

Warning

This is the documentation for a development version of methodalyze.

Documentation for the Most Recent Stable Version [http://methodalyze.readthedocs.io/en/stable]

Welcome to methodalyze

Evaluate the reproducibility of scientific protocols.

On this page:

	Installation

	Contributing

	License Information

	Changelog

	Indices and tables

Installation

Installation should be as easy as executing this command in your chosen terminal:

$ pip install methodalyze

The source code for this project is hosted on Github [https://github.com/scolby33/methodalyze].
Downloading and installing from source goes like this:

$ git clone https://github.com/scolby33/methodalyze
$ cd methodalyze
$ pip install .

If you intend to install in a virtual environment, activate it before running pip install.

See Installation for further information about installing methodalyze in all manner of ways.

Contributing

methodalyze is an open-source project, and, so far, is mostly a one-person effort.
Any contributions are welcome, be they bug reports, pull requests, or otherwise.
Issues are tracked on Github [https://github.com/scolby33/methodalyze/issues].

Check out Contributing for more information on getting involved.

License Information

methodalyze is Copyright (c) 2017 Scott Colby. All rights reserved.

The full text of the license is available here and in the root of the source code repository.

Changelog

methodalyze adheres to the Semantic Versioning (“Semver”) 2.0.0 versioning standard.
Details about this versioning sheme can be found on the Semver website [http://semver.org/spec/v2.0.0.html]
Versions postfixed with -dev are currently under development and those without a postfix are stable releases.

The current version of methodalyze is 0.1.0-dev.

Full changelogs can be found on the Changelog page.

Indices and tables

	Index

	Module Index

	Search Page

Warning

This is the documentation for a development version of methodalyze.

Documentation for the Most Recent Stable Version [http://methodalyze.readthedocs.io/en/stable]

Installation

There are many ways to install a Python package like methodalyze. Here many of those will be explained and the advantages of each will be identified.

If you are not yet familiar with virtual environments, stop reading this documentation and take a few moments to learn. Try some searches for “virtualenv,” “virtualenvwrapper,” and “pyvenv.”
I promise that they will change your (Python) life.

Where to Get the Code

From PyPI

Stable releases of methodalyze are located on PyPI, the PYthon Package Index [https://pypi.python.org/pypi].
Installation from here is easy and generally the preferred method:

$ pip install methodalyze

From GitHub

pip is also able to install from remote repositories. Installation from this project’s GitHub repo can get you the most recent release:

$ pip install git+https://github.com/scolby33/methodalyze@master#egg=methodalyze-latest

This works because only release-ready code is pushed to the master branch.

To get the latest and greatest version of methodalyze from the develop branch, install like this instead:

$ pip install git+https://github.com/scolby33/methodalyze@develop#egg=methodalyze-latestdev

In both of these cases, the #egg=methodalyze_complete-version part of the URL is mostly arbitrary. The version part is only useful for human readability and the methodalyze part is the project name used internally by pip.

From a Local Copy

Finally, pip can install from the local filesystem:

$ cd /directory/containing/methodalyze/setup.py
$ pip install .

Installing like this lets you make changes to a copy of the project and use that custom version yourself!

Installing in Editable Mode

pip has a --editable (a.k.a. -e) option that can be used to install from GitHub or a local copy in “editable” mode:

$ pip install -e .

This, in short, installs the package as a symlink to the source files. That lets you edit the files in the src folder and have those changes immediately available.

Warning

This is the documentation for a development version of methodalyze.

Documentation for the Most Recent Stable Version [http://methodalyze.readthedocs.io/en/stable]

Contributing

There are many ways to contribute to an open-source project, but the two most common are reporting bugs and contributing code.

If you have a bug or issue to report, please visit the issues page on Github [https://github.com/scolby33/methodalyze/issues] and open an issue there.

If you want to make a code contribution, check out the contributing page in the docs for more information.

Note

Remember to add yourself to AUTHORS.rst if you make a code contribution!

Setup

Here’s how to get set up to contribute to methodalyze.

	Fork the methodalyze repository on GitHub [https://github.com/scolby33/methodalyze]
(the fork button on the top right!)

	If your change is small, you may be able to make it directly on GitHub via their online editing process.

If your change is larger or you want to be able to run tests on your contribution, clone your forked repository locally:

$ cd /your/dev/folder
$ git clone https://github.com/your_username/methodalyze

This will download the contents of your forked repository to /your/dev/folder/methodalyze

	If you’re comfortable with a test-driven style of development, the only thing you need to install is tox [http://tox.readthedocs.io/en/latest/],
either via the sometimes-temperamental but still useful pipsi [https://github.com/mitsuhiko/pipsi] (my choice), in a virtual environment,
or just system-wide via pip:

$ pipsi install tox
or
$ pyvenv my-virtual-env
$ source my-virtual-env/bin/activate
$ pip install tox
or
$ pip install tox

With tox installed, all tests, including checking the MANIFEST.in file and code coverage can be performed just by executing:

$ tox

tox handles the installation of all dependencies in virtual environments (under the .tox folder) and the running of the tests.

To develop like this, simply write your tests and your code and run tox once in a while to check how you’re doing.

It is also possible to develop as usual by installing methodalyze in editable mode with pip (preferably in a virtual environment):

$ cd /your/dev/folder/methodalyze
$ cd pip install -e .

Tests should still be run via tox, but installing the package in this way gives you the flexibility to test things out in the REPL more easily.

Branches

Development of methodalyze follows the “git flow” philosophy [http://nvie.com/posts/a-successful-git-branching-model/] of branching.
Development takes place on the develop branch with individual features being developed on feature branches off of develop.
Further reading on this style can be found in this blog post [http://jeffkreeftmeijer.com/2010/why-arent-you-using-git-flow/] by Jeff Kreeftmeijer.
A git plugin to aid in managing branches in this way, called git-flow, can be found here [https://github.com/nvie/gitflow].

This might seem a bit complicated, but in general you won’t have to worry about it as a contributor.
The long and short of this system for you is:

	make a new branch prefixed with “feature/” off of develop before starting work on your contribution
(git checkout -b feature/descriptive-feature-name develop)

	when pushing changes to your repository, push the right branch! (git push origin feature/descriptive-feature-name)

The maintainers will take care of any other issues relating to this.

Pull Requests

Once you’ve got your feature or bugfix finished (or if its in a partially complete state but you want to publish it
for comment), push it to your fork of the repository and open a pull request against the develop branch on GitHub.

Make a descriptive comment about your pull request, perhaps referencing the issue it is meant to fix (something along the lines of “fixes issue #10” will cause GitHub to automatically link to that issue).
The maintainers will review your pull request and perhaps make comments about it, request changes, or may pull it in to the develop branch!
If you need to make changes to your pull request, simply push more commits to the feature branch in your fork to GitHub and they will automatically be added to the pull.
You do not need to close and reissue your pull request to make changes!

If you spend a while working on your changes, further commits may be made to the main methodalyze repository (called “upstream”) before you can make your pull request.
In keep your fork up to date with upstream by pulling the changes–if your fork has diverged too much, it becomes difficult to properly merge pull requests without conflicts.

To pull in upstream changes:

$ git remote add upstream https://github.com/scolby33/methodalyze
$ git fetch upstream develop

Check the log to make sure the upstream changes don’t affect your work too much:

$ git log upstream/develop

Then merge in the new changes:

$ git merge upstream/develop

More information about this whole fork-pull-merge process can be found here on Github’s website [https://help.github.com/articles/fork-a-repo/].

Code Style

To make sure your contribution is useful to the overall methodalyze project, you should follow a few conventions.

Run the Tests

Make sure your modifications still pass all tests before submitting a pull requests:

$ tox

Changes that break the package are mostly useless.

Add New Tests

If you add functionality, you must add tests for it! Untested code is antithetical to reliability.
Pull requests that reduce code coverage will likely be rejected.
You can check your coverage in the output from tox. Lines and files that lack test coverage will be noted there too!

Check out the tests (files that start with test_ under src/tests) to see how previous tests have been written and match your new tests to this style.
Tests are performed with pytest.

Try and keep your tests simple–tests shouldn’t need tests for themselves! Some verbosity in tests isn’t the end of the world if it helps to maintain clarity.

Keep Code Changes and Whitespace Cleanup Separate

This is pretty self-explanatory. Code changes and whitespace cleanup should not be mixed–keep them in separate pull requests.

Keep Pull Requests Small

Generally, pull requests should be targeted towards one issue. If you find yourself modifying large swathes of code spanning multiple fixes, thing about splitting your pull request into two (or more!) smaller ones.
Large pull requests will likely be rejected.

Follow PEP-8 (ish) and the Zen of Python

If you haven’t before, check out the Zen of Python (python -c 'import this') and attempt to keep your code in line with its philosophy.
Simple is better than complex!

Keep best practices for formatting Python code in mind when writing your contribution. PEP-8 [https://www.python.org/dev/peps/pep-0008/] is generally followed in this project, but not pedantically. Line lengths, for example, are often allowed to creep up if it seems reasonable.
If you haven’t seen Raymond Hettinger’s Beyond PEP 8 [https://www.youtube.com/watch?v=wf-BqAjZb8M] presentation, I urge you to go watch it.
Unthinking adherence to the “rules” of PEP-8 is not demanded nor is it the best way to write good, Pythonic code.

Making a Release

The steps for making a release of methodalyze are:

Warning

This is the documentation for a development version of methodalyze.

Documentation for the Most Recent Stable Version [http://methodalyze.readthedocs.io/en/stable]

License

Copyright (c) 2017 Scott Colby. All rights reserved.

Warning

This is the documentation for a development version of methodalyze.

Documentation for the Most Recent Stable Version [http://methodalyze.readthedocs.io/en/stable]

Changelog

methodalyze adheres to the Semantic Versioning (“Semver”) 2.0.0 versioning standard.
Details about this versioning sheme can be found on the Semver website [http://semver.org/spec/v2.0.0.html]
Versions postfixed with -dev are currently under development and those without a postfix are stable releases.

The current version of methodalyze is 0.1.0-dev.

Warning

This is the documentation for a development version of methodalyze.

Documentation for the Most Recent Stable Version [http://methodalyze.readthedocs.io/en/stable]

TODO

Note

TODO items found in the documentation (marked with the .. todo:: directive) will be included here automatically.

Index

 nav.xhtml

 Table of Contents

 		Welcome to methodalyze

_static/comment.png

_static/plus.png

_static/down.png

_static/comment-close.png

_static/file.png

_static/minus.png

_static/up-pressed.png

_static/comment-bright.png

_static/up.png

_static/down-pressed.png

_static/ajax-loader.gif

