

Welcome to MetaModels!

This is the official documentation of MetaModels, an extension for the Contao Content Management System [https://contao.org].

This documentation is split into three sections:

In the Manual you find general documentation about MetaModels.

In the Cookbook you find specific solutions for specific needs.

In the Reference you find reference information like a list of events.

If you want to contribute, too, please click the „Edit on GitHub“ link in the upper right corner or visit our
GitHub project page [https://github.com/MetaModels/docs].

Manual

	Introduction to MetaModels
	What are MetaModels?

	History of MetaModels

	MetaModels in comparison with other tools

	Resources

	Install and update MetaModels
	Installation of MM 2.2

	Installing MM 2.1

	Testing of special packages via Composer

	The first MetaModel
	Install with composer

	Create MetaModels

	Create attributes

	Create Rendersettings

	Input Screens

	View conditions

	We are ready to enter Data

	Filter Setting

Cookbook

	MetaModels “cookbook”
	MetaModels checklists

	Input mask: populate fields with pre-defined values

	Input screens: custom RegEx test

	View condition: Display s.th., if the checkbox is not activated

	Debug templates

Reference

	MetaModels API
	Core Interfaces

	MetaModels reference
	MetaModels API

Indices and tables

	Index

Introduction to MetaModels

What are MetaModels?

MetaModels is an extension for the Contao CMS. This extension enables you to input a large variety of structured data and display it on your website following different criteria such as list and detail views, filtering, sorting, pagination, multilingualism and many more..

“Structured data” means content, which is usually stored in a database scheme with different tables and relations.
MetaModels supports different types of field types (attributes) as for example text, selects, check boxes, radio buttons, integers/decimal, yes/no fields, file selection etc.

Possible applications for such data content are in the fields of product catalogues, events, menues, adress or employee lists, houses and rental properties, picture galleries or multilingual text/image content.

With MetaModels, the data models can be created completely in the Contao backend. There is no need for you to code, as for a specific extension.
Both the creation of the input masks for the backend as well as the output for the frontend with optional filters belongs to the creation of a MetaModel.

The MetaModels extension features a high flexibility for data input and output and thereby covers a lot of specific needs.
You can find more details in Function overview.
Also have a look at some MetaModels show cases [https://now.metamodel.me/en/showcase] or check the Contao forum [https://community.contao.org/de/showthread.php?40208-Stellt-eure-MetaModel-Websites-vor/] for further show cases introduced in the german forum.

History of MetaModels

Metamodels started out as the next generation of the famous Catalog extension.

Over time ‘Catalog’ developed into a complex extension and offered many possibilities combined with Contao. But unfortunately it became more and more difficult to maintain the code and to implement new functions.

From the experiences we gained with the development of Catalog 1 and Catalog 2, it became clear to us, that we needed to start from scratch.

That’s why we developed “MetaModels”: a totally new extension influenced by many modern programming paradigms. Our goal was to develop an extension with a flexible and extensible code base.

The current Metamodels version 2.0 is the result of many hours of discussion about what is “the best solution” and hard programming work.

MetaModels in comparison with other tools

MetaModels works well with the division of labour between administrator and editor which means: the administrator or developer creates one or multiple MetaModels with input masks and output functions and the editor(s) can add the content as they are already used to from other areas of the Contao backend.

The input masks allow you to accurately specify which data has to be entered (or can be entered) and how. The extensions “[dma_elementgenerator]” or “[rocksolid-custom-elements]” also provide similar functions. The difference is that MetaModels will allow you to even display complex data structures and additionally provides you with various functions for output and filtering.

Before starting a new project you might wonder whether it is better to develop your own extension instead of using MetaModels. But there is no general answer to this question, because both solutions will enable you to solve various problems. The following aspects might help you to make your decision:

Pro developing own extension: Is it required to develop a product which can be marketed, as for example a commercial extension which can be made available to other Contao users at the push of a button? Then you should consider developing your own specific extension.
The basic requirements to do so are appropriate skills in PHP programming and knowledge of the Contao API.

Pro MetaModels:
In case that you want to implement a very individual solution which can be quickly customised in the Contao backend, MetaModels is certainly a good choice. If you also need specific functions e.g. supporting multilingualism, MetaModels can play fully on its strengths. MetaModels supports users to develop a solution without programming.
But it should be noted that only with some basic knowledge in PHP, HTML, and SQL databases, you will be able to make fully use of the opportunities provided by MetaModels.

Resources

	MetaModels project website [https://now.metamodel.me]

	MetaModels on Github [https://github.com/MetaModels]

	MetaModels manual on Github [https://github.com/MetaModels/docs]

	MetaModels Contao Wiki [http://en.contaowiki.org/MetaModels]

	MetaModels Contao community subforum [https://community.contao.org/en/forumdisplay.php?184-MetaModels]

	MetaModels IRC Channel on freenode #contao.mm

Install and update MetaModels

The current MetaModels 2.1 is extensively tested and approved for LTS 4.4.

MetaModels 2.2 for Contao 4.9 (new LTS) is in progress - but can be installed immediately.
For more information see Installing MM 2.2

The installation of MM 2.1 requires PHP version 7.1 or higher - PHP 7.2 is recommended.

MetaModels 2.1 can be installed via the Contao-Manager or via the console via Composer.
see the following section.

See also

For a re-financing of the extensive work, the MM team asks for financial
Gift. The scope of the project to be realised should be taken as a guideline.
and about 10% will be taken into account - based on the experience of the last grants, are
the amounts between 100? and 500? (net) - an invoice incl. VAT will of course always be
is on display. More… [https://now.metamodel.me/de/unterstuetzer/spenden]

Installation of MM 2.2

MetaModels 2.2 brings full compatibility with Contao 4.9 and several features and
Optimizations. For example, MM 2.2 is compatible with the strict mode of higher
MySQL versions or current MariaDB or manual file sorting.

The installation requirements for MetaModels 2.2 are

	a running Contao 4.9.x (LTS) and

	PHP 7.2/7.3

	MySQL from 5.5.5 (InnoDB), MariaDB

MetaModels 2.2 is now ready for use and can be started via the Composer (console)
or the Contao Manager can be installed. get access to the currently protected repository
about our “eary adopter program” - more about this under Fundrasing on the
MM website [https://now.metamodel.me/en/supporters/fundraising#metamodels_2-2].

Further features of MM 2.2 (will be added continuously):

	compatible with the strict mode of MySQL and MariaDB

	manual file sorting (including translated files)

Installing MM 2.1

The installation requirements for MetaModels 2.1 are:

	a running Contao 4.4.x (LTS) and

	PHP 7.1/7.2

	MySQL from 5.5.5 (InnoDB), MariaDB (without strict mode)

Higher versions of Contao and/or PHP are possible, but not officially supported.

In the Contao manager you can enter metamodels/ to get all available packages
are listed. The basic package metamodels/core has to be installed - and in addition
additional attributes and filters can be added depending on the task.

In addition to the individual packages, there are bundles which contain different packages for a
simplified installation.

For an introduction to MetaModels we recommend the bundle metamodels/bundle_start - herewith
the core as well as the most important attributes and filters are defined without e.g. the packages for multilingualism
installed.

As in MetaModesls 2.0, there is also the metamodels/bundle_all bundle, which is installed next to the
bundle_start will also install the multilanguage packages (note: the translatedselect packages are also installed).
translated tags are no longer included here, as they are only to be used for special cases).

Further modules like “Register filter”, “Radius search”, “Rating” etc. are available as separate packages
to add.

In addition to the Contao Manager, the installation of packages and bundles can be done directly via the console via
Composer possible - e.g. with

php web/contao-manager.phar.php composer require metamodels/core

or

php web/contao-manager.phar.php composer require metamodels/bundle_start

Instead of php you may have to specify the path to the corresponding PHP binary.

After the installation a update of the database is not possible via the install tool of Contao.
to forget!

With a conversion (2.0 -> 2.1) or a new installation it is a good opportunity to only use the attributes and filters
which are necessary for the project. Was previously e.g. metamodels/bundle_all in use,
you can query the really used attributes and filters with the following SQL commands:

	1
2
3
4
5

	-- Attribute
SELECT type FROM `tl_metamodel_attribute` GROUP BY type ORDER BY type

-- Filter
SELECT type FROM `tl_metamodel_filtersetting` GROUP BY type ORDER BY type

Testing of special packages via Composer

The bundle ‘bundle_all’ contains all currently available and released MetaModels packages. Additionally there are packages with bugfixes or brandnew functions that have to be tested. For the MetaModels core this could be e.g. a package called “dev-hotfix-xyz”. You can see those packages inter alia on Github within the corresponding repository (e.g. MetaModels/core) in the
‘branches’ tab [https://github.com/MetaModels/core/branches].

In case that you want to test a package like this, you’ll have to separately select and install it in the package management.
For the selection in the package management, check the checkbox “dependencies i nstalled” and then click on the corresponding package, e.g. ‘metamodels/core’ and aditionally in the following options click on e.g. ‘dev-hotfix-xyz’.

After “Reserve package for installation” you’ll have to make some small changes to Composer-JSON. To do this go to the package manager to “settings” and there click onto “expert mode”. The displayed JSON file has to be extended with the entry “as 2.0.0” within the node “require”. If you happen to have several extra packages you have to do this for every entry.

for example:

"metamodels/core": "^2.1" modify to

"metamodels/core": "dev-hotfix/2.1.25 as 2.1.25"

After the installation via “update packages” you should delete the Composer cache in the “settings” of the package management.

As MetaModels is closely interlinked with the DC_general (DCG), you will frequently need to update to a newer version here as well for testing.
The procedure is the same as for MetaModels including the adjustment of the JSON entry with the “as 2.0.0”.

To come back to the initial version , just delete the package in the package management.

Please never forget to provide the MetaModels developer team with your valuable feedback after your test on
Github [https://github.com/MetaModels].

The first MetaModel

Install with composer

You’ll need the MetaModels core and some attributes / filter to get MetaModels running. In you composer search
metamodels/core an metamodels/bundle_all to install the core and all bundles and filters.
Don’t forget to run composer install through „Update packages“.
When installed, run the database update and your MetaModels installation is done.

Note

If you know that you don’t need all attributes and/or filter you can install every single package by it’s own.

Create MetaModels

To get started with MetaModels we need at least one MetaModel, jai! We will build a small MetaModel, non translated,
MetaModel for real estate references.

In our example we need two MetaModels:

	reference

	(the MetaModel which contain the real estate objects)

	category

	(the MetaModel to define categories for references)

Create reference and category metamodels.

Create attributes

An (empty) MetaModel is just a container for your data objects. But before you can store data in your MetaModel, you
need to define some types of data which you like to store.

In MetaModels there are several „attributes“ to store different kind of data. Most of the time you need at least a
text attribute (e.g. to store a name).

mm_reference

Our reference will contain these attributes:

	Name (text)

	Alias (alias)

	Published (checkbox)

	Description (longtext)

	Keyfacts (tabletext)

	Category (multiple select)

	Highlight-Picture (file)

	Picture Gallery (file, multiselect)

Name

	Attribute Type

	text

	Column Name

	name

	Name

	Name

	Description

	Name of reference

Alias

The alias is an (optional) unique Name / identifier for the data record.

	Attribute Type

	alias

	Column Name

	alias

	Name

	Alias

	Unique

	Yes

	Description

	Alias of reference

	Alias-Fields

	Name [text]

Published

	Attribute Type

	checkbox

	Column Name

	published

	Name

	Published

	Published

	yes

Description

	Attribute Type

	longtext

	Column Name

	description

	Name

	Description

	Description

	Description of reference

Keyfacts

	Attribute Type

	tabletext

	Column Name

	keyfacts

	Name

	Keyfacts

	Label

	Entry

	Width

	500

Category

	Attribute Type

	multi select

	Column Name

	category

	Name

	Category

	Description

	Select a category for the reference

	Database table

	mm_category

Currently, we haven’t added attributes to our mm_category MetaModel. So for the moment leave the other selects
blank, we’ll get back later.

Highlight picture

	Attribute type

	file

	column name

	picture_highlight

	Name

	Highlight picture

	Customize filetree (optional)

	select a „content“ folder where the reference pictures are stored

Gallery

	Attribute type

	file

	column name

	picture_gallery

	Name

	Gallery

	Customize filetree (optional)

	select a „content“ folder where the reference gallery pictures are stored

	multiselect

	yes

mm_category

For our category MetaModel we just need four attributes:

	name (text; „name“)

	alias (alias; „alias“)

	published (checkbox; „published“)

	description (longtext; „description“)

Create the attributes as you have just learned in the reference MetaModel.

Select configuration

Early, we introduced in our „reference“ MetaModel a select attribute but leaved it’s configuration nearly blank.

The real power of MetaModel now gets obvious here. With a simple select attribute you can easily connect MetaModels
(or any other sql-table) and optional filter the objects. Filter…? We’ll talk about this later.

Edit the „multi select“ attribute in your „References“.

Choose:

	table

	mm_category

	Name

	name - text

	Alias

	alias - alias

	Sorting

	sorting

Create Rendersettings

For now, we have two MetaModel with some attributes and a link between booth. But we didn’t want just to store some
data, we also like to display them.

A render setting contains some global settings, attributes you like to display and there settings.
No matter if you like to display data in the backend or fronted you need at least one render setting. But we recommend
to create at least one setting for the backend and one for the frontend.

Note

Prefix your render setting name with BE / FE for easy relocating*.

Basic-settings

Note

MetaModels provides a set of well organized, solid templates. There are templates for each render setting
(e.g. metamodel_prerendered). You can create your own templates the contao why (Backend > Templates > Create >
select the template you like to overwrite > Save (maybe with a new / name addition) > Edit > Choose)

-metamodel_prerendered All attributes are rendered with there template and settings (if available)
-metamodel_unrendered All attributes are rendered in „raw“ to the frontend (the settings of the child attributes are

ignored)

Output Format:

-HTML 5 Renders as HTML5 content (This is the default format in Contao and therefore suggested).
-XHTML Renders as xhtml (this format is deprecated in Contao and therefore not suggested).
-Text Renders the „content“ as plaintext.

Jump-to-Page

The jump-to-page comes into the game when we like to display our references as list with a detail link to one item.
So you need to define a jump-to-page where the user gets redirected if he clicks on a „detail“ link of one of our
reference objects.

The filter setting define the rules for the target, your detail page.

Expert-settings

	hide empty entries

	yes

	hide labels

	yes

Create a rendersetting (backend)

Go to the „render settings“ of „reference“.

	Create a render setting called „BE: references“

	Add „all attributes“

	After adding, activate „name“ and „category“

Note

When you (later) add attributes to your MetaModel you need to add them also in your render setting.*

Create a rendersetting (frontend list)

Go to the „render settings“ of „reference“.

	Create a render setting called „FE: references list“

	Add „all attributes“

	After adding, activate „name“, „category“, „picture_highlight“

Create a rendersetting (frontend detail)

Go to the „render settings“ of „reference“.

	Create a render setting called „FE: reference detail“

	Add „all attributes“

	After adding, activate „name“, „description“, „category“, „picture_highlight“, „picture_gallery“

Input Screens

For now there are two MetaModels with some Attributes and Rendersetting. But how do we get data in our MetaModels?
With input screens!

Input Screens could hold a collection of these attributes which are necessary to grep some data.
Most times you just add all attributes in one Input Screen, but with the power of different input screen you can create
different edit masks for different kind of user(groups).

But in our tutorial we just need one input screen for our users.

Basic-settings

So create a Input Screen with the following settings:

	Name

	BE: References

	Standard

	yes

	Panel-Layout

	-leave this empty-

	Integration

	standalone

	Backend-Section

	Content

	Render mode

	Flat

	Data manipulation permission

	We want to allow editing, creating and deleting items - so choose all three.

Select configuration

Okay. Now we got the empty Input Screen container with a few settings. But to get things working, we need (remember
the render setting!) some attributes in it.

Switch to the „settings“ of your currently created Input Screen and choose „add all“.

Define Attribute settings

Our input screen is ready. But we need tweak the attributes a little bit. For example we always want a name, description
and Highlight Picture.

To get this done, we choose in these attribute settings the „mandatory“.

Grouping and sorting settings

In the grouping & sorting section you need to create at least one object to sort & maybe group your entries.

For example: “Enable manual sorting” without grouping.

View conditions

View conditions are the easy part in MetaModels. But, you might guess that you also need here at least one to get things
work.

The view conditions define who could see and use which render setting and input screen.

Define a view condition

Define one view condition with following settings:

	member-group

	-leave this empty-

	user-group

	administrator

	input screen

	BE: Referenz

	Rendersetting

	BE: Referenz

We are ready to enter Data

Some time ago, we started with just a MetaModels package and already arrived to create data. Easy, hm?

Continue to the new „Referenz“ entry in your „content“ navigation and add a first item.

Filter Setting

(Todo)

MetaModels “cookbook”

Our MetaModels “cookbook” provides you with numerous snippets, tips and tricks on how to best use MetaModels.

We are happy to include interesting and creative solutions to our list - please send your “receipts” or links to the forum or other websites to the following email: manual@metamodel.me

	MetaModels checklists

	Input mask: populate fields with pre-defined values

	Input screens: custom RegEx test

	View condition: Display s.th., if the checkbox is not activated

	Debug templates

MetaModels checklists

Short checklists for you to review if s.th. doesn’t work as expected.

	Start with MetaModels

	Filter is not displayed

	An attribute isn’t displayed following a modification

Start with MetaModels

You should consider some basic things when you start with MetaModels.

The MetaModels project is running quite stable - nevertheless it is in constant development. In interaction with other components, such as the DC_general (DCG) or the Contao core, there may be a data loss. That’s why it is highly recommended to set up a regular backup.

Checklist:

▢ Did you install the current version of MetaModels and DCG (preferably via Composer)?

▢ In Contao “System settings” activate the checkboxes “Bypass the internal cache” in the section “Global configuration” and also “Display error messages” in the section “Security settings”. Subsequently purge all the caches.

▢ Set up a regular backup

▢ For known bugs and errors take a look on our forum [https://community.contao.org/en/forumdisplay.php?184-MetaModels] or on Github [https://github.com/issues?user=MetaModels]

Filter is not displayed

A desired filter is not displayed on the website.

Checklist:

▢ Did you create the filter setting?

▢ Did you enable the filter setting?

▢ Is the filter setting selected in your FE or CE module (“Filter settings to apply”)?

▢ Is the filter rule activated in your FE or CE module (attributes)?

▢ Is the FE or CE module set to activated/visible?

An attribute isn’t displayed following a modification

After the modification of an attribute (e.g. attribute type) it isn’t displayed (anymore) on the website.

Checklist:

▢ Check the attribute listings in the render settings and input screens

▢ Delete the respective attribute in the render settings and add it as new again

▢ If necessary, enter the values again into the input mask after the modification.

▢ Check the debug output whether the attribute is output in the template

Input mask: populate fields with pre-defined values

The input fields in the input masks can be already filled in with pre-defined standard values. This can greatly facilitate data entry for the user, when creating new data records.

The metamodels input fields can be (almost) used in the same way as the input fields of the Contao core or common Contao extensions which have been created with a DCA array.
There are some differences because MetaModels generates fields dynamically by the dc-general.

You can create pre-defined values with the key “default” added to the dc-array.
The dc-array can be amended either by an entry in the file “dcaconfig.php” in the folder “/system/config/” or if there is an own module folder in the file “config.php”.

Appropriate entries are already set up in the module “Metamodels-Boilerplate” [https://github.com/MetaModels/boilerplate]
in the file “config.php”.

To enter a pre-defined value, you need to know the (internal) name of the MetaModel and the column name of the attribute. This informations may be given with an array entry in the following general form:

	1
2

	<?php
$GLOBALS['TL_DCA']['<MM-Table-Name>']['fields']['<Field-Column-Name>']['default'] = <Value>;

E.g. for an email field ([text]) from The first MetaModel the default value could be set up like this:

	1
2

	<?php
$GLOBALS['TL_DCA']['mm_employeelist']['fields']['email']['default'] = '@mmtest.com';

There are specifications for individual attribute types. Here is in which form the values are expected:

	Text: Text in inverted commas e.g. ‘@mmtest.com’

...['default'] = '@mmtest.com';

	Timestamp: Integer for the timestamp e.g. 1463657005 or PHP function time()

...['default'] = 1463657005; or

...['default'] = time();

	Select: Integer of the ID of the value in inverted commas

...['default'] = '2';

	Multiple selection: Array with alias values from the selected alias column

...['default'] = array('purchase', 'marketing');

	Checkbox: true

...['default'] = true;

As you can see from the attribute “Timestamp”, dynamic specifications are feasible. It would be possible to use existing values from MetaModels and to output them - if necessary with a calculation - as default.
The methods of the API (ref_api_interf_mm) are available to you in order to access MetaModels.

Input screens: custom RegEx test

You can implement your own RegEx validation for a text input field in an input screen with the following event listener.

To implement it, respectively to activate it for the field in the input screen, this validation must be made available for Contao on-board functionality.

In order to do so, we’ll create the following hook “addCustomRegex” as follows - see API: addCustomRegex [https://docs.contao.org/books/api/extensions/hooks/addCustomRegexp.html]

	create a folder for your custom module in /system/modules - e.g. “/metamodels_mycustoms”

	in the folder metamodels_mycustoms add two more folders named “/config” and “/classes”

	in the folder /classes add the file “MyClass.php” as described in Contao API

	in the folder /config add the file “config.php” as described in Contao API

	additionally in the folder /config the file “event_listeners.php” - the key of the array $options must be the same as the value obtained from testing of $strRegexp in /MyClass (‘zip’)

	after you have created all the files and filled them with code, you can create the autoload.php by using “Autoload creator” under “developer tools” in the Contao back end.

The entry “ZIP” should now be available in the settings of an input field of an attribute of type “text” when the Regex test is selected. If not, purge all the caches in the back end and check the data if necessary.

[image: img_own-regex]

Source codes

You’ll find the following source code in the files:

File /system/modules/metamodels_mycustoms/classes/MyClass.php

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18

	<?php
class MyClass
{
 public function myAddCustomRegexp($strRegexp, $varValue, Widget $objWidget)
 {
 if ($strRegexp == 'plz')
 {
 if (!preg_match('/^[0-9]{4,6}$/', $varValue))
 {
 $objWidget->addError('Feld ' . $objWidget->label . ' should contain a valid ZIP postcode.');
 }

 return true;
 }

 return false;
 }
}

File /system/modules/metamodels_mycustoms/config/config.php

	1
2

	<?php
$GLOBALS['TL_HOOKS']['addCustomRegexp'][] = array('MyClass', 'myAddCustomRegexp');

File /system/modules/metamodels_mycustoms/config/event_listeners.php

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

	<?php
use ContaoCommunityAlliance\DcGeneral\Contao\View\Contao2BackendView\Event\GetPropertyOptionsEvent;

// Event Listener with priority "-1"
return array
(
 GetPropertyOptionsEvent::NAME => array(
 array(
 function (GetPropertyOptionsEvent $event) {
 if (($event->getEnvironment()->getDataDefinition()->getName() !== 'tl_metamodel_dcasetting')
 || ($event->getPropertyName() !== 'rgxp')) {
 return;
 }

 $options = $event->getOptions();

 // Key "zip" equals $strRegexp test in myAddCustomRegexp
 $options['zip'] = 'ZIP';

 $event->setOptions($options);
 },
 -1
)
)
);

The file autoload.php in /system/modules/metamodels_mycustoms/config should look as follows after its generation:

	1
2
3
4
5
6

	<?php
ClassLoader::addClasses(array
(
 // Classes
 'MyClass' => 'system/modules/metamodels_mycustoms/classes/MyClass.php',
));

Notice: the RegEx validation was taken from the Contao manual und represents just a simple test method for german ZIP codes.
You can find more accurate RegEx checks online or you could also implement a check against a list with assigned zip code numbers.

View condition: Display s.th., if the checkbox is not activated

If you want to create a view condition, which enables you to dispay a field, if a checkbox is not checked, this will be not possible with a trigger on the “inactive” value of the checkbox.

This is due to the fact that MetaModels treats the value “unchecked” differently from the Contao core - the Contao core will store nothing ‘’ for “unchecked” instead of a null(0). This can not be processed by MetaModels or the DCG at the moment.

This problem can be fixed with a workaround: The visibility is triggered by “checked”, but the test is inverted with NOT. To achieve that, a condition NOT has to be created in the view conditions and inside this condition the test whether the checkbox is “active” (see screenshot).

[image: img_checkbox-negation_01]

The following two screenshots show the hiding of an email input mask with the checkbox set.

Email shown

[image: img_checkbox-negation_02]

Email hidden

[image: img_checkbox-negation_03]

Debug templates

If you need a custom template - e.g for displaying a frontend list - or if you want to find out which attribute values are sent to the template, you can print those attribute values out to the HTML source code. An easy way to do this is the output of the item array with “print_r” .

The default template is “metamodel_prerendered” or respectively the template, which was selected in the output render settings.

In case that there is no custom template in use yet, you will have to create a copy of “metamodel_prerendered” within the Contao folder named “Templates”.

The following code is added to the respective template:

	1
2
3
4
5
6
7

	<?php
echo "<!-- DEBUG START \n";
echo "<pre>\n";
print_r($this->items->parseAll($this->getFormat(), $this->view));
echo "</pre>\n";
echo "\n DEBUG END -->";
?>

Subsequently the template should start with the code as follows:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18

	<?php
echo "<!-- DEBUG START \n";
echo "<pre>\n";
print_r($this->items->parseAll($this->getFormat(), $this->view));
echo "</pre>\n";
echo "\n DEBUG END -->";
?>

<?php $strRendersettings = isset($this->settings)? 'settings' : 'view'; ?>
<?php if (count($this->data)): ?>

<div class="layout_full">

<?php foreach ($this->data as $arrItem): ?>
<div class="item <?php echo $arrItem['class']; ?>">

<?php foreach ($arrItem['attributes'] as $field => $strName): ?>
//...

If the website with this listing is called in a browser, you should find the debug output in the source code.

Browser rendering can become very slow in case that the output is very extensive. It might then be helpful to output only one item node.

	1
2
3
4
5
6
7
8

	<?php
echo "<!-- DEBUG START \n";
echo "<pre>\n";
// only first node
print_r($this->items->parseAll($this->getFormat(), $this->view)[0]);
echo "</pre>\n";
echo "\n DEBUG END -->";
?>

You can remove the output by commenting out the output block, by deleting it or by switching to another template.

MetaModels API

The MetaModels API consists of serveral interfaces which are the only API that should be considered immutable. Classes
of the core and their private, protected and even public methods should generally NOT be considered immutable and may
be changed over minor versions and patch releases.

During the alpha and beta phase of a new MetaModels major release, there may be changes to interfaces as well.
Therefore the API should not be considered immutable during major development cycles.

An deprecation phase will be provided during minor cycles, denoting that a certain feature of the API will get dropped
in the next major release. We will try to put the replacement already in place but for bigger breaks this will not be
possible. The breaks will however be announced in an draft, along with an upgrade guide, prior to release as soon as the
new interfaces are defined.

Core Interfaces

MetaModels reference

This reference is mainly intended for developers that want to enhance MetaModels with own attributes and/or filters etc.

	MetaModels API
	Core Interfaces

MetaModels API

The MetaModels API consists of serveral interfaces which are the only API that should be considered immutable. Classes
of the core and their private, protected and even public methods should generally NOT be considered immutable and may
be changed over minor versions and patch releases.

During the alpha and beta phase of a new MetaModels major release, there may be changes to interfaces as well.
Therefore the API should not be considered immutable during major development cycles.

An deprecation phase will be provided during minor cycles, denoting that a certain feature of the API will get dropped
in the next major release. We will try to put the replacement already in place but for bigger breaks this will not be
possible. The breaks will however be announced in an draft, along with an upgrade guide, prior to release as soon as the
new interfaces are defined.

Core Interfaces

Index

Dummy filter

Filter cookbook

	Dummy filter

Function overview

Data models

MetaModels allow you to easily define data models in the Contao backend with (almost) no restrictions and without programming skills.

There are different data types availablefor the data fields (attributes), as for example text, picture, numbers, date and files.
If you reach a limit and a desired data type is not available to you, an implementation is still possible.

Created tables can be linked together with relations (1:n, m:n). It is also possible to connect the tables with tables in the Contao core, to establish “parent-child-connections” or to implement variant inputs.

Input mask

You can define complex input masks for the backend, which enable you to provide the Contao backend “look-and-feel” to the editors, which they are alraedy familiar with. Within an entry mask you are able to respond to the input of values or checkboxes to optionally show different sub-palettes.

It is possible to extend the view with different filters, search- and grouping functions for an easy orientation in the data.

The flexible user rights system, which has been developed for MetaModels, allows you to define different backend views for both editor and administrator user groups.

The backend can be customized in such a way, that only specified user groups are allowed to access particular input fields. Additionally you can customize the order of those input fields individually for each user group.

Multilingualism

From the beginning, MetaModels have been developed with the claim for multilingualism.
Therefore attributes are able to support translations of the data which is stored within them in multiple languages.
The language changer in the backend enables you to just switch to the desired language and immediately be able to edit the data set.

Best of all, untranslatable attributes are not going to be translated. This allows you e.g. to only make the product names and descriptions translatable, but not the EAN-Code and the measurements.

Filters

MetaModels has a powerful filter concept, which enables you to realize complex tasks. The website administrator can adapt the filter interactions completely to their requirements. This can be achieved by configuration and combination of filter settings and their parameters.

MetaModels doesn’t limit filter combinations and masters very complex filter scenarios. Thanks to the open structure of the API, you are able to easily program your own filters.

MetaModels is delivered with various filter settings, to generate filter input fields in the frontend, such as select boxes, range filters, free text search etc.
If you combine this filters with filter settings such as AND/OR-conditions or individual SQL-queries, complex and interactive filters can be set up.

Dynamic views

In MetaModels, the “partial”-template concept which is used in Contao, was implemented in an extended way with the help of the output settings. The user is enabled to customize every aspect of the views at attributes and data records level.

A lot of general settings can be specified in the backend configuration.
But they can also be overwritten, tweaked or completely ignored, by specifying a an own template at attributes and data records level. This output settings provide a flexible way to define “data views”.

Designers can define a completely different view for each purpose, whether it’s a simple list, a teaser for the homepage or a detail view of a data set. They can specify when and where this view should be used as well.

Outlook

We are working on Metamodels to continuously improve functionality.
Further planned features:

	Extended outputs such as RSS-feeds and other syndications forms, XML, CSV

	Export/Import functions

	Front-End-Editing

	API for the onlineshop modul ‘Isotope’

Financial support or ordered programming work will allow us to rapidly implement additional functionality - Further informations are available on the project website: <https://now.metamodel.me>`_.

[image: img_fields_32] Attributes

Note

create and configure own columns of the database table as attributes

Introduction

The attributes component is one of the very basic settings in a MetaModel. The attributes component allows you to define custom, specific data fields and create them within the data base table as columns.

When creating an attribute “[image: img_new] New attribute” there are two mandatory fields defined: selection of the attribute type and the entry of the column name. The column name defines - as indicated by the name - the designation of the column in the data base table. Additionally you can enter a name and a description, which will also appear as designation and description within the input mask.

Warning

When changing an attribute type as well as when deleting an attribute, the already entered values will be deleted. However, if you need to change an attribute value while keeping the values, you should accompany this directly at database level, e.g. with the attribute column per CSV. A changed attribute should be added again in the render settings and input screens.

Depending on the attribute type there will be new entry options, respectively specific options available to you after reloading a page. Below you find a list of the attribute types where the specific options are pointed out:

	Alias: Alias-field, e.g. for URLs

the alias can be created as a combination of different (existing) attributes; optionally you can enforce the regeneration upon changes in the original attributes (Force alias regenerating); an alias will not be created automatically as an unique value - for this you need to activate the checkbox “Unique values”

	Checkbox: Single Checkbox for boolean values

with the checkbox you can set boolean values (0|1); a special variant is the option “Publishing checkbox” - with this option checked, an “eye icon” will appear in the backend, whereby you’ll still have to create the filtering for the “publication” by yourself; in general “published” will be used as the column name for the publishing value; with the option “Listview checkbox” you are able to use an own icon in the backend to display the status

	Combined values: Combination of different attributes

all availabe attributes, as well as the “system attributes”, such as ID, PID etc. can be combined to a new attribute; this combination can be realised with a sprintf-formatting; the attributes “name” and “surname” e.g. could be combined using the statement “%s, %s”; optionally you can enforce the regeneration upon changes of the values by checking “Force regenerating”

	Country: Country selection

this attribute will make a country selection available to you; using the option “Filter available countries” will limit the selection of countries

	Decimal: Decimal numbers

this attribute can be used to store decimals, as for example money amounts; there are two decimal places

	File: File picker

the attribute “file” provides you with a file picker to select a file, respectively using the option “Multiple selection” enables you to select multiple files;
additional file options can be set during the selection with the option “Customize the file tree”;
when using pictures, note that if you want to (directly) display a thumbnail preview of a picture in the backend or in the frontend, you will have to set the option “Enable as image field with thumbnail” in the render settings of the file attribute

	Langcode: Selection of ISO language codes

this attribute provides you a selection of language codes; the language codes can be selected with a checkbox

	Longtext: Text input

Attribute for longer text entries

	Numeric: Entry of whole-numbered values (integer)

	Rating: rating module with stars

this attribute module is used to output a “star rating” in the frontend;
you can set several options in the backend, such as number of stars etc.

	Select: Relation (1:n) to another MetaModel

with the attribute “Select” you can create a 1:n-relation to another MetaModel; the MetaModel table, the attribute etc. can be set within the options

	Text table: Input of values as a table

the attribute “Text table” defines a number of columns including the column designation and the column width; in the input mask you can generate any number of lines, e.g. to store several URLs or phone numbers

	Tags: Relation (m:n) to another MetaModel

the attribute “Tags” creates a m:n relation to another MetaModel; the MetaModel table, the attribute etc. is set within the options;
the resolution of the relation takes place within a particular table of MetaModels, so that no column will be created in the MetaModel table for the attribute

	Text: simple text field

	Date: Date, respectively date and time

the data are stored as Unix timestamp; if you use own SQL filtering you might need to perform conversions

	URL: Link text and URL

entry of external links (enter with “http://”) or use the page picker
internal links; you can display only the URL by choosing the option “Remove title”

If the option “Translation” is activated in the MetaModel, the following attributes will be additionally availabe to you for multilingualism:

	Translated checkbox

	Translated combined values.

	Translated file

	Translated longtext

	Translated select

	Translated table text

	Translated tags

	Translated text

These attributes differ from their monolingual attributes only regarding the multilingual informations for name and description. Special tables of the extension will be used for the translated attributes, not the table which has been generated when creating the MetaModel.

Note that you usually don’t need to choose between the options “Translated select” and “Translated tags” regarding relations per “Select” or “Tags” between two MetaModel with translations.

MetaModels will recognize and switch between languages automatically. The two “translated variants” are mainly determined to bind tables which do not belong to MetaModels and have independent fields for the language variant.

More attributes can be provided by additional extensions of MetaModels besides the above mentioned.

The sequence of creating attributes is freely definable. Only for attributes with relations to other attributes, e.g. an “alias” or “Combined values”, a subsequent creation makes sense.

Regarding the attributes “Select” and “Tags” the referencing MetaModel have to be created first.

Options

Two options are available for all attributes: “Enable variant override” and “Unique values”.

By using the option “Enable variant override” the attribute will also be available in the input masks of the variant input. A precondition of this is, that the option “Variants” has been set before in the MetaModel.

By using the option “Unique values” attribute inputs will be checked for uniqueness.

Work flow

A new attribute is opened by clicking “[image: img_new] New attribute”. After you have entered, respectively selected all necessary options, the setting will be saved and it appears in the attribute list of the existing MetaModel.
The order of the list has no further impact.

Content elements/modules for output in the frontend

Note

For output in the frontend use the MetaModel list as a content element or a FE module; optionally you can also create a filter by using a content element or a FE module.

Introduction

To display lists and filters in the frontend there is a list element and a filter element available to you. These two can be used in Contao as a FE module as well as a content element. There is no difference in the setting options between content element and module.

The most important selection options for a list element are the selection of the MetaModel (where does data come from), the render setting and the template selection (how will the data look like) and - when appropriate - the filter setting (which data will be output)

Please note that a detail view with a single item is also just a “list view” but with an appropriate filtering for only one output.

The most important selection options of the filter settings are the selection of the MetaModel (on which basis shall be filtered) and the selection of the filter sets (which filtering shall be used).

Additionally there is a content element/module called “MetaModel clear all” available to you, which enables you to reset all the filter settings in the frontend.

Options CE list

	MetaModel:

Selection of the MetaModel for the data source

	Items per page, offset and limit

Settings for pagination, respectively settings if you want to limit the items listed.

	MetaModel filter:

Selection of the filter set and the sorting; If a filter setting is of type “Simple lookup” and the option “Static parameter” is checked, then a select field will be available here to choose a value; if the parameter “Allow sort override” is checked, you will be able to override the order per URL with the following scheme: /orderBy/<column name of attribute>/orderDir/<DESC || ASC>.html, respectively as a GET-parameter.

	MetaModel Rendering:

Selection of the render setting; if you want to control the output of the items in the output list, you should use the template of the render setting (metamodel_prerendered) and not the “template to use for generating” (ce_metamodel_list)

Options CE Filter

	MetaModel:

Selection of the MetaModel which shall be the base of the filtering

	Filter settings to apply:

Selection of the filter set

	Attributes:

Attributes, which shall be used in this frontend filter

Work flow

Creating a content element, respectively a FE module is the same procedure as with the classical elements of Contao including the usual methods, such as activating access protection or applying CSS / ID classes.

[image: img_dca_combine_32] Input/output combinations

Note

Define access options for render settings and input screens; Permissions for the backend group should be at least activated for the user group “administrator”

Introduction

Input/output combinations allow you to set user rights for created render settings. For each entry there are the following select options available to you:

	Frontend group

	Backend group

	The input screen

	The render setting

For the view and to obtain access in the backend you should activate at least the user group “administrator” for the backend group by default below “Permissions for input screen and views”.

Workflow

Select your options in the given columns of the input screen and render setting combinations and save them. Now, in the backend there should be new MetaModel input options availabe to you.

[image: img_dca_32] Input screens

Note

Create input screens for data input;
Add, activate and configure attributes; define display conditions of an input field; Definition of grouping and sorting of the stored items is possible

Introduction

To be able to fill the database via the backend, input screens are required. Each input screen can include the attributes, which are defined for each MetaModel, as input elements.

You can create one or more different input screens for each MetaModel. That input screens can be equipped with different attribute input fields. This enables you to cover various user permissions or workflows.

Here too, the creation of the input screens is divided into the basic settings of the input screen, the part for the activation of the attributes as well as the selection of specific options of the individual attributes, such as mandatory field, arrangement, validation or similar.
Most of the settings options reflect the possibilities of the “DCA” of the “Contao framework” (see DCA [https://docs.contao.org/books/api/dca/index.html])
Read more about the options under the item “Procedure”.

One of the most important things in the basic settings is the selection of the option integration where you can select either “Standalone” or “As child table”. With “Standalone” the input screen will be integrated into one of the navigation blocks in Contao and with “As child table” it will be matched to an existing MetaModel table or Contao table.

The display of the input field in the backend can be influenced by further control parameters. Each input mask has an editing icon to create dependencies on when to display it and for the visibility dependencies (“Manage the visibility conditions”).
This enables you e.g. to show one or more input fields only if a special checkbox is checked.

In order to obtain a clear display of the saved items you can define one or more grouping or sorting settings for each input mask.

Options of input screens

	Name:

Designation

	Panel layout:

Configuration of the tools, which you can find in the header of the page where you will add new entries, such as for searching, sorting, filtering and limiting the data records in the backend. To be able to search and filter the attributes, you will have to check this options inside the input screen settings (“Input screens in x” > “Edit the settings of input screen ID x” > “Edit setting ID x” then see at the bottom the section “Backend listing, filtering and sorting”)

	Integration:

With the option “Standalone” you can choose the backend section, where the input screen should appear, with the option “As child table” you can select a parent table.

	Render-Mode:

Output mode of the listing as “Flat (without hierarchy)” or “Hierarchical”, respectively when you use a child table also as “Parented”.

	Use column based layout:

Select this option if you want to display the attributes as a table

	Allow editing/creating/deleting of items:

If checked the input screen will allow editing/creating/deleting of items

Options of an input field

You will find the following options by clicking on the “[image: img_dca_setting] Edit the settings of input screen ID x” and then on “[image: img_edit] Edit setting ID x” of the desired attribute.

	Type:

Legend: Dividers for the input panels (“Green lines”)

Attribute: Display of the attribute options

	Functionality related options:

Activation of “Read only” or “Mandatory”

further options are dependent on the chosen attribute type

	Widget appearance related options:

Specification of the Contao CSS backend classes, such as “w50” for a 50% width

	Backend listing, filtering and sorting:

Checkboxes “Filterable” and “Searchable” that allow you to make your attributes filterable and searchable in the backend (see also under the section above “Options of input screens” > “Panel layout”).

Manage the visibility conditions of a property

	Type:

Type of visibility condition: AND/OR/NOT for linking, respectively to set a dependency on other attributes based on a property

	Attribute/Value

Selection of the attribute in case there is a dependency to another attribute

Options for grouping and sorting

	Name:

Designation

	Enable manual sorting:

If this is enabled, the user will be able to perform manual sorting;
If this checkbox is not checked the user can set the following options:

	Sorting attribute:

Choose the attribute to sort by.

	Grouping type:

Grouping type e.g. initial letter, numeric order or such as “Group by day of date” or “Group by week of year”

	Sorting direction:

Sorting direction: ascending (ASC) or descending (DESC)

Workflow

To create a new input screen click on “[image: img_new] New input screen”.
After you have entered/chosen all the required options you can save your setting and your entry will appear in the list of available input screens of a MetaModel.
You can see the “[image: img_edit] pencil icon” and also an icon “[image: img_dca_setting] Edit the settings of input screen”.
With a click onto this icon, a list of all attributes, which are activated for that input screen appears. If there are no attributes in this list available, you’ll have to add some with a click onto the icon “[image: img_dca_setting_add] Add all”. Alternatively you can click on “[image: img_new] New”. If you choose to use “Add all” you will need to confirm twice.

After that, the attributes will be available to the input screen and, if appropriate, they also have to be activated.

You are able to add an individual CSS class for particular attributes with “[image: img_edit] Edit”.

You can set the visibility of the input widget within an input screen with “[image: img_dca_condition] Manage the visibility conditions”.

Finally you can create various settings for grouping and sorting for a saved item in the list view of the input screens with a click onto the icon “[image: img_dca_groupsortsettings] Edit the grouping and sorting settings”.

[image: img_filter_32] Define filters

Note

Define optional filter sets for backend and frontend;
Create filter sets and activate them within components or content elements/modules

Introduction

The component “Define filters” is a comprehensive tool, which allows you to control the view or selection of the data records (items) of a MetaModel.
The filter sets reduce the total amount of the items, meaning, that a subset of these items is provided for output.
Please note that each filter returns only a list of IDs (of the items), respectively a filter rule passes on a list of IDs to the next filter rule. An alteration of the values, as for example by using a SQL query, is not possible.

Creating a filter set is done in two stages: first you’ll have to create a designated filterset like a kind of “container”, which itself may include one or more filter rules.
If there are several filter rules present on this level, they are automatically linked by AND. For a linking by OR, you’ll need to create a filter rule OR, which itself can take additional filter rules. Nesting will allow you to emulate almost all AND/OR statements of a native SQL query.

With some filter rules you have the option to show only assigned or remaining tags to ensure a dynamic display of the filter sets.

The filter sets can be used in the backend as well as in the frontend.

The filter rules can partly be dynamically influenced e.g. by using GET/POST parameters. This results in very advanced filterings.

Types of filter rules

	Predefined set:

You can enter a list of IDs to be used for filtering

	Simple lookup:

generates a filtering for an attribute; you can specify an URL parameter for filtering; selecting the option “Static parameters” enables you to select a filtering value of this parameter within a FE module or Content element

	Custom SQL:

custom SQL condition for filtering; please note the [image: img_about] Help wizard (popup)

	AND condition (AND):

A container for further filter rules with AND operation

	ODER condition (OR):

A container for further filter rules with OR operation

	Published state:

checks an attribute value for 1; can be the attribute “published”

	Translated published state:

checks a translated attribute value for 1; can be the attribute “published”

	Yes/No:

Yes/No selection, e.g as radio buttons

	Value from/to:

From/to selection for values

	Value from/to for date:

From/to value for date

	Value within 2 fields:

Two fields with values

	Value within 2 fields for date:

Two fields with values for date

	Single selection:

einzelne Auswahl eines Wertes z.B. einer Select-Liste
Single selection of a value e.g. in a select list

	Multiple selection:

multiple selection of values e.g. in a select list

	Text filter:

filters for a text input

Workflow

A new filter set can be created by clicking on “[image: img_new] New”. A name has to be assigned.

With a click on the icon “[image: img_filter_setting] Define attribute settings for filter setting” you reach the list of the filter rules.
Here you can click again onto the icon “[image: img_new] New” to create a new filter rule. With a click onto one of those yellow icons with arrow “[image: img_pasteafter] Paste after” or “[image: img_pasteinto] Paste into” you can control the hierarchy while creating new filter rules and insert the new filter rule e.g. within an OR rule.

Components of a MetaModel

Warning

The manual is still under construction!

Starting 4. December 2015 the MetaModels designations and icons will be adjusted - see also manual_new_labels

The following chapter will show you the structure of MetaModels to understand the “logic” behind the extension.

First of all we should understand two terms:
with MetaModel (singular) we are hereafter talking about a data table with its attributes, input/output possibilities, filters etc.
The term “MetaModels” (plural) will be exclusively used to describe the extension package for Contao.

After you have created a MetaModel, there are the following components available for you for editing:

[image: img_fields] Attributes

[image: img_rendersettings] Render settings

[image: img_dca] Input screens

[image: img_searchable_pages] Define search settings

[image: img_filter] Define filters

[image: img_dca_combine] Input/output combinations

In case that you are creating a (simple) MetaModel you can work through the the components one after another in the order as shown above.
But with growing complexity of a MetaModel - e.g if multiple MetaModel interact with each other - it can not be avoided to further modify and enhance particular data inputs in a MetaModel, which has been already created.

The MetaModels extension makes two new content elements, respectively modules available for the front-end.
The content element “MetaModel list” enables you to display data records individually or as a list on your website.
The content element / module “MetaModel frontend filter” provides you with a front-end filter. Find out more on Content elements/modules for output in the frontend.

[image: img_new] New MetaModel

Note

create a new MetaModel (database table),
if necessary activate translations and variants

Introduction

A click on the icon “[image: img_new] New MetaModel” opens an input mask to create a new MetaModel. With a click on save, a new particular database table will be created for this new MetaModel to store its values.

For this, two input fields are mandatory to save a new MetaModel: the name of the MetaModel and the name of the table.

The name of the MetaModel is used for the designation in the backend and is freely selectable. But it is recommended for subsequent work to choose a name which is indicative of the content of the MetaModel, e.g. “adresses”.

Same for the table name, whereby the prefix “mm_” in the table name may be added, respectively is automatically added. The table may be named e.g “mm_adress”. Opinions differ over whether one should use singular or plural for the name.

Only some of the columns, which are needed to interact with the MetaModels extension are setup within the table, at the time when you save it. These columns are e.g. id, pid, timestamp etc. Other individual columns can be added as so-called “attributes” provided with their specific options. Read more at Attributes.

Options

When you create a new MetaModel you have further options, called “translation” and “variants”.

If the option “translation” is checked, a selection of multiple languages will be available to you after a reload of the page. You should activate one of those languages as the fallback language - if you don’t do so, the first selected language will be used as the fallback language.
If the option “translation” is activated in the MetaModel, there will be additionally special, multilingual attributes made available to you.

If multilingualism is activated at a later point in time, the existing attributes, respectively the entered values will not be passed automatically. Therefore it should be clarified in advance, whether multilingualism is required or not.

If the option “variants” has been selected you will first not see any change of the MetaModel. If the option has been selected, it is possible to activate the option “overwrite variants” in the attributes.
You can create additional input masks for entering data of variants - e.g. to “overwrite parent values” - with every attribute for which you have selected the option “overwrite variants”.
You can find the input mask for the variants with a click on the icon “[image: img_variants] New Variant” within the list view of the parent elements.

The use of variants results in a “parent-child relationship” within a MetaModel database table, which is traceable over different values within the table - e.g with an own SQL filter.
Parent data records are characterised by the fact that the values within the database table of the parent records are equal to 1 for varbase. Values for vargroup are the same as their own ID.
The child records are characterised by having the values for varbase equal to 0 and the values for vargroup equal to the ID of the parent data record.

[image: img_rendersettings_32] Render settings

Note

How to create list views for back end and front end; how to add attributes and activate them

Introduction

“Render settings” allow you to determine the basic parameters for the listings and the views of the data records, which have to be input and output. This can be done separately for the front end as well as for the backend. The individual data records, which are stored into a MetaModel are also called “items”.

In the back end you will have to list those items for further input or to make changes. For the front end you also have to create lists for front end views / output. Some aspects are different between back end and front end, but there are still a lot of similarities. That’s why those settings are combined within the “render settings” component.

Each MetaModel requires a render setting for the back end, because only this input mask can be used for data input and changes.

Regarding the front end, you only need to create a render setting for a MetaModel, whose items as such have to be listed and displayed. Thus, MetaModel which are linked by a relation (attribute “Select” or “Multiselect) to another MetaModel, do not necessarily need a render setting for the front end.

Among different requirements for back end and front end, you can meet further demands with the render settings. You can create many different render settings for each MetaModel, e.g. to generate differentiated outputs. That way one render setting could process a list with basic informations and another render setting a detail view (remember that a detail view is also just a list but with one single item!). Further you can grant access onto particular render settings from user groups or member groups by using Input/output combinations.

Once a render setting is created and the basic settings are entered, you will have to activate the attributes for that render setting in a next step.
More about that below, under the topic “Workflow”. A further setting option for each attribute in a render setting allows you to select an individual template (if you created one before) and a custom CSS class, e.g. to put emphasis on it in the back end.

Options

	Name

the name can be chosen freely; but to distinguish more effectively you will find often the abbreviations “BE” and “FE” for back end and front end preceding the name.
E.g “BE list”, “BE collection” oder “FE list complete”.

	Template

here you can select a template, in which all items are output in loop;
the template can be overwritten easily in the usual way you are used to from Contao.
Just note, that a template for the back end should not be created within a template subfolder;
all attributes are passed to the template as a type of “raw” - only activated attributes are passed on as type “html” and “text”.

	Output format

you can choose HTML5, XHTML and text; if there are no special requirements you can leave this field empty

	JumpTo page

this is the page which will be used for the front end output, for example to show a “details page”.
There should be a list element provided on this detail page with an appropriate filter setting; when using a multilingual MetaModel you will have a setting for link and filter for each language.

	Hide empty values

Empty values are skipped - a useful setting, if you want to display also the labels of the attributes

	Hide labels

The attribute names are not displayed as a “label”

	Additional CSS/Javascript files

For output formatting and interaction you can use additional CSS and/or JS files

Workflow

To add a render setting, open a new input screen with a click on “[image: img_new] New”.
After you have entered and selected all the required options, save your setting. It will then appear in the list of existing render settings of the MetaModel.

Besides the “[image: img_edit] pencil icon” there is also the icon “[image: img_rendersetting] Define attribute settings”.
A click on the icon shows a list with the attributes that are activated for this render setting. If there are no attributes available you can add them with a click onto the icon “[image: img_rendersettings_add] Add all” - alternatively you can click on “[image: img_new] New”. If you use “[image: img_rendersettings_add] Add all” you will have to confirm twice.

Then the attributes will be available for the render setting. You might have to activate them, if you want them to be visible in the list view.

You can change the applied template for each attribute and/or you can apply a custom CSS class (“[image: img_edit] Edit”).

[image: img_searchable_pages_32] Define search settings

Note

How to include the detail pages of a MetaModel both into the Contao search index and sitemap.xml

Introduction

With the menu item “Define search settings” you can include the detail pages of a MetaModel rendering (list) into the frontend module of Contao’s search engine as well as into the sitemap.xml.

Unlike the standard list views, this “special treatment” of the MetaModel detail pages results from their way to be called. The pages that have been created in the Contao page tree have to be called with specific GET or URL routing parameters in order to output a (useful) detail page with values. The functions for the Contao search engine and the sitemap.xml generator are not able to access those parameters. That’s why they need special support.

The “normal list views” do not need this special treatment. These pages are automatically included with the help of the Contao functions into the Contao search engine or the sitemap.

If you go to “Maintenance” and click the “Rebuilt index” button, all the detail pages are going to be included in the list of URLs and loaded. Additionally the URLs are entered in sitemap.xml.

If you have checked only “Recreate the XML files” in “Maintenance”, only the URLs are going to be entered into the sitemap.xml file.

The detail pages will not be integrated in the FE module “Sitemap”.

Please note that URLs containing special keywords as “keys”, such as id, file,
year etc. will not be indexed by Contao; E.g. the URL details/id/my-detailpage-123.html - the keywords are listed in the array $GLOBALS[‘TL_NOINDEX_KEYS’] [https://github.com/contao/core/blob/master/system/modules/core/config/config.php#L419]
.

Options

	Name:

Designation for the backend

	Filtersetting:

Selection of the filter set for the detail view

	Rendersetting:

Selection of the render setting for the detail view

Workflow

You can create a new indexation with a click on the icon “[image: img_new] New searchable page”. After choosing a name you can select a filter setting and a render settings. The indexation will be done by the automatic update mechanism of Contao or you can go to the “Maintenance” area, purge data and then click “Rebuild index”.

MetaModels watch list

Warning

The watch list feature is still in fundraising stage. It will not be published until the fundraising target of x.000 € is reached.

We have a beta program for early installations. If you are interested please contact info@e-spin.de

The watch list feature (Note list) extends MetaModels and enables you to add individual data records (items) to a watch list.

Watchlist enables you to create e.g. a normal reminder list, comparison lists for product properties or even shopping cart functionalities.

If you have saved a data record in the watch list, you can of course also remove it again.

With the watch list comes a new filter rule, which enables you to filter for existing watch list data records.

There is also a new widget for the form generator that enables you to list data records from the watch list and transfer them via email. It is also possible to send the email via Notification Center.

You can create several watch lists in each MetaModels. This allows to add a data record to two watch lists at the same time, e.g. to a “like list” and to an “order list”. You can also transfer a data record from a “like list” to an “order list”.

In the configuration of a watch list you can set up a filter, which ensures that only specific data records can be added to the watch list, e.g. only employees from the sales department.

Watch list also works with translated MetaModels. This means that data records of a watch list will remain preserved, when you switch the language.

Installation via Composer

Prerequisites for installation:

	PHP 7.x

	Contao 3.5.x or Contao 4.4.x

	MetaModels from core 2.0.0-alpha16 respecively 2.1 and DCG 2.0.0-beta39

	(Zip file of the extension, pls send a request to info@e-spin.de)

In the package manager type metamodels/notelist into the search field, then install and update the database.

Create a watch list

After you have successfully installed watch list, you will see a new icon in the row of metaModels icons. Click on it to set up and edit watch lists.

[image: img_notelist_icon_en]

When you create a new watch list choose a name first.
At the moment you can select the PHP session or Contao session as “storage adapter”.
If you select Contao session, the values of a watch list of logged in users will automatically be saved in the session values of the database. They are made available again, when the user logs in again.

You can restrict the recording of data records to only records with certain properties, e.g. the “department” or particular member groups with the filter selection. Filtering for member groups is possible by using the following extension “condition membergroup filter [https://github.com/cboelter/metamodels-filter_condition_membergroup]”.

[image: img_nodelist_config_en]

Via the list view you’ll get access to all watch lists that have been set up.

[image: img_notelist_overview_en]

Activate watch list in MetaModels list

You will find a new section called “note list” in the CE MetaModels list, respectively in the FE module, where you can activate one or more of the watch lists, which you have set up.

[image: img_notelist_ce_mm-list_en]

You can change the order of the “action outputs” by drag & drop via the watch list sorting.

If you are using the default template for output you don’t have to make any further changes. You should then see a new link in the FE list view to add data records to the watch list.

If you are using a customized template you’ll have to make some changes to be able to add the new watch list links.
The links are available in the action node and can be output with the following code:

	1

	<a href="<?= $arrItem['actions']['notelist_1']['href'] ?>" class="<?= $arrItem['actions']['notelist_1']['class'] ?>"><?= $arrItem['actions']['notelist_1']['label'] ?>

[image: img_notelist_fe_list_en]

Watch list output via filter

You can output the watch list on the front end with a normal MetaModels list, which filters out elements from the watch list.

To be able to filter you just need to create a filter with the new filter setting “Notelist”. In the filter settings just select the watch list with the elements you’d like to output.

[image: img_notelist_filterrule_en]

In the filtered list on the front end you should now see only employees from the watch list.

[image: img_notelist_filtered_list_en]

In the list view it would be e.g. possible to activate a second watch list, to transfer elements from one watch list to another - e.g. from a “like” list to an “order” list.

In the settings for a watch list you can optionally set a filter for the inclusion onto a watch list. E.g if there are only employees allowed who belong to the sales department, the list looks as folllows:

[image: img_notelist_fe_list_with_filter_en]

Data display and inclusion into the form

There is also a new widget MetaModels note list available in the form generator. With its settings you can control the display in the form as well as in the email.

You can activate one or more watch lists and select a render setting for the FE output as well as for the email output.
Additionally, by checking the checkbox “clear list”, you can define for each watch list whether the list should be cleared after the form processing.

[image: img_nodelist_form_widget_en]

„Custom email template“ is an optional template which contains all renderings of the mail output of a watch list and “encloses” them.
Please note that you have to specify the extension “text2 for ” Supported template formats” in the Contao settings!
Watch list data can only be sent as (plain) text in an email at the moment - the render setting “output format” for the listing within the email has to be set to “text” respectively.

In the form the respective data records are output with the selected render setting.

[image: img_nodelist_form_fe_list_en]

It is not possible e.g. to delete elements of the watch list within the form, because by reloading the page all the data already entered in the form would be lost .

You can output a list with all elements of the watch list before you output the form. There you could edit theme seprately or delete the whole list.

	1

	<p>Clear List 2</p>

[image: img_nodelist_form_fe_list_edit_items_en]

Data is sent by email and output can be customized with the email template. The Contao form options or the Notification Center are available to you for transmission.

[image: img_notelist_email_list_en]

Transfer of additional data for each item

Optionally you can transfer additional data to the watchlist for each item, such as a number, tet or similar. To do this you’ll have to create a form using the form generator, which contains the fields to display, e.g. field for a number and text field for a short information text - a submit button is not necessary and will be generated automatically.

This form will then be available in the watchlist settings - forms which already contain a watchlist formelement wll not be displayed (recursion!).

In the list view the form will be displayed with an “add/edit button” beneath each item. Data will be processed with the form and e.g. sent by email.

[image: img_notelist_fe_list_with_form_en]

InsertTags

There are different InsertTags implemented for the output of the number of items in the watch lists. They output the number as follows (‘mm_mitarbeiterliste’
is the respective MetaModels):

	Number of all items: {{metamodels_notelist::sum::mm_employeelist}}

	Number of all items of the watch list with ID 1: {{metamodels_notelist::sum::mm_employeelist::1}}

	Number of all items of the watch list with ID 1 and 2: {{metamodels_notelist::sum::mm_employeelist::1,2}}

If there is no item on the watch list, 0 (Null) will be output.

Events

There is an event listener available, if you need to monitor manipulation of a watch list (add, remove, clear).

The event listener allows you to trigger feedback to the website or logging /tracking of actions.

As an example for a feedback you can insert the following code to a custom Contao module e.g. at /system/modules/myModule/config/event_listeners.php

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33

	<?php

use MetaModels\NoteList\Event\ManipulateNoteListEvent;
use MetaModels\NoteList\Event\NoteListEvents;

return [
 NoteListEvents::MANIPULATE_NOTE_LIST => [
 function (ManipulateNoteListEvent $event) {
 // Only handle note list "1".
 if ('1' !== ($listId = $event->getNoteList()->getStorageKey())) {
 return;
 }

 switch ($event->getOperation()) {
 case ManipulateNoteListEvent::OPERATION_ADD:
 Message::addConfirmation('Added ' . $event->getItem()->get('id') . ' to ' . $listId);
 // Add your own notes in metaData.
 $metaData = $event->getNoteList()->getMetaDataFor($event->getItem());
 $metaData['tstamp'] = time();
 $event->getNoteList()->updateMetaDataFor($event->getItem(), $metaData);
 break;
 case ManipulateNoteListEvent::OPERATION_REMOVE:
 Message::addConfirmation('Removed ' . $event->getItem()->get('id') . ' to ' . $listId);
 break;
 case ManipulateNoteListEvent::OPERATION_CLEAR:
 Message::addConfirmation('Cleared ' . $listId);
 break;
 default:
 throw new \RuntimeException('Unknown note list operation: ' . $event->getOperation());
 }
 }
]
];

On the front end the feedback can be shown in a template with the output of the Contao message - e.g.

	1
2
3

	<?php
echo Message::generate();
?>

Known Issues and Next Features

	Translation in DE (if project is released via Transifex)

	Data transfer to a form as HTML (currently only available as text)

Donations

Thanks for the donations * for this extension to:

	Sebastian Krull [http://www.sebastiankrull.de]: 350 €

	Carsten Merz [http://www.fitkurs.de]: 350 €

	Westwerk GmbH & Co. KG: [https://www.westwerk.ac]: 350 €

	Niels Hegmanns [http://www.heimseiten.de]: 350 €

	Hofer Werbung [http://www.hofer-werbung.de]: 350 €

(donations are stated at their net value)

[image: img_fields_32] Attributes

After the table “mm_employeelist” was created in the database, we also have to create the fields/table columns to store the data, which are called the “attributes”. We can do this with the component “[image: img_fields] attributes”

According to our task, we will need to create the following fields:

	Name | Column name | Attr. type

	Name

	name

	Text

	First name

	firstname

	Text

	Email

	email

	Text

	Department

	department

	Text

	Published

	published

	Checkbox

In the MetaModel “Employee list” go to the component “attributes” wth a click on the icon [image: img_fields]. After that you can create the first attribute with a click on “[image: img_new] New attribute”. The input screen for the new attribute will not open immediately, but a “[image: img_pasteafter] Clip folder icon” on which you have to click (see screenshot below).

[image: img_attribute_01_en]

The input screen for the attribute opens with a click onto the “[image: img_pasteafter] Clip folder icon”. Here, first choose the attribute type “Text” from the dropdown menu. The input screen will then refresh and show further options according to your selection. For the first attribute “Name” you will have to fill the fields in as shown below in the screenshot.

[image: img_attribute_02_en]

By clicking “Save and close” your first attribute “Name” is created - which means that the column “name” was generated in the database - then you can see the new attribute in the attribute overview.
This attribute creation steps have to be repeated now for the other fields “First name”, “Email” and “Department”.

Note that for the attribute “Published” we will choose “Checkbox” as attribute type. For this attribute we will also activate the option “Publishing checkbox” in the “Advanced settings” (see screenshot below).

[image: img_attribute_03_en]

Now you should be able to see the list of created attributes as shown in the screenshot below.

[image: img_attribute_04_en]

Summary and outlook

With the setup of our first MetaModel we have created a simple table and we went through the basic steps of creating a MetaModel.

With the MetaModel “Employee list” we have implemented the input in the back end and the output in the front end. But this is only a small proportion of the possiblities for MetaModels and even this small example can be further enhanced.

Here is a small list of possibilities:

	Change the data structure - Put “department” into an own MetaModel and link it (relation) to “Employee list”

	Add filtering, sorting and search functions to the back end

	Extend the front end with filterings, sorting and search functions

Please let the following two screenshots inspire you! The first screenshot is from the back end with a separate MetaModel for the departments. (You’ll need to change the attribute “department” from type “Text” to type “Select”.)

[image: img_conclusion_01_en]

This separate MetaModel for the departments will enable you to select from a predefined list in your input mask when you are creating a data record:

[image: img_conclusion_03_en]

You could also extend the front end view with a filter and a text search field.
(Here we filter for department “Management” and initial letter “D”.)
Additionally here is a customized template in use for the render setting for the front end list (“FE list”) to show table headers.

[image: img_conclusion_02_en]

In the chapter mm_second_index we will set up a more complex data structure and in the chapter mm_special_index we will cover some aspects such as multilingualism, variants, child tables etc.

Content elements / Modules for front end output

After you have configured all the components for data input, you can set up the data output. There are several options available for data output - in this example we will use the article content element “MetaModel list”.

First you need to prepare a page in Contao with an article which will contain the content element “MetaModel list”. Create this new content element with the following settings:

	Element type: MetaModel list

	Order by: Name

	Filter settings to apply: Published

	Render settings to apply FE list

[image: img_contentelements_01_en]

Hit “Save and close” and the content element will be available and you can check it in the front end view.

You should see the sentence “There are no items matching your search” in the front end preview, because you didn’t enter data yet.

To test the front end view it is necessary to create some data entries in the employee list. To do this, go to the left menu in the back end and click on the icon “[image: img_metamodels] Employee list” and then on the icon “[image: img_new] New item”.

You will then see the input screen with the fields you have defined (attributes). Now you can fill them with initial data (see screenshot).

[image: img_contentelements_02_en]

After you have hit “Save and close” you will see the new data record. Only the attributes that you have activated in your render setting “BE list” (“Name” and “First name”) will be visible here.

[image: img_contentelements_03_en]

You can edit this entry with a click on the “pencil icon” and you can quickly switch the published/unpublished status with the “eye icon”.

Now your front end view should look somehow like this (see seenshot):

[image: img_contentelements_04_en]

Once you have entered some test data the employee list in the back end will look similar to this (see screenshot)

[image: img_contentelements_05_en]

and it will look similar like this in the front end

[image: img_contentelements_06_en]

For front end output the attributes are displayed within individual HTML div container elements including specific CSS classes using the standard template. Now you can format the output by using CSS or by customising the standard template, so that the output takes place in form of a HTML table.

By using some CSS rules e.g. such as follows

 .ce_metamodel_content .item {
 display: table;
 width: 100%;
 }
 .ce_metamodel_content .item.even {
 background-color: #f4f2f0;
 border-bottom: 1px solid #d4cbc5;
 border-collapse: collapse;
 }
 .ce_metamodel_content .item.odd {
 background-color: #f6f6f6;
 border-bottom: 1px solid #d4cbc5;
 border-collapse: collapse;
 }
.ce_metamodel_content .item .field {
 display: table-cell;
 width: 25%;
}

the front end view looks better - see screenshot:

[image: img_contentelements_07_en]

[image: img_dca_combine_32] Input / Output combinations

In this step “Input / Output combinations” we will activate the input mask render setting for the back end.
It is not necessary to to activate this render setting for the front end.

Go to the MetaModels overview in order to see the entry “Employee list”. Next click on the icon “[image: img_dca_combine] Input / Output combinations” and the view will switch to the options overview.

The setting options are shown as a list which can be extended if required.
For our example you just have to select “Administrator” in “Backend group”. For “Input screen” select “Input” and for “The render setting” select “BE list” - see screenshot.

[image: img_dca-combine_01_en]

After you hit “Save and close” the view will show the Metamodels overview - and at the same time you should see a new icon with the label “Employee list” in the left Contao back end menu (see screenshot):

[image: img_dca-combine_02_en]

This step completes the component settings for the back end. Now you should be able to enter data or configure the front end output.

[image: img_dca_32] Input screens

In this step we will create the input screen for the MetaModel “Employee list”, which will enable us to store attribute data in our database.

First go to the MetaModels overview in the back end to see your MetaModel “Employee list”. Next, click onto the icon “[image: img_dca] Define input screens”. The view will change to the overview of input screens which is actually empty.

Click “[image: img_new] New input screen” and the input mask for the input screen settings will open. For the input field “Name” you might want to enter a name such as “Input”. Another important setting is “Integration”: Here you should select “Standalone” for our example. Then another drop-down menu named “Backend section” appears beneath. Here you select “MetaModels”.
Additionally you should activate all the three checkboxes under “Data manipulation permissions” - see screenshot. Then hit “Save and close” to save your setting.

[image: img_dca_01_en]

Now you should be able to see your first entry “Input” in the input screens overview - see screenshot.

[image: img_dca_02_en]

Click onto the icon “[image: img_dca_setting] Settings” in order to open the next screen to add some attributes. Hee you can select and activate the attributes which you want to be shown in your input screen.

Just like in the render settings you can also here add all attributes with one step. In the header click on the icon “[image: img_dca_add] Add all”, then hit the button “Continue” and then “Save and close”. Now you have added all available attributes to your input screen. Note that the attributes are not activated by default - you can do this easily by clicking on the “eye icon”.

For this example we will activate all the attributes - the list should now look like in the screenshot below.

[image: img_dca_03_en]

Note that the input mask is not visible in the back end yet. You’ll be able to see it when the next step Input/output combinations is finished.

[image: img_filter_32] Filter sets

Setting up “filter sets” is an optional step. You can control different output parameters with this component. In this example we will set up a filter, which will allow us to show only entries which have the attribute “published” activated.

To do this, go to the MetaModels overview to see the entry “Employee list”. Now click onto the icon “[image: img_filter] Define filters” and the view will switch to the overview of filters - at the moment it is still empty.

Click on the icon “[image: img_new] New” and the input screen for setting up a filter opens immediately. You just have to enter a name for the filter in the input field “Name” - e.g. “published” (see screenshot).

[image: img_filter_01_en]

Now you should be able to see your first entry “Published” in the filter overview - see screenshot.

[image: img_filter_02_en]

Then click on the icon “[image: img_filter_setting] Define attribute setting” to open the next level for the filter attributes. Here you can configure the filter and its attributes. The filter attributes can be combined in different nestings and combinations. For our example we will need to add only one filter attribute to the filter by clicking on the icon “[image: img_new] New”.

After the click you will first see only the clip folder icon [image: img_pasteinto] - click on this icon to open the configuration screen.

To filter by published state there is a special filter available in the select menu “Type” (see screenshot).

[image: img_filter_03_en]

Then click on “Enabled” and “Save and close” to finish the filter attribute setup. You should see the following list view now (see screenshot).

[image: img_filter_04_en]

Now the filter is defined and it can be activated for different components.

The first MetaModel

Warning

Under construction!

We want you to have an easy start with MetaModels. To better understand the structure, let’s begin with a simple employee list with only very few informations.
Our list shall be filled in the back end and it can be displayed in the front end as a table. To keep it simple in the beginning, we will skip any filtering and sorting options.

The implementation will be guided by the Components of a MetaModel.

The task:

	Creation of an employee list which can be maintained in the back end

	Storage of the following values: Last name, first name, email, department

	An additional field to publish a data record

	Output the list as a table in the front end

Requirements:

	Actual version of Contao (preferably the LTS version)

	Actual MetaModels - see Install and update MetaModels

	Familiarity with Contao

	Understanding of Components of a MetaModel

[image: img_new] New MetaModel

With a click on the icon “[image: img_new] New MetaModel” the input mask to create a new MetaModel opens.
Enter “employee list” into the field “Name” and “mm_employeelist” in to the field “Table name” - see screenshot below.

[image: img_new-mm_01_en]

After saving and closing of the input screen you come back to the Metamodels overview. Here you should see now the first MetaModel “Employee list” - see screenshot below.

[image: img_new-mm_02_en]

By saving the MetaModel “Employee list” a table named “mm_employeelist” was also created in the database.
Now we can go on with setting up the MetModel components with their respective icons. All the Components of a MetaModel which don’t need to be configured are omitted or a corresponding note is given.

[image: img_rendersettings_32] Render settings

In this step we’ll set up the render settings for our MetModel “Employee list”. We need a render setting for the back end (data input) and for the front end (data output).

To set up a new render setting go to the MetaModels overview. Beneath the MetaModel “Employee list” click on the icon “[image: img_rendersettings] Render settings”. The render setting overview for this MetaModel will open but currently there is no render setting available yet.

With a click on “[image: img_new] New” the input mask for a new render setting opens. Here you set an appropriate name for the setting, e.g. “BE list” (for back end list, see screenshot below). Then check the checkbox “Is default” and hit “Save and close”.

[image: img_rendersettings_01_en]

Now you can see your first entry named “BE list” in the render settings overview - see screenshot below.

[image: img_rendersettings_02_en]

Next click on the icon “[image: img_rendersetting] Define attribute settings”. Here you can select and activate the attributes which you want to be shown in the render setting.

The easiest way to add attributes to a render setting is with a click on the icon “[image: img_rendersettings_add] Add all” in the header. Then hit “Continue” and “Save and close” and all attributes available will be added to your render setting. Please note that the attributes are set to “unpublished” by default (grey “eye-icon”). But you can easily activate them with a click on the “eye icon”.
In our example we will just activate the attributes “name” and “first name”.
Now your attributes should be activated as shown in the screenshot below.

[image: img_rendersettings_03_en]

Now you have successfully set up a render setting for the backend.

Let’s go on with the one for the front end:
The procedure is pretty much the same as for the back end. But this time you might want to choose “FE list” (for front end list) as the appropriate name.
Additionally we want to hide all labels by checking the checkbox “Hide labels” (see screenshot).

[image: img_rendersettings_04_en]

For the front end view we will activate all the attributes except the attribute “published”. As this is only required for the filtering, it doesn’t need to be displayed in the front end (see screenshot).

[image: img_rendersettings_05_en]

This completes our preparations for the back end and front end listings. No you should see the overview of our two render settings as shown in the screenshot below.

[image: img_rendersettings_06_en]

[image: img_searchable_pages_32] Search settings

We don’t need any search settings for our example here, because we don’t display any detailpages fo the employees.

 _images/contentelements_07_en.png
John
Antonio
Shelley
Mary
Claire.
Kevin
/Ann-Cecile
June

Marketing
Management
Marketing
Marketing
Administration
T
Management
Administration

doe@company.com
afungi@company.com
sgamer@company.com
mgreen@company.com
chainaut@company.com
Kjones@company.com
ameyer@company.com

iparker@company.com

_images/dca-combine_01_en.png
M MetaModels > g Input screen and render setting combination for "Employee list”

EP Edit record 5

Permissions for Input screen and views
Frontend group(?) Backend group(?) The input screen(?) The render setting(?)
B 5] [Adminitrator [(input [[se it [+ 49 x

For sslactad frontand user group (f any) and salacted backend user group (if any) use the selected palstte and the selected

[[= [= | = |

_images/contentelements_05_en.png
Employee list

© Newitem /o Edit muliple
/+x@0
/+x@0
/+x@0
/+x@0
/+x@0
/+x@0
/+x@0

/+x@0

_images/contentelements_06_en.png
Doe

John

Marketing
jdoe@company.com
Fungi

‘Antonio

Management
afungi@company.com
Garner

Shelley

Marketing
sgarner@company.com
Green

Mary

Marketing
mgreen@company.com
Hainaut

Claire

Administration
chainaut@company.com
Jones

Kevin

T
kjones@company.com
Meyer

‘Ann-Cecile
Management
ameyer@company.com
Parker

June

Administration
jparker@company.com

_images/dca_01_en.png
iM MetaModels > (=] Allinput screens of "Employee list"

B Edit record
 Name
Name*

Input]

Name of the input screen.

[1= defautt
Determines that this input screen shall be used as default

© View stings
Panel layout
=]

et el apions i <o (= spece) snd semieton (= v e e s e
 Bsckend tegraton
Integration Backend section
Stndstone o [etatoses -
Selc e sesved o o mieareven. B
Backend caption
Language(?) Label text(?) Description text(?)
Abkhazian | I EETRS
S
Backend icon

e

Selact the desirad backend icon. This icon vill gat used to draw an imags in the lsft manu and on the top of the adit view in
7 Data display settings.

Render mode [use column based layout
Fat] i sslected 2 table header vill bs genarated vith column

Selact the dezired render mods.

¥ Data manipulation permissions

Allow editing of items. Allow creating of items
If checked, this input screen allows the editing of items. If chacked, this input screen allows the creating of items.
Allow deleting of items

If checked, this input screen allows the deleting of items.

= [e [e | e

_images/dca_02_en.png
M MetaModels > (=] Al input screens of "Employee list”

Name Employee list /0
1

Tnput IEX X 1]

_images/dca-combine_02_en.png
& ACLOTNE Mafager
=l MetaModels
M metatiodels M Metattodels

@ Support Metattodels
5 ermployee st Employee lst (mm_employeeist) [0 tems] /ax0EEEEYBO=

_images/dca.png

_images/dca_03_en.png
M Metalodels > [=] Al input screens of "Employee list” > [Input screens in "Input”

Name Input

@ name [text] b
& Name /ax0@@EO=
@ published [checkbox]

2] Published

/ax0®

@ firstname [text]

/ax0®

{2 First name.
@ department [text]
fZ) Department

/ax0®

@ email [text]
/ax0®

Email

_images/dca_32.png

_images/dca_add.png

nav.xhtml

 Table of Contents

 		
 Welcome to MetaModels!

 		
 Introduction to MetaModels

 		
 What are MetaModels?

 		
 History of MetaModels

 		
 MetaModels in comparison with other tools

 		
 Resources

 		
 Install and update MetaModels

 		
 Installation of MM 2.2

 		
 Installing MM 2.1

 		
 Testing of special packages via Composer

 		
 The first MetaModel

 		
 Install with composer

 		
 Create MetaModels

 		
 Create attributes

 		
 mm_reference

 		
 mm_category

 		
 Select configuration

 		
 Create Rendersettings

 		
 Create a rendersetting (backend)

 		
 Create a rendersetting (frontend list)

 		
 Create a rendersetting (frontend detail)

 		
 Input Screens

 		
 Select configuration

 		
 Define Attribute settings

 		
 Grouping and sorting settings

 		
 View conditions

 		
 Define a view condition

 		
 We are ready to enter Data

 		
 Filter Setting

 		
 MetaModels “cookbook”

 		
 MetaModels checklists

 		
 Start with MetaModels

 		
 Filter is not displayed

 		
 An attribute isn’t displayed following a modification

 		
 Input mask: populate fields with pre-defined values

 		
 Input screens: custom RegEx test

 		
 Source codes

 		
 View condition: Display s.th., if the checkbox is not activated

 		
 Debug templates

 		
 MetaModels API

 		
 Core Interfaces

 		
 MetaModels reference

 		
 MetaModels API

 		
 Core Interfaces

_images/dca_condition.png

_images/dca_groupsortsettings.png
a2

_images/dca_combine.png

_images/dca_combine_32.png

_images/fields.png

_images/fields_32.png

_images/dca_setting.png

_images/edit.gif

_images/filter.png

_images/filter_01_en.png
M MetaModels > J Al fiker of "Employee list”

EP Edit record

@ Name.

(=] == [o= [e |

_images/filter_02_en.png
M MetaModels > J Al fiker of "Employee list”

Name Employee list /0
[

Published /1%0%

_images/filter_32.png

_images/filter_setting.png

_images/filter_03_en.png
M MetaModels > T Allfilter of "Employee list" > Fiter settings in "Published”

EP Edit record 10

Type*
Published state.
The type of this satting.

Enabled
Enable this filter setting.

Comment

Filters out all unpublished entries

A short comment for describing the purposa of this filter setting.

@ Configuration

Attribute®
Published [checkbox]
Attribute this satting relates to.

<] O Alow parameter override
1 you check this, filter parameters may override this

[] Tgnore filter in preview mode
1 you check this, this fite wil ot get applied when an

(Save][Saveandclose][Save and new][Save and go back]

_images/filter_04_en.png
M MetaModels > Alliter of "Employee list” > Fier settings in "Published”

. DC General Tree BackendView Uttimate

@ Published state (?)
on attribute published

/+Ax0@

_images/img_attribute_04_en.png
M MetaModels > (] Attributes of "Employee list”

Name Employee list /0
Table name mm_employelist

Revision date 2016-11-10 15:22

Translation no

Variant support no

=] Name - Name. /ax00=
/ax00=

=1 Email - Email /a%x00
/a%x00

=] Department - Department

E R =
%) Published - Published foxoo

_images/metamodels.png

_images/img_attribute_01_en.png
D | ©New atioute &

M MetaModels >

Attributes of "Employee list”

Name. Employee list
Table name mm_employelist
Revision date 2016-11-10 15:22
Translation no

Variant support no

_images/img_attribute_02_en.png
M MetaModels > (] Attributes of "Employee list”

EP Edit record 16

7 Type, naming and base attribute configuration

Attribute type*

Column name*

=5 5

ame

Selact the typs of this atirbute. WARNING: f you changs
Name.

[Name]

Human readable name

[Please il in the name.)

Human readable desenption

© Advanced ssttings

Internal rafarance name for this atiribute

(_save][Saveand close][Save and new][Save and go back]

_images/new-mm_02_en.png
© New Metaodel f Edit multiple

M MetaModels

Employee list (mm_employeelist) [0 items] /] ax0 EavY@mo=

_images/new.gif

_images/new-mm_01_en.png
MetaModels

4 Go back

EP Edit record 5

@ Name and table

Name* Table name*
[Employee tist mm_employeelist

Metatiodel name. Name of database table to store ams to.
< Transiation

[Translation

Check if this MetaModel shall support translation/multlingualism.

@ Advanced settings

[] Variant support
‘Check ifthis MetaModel shall support variants of tems.

Save | Saveand close | Save and new_| [Save and go back

_images/nodelist_form_fe_list_en.png
Contact with notelist

Meine Top Mitarbeiter

Nasim Calderon (Verkauf)

Nasim.Calderon@mmtest.com

Orlando Callahan (Verkauf)

Orlando.Callahan@mmtest.com

Salutation
Mrs.

Name

_images/nodelist_form_widget_en.png
@ Feldtyp und -name.

Feldtyp A

MetaModels note list

Bitte vahlen Sie den Typ des Formularfelds.

Feldname*

Feldbezeichnung

notelist

[Meine Top Mitrbeier

Der Feldname ist sin sindeutiger Nlame zur Identifizierung des Feldes.

@ Feldkonfiguration

MetaModel

Mitarbeiterliste

Selact the Mataiodal to fatch the nats lists fram.

Dis Feldbezeichnung vird auf der Wabseite angszsigt, normalemeize

Note lists
Notelist(?) Frontend(?) Emaill?)
Mein Vertaufsican =] [Fe Liste Formutar =] (£l iste Notetist
Liebtingsmitarbeiter =] [Fe Liste Formutar =] (£l iste Notetist
Select all noe fts tht shall gat added.
& Experten-instelungen
‘Template-Einstellungen
Individuelles Template ‘Custom email template
B =] [emsiLmetamodels notelst test (Globler Gultgkeitsbereich) -
Select the costom emall tamplate - this template <ncloses the ouiput of the

Hier kannen Sie das Standard-Template Gbarschraiban.

_images/nodelist_config_en.png
M Metatodels > (5 Note ists for Mitarbsiterlite

EP Datensatz 1 bearbeiten

¥ Configuration

Note list name*

Storage adapter*

[Leblngsmitarbeter

[Contao Session

Enter the name for this note list

Filter

[Fe Mitgtedsgruppe “Violin Students”

Choose the filter satting to use for ftem acceptance.

PHP Session variable

_images/nodelist_form_fe_list_edit_items_en.png
Clear List 2

Name Vorname E-Mail

Calderon | Nasim Nasim.Calderon@mmtest.com

Callahan | Orlando | Orlando.Callahan@mmtest.com
Contact with notelist

Meine Top Mitarbeiter

Abteilung 2

Verkauf

Verkauf

Details Remove from Mein Verkaufsteam

Details Remove from Mein Verkaufsteam

Nasim Calderon (Verkauf)

_images/notelist_fe_list_en.png
FILTER

Abteilung Suche in "Name"
-
Name Vorname E-Mail Abteilung
Avery Amir Amir Avery@mmtest.com Marketing | Add to Lieblingsmitarbeiter
Bass Teagan Teagan.Bass@mmtest.com GF Remove from Lieblingsmitarbeiter
Blake orson Orson Blake@mmtest.com Einkauf Add to Lieblingsmitarbeiter
Booth van Ivan.Booth@mmtest.com Personal | Add to Lieblingsmitarbeiter
Bradshaw | Jescie Jescie Bradshaw@mmtest.com Personal | Add to Lieblingsmitarbeiter
Burgess Hanae Hanae Burgess@mmtest.com Einkauf Add to Lieblingsmitarbeiter
Bush Geoffrey | Geoffrey.Bush@mmtest.com Personal | Add to Lieblingsmitarbeiter
Calderon | Nasim Nasim.Calderon@mmtest.com Verkauf Remove from Lieblingsmitarbeiter
Callahan | Orlando | Orlando.Callahan@mmtest.com Verkauf | Add to Lieblingsmitarbeiter
Camacho | Quintessa | Quintessa.Camacho@mmtest.com Einkauf Add to Lieblingsmitarbeiter

PR B e P

_images/notelist_ce_mm-list_en.png
ritereinsteliingen uberschreben

Keine Eintrage gefunden.
Fiter paramater override.

© Note st

Add note lists
Add note list management to this list.

Note lists.
Alle auswahlen

= Lieblingsmitarbeiter

= Mein Verkaufsteam

Selact all nots lists that shall get aplied.

© MetaModel Render-Einstellung

Angepasstes Template fiir die Ausgabe

Anzuwendende Render-Einstellung

—

—

_images/notelist_email_list_en.png
Notelist-Test
Hallo

Nasim Calderon

Nasim.Calderon@mmtest.com
Verkauf

Teagan Bass
Teagan Bass@mmtest.com
GF

Amir Avery

Amir.Avery@mmtest.com
Marketing

Nasim Calderon

Nasim.Calderon@mmtest.com
Verkauf

_images/notelist_filtered_list_en.png
Mitarbeiterliste - Merkliste

Das sind die "Lieblingsmitarbeiter” der Merkliste...

Name Vorname E-Mail Abteilung.
Bass Teagan | Teagan.Bass@mmtest.com GF

Calderon | Nasim Nasim.Calderon@mmtest.com Verkauf

Remove from Lieblingsmitarbeiter

Remove from Lieblingsmitarbeiter

_images/notelist_filterrule_en.png
Typ*
Note list

Geben Sie den Typ dieser Einstellung an.

Kommentar

[7] Aktiviert
Aldtivizran Sie disss Fitersinstellung.

Kommantisren Sie kurz den Zvack disser Fitarainstellung.

 Einstellungen

Note lst*
[Lieblngsmitarbeter

Plasse salect the nots lit £ filter for.

_images/notelist_fe_list_with_filter_en.png
FILTER

Abteilung
Nicht fitern

Avery
Bass
Blake
Booth
Bradshaw
Burgess
Bush
Calderon
Callahan
Camacho
Campos
Cardenas
Carter

Carver

Amir
Teagan
orson
van
Jescie
Hanae
Geoffrey
Nasim
Orlando
Quintessa
Jael
Jayme
Akeem

Reese

Suche in "Name"

E-Mail

Amir. Avery@mmtest.com
Teagan.Bass@mmtest.com
Orson.Blake@mmtest.com
Ivan.Booth@mmtest.com

Jescie Bradshaw@mmtest.com
Hanae Burgess@mmtest.com
Geoffrey.Bush@mmtest.com
Nasim.Calderon@mmtest.com
Orlando.Callahan@mmtest.com
Quintessa.Camacho@mmtest.com
Jael.Campos@mmtest.com
Jayme.Cardenas@mmtest.com
Akeem.Carter@mmtest.com

Reese.Carver@mmtest.com

Abteilung
Marketing
GF
Einkauf
Personal
Personal
Einkauf
Personal
Verkauf
Verkauf
Einkauf
Einkauf
Einkauf
Verkauf

Marketing

Remove from Mein Verkaufsteam

Add to Mein Verkaufsteam

Add to Mein Verkaufsteam

_images/notelist_fe_list_with_form_en.png
PUIEEa

Bush

Calderon

Callahan

Camacho

Geoffrey

Nasim

Orlando

Ouintessa

-)
Geoffrey.Bush@mmtest.com

Nasim.Calderon@mmtest.com

Orlando.Callahan@mmtest.com

Ouintessa Camacho@mmtest com

Personal

Verkauf

Verkauf

Einkauf

callme!

Edit by Mein Verkaufsteam

Remove from Mein Verkaufsteam

Details

_images/own-regex.jpg
Regular expression

alnum
alpha

digit

email

emaits

extnd

friendly Suchbar

phone usvhlen, falls disses Atinbut far die Suchs im Backend
Pz

el B e e (e e (e

_images/pasteafter.gif

_images/notelist_icon_en.png
nzeigen: (15 [5] Sortieren: [ortermg[x] &

© Neues MetaModel 4 Mehrere bearbeiten

M MetaModels

S rarbstertste (mm_miarbeterice) (101 Datensae] /axoEEEETYEBPE

_images/notelist_overview_en.png
MetaModels

Sortieren: Notetst name

© Newnote st/ Mehrere bearbeiten

M MetaModels > (3 Note lists for Mitarbeiterliste

Name Mitarbeiterliste

u

_images/pasteinto.gif

_images/rendersetting.png

_images/contentelements_02_en.png
Employee list

< Go back
Ep Create a new item

@ Unnamed legend

Name
[Doe.

Plasse fillin the name.

[Published

Plasse indicate vhather this should be publishad or not.
First name

[John)

Give = it name
Department

[Marketing]
Which deparimant

Email
[idoe@company.com]

Email

= —— —— |

_images/contentelements_03_en.png
Employee list

_images/conclusion_03_en.png
Department

[Manssement

Which department

_images/contentelements_01_en.png
© Element type.

Headine
 E— T

Element type &

Metatadel izt

Plaasa choose the type of contart lamant.

© MetaModel Confguration

Metamodel®

Employee bt
The Matabodel o st n s ting.

i —

The number of kams par page. Set 10 0 1o daable

© Metaodel riter

Order by

1 Use offset and limit for listing
Gireck i you v to it the amount of Rar lated. This

Name -

[Erpr—————

] Allow sort override.
1 hecked, the soring atibute and draction may be

F Filter parameter override
o records found.

© Metaiodel Rendering

Custom template to use for generating

Selctthe Fier satings that shal et sppled v

Render settings to apply.

(ce_metamodel_tst gobat scope) 1)

[Fee

Select e tarmpiate s shalbe waed for e slected

1 No parsing of items.
i chacibox e selactad, the module vl not parsa the

 Search engine optimizaton

Meta Title

‘Seectthe rendaring satings to ure for genarating the

Meta Description

St i st 22 the mata-tie o the page.

© Access protection
© Expert setings.
© viibiley

et stbure 22 the meta-deserpon of the page-

[smve][save and close][save and new] [Swve and go back]

_images/contentelements_04_en.png
Doe
John

Marketing
jdoe@company.com

_images/rendersettings_03_en.png
M Metallodels > (55 All render setting of "Employe list” > [5g Render settings in "BE list”

Name BE list /0

@ name [tsxt]
/24 x0®@0=

) Name

@ published [checkbox]

Published

/2 +X0®0=

@ firstname [text]
/24 x0®@0=

First name.

@ department [text]
/I 2+ XO0=

Department
@ emal [text] ,
FEXODOE

email rrome

_images/rendersettings_04_en.png
M Metalodels > (55 All render setting of "Employee list”

EP Edit record

@ Name.

Name*
FElist

Setting name.

© General settings.

Expert settings

[Hide empty values
Hide empty values in backend and frontend.

© View settings

1s default
Determines that this sstting shall be used as default for

Hide labels
Hide sl Isbels in backend and frontand.

(Save][Saveandclose][Save and new][Save and go back]

_images/rendersettings_01_en.png
M MetaModels > [All render setting of "Employee list"

B Edit record
 Name
Name*

BE list
Satting name.

1s default
Determines that this sstting shall be used 2s default for

¥ General settings.

Template*
| metamodel_prerendered (global scope) v -
The templat to uze to randar the e, Dafine the output format, Leave ampty to ues the format
JumpTo page
Language(®) Jump to page(?) Filter settings?)

(le [

The pags that shal be used == "show datails” urls. flots that the datailed URL params vl gat generated by the fiter sstting

 Expert settings
[Hide empty values [] Hide labels
Hide empty values in backend and frontend. Fide al Iabls in backend and frontend.
9 View settings
Additional css files
File Publish
- = O +48x
Choose this, f you vant to include additional css flles.
Additional javascript files
File Publish
- . O +48x

Chooss this, i you vant to include additionsl javaseript files.

Swve |[Smve and close || Swve and new || Save and go back.

_images/rendersettings_02_en.png
M Metalodels > (55 All render setting of "Employee list”

Name Employes list /0
B

BE list [default] /+x0E

_images/conclusion_01_en.png
(= MetaModels
‘M Metatodels M etatiodels
@ support Metattodels
Department (mm_depariment) [7 items] /%0 EmY=o
/2 x0EEEEYEOS

] Department
[E] Employee list Employee list (mm_employeelist) [& items]

_images/rendersettings_32.png

_images/conclusion_02_en.png
Employee list - My first MetaModel

The following employee list shows an extended version of the first MetaModel example with a filter and search field.

FILTER

Department Name

w8

Name First name Email Department
Doe John jdoe@company.com Management
Denner Richard rdenner@company.com Management

Dulkowski Deanna ddulkowski@company.com Management

_images/rendersettings_add.png

_images/rendersettings_05_en.png
M Metalodels > (55 All render setting of "Employee list" > (g Render seftings in "FE list”

Name FE list /0

@ name [tsxt]
/24 x0®@0=

) Name

@ published [checkbox]

2] Published

/2 +X0®0=

@ frstname [text]
/24 x0®@0=

{2 First name.

@ department [text]

fZ) Department

/ 2+ x0®@0=

@ email
e /24 x0®@0=

& Email

_images/about.png

_images/rendersettings_06_en.png
M Metalodels > (55 All render setting of "Employee list”

Name Employee list
B

BE list [default]
F
FE st

/0

/+x0

/+x0

_images/searchable_pages.png

_images/rendersettings.png

_static/comment-bright.png

_static/comment-close.png

_static/ajax-loader.gif

_static/down.png

_static/comment.png

_static/down-pressed.png

_images/searchable_pages_32.png

_images/variants.png

_static/up-pressed.png

_static/up.png

_static/minus.png

_static/plus.png

_static/file.png

