

Welcome!

This is some stuff I wrote/collected:

	Getting Started with Git
	Cloning a Repository

	Checking the Status

	Getting Recent Changes from the Server

	Initial Setup

	Command Line Prompt

	Committing Changes

	Pushing Your Changes to the Server

	Creating and Switching Branches

	Merging Branches

	More Aliases

	Ignoring Local Files

	Attributes

	GUIs for Git

	Getting Help

	Git and Subversion (SVN)

	Public Git Hosting Sites

	More Documentation/Links

	TODO

	Jupyter Notebooks in a Git Repository
	Executing Notebooks on a Server

	Executing Notebooks in a Separate Branch
	Getting Started from Scratch

	Getting Started with Pre-executed Notebooks

	Making a Change

	Executing All Notebooks

	Cleaning All Notebooks

	Cleaning a Whole Repository

	Importing Local Python Modules from Jupyter Notebooks
	Use a Symbolic Link

	Manipulating sys.path in the Notebook

	Manipulating sys.path in a Helper Module in the Current Directory

	Audio in Python

	Reproducible Research
	Definitions
	Openness

	Replicability vs. Reproducibility

	Guidelines

	What Should be Reproducible?

	Criticism

	Software
	Python

	LaTeX

	Git

	More Software

	Publication Tools

	Online Services

	Journals

	Publications

	Links

	Open Education

	Licensing
	Links

	Re-usable Audio Data
	Multi-Track Recordings

	Other Lists with Links

	Creating a Python Module
	Coding Style

	Docstrings

	Testing

	Coverage

	Online Documentation

	Installer

	License

	Further Reading

	Make Tutorial
	make Without Makefile

	A Simple Makefile

	Cleaning Up

	Adding Options

	TODO

	Using Latexmk
	Installation

	Running Latexmk

	Cleaning Up

	Running Latexmk with Batch Files

	Configuration Files

	Local Configuration Files

	Advanced Options

	Getting Started with Sphinx and readthedocs.org
	Links

	TODO

	My Projects and Collaborations
	Created and Maintained by Me
	sounddevice Module for Python

	rtmixer Module for Python

	jack Module for Python

	nbsphinx Extension for Sphinx

	sphinx_last_updated_by_git Extension for Sphinx

	An HTML theme for Sphinx: insipid

	Jupyter Notebooks About Python & Audio

	This “Homepage”

	jupyter_format module for Python

	A Reusable Slice of References for Rust

	Rust FFI bindings to the libFLAC library

	Rust FFI bindings to the minimp3_ex library

	Work In Progress: Audio Scene Description Format (ASDF)

	Collaborations
	The SoundScape Renderer

	sfs Module for Python

	soundfile Module for Python

	Exercises for “Communication Acoustics” Lecture

	Real-Time Ring Buffer for Rust

	Minor Contributions
	Audio-Related

	Sphinx and Related

	Jupyter Ecosystem

	Scientific Python Fundamentals

	Rust-Related

	Quotes

	Links

	TODO
	List of TODOs

Getting Started with Git

There are a lot of pages on the web dedicated to Git, this page just shows a few
random bits of information which might or might not help you getting started.

Git is a distributed version control system (DVCS) and it’s great!

That’s about all I’m gonna say about it in general, if you want to read more
about it, have a look at the links at the end of this page.

Cloning a Repository

To obtain the contents of a remote repository, you have to clone it.
For example, to clone the repository where this very page was created from, do:

git clone https://github.com/mgeier/homepage.git

This will create a directory named like the repository (in this case
homepage/).

cd homepage

Checking the Status

At any time, you can get the current status of your files with:

git status

Here you will see if there are changes to any files of the repository and if
there are local files which are not yet part of the repository (see below for
how to add files).

Getting Recent Changes from the Server

If the repository on the server changed since you cloned it, you can get up to
date with:

git pull

But be aware that if you made changes to your local files, this may lead to
conflicts. It’s a good idea to always commit before pulling (see below how to
commit changes).

Initial Setup

Before you make your first commit, you should set up a few things (you have to
do this only once):

git config --global user.name "Your Name"
git config --global user.email you@example.com

You may also want to set your favorite editor:

git config --global core.editor "gvim --nofork"

To enable colors in git log et al.:

git config --global color.ui auto

And, if you want, you can set a few aliases for your convenience:

git config --global alias.s "status --short"
git config --global alias.c "checkout"

git config --global alias.lol "log --oneline --graph --decorate"
git config --global alias.lola "log --oneline --graph --decorate --all"

With these aliases, you can use git s to get a short status display (one
line per file) and you can use git c mybranch instead of the significantly
longer git checkout mybranch.
I find myself using checkout very often, so git c saves a lot of typing.

If you type git lola, you’ll see a nice and colorful ASCII display of the
previous commits and their tree structure.

All these options are stored in ~/.gitconfig (or somewhere else
depending on your operating system).
You can also store settings on a per-project basis. Just drop the --global
option and the settings will be stored for your current Git repository in
.git/config.

Command Line Prompt

When working with branches, it is crucial to know the currently active branch.
To show the current branch in the command line prompt, put this at the end of
your ~/.bashrc (or wherever else you store settings for your shell):

add git branch to prompt
GIT_PS1_SHOWDIRTYSTATE=1
PS1="${PS1%'\$ '}"'$(__git_ps1 " (%s)")'"\$ "

You’ll also see an asterisk, e.g. (master *), if your working directory is
dirty, i.e. if you have local changes which are not yet committed.

Committing Changes

Any new files have to be added to Git control before you can do anything with
them:

git add myfile.txt

Once you have done some changes, you can make a commit:

git commit -a

Here, your favorite text editor will be opened and you can (and should!) enter
a commit message, describing the changes you have made. After you save the
file and close the editor, the commit will actually be created.

A commit message should have a short (no more than 50 characters) one-line
summary in the first line, then a blank line and then a more detailed
description. Have a look at this note about commit messages [https://tbaggery.com/2008/04/19/a-note-about-git-commit-messages.html].

Remember, a commit is a local operation in Git, so nothing was transferred to
the server yet.

Todo

add before commit, staging area, local commits

Pushing Your Changes to the Server

After one or several commits, you can push everything to the server:

git push

If you created a new online repository and cloned the empty repository, you
have to use this command the first time to set up the master branch:

git push origin master

After that, git push will suffice.

Creating and Switching Branches

But you probably don’t want to do that yet. You’re probably not quite sure yet
if your changes are OK and you would like to wait with pushing them to the
master branch. Probably you would like your colleagues to have a look at
your changes first.

That’s where branches come into the picture.

To see what branches you already have, type:

git branch

You’ll probably get something like this:

* master

This means you have only one branch which is called master. This is
typically the default branch and most repositories have it but it is just a
branch as any other branch.
The asterisk marks the currently active branch.
You should also see this in your prompt if you did what I suggested in Command
Line Prompt.

You can switch between branches with git checkout. But you don’t have
another branch to switch to … so let’s create one:

git checkout -b fix-typo

The option -b combines creating a branch with directly switching to the
newly created branch.

Your local files didn’t actually change by switching to the new branch because
for now, the branches fix-typo and master are just two different names
for the same thing.
But if you now start committing changes, these commits will end up in the
fix-typo branch while the master branch will remain unchanged.

Let’s check our branch-related situation:

git branch

Which produces something like this:

* fix-typo
 master

Now you can actually change something and then commit your changes:

git commit -a

Todo

more about branches?

Merging Branches

Todo

more information about merging and potential merge conflicts

Todo

git mergetool is really useful!

Setting up Vim [https://www.vim.org/] + fugitive [https://github.com/tpope/vim-fugitive/] as mergetool:

git config --global mergetool.fugitive.cmd 'gvim -f -c "Gdiff" "$MERGED"'
git config --global merge.tool fugitive

On macOS, you can use FileMerge (you need to have Xcode installed):

git config --global merge.tool opendiff

Todo

more advertisement for Vim and fugitive!

More Aliases

Once you’ve worked some time with Git, you will realize that there are a few
commands that you use very often. It’s easy to create aliases that make you
type less.

I, for example, often use git rebase and afterwards I want to ensure that a
fast forward merge is done (instead of a separate merge commit).
Therefore, I have to type git merge mybranch --ff-only, which is quite long
and tedious to type. With the following alias, I can reduce this to
git ff mybranch:

git config --global alias.ff "merge --ff-only"

Sometimes, after a git fetch or git remote update, I want to
fast-forward my local branch to its newly fetched remote branch.
With my previous alias, I could do git ff origin/mybranch. This is still
too long, and Git should be able to automatically figure out which is the
correct remote branch. With the following alias, the command is reduced to
git ffu:

git config --global alias.ffu "merge --ff-only @{upstream}"

I seldom use git pull, because if there are new commits on both upstream and
locally, a merge commit will be created automatically. And I don’t like that.
To avoid a merge commit and to only actually merge if a merge commit can be
avoided (i.e. if a fast forward merge is possible), we can again use the
option --ff-only. With the following alias, I only have to type
git pff:

git config --global alias.pff "pull --ff-only --prune"

The additional --prune option is very handy because it removes the remote
branches which were deleted on the server (which is not done automatically).

Ignoring Local Files

Todo

.gitignore, global ignore file with core.excludesfile,
reference to https://github.com/github/gitignore

Attributes

You can set per-file (or per-path) attributes if you create a file named
.gitattributes, for example like this:

*.bib diff=bibtex
*.cpp diff=cpp
*.h diff=cpp
*.htm diff=html
*.html diff=html
*.java diff=java
*.php diff=php
*.py diff=python
*.rb diff=ruby
*.tex diff=tex
*.pbxproj binary

GUIs for Git

There are many GUIs for Git to choose from; I personally like gitg (available
as Debian package with the same name) most but there are many more available
(see https://git-scm.com/downloads/guis).

Getting Help

To get help just use:

git help

You’ll get something like this:

The most commonly used git commands are:
 add Add file contents to the index
 bisect Find by binary search the change that introduced a bug
 branch List, create, or delete branches
 checkout Checkout a branch or paths to the working tree
 clone Clone a repository into a new directory
 commit Record changes to the repository
 diff Show changes between commits, commit and working tree, etc
 fetch Download objects and refs from another repository
 grep Print lines matching a pattern
 init Create an empty Git repository or reinitialize an existing one
 log Show commit logs
 merge Join two or more development histories together
 mv Move or rename a file, a directory, or a symlink
 pull Fetch from and integrate with another repository or a local branch
 push Update remote refs along with associated objects
 rebase Forward-port local commits to the updated upstream head
 reset Reset current HEAD to the specified state
 rm Remove files from the working tree and from the index
 show Show various types of objects
 status Show the working tree status
 tag Create, list, delete or verify a tag object signed with GPG

See 'git help <command>' or 'git help <concept>' to read about a specific
subcommand or concept.

Git and Subversion (SVN)

See https://git-scm.com/book/en/v2/Git-and-Other-Systems-Git-as-a-Client#_git_svn

Public Git Hosting Sites

There are several free Git hosting services available, for an overview visit
https://git.wiki.kernel.org/index.php/GitHosting

More Documentation/Links

	The Pro Git Book (CC license): https://book.git-scm.com/

	Understanding Git Conceptually: https://www.sbf5.com/~cduan/technical/git/

	Git Quick Reference: http://jonas.nitro.dk/git/quick-reference.html

	Git Immersion: https://gitimmersion.com/

	…

There are many different strategies and methodologies how to use Git, just have a look with your favorite search engine or try this:

	https://nvie.com/posts/a-successful-git-branching-model/

	https://betterexplained.com/articles/aha-moments-when-learning-git/

	http://sethrobertson.github.io/GitBestPractices/

	…

There are also some nice videos:

	
	beginner
	
	https://www.youtube.com/watch?v=4XpnKHJAok8

	https://www.youtube.com/watch?v=ZDR433b0HJY

	https://www.youtube.com/watch?v=GYnOwPl8yCE

	
	intermediate
	
	https://www.youtube.com/watch?v=Z2ZL14WWEJI

TODO

I probably should write about these, too:

	pushing and pulling branches

	adding remotes

	merging

	rebasing (see https://git-rebase.io/)

	interactive rebasing

	cherry-picking

	git stash

Jupyter Notebooks in a Git Repository

It is a very nice feature of Jupyter [https://jupyter.org/] notebooks that cell outputs
(e.g. images, plots, tables with data) can be stored within notebooks.
This makes it very easy to share notebooks with other people,
who can open the notebooks and can immediately see the results,
without having to execute the notebook
(which might have some complicated library or data dependencies,
or it might simply take a long time to run).

However, those cell outputs can be very annoying when using a
version control system [https://en.wikipedia.org/wiki/Version_control] like e.g. Git [https://git-scm.com/].
Whenever a change is made to a code cell,
most likely the cell’s output will also change.
The problem is that both changes will be shown in a “diff” view,
but the (often much larger) changes in outputs
will distract from the much more interesting changes in the code.
This can make it very tedious to work on a notebook with multiple people.

To avoid this problem, it is recommended to strip all outputs from a notebook
before committing it to Git.

Todo

clean/smudge filters
(https://nbsphinx.readthedocs.io/en/latest/usage.html#Using-Notebooks-with-Git)

There is a catch, though.
If you don’t commit the cell outputs,
other people looking at your repository don’t see the outputs
(unless they execute the notebooks on their own).
But don’t worry,
the next two sections will show two ways to work with “clean” notebooks
but still to be able to share the cell outputs publicly.

Executing Notebooks on a Server

Todo

https://nbsphinx.readthedocs.io/ and others

Todo

advantages, disadvantages

Executing Notebooks in a Separate Branch

In this scenario,
you and your collaborators mainly work on the dev branch
(never committing cell outputs),
and the master branch only contains a single additional commit
in which all notebooks are executed.

If you want to use pull requests for collaboration,
those should always be based upon the dev branch.

Todo

advantages, disadvantages

Getting Started from Scratch

This assumes that you have no Jupyter notebooks in your repository yet
or all your notebooks are “clean” (i.e. stored without outputs).

	Make sure there are no un-committed (and un-pushed) local changes

	Create a new branch called dev (starting at the master branch) and
switch to the new branch:

git checkout -b dev master

	Push the new dev branch to the server:

git push --set-upstream origin dev

	If you already have some notebooks, you can execute them now in the
master branch:

git checkout master

You can execute the notebooks one by one,
or all at once, as described in Executing All Notebooks.
Once all the notebooks you want to execute are executed,
commit the changes to the master branch:

git commit -a -m "Execute notebooks"

And if everything looks OK, you can push the new commit to the server:

git push

That’s it!

When you want to start changing existing notebooks,
continue with the section Making a Change.

Getting Started with Pre-executed Notebooks

Don’t worry if you have previously committed notebooks
without stripping their outputs.
There is still a way of getting rid of them retroactively
by re-writing your Git history.

	Make sure there are no un-committed (and un-pushed) local changes

	Create a new branch called dev (starting at the master branch) and
switch to the new branch:

git checkout -b dev master

	Do the steps listed in the section Cleaning a Whole Repository

	Push the changes from the dev branch to the server:

git push --set-upstream origin dev

	Switch back to the master branch and make a backup branch:

git checkout master
git branch backup

Note

If you think you might need it later (or if you are somewhat paranoid),
you can also push the new backup branch to the server.

	Reset the master branch to point to the same commit as dev:

git reset dev --hard

Warning

With this step you throw away all your old commits!
But you can still use the backup branch to get them back.

	Get the executed version of all notebooks (don’t forget the dot!):

git checkout backup .

	Create a new commit with a commit message like “Execute notebooks”:

git commit -m "Execute notebooks"

	If you are satisfied with the result,
you can push your changes to the server,
but note that you have to use --force,
because you changed the Git history:

git push --force

Warning

At this point, you are deleting all your old commits from the server!
If you want to keep them, you should also push the backup branch.

Making a Change

	Switch to the dev branch:

git checkout dev

	Work on your notebooks

	Create one or more commits with new notebooks or changes to existing ones

	Push the dev branch to the server:

git push

	Switch to the master branch and re-base it onto dev:

git checkout master
git rebase -X ours dev

Note

The parameter -X ours selects a merging strategy where
the changes to dev are preferred over the changes to master.

Special care has to be taken before re-basing when notebooks are removed:

git checkout master
git rm the-deleted-notebook.ipynb the-other-deleted-notebook.ipynb
git commit --amend
git rebase -X ours dev

	Manually (re-)run the changed (and any new) notebooks.

You can execute the notebooks in the Jupyter application,
or you can execute them with nbconvert:

python3 -m nbconvert --execute --inplace my-notebook.ipynb my-other-notebook.ipynb

If you have many notebooks, it might be hard to keep in mind
which ones you have changed.
To get list of changed notebooks (but also other changed files),
you can use this command:

git diff --name-only dev $(git merge-base dev origin/master)

	When all changed notebooks have been executed,
you can update the “Execute notebooks” commit:

git commit -a --amend

	In the end, the changes to master have to be force-pushed:

git push --force

Note

Normally, you should never use git push --force
on the master branch.
However, this is a special case where it’s OK,
because all actual work will be done on the dev branch.
This means that you should never use git push --force
on the dev branch!

Executing All Notebooks

To execute all notebooks (whether they have outputs in them or not),
you can use:

python3 -m nbconvert --execute --inplace *.ipynb **/*.ipynb

To disable the timeout, add --ExecutePreprocessor.timeout=-1 to the command.
This should actually be the default, but it’s not,
see https://github.com/jupyter/nbconvert/issues/791.

Please note the two globbing patterns used here.
The second pattern (**/*.ipynb) is collecting all the notebooks recursively,
but it doesn’t include the files in the current directory.
That’s what the first pattern (*.ipynb) is used for.
If you don’t have notebooks in the main directory, you should omit this pattern.

In a future release of nbconvert the second pattern might become superfluous.

Cleaning All Notebooks

Removing outputs from all notebooks should work with this command:

python3 -m nbconvert --clear-output *.ipynb **/*.ipynb

… except that --clear-output is currently broken,
see https://github.com/jupyter/nbconvert/issues/822.

It should work with the slightly more verbose:

python3 -m nbconvert --ClearOutputPreprocessor.enabled=True --inplace *.ipynb **/*.ipynb

Cleaning a Whole Repository

Make sure you don’t have any local changes and no un-committed files!

You might want to create a new branch (and switch to it) before doing this!

Cleaning the whole Git history of the current branch:

git filter-branch --tree-filter "python3 -m nbconvert --ClearOutputPreprocessor.enabled=True --inplace *.ipynb **/*.ipynb"

If there are some commits without Jupyter notebook in them, you might want to
extend the command a bit (to ignore any errors):

git filter-branch --tree-filter "python3 -m nbconvert --ClearOutputPreprocessor.enabled=True --inplace *.ipynb **/*.ipynb || true"

Depending on the size of your repository and the number of commits,
this might take a while …

Importing Local Python Modules from Jupyter Notebooks

If you re-use local modules a lot,
you should consider turning them into proper Python packages
which can be installed with Python’s package manager pip.

The following sections are created from Jupyter notebooks
which show multiple ways to import local Python modules,
even if they are located in sub-directories.

The file module-subdirectory/mymodule.py is used as a
dummy example module.

If you know other (reasonable) methods to use local modules,
please create an issue or a pull request!

	Use a Symbolic Link

	Manipulating sys.path in the Notebook

	Manipulating sys.path in a Helper Module in the Current Directory

 This page was generated from
 importing-local-python-modules-from-jupyter-notebooks/symbolic-link/symlink.ipynb.
 Interactive online version:
 [image: Binder badge]

 Manipulating sys.path in the Notebook

 This page was generated from
 importing-local-python-modules-from-jupyter-notebooks/sys-path-in-notebook/path-notebook.ipynb.
 Interactive online version:
 [image: Binder badge]

 Manipulating sys.path in a Helper Module in the Current Directory

 This page was generated from
 importing-local-python-modules-from-jupyter-notebooks/sys-path-in-helper-module/path-helper.ipynb.
 Interactive online version:
 [image: Binder badge]

 Audio in Python

Audio in Python

Look over there!

	nbviewer:
	https://nbviewer.jupyter.org/github/mgeier/python-audio/blob/master/index.ipynb

	GitHub:
	https://github.com/mgeier/python-audio/

	Binder:
	https://mybinder.org/v2/gh/mgeier/python-audio/dev?filepath=index.ipynb

 Reproducible Research

Reproducible Research

Note

This is, much like research itself, and the art of eating spaghetti without
soiling yourself, work-in-progress.

This page is not as general as it should be.
It is biased towards audio signal processing, audio engineering, spatial audio
reproduction and auditory perception.
However, many of the ideas presented here can be applied more widely.

Other collections of similar information:

	https://github.com/INRIA/awesome-open-science-software

	https://danmackinlay.name/notebook/reproducible_research

Definitions

Openness

Todo

The open definition

http://opendefinition.org/

Definition by Wikipedia [https://en.wikipedia.org/wiki/Open_science]:

Open science is the movement to make scientific research, data and
dissemination accessible to all levels of an inquiring society, amateur or
professional. It encompasses practices such as publishing open research,
campaigning for open access, encouraging scientists to practice open notebook
science, and generally making it easier to publish and communicate scientific
knowledge. […]
In modern times there is debate about the extent to which scientific
information should be shared. The conflict is between the desire of
scientists to have access to shared resources versus the desire of individual
entities to profit when other entities partake of their resources.

Definition by Wikipedia [https://en.wikipedia.org/wiki/Open_research]:

Open research is research conducted in the spirit of free and open source
software. Much like open source schemes that are built around a source code
that is made public, the central theme of open research is to make clear
accounts of the methodology freely available via the internet, along with any
data or results extracted or derived from them. This permits a massively
distributed collaboration, and one in which anyone may participate at any
level of the project.

Especially if the research is scientific in nature, it is frequently referred
to as open science. Open research can also include social sciences, the
humanities, mathematics, engineering and medicine.

Definition by Wikipedia [https://en.wikipedia.org/wiki/Open_data]:

Open data is the idea that some data should be freely available to
everyone to use and republish as they wish, without restrictions from
copyright, patents or other mechanisms of control. The goals of the open data
movement are similar to those of other “open” movements such as open source,
open hardware, open content, and open access.

Definition by Wikipedia [https://en.wikipedia.org/wiki/Open_science_data]:

Open science data is a type of open data focused on publishing
observations and results of scientific activities available for anyone to
analyze and reuse.

Definition by Wikipedia [https://en.wikipedia.org/wiki/Open_notebook_science]:

Open notebook science is the practice of making the entire primary record
of a research project publicly available online as it is recorded. This
involves placing the personal, or laboratory, notebook of the researcher
online along with all raw and processed data, and any associated material, as
this material is generated. The approach may be summed up by the slogan ‘no
insider information’. It is the logical extreme of transparent approaches to
research and explicitly includes the making available of failed, less
significant, and otherwise unpublished experiments; so called ‘dark data’.

Definition by Wikipedia [https://en.wikipedia.org/wiki/Open_access]:

Open access (OA) refers to online research outputs that are free of
all restrictions on access (e.g. access tolls) and free of many restrictions
on use (e.g. certain copyright and license restrictions). Open access can be
applied to all forms of published research output, including peer-reviewed
and non peer-reviewed academic journal articles, conference papers, theses,
book chapters, and monographs.

Two degrees of open access can be distinguished: gratis open access, which is
online access free of charge, and libre open access, which is online access
free of charge plus various additional usage rights.

Todo

Reproducible Research vs. Non-Reproducible Research?

Todo

reproducible vs. easily reproducible

Todo

online material as supplement to traditional publications

Todo

https://en.wikipedia.org/wiki/Reproducibility

Todo

https://en.wikipedia.org/wiki/Open_research

Vandewalle et al. [https://doi.org/10.1109/MSP.2009.932122] distinguish six
degrees of reproducibility:

	The results can be easily reproduced by an independent researcher with at
most 15 min of user effort, requiring only standard, freely available tools
(C compiler, etc.).

	The results can be easily reproduced by an independent researcher with at
most 15 minutes of user effort, requiring some proprietary source packages
(MATLAB, etc.).

	The results can be reproduced by an independent researcher, requiring
considerable effort.

	The results could be reproduced by an independent researcher, requiring
extreme effort.

	The results cannot seem to be reproduced by an independent researcher.

	The results cannot be reproduced by an independent researcher.

While I don’t agree with all details (especially the over-concrete time
specifications and the overly vague effort metrics), I like the general idea.

Replicability vs. Reproducibility

Great overview: Language Log: Replicability vs. reproducibility — or is it the other way around? [https://web.archive.org/web/20210302204128/https://languagelog.ldc.upenn.edu/nll/?p=21956]

Wikipedia [https://en.wikipedia.org/wiki/Reproducibility] thinks it’s the
same:

Reproducibility is the ability of an entire experiment or study to be
duplicated, either by the same researcher or by someone else working
independently. Reproducing an experiment is called replicating it.
Reproducibility is one of the main principles of the scientific method.

Chris Drummond [http://cogprints.org/7691/] claims they are different:

Reproducibility requires changes; replicability avoids them. Although
reproducibility is desirable, I contend that the impoverished version,
replicability, is one not worth having.

Roger D. Peng [https://doi.org/10.1093/biostatistics/kxp014]
also claims that they are different, but uses slightly different definitions:

The replication of scientific findings using independent investigators,
methods, data, equipment, and protocols has long been, and will continue to
be, the standard by which scientific claims are evaluated. However, in many
fields of study there are examples of scientific investigations that cannot be
fully replicated because of a lack of time or resources. In such a situation,
there is a need for a minimum standard that can fill the void between full
replication and nothing. One candidate for this minimum standard is
“reproducible research”, which requires that data sets and computer code be
made available to others for verifying published results and conducting
alternative analyses.

Victoria Stodden [https://magazine.amstat.org/blog/2011/07/01/trust-your-science/]
defines them slightly differently (and throws in a third concept –
“repeatability”):

We can reserve the term “replicability” for the regeneration of published
results from author-provided code and data. […] Reproducibility is a more
general term, implying both replication and the regeneration of findings with
at least some independence from the code and/or data associated with the
original publication. Both refer to the analysis that occurs after
publication. A third term, “repeatability,” is sometimes used in place of
reproducibility, but this is more typically used as a term of art referring to
the sensitivity of results when underlying measurements are retaken.

Guidelines

Here are few guidelines which may (or may not) help to make your work more
reproducible:

	make everything public (and each step of it)
	At some point, every aspect of your work should be publicly accessible.
And not only the parts which (you think) are most interesting … every single
bit and every single step.
This way it will be easiest for others to reproduce your work.

You may not want to publish everything from the very beginning, which leads to
the next point …

	release early
	This is borrowed from the Open Source movement, but it’s also applicable here.
Even if you feel it’s not finished yet, just make it public! Because if you
wait too long, you’ll probably never release it …

If you release early, you also give others the chance to comment on your work
and to suggest improvements before you think it’s “finished” (which may never
happen).

	make stuff public by default
	In case of doubt, make it public! Keep things only for yourself if there is a
good reason. And even if there is a reason now, you should think about making
it public later (e.g. after publication of a related paper).

	think about others
	Don’t just think about how great your results are, also think about how you
can make it as easy as possible for others to reproduce them.

	use tools that others can use, too
	If you have a choice, prefer tools that are available to other researchers,
too.

Of course, often expensive equipment is needed in research, and sometimes only
few laboratories have even the theoretical possibility to reproduce your
experiments. We have to live with that.

When it comes to software, there is often an alternative to expensive
programs, sometimes the free ones are even better.
Try to choose software that is accessible to most people, and try to use
software that runs on different operating systems.

	use open source software
	TODO: content

	specify a license
	If provide something to the public and don’t specify a license, said public
may have a hard time using the thing legally.
With everything you publish, you should also tell people what they may and may
not do with it.

But remember: the more restrictions you impose, the more freedom you take away
from people who want to use your work.
You can waive all your rights (at least with regard to copyright law), you can
request attribution, you can demand that derived works must be published under
the same conditions as the original work (a.k.a. share-alike), you can
forbid commercial use, …

Try these links to help you choose an appropriate license:

	https://creativecommons.org/choose/

	http://three.org/openart/license_chooser/

For more details, have a look there: https://tldrlegal.com/.

Licensing your research, webinar with Brandon Butler: https://osf.io/6uupa/

	bring research and teaching closer together
	Every research starts from some existing knowledge.

TODO: more arguments

Today’s students are tomorrow’s researchers.

What Should be Reproducible?

Short answer: everything!

But let’s be a bit more verbose.
Ideally, the whole research process should be reproducible.
The following list shows things that can (and should!) be made reproducible.
There are also some tools mentioned that may help, see below for links to more
software and libraries.

All this is of course very much dependent on the research area. Some points may
apply to your area, others won’t.

	collecting ideas
	Ideas are the core of any research activity. They are also one of the main
resources needed by researchers (besides funding). Understandably, many
researcher are reluctant to make their ideas public before they reap their
fruits themselves.

But at a later time, e.g. after a publication, there may not be a reason
anymore to keep the ideas a secret.
Also, some researchers (mostly the good ones) have more ideas than they could
possibly work on. In this case they should make their “vacant” ideas public
for other researchers to work on.

In the era of the world-wide-web there are countless possibilities to share
your ideas, no need to give any pointers here, you’ll find something.

	symbolic derivations
	In many areas, deriving equations is the daily drill of a researcher.
In traditional publications, however, only a limited amount of space can be
used for equations, so typically only a few steps of the derivation are shown
or even only the final resulting equation.

This can make it very time-consuming for other researchers to reproduce and
build on your results.
Ideally, for every published equation the complete and detailed derivation
should also be publicly available.

You can create nice equations using LaTeX documents, but also some blogging
systems support entering math equations. IPython also supports nice-looking
equations (using MathJax).

TODO: CASs

	numeric calculations, simulations, visualizations, plots
	TODO: NumPy, SciPy, matplotlib, Mayavi, …

	cluster computing
	TODO: IPython

	measurements
	TODO: settings, logs, software, pre-/post-processing scripts

	experimental apparatus
	
	TODO: detailed description, drawings, photos, detailed list of devices ant
	the used configuration, …

	TODO: software (ideally open source), scripts, configuration files, data
	files, …

	statistical evaluation
	TODO: raw data, all scripts

TODO: pandas, R

Criticism

Three points from
https://en.wikipedia.org/wiki/Open_notebook_science#Drawbacks:

	data theft

	not patentable once published

	data deluge

Software

The following is a completely subjective selection of open-source software.
This is not at all exhaustive, there are a lot of alternatives, both commercial
and non-commercial.

Python

Note

Why Python?

The chief reason is that it’s just a beautiful programming language.
And it’s versatile … so the two reasons are its beauty and versatility
… and its extensive standard library,
therefore the three reasons to use Python are its beauty, versatility and
extensive standard library … and a sheer unimaginably humongous number of
third-party libraries and extensions.

Let’s just say amongst the reasons to choose Python are such diverse
elements as beauty, versatility, extremely useful standard library and
tons of third-party stuff.

For more information, watch this: https://youtu.be/vt0Y39eMvpI

	Scientific Python (SciPy)
	https://scipy.org/

This is a collection of many software projects:
NumPy [https://numpy.org/],
SciPy [https://scipy.org/scipylib/],
matplotlib [https://matplotlib.org/],
IPython [https://ipython.org/],
SymPy [https://www.sympy.org/],
pandas [https://pandas.pydata.org/],
Mayavi [https://docs.enthought.com/mayavi/mayavi/],
PyTables [https://www.pytables.org/],
and many more …

See also my introduction to Python, NumPy, IPython, … [https://nbviewer.jupyter.org/github/mgeier/python-audio/blob/master/index.ipynb]

LaTeX

…

Todo

TikZ, gnuplot, beamer

Git

See Getting Started with Git.

More Software

There’s always more …

	R
	http://www.r-project.org/

	Julia
	https://julialang.org/

	Sage
	https://www.sagemath.org/

Publication Tools

	IPython
	http://ipython.org/

	IJulia
	https://github.com/JuliaLang/IJulia.jl (example notebook [https://nbviewer.jupyter.org/url/jdj.mit.edu/~stevenj/IJulia%20Preview.ipynb])

	VisTrails
	https://www.vistrails.org/index.php/Main_Page

	Sweave
	https://en.wikipedia.org/wiki/Sweave

	knitr
	https://yihui.org/knitr/

	Pweave
	http://mpastell.com/pweave/

	ActivePapers
	
	https://activepapers.github.io/
	
	active_papers (JVM):
https://activepapers.github.io/jvm-edition/

	activepapers-python (Python):
https://activepapers.github.io/python-edition/

Online Services

	IPython/Jupyter Notebook Viewer
	https://nbviewer.jupyter.org/

	Binder (Turn a GitHub repo into a collection of interactive notebooks)
	https://mybinder.org/

	Github
	https://github.com/

	Bitbucket (free unlimited accounts for academic users)
	https://bitbucket.org/

	figshare
	https://figshare.com/, connecting Github and figshare [https://figshare.com/blog/Working_with_Github_and_Mozilla_to_enable_Code_as_a_Research_Output_/117]

	zenodo
	https://zenodo.org/

	ORCID
	https://orcid.org/

	crossref
	https://www.crossref.org/

	DataCite
	https://datacite.org/

	my experiment
	https://www.myexperiment.org/

	re3data (Registry of Research Data Repositories)
	https://www.re3data.org/

	RADAR - Research Data Repository
	https://www.radar-service.eu/en

	Open Science Framework
	https://osf.io/

	DataUp
	http://dataup.cdlib.org/

	Authorea
	https://authorea.com/

	PubPeer (post publication peer review)
	https://pubpeer.com/

	PubMed Commons (post publication peer review)
	https://www.ncbi.nlm.nih.gov/pubmedcommons/ (discontinued, see
https://ftp.ncbi.nlm.nih.gov/pubmed/pubmedcommons/README.txt)

	CKAN (Open Source data portal platform)
	https://ckan.org/

	sciety (curated preprints)
	https://sciety.org/

	Peer Community in
	https://peercommunityin.org/

Journals

	F1000Research (life sciences)
	https://f1000research.com/

	Scientific Data - nature.com
	https://www.nature.com/sdata/

	DRYAD
	https://datadryad.org/

	The ReScience Journal
	http://rescience.github.io/

	Peer Community Journal
	https://peercommunityjournal.org/

Publications

Patrick Vandewalle, Jelena Kovačević, Martin Vetterli,
Reproducible Research in Signal Processing [https://doi.org/10.1109/MSP.2009.932122],
IEEE Signal Processing Magazine Volume 26, Issue 3, 2009.

Robert Gentleman, Duncan Temple Lang,
Statistical Analyses and Reproducible Research [https://doi.org/10.1198/106186007X178663],
Journal of Computational and Graphical Statistics Volume 16, Issue 1, 2007.

Bruce G. Charlton,
Peer usage versus peer review [https://doi.org/10.1136/bmj.39304.581574.94],
BMJ Volume 335, Issue 7617, 2007.

Arturo Casadevall, Ferric C. Fang,
Reproducible Science [https://doi.org/10.1128/IAI.00908-10],
Infection and Immunity Volume 78, Issue 12, 2010.

Jonathan B. Buckheit, David L. Donoho,
WaveLab and Reproducible Research [https://doi.org/10.1007/978-1-4612-2544-7_5],
in Wavelets and Statistics [https://doi.org/10.1007/978-1-4612-2544-7],
Springer, 1995.

Darrel C. Ince, Leslie Hatton, John Graham-Cumming,
The Case for Open Computer Programs [https://doi.org/10.1038/nature10836],
Nature Volume 482, 2012.

Nature special Challenges in Irreproducible Research [https://web.archive.org/web/20170802213155/http://www.nature.com/news/reproducibility-1.17552], 2010-2013.

Fernando Pérez, Brian E. Granger, John D. Hunter,
Python: An Ecosystem for Scientific Computing [https://doi.org/10.1109/MCSE.2010.119],
Computing in Science Engineering, Volume 13, Issue 2, 2011.

Peter Suber,
Open Access [https://mitpress.mit.edu/books/open-access],
MIT Press, 2012.

Peter Suber,
Gratis and libre open access [https://web.archive.org/web/20230810233553/https://dash.harvard.edu/bitstream/handle/1/4322580/suber_oagratis.html],
SPARC Open Access Newsletter, issue #124, 2008.

Peter Suber,
Knowledge Unbound: Selected Writings on Open Access, 2002–2011 [https://library.oapen.org/handle/20.500.12657/26045],
MIT Press, 2016.

John P. A. Ioannidis,
Why Most Published Research Findings Are False [https://doi.org/10.1371/journal.pmed.0020124],
PLoS Med 2(8): e124. doi:10.1371/journal.pmed.0020124, 2005.

Detailed comment to the above:
http://matthew-brett.github.io/teaching/ioannidis_2005.html

Chris Drummond,
Replicability is not Reproducibility: Nor is it Good Science [http://cogprints.org/7691/],
Proc. of the Evaluation Methods for Machine
Learning Workshop at the 26th ICML, 2009.

Ian P. Gent,
The Recomputation Manifesto [https://arxiv.org/abs/1304.3674v1],
Unpublished position paper, Version 1.9479, 2013.

Michael Woelfle, Piero Olliaro, Matthew H. Todd,
Open science is a research accelerator [https://doi.org/10.1038/nchem.1149],
Nature Chemistry, Volume 3, Issue 10, 2011.

Radovan Vrana,
Open science, open access and open educational resources: Challenges and opportunities [https://doi.org/10.1109/MIPRO.2015.7160399],
International Convention on Information and Communication Technology, Electronics and Microelectronics (MIPRO), 2015.

Yale Law School Roundtable on Data and Code Sharing,
Reproducible Research: Addressing the Need for Data and Code Sharing in Computational Science [https://doi.org/10.1109/MCSE.2010.113],
Computing in Science & Engineering, Volume 12, Issue 5, 2010.

Toronto International Data Release Workshop Authors,
Prepublication Data Sharing [https://doi.org/10.1038/461168a],
Nature 461, no. 7261, 2009.

Rinze Benedictus, Frank Miedema, and Mark W. J. Ferguson,
Fewer Numbers, Better Science [https://doi.org/10.1038/538453a],
Nature News, Volume 538, Issue 7626, 2016.

J. Wilsdon et al.,
The Metric Tide: Report of the Independent Review of the Role of
Metrics in Research Assessment and Management [https://doi.org/10.13140/RG.2.1.4929.1363],
2015.

Barak A. Cohen,
Point of View: How should novelty be valued in science? [https://doi.org/10.7554/eLife.28699],
2017.

D. Cicchetti,
The reliability of peer review for manuscript and grant submissions: A
cross-disciplinary investigation [https://doi.org/10.1017/S0140525X00065675],
1991.

J. Bollen et al.,
From funding agencies to scientific agency [https://doi.org/10.1002/embr.201338068],
2014.

J. Bollen et al.,
An efficient system to fund science: from proposal review to peer-to-peer
distributions [https://doi.org/10.1007/s11192-016-2110-3],
2017.

B. Alberts et al.,
Self-Correction in Science at Work [https://doi.org/10.1126/science.aab3847],
Science Vol. 348, Issue 6242, pp. 1420-1422,
2015

B. A. Nosek et al.,
Promoting an Open Research Culture [https://doi.org/10.1126/science.aab2374],
Science Vol. 348, Issue 6242, pp. 1422-1425,
2015

Mary C. Murphy et al.,
Open science, communal culture, and women’s participation
in the movement to improve science [https://doi.org/10.1073/pnas.1921320117],
Proceedings of the National Academy of Sciences,
2020

Thomas H. Berquist,
Peer Review: Is the Process Broken? [https://doi.org/10.2214/AJR.12.9256],
American Journal of Roentgenology, Volume 199, Issue 2,
2012

Melinda Baldwin,
Peer Review [https://doi.org/10.34758/srde-jw27],
Encyclopedia of the History of Science
2020

Links

	Coursera course about Reproducible Research
	https://www.coursera.org/learn/reproducible-research

	results may vary (slides for keynote at ISMB/ECCB 2013)
	https://www.slideshare.net/carolegoble/ismb2013-keynotecleangoble

	Reproducibility in Computational Science (slides)
	https://web.stanford.edu/~vcs/talks/UMN-Oct102013-STODDEN.pdf

	The Role of Data Repositories in Reproducible Research:
	https://isps.yale.edu/news/blog/2013/07/the-role-of-data-repositories-in-reproducible-research

	#solo13lego: Research Roles Through Lego
	https://sophiekershaw.wordpress.com/2013/11/14/research-roles-through-lego/

	Reproducibility: An important altmetric
	http://altmetrics.org/altmetrics12/iorns/

	The Truth Wears Off: An odd twist in the scientific method
	https://www.newyorker.com/magazine/2010/12/13/the-truth-wears-off

	Report reveals missteps in Duke cancer trial review
	http://blogs.nature.com/news/2011/01/report_reveals_missteps_in_ini.html

	Reproducible Research in Signal/Image Processing
	http://reproducibleresearch.net/

	European Commission: Towards better access to scientific information
	https://www.eesc.europa.eu/?i=portal.en.int-opinions.24976 (PDF [https://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=COM:2012:0401:FIN:EN:PDF])

	Preserving Research: The top online archives for storing your unpublished findings
	https://www.the-scientist.com/careers/preserving-research-38930

	Post-Publication Peer Review Mainstreamed
	https://www.the-scientist.com/daily-news/post-publication-peer-review-mainstreamed-38529

	Offene Wissenschaft (de)
	https://web.archive.org/web/20180706043644/http://www.offene-wissenschaft.de/

	mozilla Science Lab
	https://wiki.mozilla.org/ScienceLab

	Panton Principles
	https://web.archive.org/web/20220921042649/https://pantonprinciples.org/

	The Open Definition
	http://opendefinition.org/

	Guide to Open Data Licensing
	http://opendefinition.org/guide/data/

	CC0
	https://creativecommons.org/publicdomain/zero/1.0/

	Joint Declaration of Data Citation Principles
	https://doi.org/10.25490/a97f-egyk

	Madagascar
	http://www.ahay.org/wiki/Main_Page

	Reproducibility Initiative
	http://reproducibilityinitiative.org/

	The Need for Openness in Data Journalism
	https://nbviewer.jupyter.org/github/brianckeegan/Bechdel/blob/master/Bechdel_test.ipynb

	Guidelines for Open Educational Resources (OER) in Higher Education
	http://www.unesco.org/new/en/communication-and-information/resources/publications-and-communication-materials/publications/full-list/guidelines-for-open-educational-resources-oer-in-higher-education/
http://oasis.col.org/handle/11599/60

	10 Simple Rules for the Care and Feeding of Scientific Data
	https://authorea.com/users/3/articles/3410/_show_article

	Scientific Python Lectures:
	https://github.com/jrjohansson/scientific-python-lectures

	Research Objects
	https://en.wikipedia.org/wiki/Research_Objects

	An efficient workflow for reproducible science (SciPy 2013)
	https://youtu.be/Y-XFNg0QS14

	Open Glossary
	https://blogs.egu.eu/network/palaeoblog/files/2015/02/OpenGlossary1.pdf

	Open Access: Berlin Declaration
	https://openaccess.mpg.de/Berlin-Declaration,
Wikipedia article [https://en.wikipedia.org/wiki/Berlin_Declaration_on_Open_Access_to_Knowledge_in_the_Sciences_and_Humanities]

	Reproducibility in Code and Science
	https://web.archive.org/web/20170903071534/http://justingosses.com/reproducibility/

	The 7 biggest problems facing science, according to 270 scientists
	https://www.vox.com/2016/7/14/12016710/science-challeges-research-funding-peer-review-process

	Journal of Articles in Support of the Null Hypothesis
	https://www.jasnh.com/

	The Transparency and Openness Promotion Guidelines
	https://www.cos.io/initiatives/top-guidelines

	épisciences
	https://www.episciences.org/

	The open archive HAL
	https://hal.archives-ouvertes.fr/

	arXiv.org
	https://arxiv.org/

	Directory of Open Access Journals (DOAJ)
	https://doaj.org/

	Amsterdam Call for Action on Open Science
	https://web.archive.org/web/20170619030655/https://english.eu2016.nl/documents/reports/2016/04/04/amsterdam-call-for-action-on-open-science

	Reproducibility and reliability of biomedical research
	https://acmedsci.ac.uk/policy/policy-projects/reproducibility-and-reliability-of-biomedical-research/

	Rigor and Reproducibility (NIH guidelines)
	https://grants.nih.gov/reproducibility/index.htm

	Analysis of meta-analyses identifies where sciences’ real problems lie
	https://arstechnica.com/science/2017/03/bias-in-science-small-samples-isolated-scientists-and-dodgy-individuals/

	Vienna Principles
	http://viennaprinciples.org/

	sciencecodemanifesto.org
	https://web.archive.org/web/20160218093215/http://sciencecodemanifesto.org/

	Peer Reviewers’ Openness Initiative
	https://www.opennessinitiative.org/

	Initiative for Open Citations
	https://i4oc.org/

	Workshop: Reproducible Research using Jupyter Notebooks
	https://reproducible-science-curriculum.github.io/workshop-RR-Jupyter/

	ACM Artifact Review and Badging
	https://www.acm.org/publications/policies/artifact-review-badging

	Science is “show me,” not “trust me”
	https://www.bitss.org/science-is-show-me-not-trust-me/

	An unhealthy obsession with p-values is ruining science
	https://www.vox.com/2016/3/15/11225162/p-value-simple-definition-hacking

	The Irreproducibility Crisis of Modern Science: Causes, Consequences, and the Road to Reform
	https://www.nas.org/reports/the-irreproducibility-crisis-of-modern-science

https://www.nas.org/storage/app/media/Reports/Irreproducibility%20Crisis%20Report/NAS_irreproducibilityReport.pdf

	Why I’ve lost faith in p values
	https://lucklab.ucdavis.edu/blog/2018/4/19/why-i-lost-faith-in-p-values

	Budapest Open Access Initiative
	https://www.budapestopenaccessinitiative.org/

	FAIR Principles (Findable, Accessible, Interoperable, Re-usable)
	https://www.nature.com/articles/sdata201618

https://www.go-fair.org/fair-principles/

https://www.force11.org/group/fairgroup/fairprinciples

https://www.force11.org/fairprinciples

	The Turing Way: Guide for Reproducible Research
	https://the-turing-way.netlify.app/reproducible-research/reproducible-research.html

	ASAPbio
	https://asapbio.org/

	eLife’s New Model: Changing the way you share your research
	https://elifesciences.org/inside-elife/54d63486/elife-s-new-model-changing-the-way-you-share-your-research

	Project Free Our Knowledge
	https://freeourknowledge.org/

	EU Council calls for transparent, equitable, and open access to scholarly publications
	https://www.consilium.europa.eu/en/press/press-releases/2023/05/23/council-calls-for-transparent-equitable-and-open-access-to-scholarly-publications/

	The Rise of Peer Review: Melinda Baldwin on the History of Refereeing at Scientific Journals and Funding Bodies
	https://scholarlykitchen.sspnet.org/2018/09/26/the-rise-of-peer-review-melinda-baldwin-on-the-history-of-refereeing-at-scientific-journals-and-funding-bodies/

	Peer Review – A Historical Perspective
	https://mitcommlab.mit.edu/broad/commkit/peer-review-a-historical-perspective/

	The Birth of Modern Peer Review
	https://blogs.scientificamerican.com/information-culture/the-birth-of-modern-peer-review/

	Is the staggeringly profitable business of scientific publishing bad for science?
	https://amp.theguardian.com/science/2017/jun/27/profitable-business-scientific-publishing-bad-for-science

 Open Education

Open Education

Note

This is, much like the fabric of space-time, and growing up, work-in-progress.

https://www.oeconsortium.org/

 Licensing

Licensing

Disclaimer

IANAL

Links

	Wikipedia article
	https://en.wikipedia.org/wiki/Creative_Commons_license

	FAQ
	https://creativecommons.org/faq/

	Open Content - A Practical Guide to Using Creative Commons Licences
	https://meta.wikimedia.org/wiki/Open_Content_%2D_A_Practical_Guide_to_Using_Creative_Commons_Licences

	Logo downloads
	https://creativecommons.org/about/downloads/

	CC0
	https://creativecommons.org/publicdomain/zero/1.0/

chooser: https://creativecommons.org/choose/zero/

	CC license chooser
	https://creativecommons.org/choose/

	Free Cultural Works
	https://freedomdefined.org/Definition

https://creativecommons.org/share-your-work/public-domain/freeworks/

	The Open Definition
	http://opendefinition.org/

	ShareAlike
	compatible licenses: https://creativecommons.org/share-your-work/licensing-considerations/compatible-licenses/

	NonCommercial
	Consequences, Risks, and side-effects of the license module Non-Commercial – NC https://blog.okfn.org/2013/01/08/consequences-risks-and-side-effects-of-the-license-module-non-commercial-use-only-2/

https://web.archive.org/web/20190322154544/https://openglam.org/files/2013/01/iRights_CC-NC_Guide_English.pdf

	CC and Data
	https://wiki.creativecommons.org/wiki/Data

	Open Data Commons
	Open Data Commons Public Domain Dedication and License (PDDL) https://opendatacommons.org/licenses/pddl/

Open Data Commons Attribution License https://opendatacommons.org/licenses/by/

Open Data Commons Open Database License (ODbL): https://opendatacommons.org/licenses/odbl/

	Guide to Open Data Licensing
	http://opendefinition.org/guide/data/

	Publisher’s Guide to Open Data Licensing
	https://theodi.org/article/publishers-guide-to-open-data-licensing/

	Software Licenses in Plain English
	https://tldrlegal.com/

	Everything an open source maintainer might need to know about open source licensing
	https://ben.balter.com/2017/11/28/everything-an-open-source-maintainer-might-need-to-know-about-open-source-licensing/

	Copyright notices for open source projects
	https://ben.balter.com/2015/06/03/copyright-notices-for-websites-and-open-source-projects/

 Re-usable Audio Data

Re-usable Audio Data

Note

This is, much like social media and freeing Tibet, work-in-progress.

Todo

Some explanations, free as in speech, CC, …

	freesound
	https://freesound.org/

	archive.org
	https://archive.org/details/audio

	MUSOPEN
	https://musopen.org/

	Free Music Archive
	https://freemusicarchive.org/

	Jamendo Music
	https://www.jamendo.com/search/

	CC mixter
	http://ccmixter.org/

	CC search
	https://search.creativecommons.org/

	Let’s CC
	http://eng.letscc.net/

	SoundCloud
	https://soundcloud.com/search/sounds

	The Audio Commons Initiative
	https://www.audiocommons.org/

	Public Domain Project
	http://publicdomainproject.org/

	Europeana Music
	https://www.europeana.eu/portal/collections/music

	Openair
	https://openairlib.net/?page_id=310

	HSD, ISAVE, stimulusdatenbank
	https://isave.hs-duesseldorf.de/forschung/projekte/stimulusdatenbank/

Multi-Track Recordings

https://archive.org/search.php?query=&and[]=mediatype%3A%22audio%22&and[]=subject%3A%22multitrack%22

http://www.soundfieldsynthesis.org/other-resources/#multitracks

https://research.cs.aalto.fi/acoustics/virtual-acoustics/research/acoustic-measurement-and-analysis/85-anechoic-recordings.html

https://www.upf.edu/web/mtg/phenicx-anechoic (Aalto denoised)

Other Lists with Links

	https://www.diigo.com/list/kvitek/Public-Domain-Audio

	https://guides.library.harvard.edu/Finding_Images/finding_audio#s-lg-page-section-2072817

	http://www.publicdomainsherpa.com/public-domain-recordings.html

 Creating a Python Module

Creating a Python Module

Note

This is, much like quantum physics, and the universe, work-in-progress.

Here are some very subjective recommendations how to create and publish a Python
module.

Coding Style

Have a look at PEP 8 [https://www.python.org/dev/peps/pep-0008/] and
PEP 257 [https://www.python.org/dev/peps/pep-0257/] and
probably also at the Google Python Style Guide [https://google.github.io/styleguide/pyguide.html].

Docstrings

Use the NumPy Docstring Standard [https://numpydoc.readthedocs.io/en/latest/format.html#docstring-standard].

Testing

py.test

Coverage

Todo

coverage tool, probably py.test extension

Online Documentation

Use Sphinx [https://www.sphinx-doc.org/] and https://readthedocs.org/.

Use sphinx.ext.autodoc [https://www.sphinx-doc.org/en/master/usage/extensions/autodoc.html]
and sphinx.ext.napoleon [https://www.sphinx-doc.org/en/master/usage/extensions/napoleon.html].

Installer

setuptools [https://setuptools.readthedocs.io/]

https://python-packaging-user-guide.readthedocs.io/

https://web.archive.org/web/20140921105456/https://caremad.io/blog/setup-vs-requirement/

https://web.archive.org/web/20201214202421/https://manikos.github.io/a-tour-on-python-packaging

https://jwodder.github.io/kbits/posts/pypkg-mistakes/

License

There are many possibilities, one of them is the
MIT license [https://opensource.org/licenses/mit-license.php]:

Copyright (c) <year> <copyright holders>

Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
THE SOFTWARE.

If your module consists of only one source file, this can be included in the top
as a comment.
This makes it easy for others to take just the one file and put it into their
own project while still keeping the copyright notice.

If the module consists of several source files, this is not necessary.
It’s enough to put the copyright notice and the license text into a file
LICENSE in the main directory (you should have this file in any case).

Further Reading

https://opensource.guide/

 Make Tutorial

Make Tutorial

Note

This is, much like the internet itself, and democracy, work-in-progress.

…

Todo

make runs other programs in the right order, handles intermediate files and generates files only if it’s necessary (i.e. if the sources have changed).

Todo

Documentation for GNU make: http://www.gnu.org/software/make/

Note

Do not use make for running LaTeX!

It may be a reasonably usable tool for this and many people use and
recommend it, e.g.

	https://robjhyndman.com/hyndsight/makefiles/

	http://kbroman.org/minimal_make/

	http://sidenote.hu/2012/02/04/makefile-for-large-latex-projects/

But there is a much superior tool for that, see Using Latexmk!

make Without Makefile

Whenever you encounter a directory with a file called Makefile in it, you know
you can run make to automatically compile/generate/do whatever is specified in
the Makefile.

But you don’t even need such a file. You can also use make all by itself.
To show an example for that, let’s create a file called hello.cpp
with the following content:

#include <iostream>

int main()
{
 std::cout << "Hello, world!" << std::endl;
}

Now we can simply run …

make hello

… and it will magically be compiled (that is, if you have make and a C++
compiler installed).

Note

You can ignore the details for now, but if you are curious, this is the exact
command that will be called by make:

g++ hello.cpp -o hello

That means the C++ compiler is compiling (and linking) the source file
hello.cpp to produce an executable file called hello
(which you can run with ./hello by the way).

The command is automatically generated by this implicit rule:

%: %.cpp
	$(LINK.cpp) $^ $(LOADLIBES) $(LDLIBS) -o $@

This uses the following variable declarations:

LINK.cc = $(CXX) $(CXXFLAGS) $(CPPFLAGS) $(LDFLAGS) $(TARGET_ARCH)

LINK.cpp = $(LINK.cc)

The variable CXX is automatically set to the default C++ compiler (in our
case g++). The other variables are by default undefined, but you can use
them to specify any options you like.

You can find out about all the rules and variables that make considers by
running make --print-data-base, but more about all that later.

A Simple Makefile

The command make hello was pretty simple, wasn’t it? But we can make it even
simpler, but for that we first have to create a Makefile to specify all the
necessary details.
The most important things to write in there, are so-called rules [http://www.gnu.org/software/make/manual/make.html#Rule-Syntax]. Those
consist of targets, prerequisites and a recipe, which can have several
lines.

target: prerequisites
	recipe
	...

A target starts at the beginning of a line and ends with a colon.
On the right side of the colon, there are zero, one or several prerequisites
(separated by spaces). Prerequisites are sometimes also called dependencies.
On the following line, after a leading tab character, there can be a recipe,
which will be used by make to update the target, if necessary. Recipes are
sometimes also called commands.

But more about that later …

Let’s create a file called Makefile with the
following content:

hello:

That’s it. Nothing more. Only one line. Only 6 characters.

This is a rule which contains only a target, i.e. the thing we want to get in
the end. In our example that’s an executable named hello. There are no
prerequisites and no recipe. When make is called without specifying a
target (like we did before with make hello), make chooses the first
target it encounters in the Makefile, which is in our case – what a
coincidence! – hello.
With our brand-new Makefile in place, we can now
simply call:

make

… and it will do the same thing as before.

Todo

this can happen:

make: `hello' is up to date.

From now on, we will make our Makefile more and more elaborate and add many
features, but the call to make will mostly stay that simple. That’s the
beauty of it.

If you run make, it looks in the current directory for a file called
Makefile or makefile. That’s nice, so we don’t have to specify
explicitly which file should be used. If we do want to specify a different
file, however, we can do so with the -f option, e.g.:

make -f MyOtherMakefile

Cleaning Up

Todo

make clean

Todo

clean-target, no prerequisites, one recipe

Todo

$(RM) vs rm

Adding Options

So using the built-in implicit rules is nice and easy, but what if we want to
tweak some options?

Well, that’s no problem.
Let’s say we want to add some options for the compiler, e.g. let’s enable some
warnings. It’s always a good idea to enable compiler warnings!
We do this by simply adding a variable to our
Makefile:

CXXFLAGS = -Wall -Wextra -pedantic

hello:

When we now run make, we see that the actual command becomes:

g++ -Wall -Wextra -pedantic hello.cpp -o hello

So it worked, our command line option was put where it belongs.

There are a lot of pre-defined variables …

Todo

CXX, CXXFLAGS, CC, CFLAGS, CPPFLAGS, LDLIBS, LDFLAGS, …

Now we know how to add options to our Makefile permanently, but what if we
want to try an option just once?

No problem, we can specify the directly at the command line as environment
variables. For example, if we want to try if our program can also be compiled
with a different compiler, we can do this:

CXX=clang++ make

…

clang++ -Wall -Wextra -pedantic hello.cpp -o hello

Let’s try something else. Let’s run the optimizer on our little program:

CXXFLAGS=-O2 make

…

g++ -Wall -Wextra -pedantic hello.cpp -o hello

But why? What happened to our -O2 setting?

Unfortunately, it was overwritten in our Makefile.
If you want to allow specifying options in environment variables, you have to
take care not to overwrite these variables.
The easiest way to do this, is to use the += operator in your
Makefile:

CXXFLAGS += -Wall -Wextra

hello:

…

CXXFLAGS=-O2 make

Et voilá:

g++ -O2 -Wall -Wextra -pedantic hello.cpp -o hello

TODO

…

make -p

make -j8

	= vs := vs ?= vs +=

	subdirs

	order-only prerequisites

	.PHONY

	.DELETE_ON_ERROR

	.NOTPARALLEL

	.SECONDARY

	VPATH, vpath

	$(BLABLA:%old=%new)

	Target/pattern-specific variable values (incl override):
http://www.gnu.org/software/make/manual/html_node/Target_002dspecific.html
http://www.gnu.org/software/make/manual/html_node/Pattern_002dspecific.html

 Using Latexmk

Using Latexmk

If you use cross-references, you often have to run LaTeX more than once, if you
use BibTeX for your bibliography or if you want to have a glossary you even need
to run external programs in-between.

To avoid all this hassle, you should simply use Latexmk [https://www.cantab.net/users/johncollins/latexmk/]!

Latexmk [https://www.cantab.net/users/johncollins/latexmk/] is a Perl [https://www.perl.org/] script which you just have to run once and it does
everything else for you … completely automagically.

And the nice thing is: you probably have it already installed on your computer,
because it is part of MacTeX [http://www.tug.org/mactex/] and MikTeX [https://miktex.org/] and it is bundled with many Linux
Distributions.

Installation

	On Linux:
	
	Perl [https://www.perl.org/] should be already installed.

	You may have to install a package called latexmk or similar.

	On macOS with MacTeX [http://www.tug.org/mactex/]:
	
	It’s probably already installed.

	If not, open “TeX Live Utility”, search for “latexmk” and install it.

	If you prefer using the Terminal:

sudo tlmgr install latexmk

	On Windows with MikTeX [https://miktex.org/]:
	
	You probably have to install Perl [https://www.perl.org/],
e.g. from here: https://strawberryperl.com/.

	If it’s not installed already, open the MikTeX Package Manager and install
the latexmk package.

Running Latexmk

Latexmk is a command line application, see below for how to use it
with batch files.

In the simplest case you just have to type

latexmk

This runs LaTeX on all .tex files in the current directory using the output
format specified by the configuration files.

If you want to make sure to get a .pdf file as output, just mention it:

latexmk -pdf

If you want to use latex instead of pdflatex but still want a .pdf
file in the end, use

latexmk -pdfps

If you want to compile only one specific .tex file in the current directory,
just provide the file name:

latexmk myfile.tex

If you want to preview the resulting output file(s), just use

latexmk -pv

And now the Killer Feature:
If you want Latexmk to continuously check all input files for changes and
re-compile the whole thing if needed and always display the result, type

latexmk -pvc

Then, whenever you change something in any of your source files and save your
changes, the preview is automagically updated.
But: This doesn’t work with all viewers, especially not with Adobe Reader.
See the section about configuration files below for setting a suitable viewer
application.

Of course, options can be combined, e.g.

latexmk -pdf -pv myfile.tex

Cleaning Up

After running LaTeX, the current directory is contaminated with a myriad of
temporary files; you can get rid of them with

latexmk -c

This doesn’t delete the final .pdf/.ps/.dvi files.
If you want to delete those too, use

latexmk -C

Running Latexmk with Batch Files

If you are working on Windows, you may not be used to typing things at the
command line. You may prefer clicking on things.

No problem, just create a file (in the same folder as your .tex files)
with the extension .bat containing

latexmk
@pause

and double-click on it.

You can of course use all the abovementioned options, don’t forget the
especially useful ones -c and -pvc.

Configuration Files

On Linux, you can put your configurations into $HOME/.latexmkrc,
which could contain something like this:

$dvi_previewer = 'start xdvi -watchfile 1.5';
$ps_previewer = 'start gv --watch';
$pdf_previewer = 'start evince';

On macOS, you can also use $HOME/.latexmkrc, e.g. with this content:

$pdf_previewer = 'open -a Skim';
$pdflatex = 'pdflatex -synctex=1 -interaction=nonstopmode';
@generated_exts = (@generated_exts, 'synctex.gz');

This uses Skim [https://skim-app.sourceforge.io/] as preview application, which can be set up to automatically
update its display when the PDF file changes by selecting
“Preferences” – “Sync” – “Check for file changes”.
While you are at it, you should also activates the SyncTeX feature by
selecting you editor right below in the “PDF-TeX Sync support” section.
With this selected and with -synctex=1 in your LaTeX call, you can
Shift-⌘-click in the preview window and jump directly to the corresponding
source text in your editor!

On Windows, you can use the system-wide config file C:\latexmk\LatexMk
(if the file doesn’t exist yet, just create a new text file with this name).
To choose a PDF viewer, use something like this:

$pdf_previewer = 'start gsview32';

You’ll need GSview and Ghostscript for that,
see http://pages.cs.wisc.edu/~ghost/gsview/.

Some previewers use different methods for updating the viewed PDF file.
You can change that with $pdf_update_method, like in this example:

$pdf_update_method = 4;
$pdf_update_command = 'bla bla bla';

Full documentation is available in the manpage [https://www.cantab.net/users/johncollins/latexmk/latexmk-480.txt].

Local Configuration Files

You can also put a configuration file in the current directory for settings
which only influence files in the current directory.
Such a configuration file has to be named latexmkrc or .latexmkrc and
may contain some of the following lines.

To specify if you want PDF or PS output, choose one of those:

$pdf_mode = 1; # tex -> pdf
$pdf_mode = 2; # tex -> ps -> pdf
$postscript_mode = 1; # tex -> ps

If you have your work split up into several parts, you have to specify the main
file like this:

@default_files = ('main.tex');

Or maybe you want to process several files:

@default_files = ('file-one.tex', 'file-two.tex');

Note

If you don’t specify @default_files, all .tex files in the
current directory will be used.

Advanced Options

Latexmk can also do more crazy stuff.

For example, it can create a nomenclature (you’ll have to use the nomencl
package) like this:

@cus_dep_list = (@cus_dep_list, "glo gls 0 makenomenclature");
sub makenomenclature {
 system("makeindex $_[0].glo -s nomencl.ist -o $_[0].gls"); }
@generated_exts = (@generated_exts, 'glo');

Or, if you are creating your figures in EPS format but you need them in PDF, you
can tell Latexmk to convert them for you:

@cus_dep_list = (@cus_dep_list, "eps pdf 0 eps2pdf");
sub eps2pdf {
 system("epstopdf $_[0].eps"); }

If you need to enable shell escape for \write18
(e.g. for on-the-fly figure generation):

$latex = 'latex -interaction=nonstopmode -shell-escape';
$pdflatex = 'pdflatex -interaction=nonstopmode -shell-escape';

And finally, if latexmk -c refuses to remove certain files, you can specify
their extensions and next time they’ll be gone:

$clean_ext = "bbl nav out snm";

Have fun!

 Getting Started with Sphinx and readthedocs.org

Getting Started with Sphinx and readthedocs.org

	new github repo

	readthedocs.org account

	install sphinx (debian package?)

	https://docs.readthedocs.io/en/latest/intro/getting-started-with-sphinx.html

	sphinx-quickstart

	edit index.rst

	run make html to check if it works

	commit and push your files to Github (but without the HTML files!)

	create a new project at readthedocs.org using your Github repo

	go to Github admin section, then to service hooks, activate ReadTheDocs

Links

Code: https://www.sphinx-doc.org/en/master/usage/restructuredtext/directives.html#showing-code-examples

TODO

	try TikZ extension: https://bitbucket.org/philexander/tikz

 My Projects and Collaborations

 Quotes

Quotes

Hard constraints are the midwife to good design.

—Maciej Cegłowski, https://idlewords.com/talks/web_design_first_100_years.htm

 Links

Links

Here are some links that don’t fit into the other categories on this website.

	Master the command line, in one page
	https://github.com/jlevy/the-art-of-command-line

	Falsehoods Programmers Believe About Names
	https://www.kalzumeus.com/2010/06/17/falsehoods-programmers-believe-about-names/

https://shinesolutions.com/2018/01/08/falsehoods-programmers-believe-about-names-with-examples/

 TODO

TODO

As mentioned before, all this is work-in-progress.

There are many things wrong, unclear or simply missing.

If you want to contribute, feel free to do so via Github:
https://github.com/mgeier/homepage

List of TODOs

The following list is automatically created by the
Sphinx TODO plugin [https://www.sphinx-doc.org/en/master/usage/extensions/todo.html].
If there is no list, either all TODOs are done (very unlikely), or they are
disabled with the option todo_include_todos = False in the file
conf.py.

Todo

Some explanations, free as in speech, CC, …

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/mg/checkouts/latest/free_audio_data.rst, line 8.)

Todo

add before commit, staging area, local commits

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/mg/checkouts/latest/git.rst, line 127.)

Todo

more about branches?

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/mg/checkouts/latest/git.rst, line 195.)

Todo

more information about merging and potential merge conflicts

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/mg/checkouts/latest/git.rst, line 200.)

Todo

git mergetool is really useful!

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/mg/checkouts/latest/git.rst, line 202.)

Todo

more advertisement for Vim and fugitive!

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/mg/checkouts/latest/git.rst, line 216.)

Todo

.gitignore, global ignore file with core.excludesfile,
reference to https://github.com/github/gitignore

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/mg/checkouts/latest/git.rst, line 257.)

Todo

clean/smudge filters
(https://nbsphinx.readthedocs.io/en/latest/usage.html#Using-Notebooks-with-Git)

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/mg/checkouts/latest/git-jupyter.rst, line 31.)

Todo

https://nbsphinx.readthedocs.io/ and others

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/mg/checkouts/latest/git-jupyter.rst, line 48.)

Todo

advantages, disadvantages

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/mg/checkouts/latest/git-jupyter.rst, line 52.)

Todo

advantages, disadvantages

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/mg/checkouts/latest/git-jupyter.rst, line 69.)

Todo

make runs other programs in the right order, handles intermediate files and generates files only if it’s necessary (i.e. if the sources have changed).

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/mg/checkouts/latest/make_tutorial/make_tutorial.rst, line 15.)

Todo

Documentation for GNU make: http://www.gnu.org/software/make/

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/mg/checkouts/latest/make_tutorial/make_tutorial.rst, line 17.)

Todo

this can happen:

make: `hello' is up to date.

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/mg/checkouts/latest/make_tutorial/make_tutorial.rst, line 120.)

Todo

make clean

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/mg/checkouts/latest/make_tutorial/make_tutorial.rst, line 141.)

Todo

clean-target, no prerequisites, one recipe

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/mg/checkouts/latest/make_tutorial/make_tutorial.rst, line 143.)

Todo

$(RM) vs rm

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/mg/checkouts/latest/make_tutorial/make_tutorial.rst, line 145.)

Todo

CXX, CXXFLAGS, CC, CFLAGS, CPPFLAGS, LDLIBS, LDFLAGS, …

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/mg/checkouts/latest/make_tutorial/make_tutorial.rst, line 169.)

Todo

coverage tool, probably py.test extension

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/mg/checkouts/latest/python.rst, line 32.)

Todo

The open definition

http://opendefinition.org/

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/mg/checkouts/latest/reproducible_research.rst, line 27.)

Todo

Reproducible Research vs. Non-Reproducible Research?

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/mg/checkouts/latest/reproducible_research.rst, line 97.)

Todo

reproducible vs. easily reproducible

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/mg/checkouts/latest/reproducible_research.rst, line 99.)

Todo

online material as supplement to traditional publications

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/mg/checkouts/latest/reproducible_research.rst, line 101.)

Todo

https://en.wikipedia.org/wiki/Reproducibility

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/mg/checkouts/latest/reproducible_research.rst, line 103.)

Todo

https://en.wikipedia.org/wiki/Open_research

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/mg/checkouts/latest/reproducible_research.rst, line 105.)

Todo

TikZ, gnuplot, beamer

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/mg/checkouts/latest/reproducible_research.rst, line 380.)

 Use a Symbolic Link

 This page was generated from
 _readthedocs/html/importing-local-python-modules-from-jupyter-notebooks/symbolic-link/symlink.ipynb.
 Interactive online version:
 [image: Binder badge]

 Manipulating sys.path in a Helper Module in the Current Directory

 This page was generated from
 _readthedocs/html/importing-local-python-modules-from-jupyter-notebooks/sys-path-in-helper-module/path-helper.ipynb.
 Interactive online version:
 [image: Binder badge]

 Manipulating sys.path in the Notebook

 This page was generated from
 _readthedocs/html/importing-local-python-modules-from-jupyter-notebooks/sys-path-in-notebook/path-notebook.ipynb.
 Interactive online version:
 [image: Binder badge]nav.xhtml

 Table of Contents

 		
 Welcome!

 		
 Getting Started with Git

 		
 Cloning a Repository

 		
 Checking the Status

 		
 Getting Recent Changes from the Server

 		
 Initial Setup

 		
 Command Line Prompt

 		
 Committing Changes

 		
 Pushing Your Changes to the Server

 		
 Creating and Switching Branches

 		
 Merging Branches

 		
 More Aliases

 		
 Ignoring Local Files

 		
 Attributes

 		
 GUIs for Git

 		
 Getting Help

 		
 Git and Subversion (SVN)

 		
 Public Git Hosting Sites

 		
 More Documentation/Links

 		
 TODO

 		
 Jupyter Notebooks in a Git Repository

 		
 Executing Notebooks on a Server

 		
 Executing Notebooks in a Separate Branch

 		
 Getting Started from Scratch

 		
 Getting Started with Pre-executed Notebooks

 		
 Making a Change

 		
 Executing All Notebooks

 		
 Cleaning All Notebooks

 		
 Cleaning a Whole Repository

 		
 Importing Local Python Modules from Jupyter Notebooks

 		
 Use a Symbolic Link

 		
 Manipulating sys.path in the Notebook

 		
 Manipulating sys.path in a Helper Module in the Current Directory

 		
 Audio in Python

 		
 Reproducible Research

 		
 Definitions

 		
 Openness

 		
 Replicability vs. Reproducibility

 		
 Guidelines

 		
 What Should be Reproducible?

 		
 Criticism

 		
 Software

 		
 Python

 		
 LaTeX

 		
 Git

 		
 More Software

 		
 Publication Tools

 		
 Online Services

 		
 Journals

 		
 Publications

 		
 Links

 		
 Open Education

 		
 Licensing

 		
 Links

 		
 Re-usable Audio Data

 		
 Multi-Track Recordings

 		
 Other Lists with Links

 		
 Creating a Python Module

 		
 Coding Style

 		
 Docstrings

 		
 Testing

 		
 Coverage

 		
 Online Documentation

 		
 Installer

 		
 License

 		
 Further Reading

 		
 Make Tutorial

 		
 make Without Makefile

 		
 A Simple Makefile

 		
 Cleaning Up

 		
 Adding Options

 		
 TODO

 		
 Using Latexmk

 		
 Installation

 		
 Running Latexmk

 		
 Cleaning Up

 		
 Running Latexmk with Batch Files

 		
 Configuration Files

 		
 Local Configuration Files

 		
 Advanced Options

 		
 Getting Started with Sphinx and readthedocs.org

 		
 Links

 		
 TODO

 		
 My Projects and Collaborations

 		
 Created and Maintained by Me

 		
 sounddevice Module for Python

 		
 rtmixer Module for Python

 		
 jack Module for Python

 		
 nbsphinx Extension for Sphinx

 		
 sphinx_last_updated_by_git Extension for Sphinx

 		
 An HTML theme for Sphinx: insipid

 		
 Jupyter Notebooks About Python & Audio

 		
 This “Homepage”

 		
 jupyter_format module for Python

 		
 A Reusable Slice of References for Rust

 		
 Rust FFI bindings to the libFLAC library

 		
 Rust FFI bindings to the minimp3_ex library

 		
 Work In Progress: Audio Scene Description Format (ASDF)

 		
 Collaborations

 		
 The SoundScape Renderer

 		
 sfs Module for Python

 		
 soundfile Module for Python

 		
 Exercises for “Communication Acoustics” Lecture

 		
 Real-Time Ring Buffer for Rust

 		
 Minor Contributions

 		
 Audio-Related

 		
 Sphinx and Related

