

Meta Test Family Documentation

Welcome to the Meta Test Family documentation!

About

Meta Test Family (MTF) is a tool to test components of a modular Fedora [https://docs.pagure.org/modularity/].

Using MTF you can:

	write tests for RPMs, modules and Docker containers

	write multiline Bash snippet tests in YAML definition file

	write multihost tests

	write Bash tests

	write Python tests

	schedule tests with Jenkins and Taskotron

	run tests on a local host or in Vagrant environment

MTF has a presence on the following websites:

	Documentation [http://meta-test-family.readthedocs.io] is available on ReadTheDocs.

	A Package repository [https://copr.fedorainfracloud.org/coprs/phracek/meta-test-family/] is available on Fedora Copr.

	MTF’s code [https://github.com/fedora-modularity/meta-test-family] and the issue tracker for sharing bugs and feature ideas are stored on GitHub.

Content

	Installation

	User Guide

	Manual testing

	MTF - Levels of testing

	How to Contribute

	API Index

	License

Index and Search

	Index

	Search Page

See also

	webchat.freenode.net [https://webchat.freenode.net/?channels=fedora-modularity]

	Questions? Help? Ideas? Stop by the #fedora-modularity chat channelon freenode IRC.

Installation

There are two ways to install and use MTF: to set up it locally or alternatively on a virtual machine via the Vagrant tool.

Topics

	Installation

	Vagrant

	Prerequisites for Vagrant

	Creating the Vagrant environment

	Local installation

	Requirements

	Installing MTF

	Source code

Vagrant

Vagrant [https://docs.vagrantup.com/] is a tool to aid developers in quickly deploying development environments. There is a Vagrantfile [https://github.com/fedora-modularity/meta-test-family/blob/master/Vagrantfile] in the meta-test-family [https://github.com/fedora-modularity/meta-test-family.git] git repository on GitHub that can automatically deploy a virtual machine on your host with a MTF environment configured.

The MTF tool has been made available for use of two providers: libvirt (for Linux host only) and virtualbox (for MAC OS, Windows and Linux hosts), where libvirt is a default one. See more about Vagrant providers here [https://www.vagrantup.com/docs/providers/basic_usage.html#default-provider].

This document assumes that you are running a recent version of Fedora although these steps should be roughly the same on other distributions, just be aware that package managers and names can differ if you are not using Fedora as your host. Consult Vagrant installation documentation [https://www.vagrantup.com/docs/installation/] to set up Vagrant for a different platform and adjuest the steps of this document accordingly.

Note

Before you start using Vagrant-libvirt, please make sure your libvirt and qemu installation is working correctly and you are able to create qemu or kvm type virtual machines with virsh or virt-manager.

Prerequisites for Vagrant

	Install Vagrant. Ensure that vagrant-libvirt is among pulled dependencies.

install Vagrant
$ sudo dnf -y install vagrant

	Start libvirtd service

start libvirtd service
$ sudo systemctl start libvirtd

Creating the Vagrant environment

After preparing the libvirt prerequisites using the instructions above:

	You are now prepared to check out the MTF code into your preferred location.

cd to your prefered location
$ cd $HOME/ # Season to taste.
$ git clone https://github.com/fedora-modularity/meta-test-family.git

	Next, enter into the meta-test-family directory.

cd in meta-test-family
$ cd meta-test-family

	The MTF tool provides a configuration Vagrantfile that you can use to configure the Vagrant environment as given or open the Vagrantfile in your favorite editor and modify it to better fit your development preferences. This step is entirely optional as the default Vagrantfile should work for most users.

vim Vagrantfile
$ vim Vagrantfile

	If you’ve happy with the Vagrantfile, you can begin provisioning your Vagrant environment. Finish by running vagrant reload to reboot machine after provisioning and apply the latest kernel updates.

Provision the Vagrant environment:
$ sudo vagrant up --provider=libvirt # or just `sudo vagrant up` as libvirt is a default one
Alternatively, set the TARGET envvar to test another target defined in examples/testing-module/Makefile
$ sudo TARGET=check-pure-docker vagrant up
The above will run for a while while it provisions your development environment.
$ sudo vagrant reload # Reboot the machine at the end to apply kernel updates, etc.

	Once you have followed the steps above, you should have a running deployed MTF development machine. Log into your Vagrant environment:

ssh into the Vagrant environment
$ sudo vagrant ssh

Local installation

Requirements

MTF installer pulls its latest dependencies: python-devel, python-setuptools and python-netifcaes, docker, avocado [https://avocado-framework.github.io/], yaml and json.

MTF supports Gherkin-based testing in Python. To write tests in a natural language style, backed up by Python code, install the BBD tool behave [http://pythonhosted.org/behave/] . Execute the following command to install behave with pip:

install behave
$ sudo pip install behave

Installing MTF

Install MTF rpm from Fedora Copr repo [https://copr.fedorainfracloud.org/coprs/phracek/meta-test-family/].

add meta-test-family yum repo
$ sudo dnf copr enable phracek/meta-test-family
$ sudo dnf install -y meta-test-family

MTF scripts, examples and documentation will be installed into /usr/share/moduleframework

Source code

You may also wish to follow the GitHub MTF repo [https://github.com/fedora-modularity/meta-test-family] if you have a GitHub account. This stores the source code and the issue tracker for sharing bugs and feature ideas. The repository should be forked into your personal GitHub account where all work will be done. Any changes should be submitted through the pull request process. Please see Contributing Guidelines [https://github.com/fedora-modularity/meta-test-family/blob/master/CONTRIBUTING.md] for more information.

See also

	User Guide

	User Guide

	webchat.freenode.net [https://webchat.freenode.net/?channels=fedora-modularity]

	Questions? Help? Ideas? Stop by the #fedora-modularity chat channel on freenode IRC.

User Guide

	In a module’s root directory create a directory tests and place there a module configuration file config.yaml described in detail in section Configuration file. If you would like to use MTF without your own config.yaml. It is possible. It uses default minimal config. Then you have to set URL envvar to set test subject, otherwise it causes traceback. It is usefull for example for module what does not provide any service (no own start/stop/status/etc action defined.) or for testing with modulelint.

	Optionally write multiline Bash snippet tests directly in the tests/config.yaml file as described in section Multiline Bash snippet tests.

	Check the list of Environment variables.

	Write your tests, for example see sanity tests [https://github.com/fedora-modularity/meta-test-family/blob/master/examples/template/sanity_template.py] and various tests examples in /usr/share/moduleframework/examples/testing-module/. All tests methods are listed in section API Index and alphabetically in Index section.

	In the directory tests create a Makefile as below.

Mind to keep the mtf-generator line only if there are multiline Bash snippet tests in the tests/config.yaml file. The mtf-generator command will convert those multiline Bash snippet tests from the tests/config.yaml file into Python tests and stores them in the tests/generated.py file, which will be processed further by avocado.

MODULE_LINT=/usr/share/moduleframework/tests/generic/*.py
TESTS=*.py
CMD=avocado run $(MODULE_LINT) $(TESTS)

#
all:
 mtf-generator
 $(CMD)

	In a module’s root directory create a Makefile, which contains a secton test. For example:

.PHONY: build run default

IMAGE_NAME = debugging-tools
MODULEMDURL=file://debugging-tools.yaml

all: run
default: run

build:
 docker build --tag=$(IMAGE_NAME) .

run: build
 docker run -it --name $(IMAGE_NAME) --privileged --ipc=host --net=host --pid=host -e HOST=/host -e NAME=$(IMAGE_NAME) -e IMAGE=$(IMAGE_NAME) -v /run:/run -v /var/log:/var/log -v /etc/machine-id:/etc/machine-id -v /etc/localtime:/etc/localtime -v /:/host $(IMAGE_NAME)

test: build
 cd tests; MODULE=docker MODULEMD=$(MODULEMDURL) URL="docker=$(IMAGE_NAME)" make all
 cd tests; MODULE=nspawn MODULEMD=$(MODULEMDURL) make all
 cd tests; MODULE=openshift OPENSHIFT_IP="127.0.0.1" OPENSHIFT_USER="developer" OPENSHIFT_PASSWORD="developer" make all

	Prepare the environment to run tests in.

	Execute tests from the module root directory by running

#run tests from a module root directory
$ make test

or from the tests directory by running

#run Python tests from the tests/ directory
$ sudo MODULE=docker mtf ./*.py

or

#run Bash tests from the tests/ directory
$ sudo MODULE=docker mtf ./*.sh

	Clean up the environment after test execution.

Contents:

	Configuration file
	Multiline Bash snippet tests

	Enviroment setup
	Manual Setup

	Automated Setup

	Test Creation

	Environment variables

	Workflow integration
	Testsuite of project

	Taskotron Wokflow

	Arbitrary Jenkins Instance

	Linters
	Dockerfile linters

	Help file linter

	Glossary

	Troubleshooting
	First test takes so long time

	Unable to debug avocado output errors

See also

	API Index

	API Index

	webchat.freenode.net [https://webchat.freenode.net/?channels=fedora-modularity]

	Questions? Help? Ideas? Stop by the #fedora-modularity chat channel on freenode IRC.

Configuration file

To test a module create its configuration file config.yaml similar to an example configuration file [https://github.com/fedora-modularity/meta-test-family/blob/master/examples/memcached/config.yaml] described further. If the tested module doesn’t represent any service, the minimal configuration file [https://github.com/fedora-modularity/meta-test-family/blob/master/docs/example-config-minimal.yaml] structure can be used.

An example of config.yaml header:

document: modularity-testing
version: 1

An example of module general description:

name: memcached
modulemd-url: http://raw.githubusercontent.com/container-images/memcached/master/memcached.yaml
compose-url: https://kojipkgs.fedoraproject.org/compose/latest-Fedora-Modular-26/compose/Server/x86_64/os/Packages/m/memcached-1.4.36-1.module_b2e063be.x86_64.rpm
service:
 port: 11211
packages:
 rpms:
 - memcached
 - perl-Carp
testdependencies:
 rpms:
 - nc

	name defines module name

	modulemd-url contains a link to a moduleMD file

	compose-url links to a final compose Pungi build. repo or repos can be used instead, see further

	service stores a port if a module has any

	packages defines a module type (at the moment only rpms type is supported)

	testdependencies covers dependencies to be installed and used in tests

An example of module types specification:

default_module: docker
module:
 openshift:
 template: ./memcached.yaml
 docker_pull: True
 container: docker.io/modularitycontainers/memcached
 docker:
 setup: "docker run -it -e CACHE_SIZE=128 -p 11211:11211"
 cleanup:"echo Cleanup magic"
 labels:
 description: "memcached is a high-performance, distributed memory"
 io.k8s.description: "memcached is a high-performance, distributed memory"
 source: https://github.com/container-images/memcached.git
 url: docker.io/phracek/memcached
 rpm:
 setup: /usr/bin/memcached -p 11211
 cleanup: echo Cleanup magic
 start: systemctl start memcached
 stop: systemctl stop memcached
 status: systemctl status memcached
 url: http://download.englab.brq.redhat.com/pub/fedora/releases/25/Everything/x86_64/os/
 inheriteddocker:
 parent: docker
 start: "docker run -it -p 11211:11211"

	default_module, if specified, sets the default tested module type

	setup runs setup commands on a host machine, not in container, and prepares the environment for tests, for example changes selinux policy or hostname

	cleanup: similar to setup but done after test finished

	start defines how to start module service if there is any

	stop defines how to stop module service if there is any

	status defines how to check the status of module service if there is any

	labels contains docker labels to check if there is any

	url contains link to a container or repo (same meaning as container or repo)

	container contains a link to a container (docker.io or local tar.gz file) (obsolete)

	repo is used when compose-url is not set and contains a repo to be used for rpm module type testing (obsolete)

	parent if you would like to have more configs for same module type, it is possible to do it via inheritance. There will be used parent module + overwritten values with this one, you can rewrite whatever you want. You have to set parent (base) module type allowed are just rpm/docker

	template contains an URL link or a path to an OpenShift template. The template is added into OpenShift resources, like template and new application is created based on the template. The template is used to deploy your application inside OpenShift using command oc new-app …

	docker_pull specifies if image is pulled by command docker pull or not before adding to an OpenShift registry. Disabling this prevents your local image being overwritten. If it is not present then default value is True. You can specify ‘True’ or ‘False’.

Multiline Bash snippet tests

A config.yaml file may contain multiline Bash snippet tests directly. Every Bash command has to finish with 0 return code otherwise it returns fail:

test:
 processrunning:
 - 'ls /proc/*/exe -alh | grep memcached'
testhost:
 selfcheck:
 - 'echo errr | nc localhost 11211'
 - 'echo set AAA 0 4 2 | nc localhost 11211'
 - 'echo get AAA | nc localhost 11211'
 selcheckError:
 - 'echo errr | nc localhost 11211 |grep ERROR'

	test defines a section of multiline bash snippet tests

	processrunning contains commands to run as tests and displayed as avocado output

	testhost is optional and similar to test. The difference is that it runs commands on host machine so that there could be more dependencies than there are just in a module.

See also

	User Guide

	User Guide

	webchat.freenode.net [https://webchat.freenode.net/?channels=fedora-modularity]

	Questions? Help? Ideas? Stop by the #fedora-modularity chat channel on freenode IRC.

Enviroment setup

To test a particular component (docker, rpm or nspawn) the test environment should be configured accordingly, e.g. certain dependencies should be installed or some services should be started. There is an option to do it manually or by using MTF scripts.

Manual Setup

Docker

	Install Docker if not installed

	Add insecure registry to config if not added for your testing images

	(Re)Start docker service

Nspawn

	Install systemd-nspawn

	Disable selinux if enabled. It is an issue in selinux-policy

Rpm

	No any configuration needed

OpenShift

	Install OpenShift if not installed and if environment variable OPENSHIFT_LOCAL is specified.

	if OPENSHIFT_LOCAL variable is specified, then it starts an OpenShift by command oc cluster up or stops it by command oc cluster down.

Automated Setup

The environment configuration scripts should be executed in the same directory where the tests are, otherwise the environment variable CONFIG should be set.

	to setup environment run MODULE=docker mtf-env-set

	to execute tests run MODULE=docker mtf your.test.py

	to cleanup environment MODULE=docker mtf-env-clean

Test Creation

There is a script called mtf-init which generates easy template of test for module docker as example.

	to create template for module docker mtf-init --name your_name --container path_to_your_container

Environment variables

Environment variables allow to overwrite some values of a module configuration file config.yaml.

	AVOCADO_LOG_DEBUG=yes enables avocado debug output.

	DEBUG=yes enables debugging mode to test output.

	CONFIG defines the module configuration file. It defaults to config.yaml.

	MODULE defines tested module type, if default-module is not set in config.yaml.

	=docker uses the docker section of config.yaml.

	=rpm uses the rpm section of config.yaml and tests RPMs directly on a host.

	=nspawn tests RPMs in a virtual environment of lightweight virtualization with systemd-nspawn.

	URL overrides the value of module.docker.container or module.rpm.repo. The URL should correspond to the MODULE variable, for example

	URL=docker.io/modularitycontainers/haproxy if MODULE=docker

	URL=https://phracek.fedorapeople.org/haproxy-module-repo if MODULE=nspawn or MODULE=rpm

	MODULEMDURL overwrites the location of a moduleMD file.

	COMPOSEURL overwrites the location of a compose Pungi build.

	MTF_SKIP_DISABLING_SELINUX=yes does not disable SELinux. In nspawn type on Fedora 25 SELinux should be disabled, because it does not work well with SELinux enabled, this option allows to not do that.

	MTF_DO_NOT_CLEANUP=yes does not clean up module after tests execution (a machine remains running).

	MTF_REUSE=yes uses the same module between tests. It speeds up test execution. It can cause side effects.

	MTF_REMOTE_REPOS=yes disables downloading of Koji packages and creating a local repo, and speeds up test execution.

	MTF_DISABLE_MODULE=yes disables module handling to use nonmodular test mode (see multihost tests [https://github.com/fedora-modularity/meta-test-family/tree/devel/examples/multios_testing] as an example).

	DOCKERFILE=”<path_to_dockerfile” overwrites the location of a Dockerfile.

	HELPMDFILE=”<path_to_helpmdfile” overwrites the location of a HelpMD file, If not set, search for mdfile in same directory where is Dockerfile.

	OPENSHIFT_LOCAL=yes enables installing origin and origin-clients on local machine

	OPENSHIFT_IP=openshift_ip_address uses this IP address for connecting to an OpenShift environment.

	OPENSHIFT_USER=developer uses this USER name for login to an OpenShift environment.

	OPENSHIFT_PASSWORD=developer uses this PASSWORD name for login to an OpenShift environment.

	MTF_ODCS=[yes|openIDCtoken_string] enable ODCS for compose creation. Token has to be placed or it tries contact openIDC token via your web browser. Experimental feature

See also

	User Guide

	User Guide

	webchat.freenode.net [https://webchat.freenode.net/?channels=fedora-modularity]

	Questions? Help? Ideas? Stop by the #fedora-modularity chat channel on freenode IRC.

Workflow integration

Testsuite of project

	
	Upstream testsuite for project located in /usr/share/moduleframework/examples/testing-module/

	
	You can use it as an inspiration for your tests

	It contains various types how to schedule tests

	CI It contains info how it is scheduled in internal-ci or in taskotron or how to do

	Examples of Manual running of tests on localhost.

	Example how to run general multi-host tests

	Every new feature should be covered here - by new Makefile target or by new test run inside every testing module

Taskotron Wokflow

	
	Production instance: https://taskotron.fedoraproject.org/resultsdb/results?testcases=dist.modularity-testing-framework

	
	Triggered fedmsg via module-stream-version string

	Triggered by Module Build system done message, list of all: https://apps.fedoraproject.org/datagrepper/raw?topic=org.fedoraproject.prod.mbs.module.state.change

	
	There is general runtask.yml taskotron trigger: https://pagure.io/taskotron/task-modularity-testing-framework

	
	There is just one for every module and it contains whole logic where to find tests for module.

	Not needed to duplicate runtash.yml for each component. Scheduler is same (existing Makefile)

	It run tools/run-them.sh script. It contains whole logic where are tests and how to find them.

	
	run-them.sh script for taskotron

	
	Test Subject: rpm repositories (tagged koji builds of packages) via systemd-nspawn

	Located in: /usr/share/moduleframework/tools/run-them.sh

	Scheduled as: ./run-them.sh testmodule testmodule-master-20170407121558 pdc

	Example targets: check-run-them-pdc-testmodule, check-run-them-pdc-baseruntime

	
	Internal logic

	
	Contact PDC (Product definition center) for info about module like koji tags, moduleMD file

	
	Try dowload package from modules namespace in dist-git via fedpkg clone

	
	checkout to proper version found by PDC (scmurl)

	Try to find tests there (if exist Makefile in tests directory)

	If None: Try to find module dir in MTF project tests in /usr/share/moduleframework/examples directory

	If None: Run at least general ModuleLinter (/usr/share/moduleframework/tests/modulelint) with general minimal config.yaml located in docs directory

Arbitrary Jenkins Instance

	
	Production instance: hidden

	
	
	Triggered via fedmsg file

	
	Used tools/run-them.sh script, for same behaviour as Taskotron

	
	run-them.sh script for Jenkins based on whole fedmsg

	
	Test Subject: Same as Taskotron Workflow

	Located in: Same as Taskotron Workflow

	Scheduled as: run-them.sh testmodule /usr/share/moduleframework/tools/example_message_module.yaml fedmsg

	Example targets: check-run-them-fedmsg-testmodule

	
	Internal logic

	
	Same as Taskotron Workflow

Linters

MTF provides a set of linters for checking containers, help files and Dockerfiles.

Dockerfile linters

Dockerfile linters are divided into two python files: dockerlint.py [https://github.com/fedora-modularity/meta-test-family/blob/master/moduleframework/tests/generic/dockerlint.py] and dockerfile_lint.py [https://github.com/fedora-modularity/meta-test-family/blob/master/moduleframework/tests/static/dockerfile_lint.py].

dockerlint.py [https://github.com/fedora-modularity/meta-test-family/blob/master/moduleframework/tests/generic/dockerlint.py] performs these checks on an existing container image:

	test_all_nodocs checks if documentation files shipped by installed RPM packages have been removed. They are usually installed in the base image and inherited by child layer or installed via the RUN instruction. This is only WARN check.

	test_installed_docs checks if RPM packages installed by the RUN dnf command also install documentation files. The base image is an exception.

	test_clean_all checks if dnf/yum clean all is present in Dockerfile.

dockerfile_lint.py [https://github.com/fedora-modularity/meta-test-family/blob/master/moduleframework/tests/static/dockerfile_lint.py] these checks are performed on a Dockerfile:

	test_from_is_first_directive checks if the FROM instruction is really first in the Dockerfile.

	test_from_directive_is_valid checks if the FROM instruction has proper format.

	test_chained_run_dnf_commands checks if dnf/yum commands are chained or not.

	test_checked_run_rest_commands checks if the RUN instructions, except dnf/yum, are chained or not.

	test_helpmd_is_present checks if the help file is present for this container.

	test_architecture_label_exists checks if the architecture label is present in the Dockerfile.

	test_name_in_env_and_label_exists checks if the name label is present in the Dockerfile and NAME is present as ENV variable.

	test_maintainer_label_exists checks if the maintainer label is present in the Dockerfile.

	test_release_label_exists checks if the release label is present in the Dockerfile.

	test_version_label_exists checks if the version label is present in Dockerfile.

	test_com_redhat_component_label_exists checks if the com.redhat.component label is present in the Dockerfile.

	test_summary_label_exists checks if the summary label is present in the Dockerfile.

	test_run_or_usage_label_exists check if the run or usage label is present in the Dockerfile.

Help file linter

Help file linter checks if the help.md file contains important sections. Help file linter is helpmd_lint.py [https://github.com/fedora-modularity/meta-test-family/blob/master/moduleframework/tests/static/helpmd_lint.py].

Example of such help.md file is:

% MEMCACHED(1) Container Image Pages
% Petr Hracek
% February 6, 2017
NAME
DESCRIPTION
USAGE
SECURITY IMPLICATIONS

helpmd_lint.py [https://github.com/fedora-modularity/meta-test-family/blob/master/moduleframework/tests/static/helpmd_lint.py] contains those checks inside help.md file:

	test_helpmd_image_name checks if the help file contains an image name. The correct format is e.g. % MEMCACHED(1).

	test_helpmd_maintainer_name checks if the help file contains a maintainer name. The correct format is e.g. % USER NAME.

	test_helpmd_name checks if the help file contains a section called # NAME. The section describes name of the container and short description.

	test_helpmd_description checks if the help file contains a section called # DESCRIPTION. This sections describes how to use image, etc.

	test_helpmd_usage checks if the help file contains a section called # USAGE.

	test_helpmd_environment_variables checks if the help file contains a section called # ENVIRONMENT VARIABLES. The check is valid only if ENV variable are present in the Dockerfile. There is no heuristic if the variable is the same as specified in the helper file.

	test_helpmd_security_implications checks if the help file contains a section called # SECURITY IMPLICATIONS. The check is valid only if container exposes a port. There is no heuristic if the exposed port is the same as specified in the help file.

See also

	User Guide

	User Guide

	webchat.freenode.net [https://webchat.freenode.net/?channels=fedora-modularity]

	Questions? Help? Ideas? Stop by the #fedora-modularity chat channel on freenode IRC.

Glossary

Module A set of packages tested and released together as a distinct unit, complete with the metadata needed to manage it as a unit. May depend on other modules.

Troubleshooting

First test takes so long time

It is expected behavior, because the first test run downloads all packages from Koji and creates a local
repo. It is workaround because of missing composes for modules (on demand done by pungi). To make tests execute faster use environment variables:

	MTF_DO_NOT_CLEANUP=yes does not clean up module after tests execution (a machine remains running).

	MTF_REUSE=yes uses the same module between tests. It speeds up test execution. It can cause side effects.

	MTF_REMOTE_REPOS=yes disables downloading of Koji packages and creating a local repo, and speeds up test execution.

Unable to debug avocado output errors

If you see an error: Avocado crashed: TestError: Process died before it pushed early test_status., add environment variables:

	AVOCADO_LOG_DEBUG=yes

	DEBUG=yes

Manual testing

	
	Scheduled on host machine

	
	docker, nspawn MODULE type does not affect Host machine

	rpm MODULE type test directly on host machine. It installs things there and may be very dangerous

	Intended for test debugging

modules dist-git integration

	
	dist-git - Create Makefile in top directory, what contains build target and test target dependant on build taret and set proper variables to that test target, template: https://github.com/container-images/container-image-template/

	
	Example: https://github.com/container-images/container-image-template/blob/master/Makefile

	Makefile like: cd tests; MODULEMDURL=$(MODULEMDURL) MODULE=docker URL=”docker=$(IMAGE_NAME)” make all

	inside tests directory cretates just simple Makefile like https://github.com/container-images/container-image-template/blob/master/tests/Makefile

Docker

	Test Subject: docker images, https://fedoraproject.org/wiki/Docker

	
	Scheduled as: MODULE=docker avocado run *.py modulelint/*.py

	
	or MODULE=docker CONFIG=./minimal.yaml avocado run *.py modulelint/*.py when you use alternate configuration file

	Example targets: check-docker, check-minimal-config-docker, check-behave-docker

	
	Internal logic of testing

	
	pull docker image

	setup environment

	start docker image via start section or default one (keep it running)

	do test

	cleanup enviroment

	remove docker container

Nspanw

	Test Subject: rpm repository, inside systemd-nspawn virtualization https://www.freedesktop.org/software/systemd/man/systemd-nspawn.html

	
	Scheduled as: MODULE=nspawn avocado run *.py modulelint/*.py

	
	or MODULE=nspawn CONFIG=./minimal.yaml avocado run *.py modulelint/*.py when you use alternate configuration file

	Example targets: check-rpm, check-minimal-config-rpm

	
	Internal logic of testing

	
	install packages to changeroot with systemd

	setup environment and boot nspawn machine (to keep it running)

	start via start section or default one on guest

	do test

	cleanup enviroment

	halt system and remove installed chroot dir

Rpm

	Destructive and WIP

	Test Subject: rpm repository, bare metal, intended for testing packages directly on machine (without any module)

	
	Scheduled as: MODULE=rpm avocado run *.py modulelint/*.py

	
	or MODULE=rpm avocado run *.py modulelint/*.py when you use alternate configuration file

	Example targets: None - cause changes on host

	
	Internal logic of testing

	
	install packages to system

	start via start section or default one

	do test

	cleanup enviroment if any

Multihost

	Test Subject: any of previous

	Could be used for general multihost testing not directly dependent on modules

	Scheduled as: cd /usr/share/moduleframework/examples/multios_testing; MTF_DISABLE_MODULE=yes avocado run *.py

	Example targets: check-multihost-testing

	
	Internal logic of testing

	
	could be same as previous ones that there is one Host and one Guest machine what can cooperate togetger

	
	Or it could be used for general multihost testing with N machines where N>1 via use backends directly in setUp sections

	
	see example of test: https://github.com/fedora-modularity/meta-test-family/blob/master/examples/multios_testing/sanityRealMultiHost.py

	this example creates 3 machines (using nspawn) with various fedora versions and gather data.

MTF - Levels of testing

Component level testing

	WIP

	Test Subject - RPM packages build by koji

	See sections Manual testing - Rpm or Multihost

	MTF could be used for component level testing, it is not primar purpose of this project

Module level testing

	Test Subject - Module Build (rpm packages produced by MBS and tagged by koji or Docker container created manually or by OSBS or similar service)

	See sections Manual testing - Docker Nspawn

	
	This is primar purpose of this framework

	
	tagged rpm packages are not final artifacts (Module Compose should be final artifact) - for now it supply Compose level testing

	Docker image is final build artifacts

Compose level testing

	WIP

	Test Subject: Module compose (done by Pungi https://pagure.io/pungi-fedora)

	We are waiting for real module composes, what will be able to provide data about modules (modulemd files, repositories)

	It does not exist yet.

	There should be service for module builds on demand, not just composes for all modules together

	MTF is prepared for Compose testing somehow

	
	How to:

	
	remove modulemd-url from config use COMPOSE env variable or compose-url inside config.yaml.

	it gets all data from compose info

	Scheduled as: MODULE=nspawn COMPOSEURL=https://kojipkgs.stg.fedoraproject.org/compose/branched/jkaluza/latest-Fedora-Modular-26/compose/base-runtime/x86_64/os/ avocado run *.py

How to Contribute

If you are interested in contributing to MTF, the best way is to report a bug or propose a new feature that interests you and submit a patch for it. We use GitHub Issues [https://github.com/fedora-modularity/meta-test-family/issues] for sharing bugs and feature ideas. The MTF GitHub repository [https://github.com/fedora-modularity/meta-test-family/] should be forked into your personal GitHub account where all work will be done. Any changes should be submitted through the pull request process. For more information on how to contibute, please read our Contributing Guidelines [https://github.com/fedora-modularity/meta-test-family/blob/devel/CONTRIBUTING.md].

MTF is written in Python. While you do not need to be a Python expert to contribute, it would be advantageous to run through the Python tutorial [https://docs.python.org/2/tutorial/] if you are new to Python or programming in general.

Some knowledge of git and GitHub is useful as well. Documentation on both is available on the GitHub help page [https://help.github.com/] .

Contribution Checklist

	Make sure that you choose the appropriate upstream branch.

	Check your code with pylint and pyflakes

	Please ensure that your code follows our style guide [https://github.com/fedora-modularity/meta-test-family/blob/devel/CONTRIBUTING.md#codding-guidelines].

	Please make sure that any new features are documented and that changes are
reflected in existing docs.

	Please squash your commits and use our commit message guidelines [https://github.com/fedora-modularity/meta-test-family/blob/devel/CONTRIBUTING.md#git-commit-messages].

	Make a PR!

Thank you!

See also

	User Guide

	User Guide

	webchat.freenode.net [https://webchat.freenode.net/?channels=fedora-modularity]

	Questions? Help? Ideas? Stop by the #fedora-modularity chat channel on freenode IRC.

API Index

This section contains the MTF API, auto generated from the source code [https://github.com/fedora-modularity/meta-test-family].

	Module Framework

	Common

	Exceptions

	MTF Generator

	Module for reading data from compose

	PDC data

	Docker

	BASH Helper

	Timeoutlib

See also

	User Guide

	User Guide

	webchat.freenode.net [https://webchat.freenode.net/?channels=fedora-modularity]

	Questions? Help? Ideas? Stop by the #fedora-modularity chat channel on freenode IRC.

Module Framework

Common

Exceptions

MTF Generator

Module for reading data from compose

PDC data

Docker

BASH Helper

Timeoutlib

	
class moduleframework.timeoutlib.NOPTimeout(*args, **kwargs)

	

	
class moduleframework.timeoutlib.Retry(attempts=1, timeout=None, exceptions=(<type 'exceptions.Exception'>,), error=None, inverse=False, delay=None)

	
	
handle_failure(start_time)

	

	
class moduleframework.timeoutlib.Timeout(retry, timeout)

	

License

MTF is released under the GPLv2+, see LICENSE [https://github.com/fedora-modularity/meta-test-family/blob/master/LICENSE] file in the source code repository.

 Python Module Index

 m

 		 	

 		
 m	

 	[image: -]
 	
 moduleframework	

 	
 	
 moduleframework.timeoutlib	

Index

 H
 | M
 | N
 | R
 | T

H

 	
 	handle_failure() (moduleframework.timeoutlib.Retry method)

M

 	
 	moduleframework.timeoutlib (module)

N

 	
 	NOPTimeout (class in moduleframework.timeoutlib)

R

 	
 	Retry (class in moduleframework.timeoutlib)

T

 	
 	Timeout (class in moduleframework.timeoutlib)

 _static/comment.png

_static/down-pressed.png

_static/comment-bright.png

_static/comment-close.png

_static/file.png

_static/minus.png

_static/down.png

_static/plus.png

_static/ajax-loader.gif

_static/up-pressed.png

nav.xhtml

 Table of Contents

 		
 Meta Test Family Documentation

 		
 Installation

 		
 Vagrant

 		
 Prerequisites for Vagrant

 		
 Creating the Vagrant environment

 		
 Local installation

 		
 Requirements

 		
 Installing MTF

 		
 Source code

 		
 User Guide

 		
 Configuration file

 		
 Multiline Bash snippet tests

 		
 Enviroment setup

 		
 Manual Setup

 		
 Automated Setup

 		
 Test Creation

 		
 Environment variables

 		
 Workflow integration

 		
 Testsuite of project

 		
 Taskotron Wokflow

 		
 Arbitrary Jenkins Instance

 		
 Linters

 		
 Dockerfile linters

 		
 Help file linter

 		
 Glossary

 		
 Troubleshooting

 		
 First test takes so long time

 		
 Unable to debug avocado output errors

 		
 Manual testing

 		
 modules dist-git integration

 		
 Docker

 		
 Nspanw

 		
 Rpm

 		
 Multihost

 		
 MTF - Levels of testing

 		
 Component level testing

 		
 Module level testing

 		
 Compose level testing

 		
 How to Contribute

 		
 Contribution Checklist

 		
 API Index

 		
 Module Framework

 		
 Common

 		
 Exceptions

 		
 MTF Generator

 		
 Module for reading data from compose

 		
 PDC data

 		
 Docker

 		
 BASH Helper

 		
 Timeoutlib

 		
 License

_static/up.png

