker service (see YOUR_DOCKER_SERVICE) you can specify the following
keywords:

* command: command line expression to be executed by the container.
¢ deploy: Swarm specific deployment options.
* entrypoint: override the default entrypoint of container.
* environment: map of all required environment variables.
* expose: expose ports without publishing them to the host machine.
* labels: map of metadata like Docker labels.
* logging: map of the logging configuration.
* networks: list of connected networks for the service.
¢ volumes: list of connected volumes for the service.
* ports: list of published ports to the host machine.
* secrets: list of per-service secrets to grant access for the service.
Under the artifacts section you can define the docker image for the docker service. Three fileds must be defined:
* type: tosca.artifacts.Deployment.Image.Container.Docker
« file: docker image for the docker service(e.g. sztakilpds/cqueue_frontend:latest)

* repository: name of the repository where the image is located. The name used here (e.g. docker_hub), must be
defined at the top of the description under the repositories section.

To define a Docker network (see YOUR_DOCKER_NETWORK) the following fields must be specified:
o attachable: if set to true, then standalone containers can attach to this network, in addition to services

¢ driver: specify which driver should be used for this network. (overlay, bridge, etc.)

1.4.2 Specification of the Virtual Machine

The network of Docker services specified in the previous section is executed under Docker Swarm. This section
introduces how the parameters of the virtual machine can be configured which will be hosts the Docker worker node.
During operation MiCADO will instantiate as many virtual machines with the parameters defined here as required
during scaling. MiCADO currently supports four different cloud interfaces: CloudSigma, CloudBroker, EC2, Nova.
The following ports and protocols should be enabled on the virtual machine:

ICMP
TCP: 22,2377,7946,8300,8301,8302,8500,8600,9100,9200
UDP: 4789,7946,8301,8302,8600

The following subsections details how to configure them.

CloudSigma

To instantiate MiCADO workers on CloudSigma, please use the template below. MiCADO requires num_cpus,
mem_size, vnc_password, libdrive_id and public_key_id to instantiate VM on CloudSigma.

1.4. Application description 9

MiCADO Documentation

topology_template:
node_templates:
worker_node:
type: tosca.nodes.MiCADO.Occopus.CloudSigma.Compute
properties:
cloud:
interface_cloud: cloudsigma
endpoint_cloud: ADD_YOUR_ENDPOINT (e.g for cloudsigma https://zrh.
—cloudsigma.com/api/2.0)
capabilities:
host:
properties:
num_cpus: ADD_NUM_CPUS_FREQ (e.g. 4096)
mem_size: ADD_MEM_SIZE (e.g. 4294967296)
vnc_password: ADD_YOUR_PW (e.g. secret)
libdrive_id: ADD_YOUR_ID_HERE (eg. 87ce928e-eObc-4cab-9502-514e523783e3)
public_key_id: ADD_YOUR_ID_HERE (e.g. d7c0flee-40df-4029-8d95—-
—ec35b34daele)
firewall_policy: ADD_YOUR_ID_HERE (e.g. £d97e326-83c8-44d8-90£f7—
—0a19110£3c9d)

* num_cpu is the speed of CPU (e.g. 4096) in terms of MHz of your VM to be instantiated. The CPU frequency
required to be between 250 and 100000

* mem_size is the amount of RAM (e.g. 4294967296) in terms of bytes to be allocated for your VM. The memory
required to be between 268435456 and 137438953472

* vnc_password set the password for your VNC session (e.g. secret).

¢ libdrive_id is the image id (e.g. 87ce928e-e0bc-4cab-9502-514e523783e3) on your CloudSigma cloud. Select
an image containing a base os installation with cloud-init support!

 public_key_id specifies the keypairs (e.g. d7cOf1ee-40df-4029-8d95-ec35b34daele) to be assigned to your VM.

« firewall_policy optionally specifies network policies (you can define multiple security groups in the form of a
list, e.g. fd97e326-83c8-44d8-90f7-0a19110f3c9d) of your VM.

CloudBroker

To instantiate MiCADO workers on CloudBroker, please use the template below. MiCADO requires deployment_id
and instance_type_id to instantiate a VM on CloudBroker.

topology_template:
node_templates:
worker_node:
type: tosca.nodes.MiCADO.Occopus.CloudBroker.Compute
properties:
cloud:
interface_cloud: cloudbroker
endpoint_cloud: ADD_YOUR_ENDPOINT (e.g https://cola-prototype.cloudbroker.
—com)
capabilities:
host:
properties:
deployment_id: ADD_YOUR_ID_HERE (e.g. e7491688-599d-4344-95ef—
—aff79a60890e)
instance_type_id: ADD_YOUR_ID_HERE (e.g. 9b2028be-9287-4bf6-bbfe-
—bcbc92£065c0)

(continues on next page)

10 Chapter 1. Introduction

MiCADO Documentation

(continued from previous page)

key_pair_id: ADD_YOUR_ID_HERE (e.g. d865f75f-d32b-4444-9fbb-3332bcedeb?75)
opened_port: ADD_YOUR_PORTS_HERE (e.g. '22,2377,7946,8300,8301,8302,8500,
—8600,9100,9200,4789")

* deployment_id is the id of a preregistered deployment in CloudBroker referring to a cloud, image, region, etc.
Make sure the image contains a base OS (preferably Ubuntu) installation with cloud-init support! The id is the
UUID of the deployment which can be seen in the address bar of your browser when inspecting the details of
the deployment.

* instance_type_id is the id of a preregistered instance type in CloudBroker referring to the capacity of the virtual
machine to be deployed. The id is the UUID of the instance type which can be seen in the address bar of your
browser when inspecting the details of the instance type.

» key_pair_id is the id of a preregistered ssh public key in CloudBroker which will be deployed on the virtual
machine. The id is the UUID of the key pair which can be seen in the address bar of your browser when
inspecting the details of the key pair.

* opened_port is one or more ports to be opened to the world. This is a string containing numbers separated by
a comma.

EC2

To instantiate MiCADO workers on a cloud through EC2 interface, please use the template below. MiCADO requires
region_name, image_id and instance_type to instantiate a VM through EC2.

topology_template:
node_templates:
worker_node:
type: tosca.nodes.MiCADO.Occopus.EC2.Compute
properties:
cloud:
interface_cloud: ec2
endpoint_cloud: ADD_YOUR_ENDPOINT (e.g ec2.eu-west—-1.amazonaws.com)
capabilities:
host:
properties:
region_name: ADD_YOUR_REGION_NAME_HERE (e.g. eu-west-1)
image_id: ADD_YOUR_ID_HERE (e.g. ami-12345678)
instance_type: ADD_YOUR_INSTANCE_TYPE_HERE (e.g. tl.small)

* region_name is the region name within an EC2 cloud (e.g. eu-west-1).

* image_id is the image id (e.g. ami-12345678) on your EC2 cloud. Select an image containing a base os instal-
lation with cloud-init support!

* instance_type is the instance type (e.g. t1.small) of your VM to be instantiated.
» key_name optionally specifies the keypair (e.g. my_ssh_keypair) to be deployed on your VM.

* security_group_ids optionally specify security settings (you can define multiple security groups or just one,
but this property must be formatted as a list, e.g. [sg-93d46bf7]) of your VM.

« subnet_id optionally specifies subnet identifier (e.g. subnet-644elel3) to be attached to the VM.

1.4. Application description 11

MiCADO Documentation

Nova

To instantiate MiCADO workers on a cloud through Nova interface, please use the template below. MiCADO requires
image_id flavor_name, project_id and network_id to instantiate a VM through Nova.

topology_template:
node_templates:
worker_node:
type: tosca.nodes.MiCADO.Occopus.Nova.Compute
properties:
cloud:
interface_cloud: nova
endpoint_cloud: ADD_YOUR_ENDPOINT (e.g https://sztaki.cloud.mta.hu:5000/v3)
capabilities:
host:
properties:
image_id: ADD_YOUR_ID_HERE (e.g. d4f4e496-031a-4f49-b034-f8dafe28e0lc)
flavor_name: ADD_YOUR_ID_HERE (e.g. 3)
project_id: ADD_YOUR_ID_HERE (e.g. a678d20e71cb4b9f812a31e5£3eb63b0)
network_id: ADD_YOUR_ID_HERE (e.g. 3fd4c62d-5fbe-4bd9-9a9f-clé6ldabeefde)
key_name: ADD_YOUR_KEY_HERE (e.g. keyname)
security_groups:
— ADD_YOUR_ID_HERE (e.g. d509348f-21£f1-4723-9475-0cf749e05c33)

* project_id is the id of project you would like to use on your target Nova cloud.

 image_id is the image id on your Nova cloud. Select an image containing a base os installation with cloud-init
support!

* flavor_name is the name of flavor to be instantiated on your Nova cloud.
* server_name optionally defines the hostname of VM (e.g.:”helloworld”).

* key_name optionally sets the name of the keypair to be associated to the instance. Keypair name must be
defined on the target nova cloud before launching the VM.

* security_groups optionally specify security settings (you can define multiple security groups in the form of a
list) for your VM.

» network_id is the id of the network you would like to use on your target Nova cloud.

1.4.3 Description of the scaling policy

To utilize the autoscaling functionality of MiCADO, scaling policies can be defined on virtual machine and on docker
service level. Scaling policies can be listed under the policies section. Each scalability subsection must have the
type set to the value of tosca.policies.Scaling.MiCADO and must be linked to a node defined under
node_template. The link can be implemented by specifying the name of the node under the targets subsection.
The details of the scaling policy can be defined under the properties subsection. The structure of the policies section
can be seen below.

topology_template:
node_templates:
YOUR_DOCKER_SERVICE:
type: tosca.nodes.MiCADO.Container.Application.Docker

YOUR_OTHER_DOCKER_SERVICE:
type: tosca.nodes.MiCADO.Container.Application.Docker

(continues on next page)

12 Chapter 1. Introduction

MiCADO Documentation

(continued from previous page)

YOUR_VIRTUAL_MACHINE:
type: tosca.nodes.MiCADO.Occopus.<CLOUD_API_TYPE>.Compute

policies:

- scalability:
type: tosca.policies.Scaling.MiCADO
targets: [YOUR_VIRTUAL_MACHINE]
properties:

- scalability:
type: tosca.policies.Scaling.MiCADO
targets: [YOUR_DOCKER_SERVICE]
properties:

- scalability:
type: tosca.policies.Scaling.MiCADO
targets: [YOUR_OTHER_DOCKER_SERVICE]
properties:

The scaling policies are evaluated periodically. In every turn, the virtual machine level scaling is evaluated, followed
by the evaluation of each scaling policies belonging to Docker services.

The properties subsection defines the scaling policy itself. For monitoring purposes, MiCADO integrates the
Prometheus monitoring tool with two built-in exporters on each worker node: Node exporter (to collect data on nodes)
and CAdbvisor (to collect data on containers). Based on Prometheus, any monitored information can be extracted using
the Prometheus query language and the returned value can be associated to a user-defined variable. Once variables
are updated, scaling rule is evaluated. It can be specified by a short Python code which can refer to the monitored
information. The structure of the scaling policy can be seen below.

— scalability:

properties:
sources:
- 'myprometheus.exporter.ip.address:portnumber’
constants:
LOWER_THRESHOLD: 50
UPPER_THRESHOLD: 90
MYCONST: 'any string'
queries:
THELOAD: 'Prometheus query expression'
MYEXPR: 'something refering to {{MYCONST}}'

alerts:
— alert: myalert
expr: 'Prometheus expression for an event important for scaling'
for: Im

min_instances: 1
max_instances: 5
scaling_rule: |
if myalert:
m_node_count=5
if THELOAD>UPPER_THRESHOLD:
m_node_count+=1
if THELOAD<LOWER_THRESHOLD:
m_node_count—-=1

1.4. Application description 13

MiCADO Documentation

The subsections have the following roles:

sources supports the dynamic attachment of an external exporter by specifying a list endpoints of exporters
(see example above). Each item found under this subsection is configured under Prometheus to start collecting
the information provided/exported by the exporters. Once done, the values of the parameters provided by the
exporters become available.

constants subsection is used to predefined fixed parameters. Values associated to the parameters can be referred
by the scaling rule as variable (see LOWER_THRESHOLD above) or in any other sections referred as Jinja2
variable (see MYEXPR above).

queries contains the list of Prometheus query expressions to be executed and their variable name associated (see
THELOAD above)

alerts subsection enables the utilisation of the alerting system of Prometheus. Each alert defined here is reg-
istered under Prometheus and fired alerts are represented with a variable of their name set to True during the
evaluation of the scaling rule (see myalert above).

min_instances keyword specifies the lowest number of instances valid for the node.
max_instances keyword specifies the highest number of instances valid for the node.

scaling_rule specifies Python code to be evaluated periodically to decide on the number of instances. The
Python expression must be formalized with the following conditions:

— Each constant defined under the ‘constants’ section can be referred; its value is the one defined by the user.

— Each variable defined under the ‘queries’ section can be referred; its value is the result returned by
Prometheus in response to the query string.

— Each alert name defined under the ‘alerts’ section can be referred, its value is a logical True in case the
alert is firing, False otherwise

— Expression must follow the syntax of the Python language
— Expression can be multiline

— The following predefined variables can be referred; their values are defined and updated before the evalu-
ation of the scaling rule

% m_nodes: python list of nodes belonging to the docker swarm cluster

* m_node_count: the target number of nodes

m_container_count: the target number of containers for the service the evaluation belongs to

% m_time_since_node_count_changed: time in seconds elapsed since the number of nodes changed

— In a scaling rule belonging to the virtual machine, the name of the variable to be updated is
m_node_count; as an effect the number stored in this variable will be set as target instance number
for the virtual machines.

— In a scaling rule belonging to a docker service, the name of the variable to be set is
m_container_count; as an effect the number stored in this variable will be set as target instance
number for the docker service.

For further examples, inspect the scaling policies of the demo examples detailed in the next section.

1.5 Tutorials

You can find test application(s) under the subdirectories of the ‘testing’ directory. The current tests are configured for
CloudSigma.

14

Chapter 1. Introduction

MiCADO Documentation

1.5.1 stressng

This application contains a single service, performing constant load. Policy defined for this application scales up/down
both nodes and the stressng service based on cpu consumption. Helper scripts has been added to the directory to ease
application handling.

e Stepl: add your public_key_id to both the stressng.yaml and stressng-update.yaml files.
Without this CloudSigma does not execute the contextualisation on the MiCADO worker nodes. The ID must
point to your public ssh key under your account in CloudSigma. You can find it on the CloudSigma Web UI
under the “Access & Security/Keys Management” menu.

e Step2: add a proper firewall_ _policy to both the stressng.yaml and stressng-update.yaml
files. Without this MiCADO master will not reach MiCADO worker nodes. Firewall policy ID can be retrieved
from a rule defined under the “Networking/Policies” menu. The following ports must be opened for MiCADO
workers: all inbound connections from MiCADO master

e Step3: set the MICADO_MASTER variable to contain the IP of the MiCADO master node with export
MICADO_MASTER=a.b.c.d

e Step4: run 1-submit-tosca-stressng. sh to create the minimum number of MiCADO worker nodes
and to deploy the docker stack including the stressng service defined in the st ressng. yaml TOSCA descrip-
tion. Optionally, add as an argument a user-defined application id (ie. 1-submit-tosca-stressng.sh
stressng). The system should respond by scaling up virtual machines and containers to the maximum
specified.

» Step4a: run 2-1ist—-apps. sh to see currently running applications and their IDs

e StepS: run 3-update-tosca-stressng.sh <ID> with the appropriate ID to update the service and
reduce the CPU load. The system should respond by scaling down virtual machines and containers to the
minimum specified.

e Step6: run 4—undeploy-with—-id.sh <ID> with the appropriate ID to remove the stressng stack and all
the MiCADO worker nodes

1.5.2 cqueue

This application demonstrates a deadline policy using CQueue. CQueue provides a lightweight queueing service for
executing containers. CQueue server (implemented by RabbitMQ, Redis and a web-based frontend) stores items where
each represents a container execution. CQueue worker fetches an item and preform the execution of the container
locally. The demonstration below shows that the items can be consumed by deadline using MiCADO for scaling the
CQueue worker. The demonstration requires the deployment of a CQueue server separately, then the submission of
the CQueue worker to MiCADO with the appropriate (predefined) scaling policy.

e Stepl: Launch a separate VM and deploy CQueue server using the compose file, called
docker-compose—-cqueue-server.yaml. You need to install docker and docker-compose to use
the compose file. This will be your cqueue server to store items representing container execution requests.
Important: you have to open ports defined under the “ports’ section for each of the four services defined in the
compose file.

» Step2: Update the parameter file, called _settings . You need the ip address for the MiCADO master and
for the CQueue server.

e Step3: Run . /1-submit-jobs.sh 50 to generate and send 50 jobs to CQueue server. Each item will be
a simple Hello World app (combined with some sleep) realized in a container. You can later override this with
your own container.

» Step4: Edit the TOSCA description file, called micado—cgworker.yaml.

— Replace each ‘cqueue.server.ip.address’ string with the real ip of CQueue server.

1.5. Tutorials 15

MiCADO Documentation

— Update each ‘ADD_YOUR_ID_HERE’ string with the proper value retrieved under your CloudSigma
account.

Step5: Run ./2-get_date_in_epoch_plus_seconds.sh 600 to calculate the unix timestamp rep-
resenting the deadline by which the items (containers) must be finished. Take the value from the last line of the
output produced by the script. The value is 600 seconds from now.

Step6: Edit the TOSCA description file, called micado-cqworker.yaml.

— Update the value for the ‘DEADLINE’ which is under the ‘policies/scalability/properties/constants’ sec-
tion. The value has been extracted in the previous step. Please, note that defining a deadline in the past
results in scaling the application to the maximum (2 nodes and 10 containers).

Step7: Run . /3-deploy-cg-worker—-to-micado. sh to deploy the CQworker service, which will con-
sume the items from the CQueue server i.e. execute the containers specified by the items.

Step8: Monitor the application:
— visit http://micado.master.ip:4000/docker-visualizer to see the number of nodes and containers.
— watch the log of policy keeper on the MiCADO master (/var/log/micado/policykeeper).

Step9: Run . /4-1ist-running-apps. sh to list the apps you are running under MiCADO.

Stepl0: Run ./5-undeploy-cg-worker—-from-micado.sh to remove your application from Mi-
CADO when all items are consumed.

Step11: You can have a look at the state . /cqueue—-get—Jjob-status.sh <task_id> or stdout of con-
tainer executions . /cqueue—get-job-status.sh <task_id> using one of the task id values printed
during Step 3.

1.6 Release Notes

v0.5.0 (12 July 2018)

Introduce supporting TOSCA

Introduce supporting user-defined scaling policy

Dashboard added with Docker Visualizer, Grafana, Prometheus
Deployment with Ansible playbook

Support private docker registry

Improve persistence of MiCADO master services

16

Chapter 1. Introduction

http://micado.master.ip:4000/docker-visualizer

	Introduction
	Deployment
	Dashboard
	REST API
	Application description
	Tutorials
	Release Notes

